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A B S T R A C T

This paper investigates stochastic scheduling and routing problems in the online meal delivery (OMD) service.
The huge increase in meal delivery demand requires the service providers to construct a highly efficient
logistics network to deal with a large-volume of time-sensitive and fluctuating fulfillment, often using inhouse
and crowdsourced drivers to secure the ambitious service quality. We aim to address the problem of developing
an effective scheduling and routing policy that can handle real-life situations. To this end, we first model the
dynamic problem as a Markov Decision Process (MDP) and analyze the structural properties of the optimal
policy. Then we propose four integrated approaches to solve the operational level scheduling and routing
problem. In addition, we provide a continuous approximation formula to estimate the bounds of required
fleet size for the inhouse drivers. Numerical experiments based on a real dataset show the effectiveness of the
proposed solution approaches. We also obtain several managerial insights that can help decision makers in
solving similar resource allocation problems in real-time.
1. Introduction

The business of delivering restaurant meals to individual homes
is undergoing rapid growth as the emerging online platforms (e.g.,
UberEats, Deliveroo, and Meituan) race to capture worldwide markets
in the past few years. The COVID-19 pandemic strengthened this trend
as we saw a significant demand increase for this service in 2022. For
example, the business surge renders the London-based online meal
delivery (OMD) unicorn Deliveroo launching its debut in March 2021,
then raising additional funds to continue the rival with competitors
across Atlantic. The underlying reason is that the operational cost in the
delivery force is expensively high (Korosec & Wilhelm, 2020), thus the
OMD practitioners are making every endeavor to reduce costs through
effective strategies. Nonetheless, the practical features of OMD services,
such as fluctuating seasonal demand and stringent delivery require-
ments, renders this business rather complicated to attain operational
excellence (Hirschberg et al., 2016).

Seasonal demand. Our study is motivated by analyzing the OMD
operations of the Chinese platform Meituan. The regional data analysis
(shown in Fig. 1, left panel) reveals a significant variation in platform
demand throughout the day. That is, approximately 40% of the orders
occur during lunchtime (10:00–14:00), while 30% happen during din-
ner time (18:00–20:00). We refer to this heterogeneous demand arrival
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pattern in OMD operations as seasonal demand due to its periodic nature
with peaks and valleys occurring in each day. To further characterize
this pattern, we identify the peak periods as rush hours and the low-
demand periods as no-rush hours. The heterogeneous nature of demand
creates fluctuating needs for delivery personnel, making OMD opera-
tions more complex. As depicted in the right panel of Fig. 1, there is
also a seasonal distribution of drivers availability throughout the day,
with 30 drivers available during no-rush periods and 130 drivers during
rush periods on average. Managing such variability in both demand and
driver availability poses significant challenges that must be tackled to
ensure a high service level.

The seasonal demand is not specific to OMD platforms. With the
wide usage of mobile devices, more and more consumers find it con-
venient to access online platforms and make immediate requests for
products and services, triggering the demand surge in a specific timing
or region. For example, Afèche et al. (2023) studied the ride-hailing
platform operation and intended to reduce the spatial supply and
demand mismatch during rush hours through demand-side admission
control and supply-side capacity repositioning policies: the former
allows the platform to accept or reject rider requests while the latter
allows the platform to direct drivers to the highest demand places.
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Fig. 1. The average arrival pattern of OMD platform agents (orders and drivers) per day.
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However, these control policies seem not suitable for the OMD opera-
ions. What is specific to the OMD is the high variance in the temporal

distribution of demand, real-time response to the customer requests
and high penalties for rejected and delayed service. As a result, the
admission control through requests rejection would cause significant
loss of goodwill and the repositioning control is deemed as less effective
to alleviate the temporal capacity shortage. Instead, the OMD platform
is recommended to construct a highly flexible logistics network to deal
with the large volume of time-sensitive and fluctuating demand.

Practice dilemma. Fundamentally, the platform needs to strategically
etermine an appropriate capacity of required drivers to satisfy the
easonal demand per day. To ensure a high quality of service, the
latform typically establishes its own dedicated delivery team, which
s a tactical decision that remains fixed for a specific period, such as

six months (Dai & Liu, 2020; Tao et al., 2023; Zhao et al., 2024).
The most straightforward way is to employ as many drivers as needed
to satisfy the demand in rush hours. Accordingly, customers’ service
quality would be highly rated as they can always receive the ordered
meals timely. However, this strategy is clearly not cost-effective be-
cause it incurs an expensive fixed cost (e.g., training fees, insurances,
and paid holidays) to maintain a large fleet size which is redundant
for the no-rush hours. By contrast, if the platform seeks to reduce the
operational cost, it might recruit a number of drivers sufficient to cover
the demand during no-rush period. However, this might incur service
delays within rush hours due to the inadequate supply of delivery force.
As a result, the OMD practitioners are de facto facing a dilemma. By
retrospecting Fig. 1, we also observe that the number of busy drivers
uring rush hours in Meituan are approximately 4 times higher than
hat of no-rush hours, i.e., 150 vs. 40, and the busy rate (number of
oading orders per driver) also increases by up to 8 times in rush

hours. Therefore, it is rather challenging for managers to tackle this
lexible capacity design issue while balancing the service quality and
ost-effectiveness targets.
Inhouse vs. crowdsourced drivers. In recent years, the self-scheduling

delivery service provided by crowdsourced drivers (e.g., Amazon Flex,
UberEats) has been gradually introduced into the online marketplace
(Archetti & Bertazzi, 2021; Taylor, 2018). The self-scheduling flexibility
allows the drivers to decide when and how often to offer their delivery
ervice with certain degree of freedom (Hall & Krueger, 2018), and

the OMD platform can take such an advantage to satisfy the variable
demands rather than maintain a large fleet all the time. Thus, the
platform either disposes of its own delivery force or crowdsources
individual drivers. Hereafter, the self-own delivery force is denoted as
nhouse drivers and work as full-time employees. On the contrary, the
self-scheduling individual drivers (crowdsourced drivers) work part-time
nd are allowed to join or leave with personal freedom, depending on
hether deliveries are beneficial to them. Crowdsourced drivers add
igh flexibility on capacity management, on one side. However, on
he other side, they insert a new degree of uncertainty related to their
140 
Table 1
Characteristics of inhouse and crowdsourced drivers in Meituan.

Inhouse driver Crowdsourced driver

Employment Platform Self-scheduling
Contract Contract-based, full-time No contract, part-time
Fixed wage 3000 yuan per month No fixed wage
Compensation 6 yuan per order 6∼9 yuan per order

availability to provide service. Additionally, the inhouse drivers incur
higher fixed costs while crowdsourced drivers incur higher variable
costs (see Table 1 for detailed characteristics comparison of Meituan
drivers).

Key challenge. Consequently, determining a fleet of delivery force,
ffective scheduling and dispatching of drivers from both delivery
odes (inhouse and crowdsourced) is a critical activity to secure the

perational cost performance (Yildiz & Savelsbergh, 2019a, 2019b).
his is particularly difficult due to the uncertain arrival of incoming
rders and the unpredictable availability of crowdsourced drivers. The
latform must, therefore, devise effective dispatching routes on-the-
ly and allocate new orders to the drivers based on their availability
nd geographical locations. The dynamic nature of dispatching routes,
hich may need to be altered as new orders arrive even while a
river is already en route of other delivery tasks, adds a significant
evel of complexity to the problem. In this regard, existing studies on
outing and scheduling optimization problems for meal delivery are still
eveloping. Reyes et al. (2018) designed a rolling-horizon repeated-

matching algorithm to solve the dynamic meal delivery problem in
nearly real-time, and Ulmer et al. (2021) studied the postponement
strategies to schedule drivers in the dynamic pickup and delivery meal
problem. Nonetheless, in both studies, the size of the delivery fleet
s exogenously known, and the effects of uncertain driver availability
n dynamic dispatching decisions have not been thoroughly explored.
he complex interplay between fleet management and the optimization
f dynamic dispatching necessitates further detailed study, which is
xactly our focus here.
Our contributions. In this article, we take the perspective of the OMD

service provider which connects meal providers (e.g., restaurants) and
customers through a team of mixed delivery force. We analyze the one-
period (i.e., a day) scheduling and dispatching problem in which the
providers sell products (meals) to customers from different locations
(restaurants). The objective of the service provider is to minimize the
total delivery cost with a timely service level target. We are seeking to
answer the following research questions: (i) Given an inhouse driver
fleet of size, how to develop an effective yet computationally feasible
scheduling and routing policy that can handle real-life situations? (ii)
What is the impact of the inhouse driver fleet on the cost of the
operational plan? The first question is at an operational level for a given
number of inhouse drivers, while the second is about determining the
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best fleet size and, thus, is at the tactical level, but requires first to be
ble to compute the best policy for any given size. The contributions
f this paper are as follows:

• Dynamic models and optimal policy analysis for a given fleet size:
We formulate the operational level dynamic scheduling and dis-
patching problem as a Markov Decision Process (MDP) and derive
structural properties of the optimal policy where possible, i.e., we
analytically provide the recursive formulation of the optimal
policy.

• Solution approaches leveraging future information and fast-effective
routes generation: Given the huge size of state space that renders
the problem too complex to be solved optimally, we propose
two customized algorithms to take future information into ac-
count (see Soeffker et al., 2021; Thomas & White, 2004, for
the importance of exploiting information when solving dynamic
vehicle routing problems), and exploit two fast-effective strate-
gies to adapt route construction. Accordingly, this leads to four
solution approaches. We first compare the performance of the
designed algorithms versus optimal policies through a set of
simple instances to highlight their advantages. Then we conduct
extensive numerical experiments with the dataset from Meituan
to investigate the performance of the developed approaches in
real-life business environments.

• Managerial insights for real-world OMD applications: We present an
adaptation of the approximation formula by Daganzo (1987) to
determine the range of inhouse driver fleet size, and perform a
binary search to determine the capacity that minimizes total cost.
Then, we show the importance of incorporating future informa-
tion and refining routes generation to improve the operational
performances, by reducing the total cost up to 6% compared to
the policy without these features. We also present the impact of
key factors, such as the fixed wage and variable compensation
cost of different drivers, on the optimal inhouse drivers fleet
size. Note that our proposed solution approach can be easily
implemented in the OMD and other similar platforms to address
real-time resource allocation problems with mixed delivery force.

2. Literature review

Our research lies at the intersection of several related streams of lit-
erature: online meal delivery, real-time vehicle routing and scheduling
and crowdshipping. In this section, we review the key contributions of
each stream of literature and discuss how we extend them.

Research on online meal delivery. Our work is related to the
literature about online meal delivery, which has received ample atten-
tion by researchers in the last few years (Liu et al., 2021; Reyes et al.,
2018; Yildiz & Savelsbergh, 2019a; Zhao et al., 2024). The online meal
delivery problem is one of the most challenging in last mile delivery,
due to the strict service level requested by the customers (Yildiz &
Savelsbergh, 2019a). It is also similar to the same day delivery problem
described in Voccia et al. (2019), but requires quick-response decisions
to respect the short delivery time, rendering the required solution ap-
proach fundamentally different from the solution approaches proposed
in this research stream.

We only review previous studies investigating the stochastic online
eal delivery problem in this article. Liu et al. (2021) propose a data-
riven framework to model the online meal delivery problem and
ptimize the assignment decisions based on orders delivery prediction
ith uncertain service time, while they regard the routing decision
s a black-box and do not provide an explicit route for each delivery
erson. Ulmer et al. (2021) consider a stochastic dynamic pickup and
elivery problem in which a fleet of drivers delivers meals from a set of
estaurants to ordering customers. The authors present an anticipatory
ustomer assignment (ACA) policy to address the stochasticity, post-
one the assignment decisions for selected customers, and introduce
141 
time buffers to account for the uncertainty in the meal ready times.
Tao et al. (2023) developed two machine learning models to design
ersonalized dispatching schemes for drivers, integrating information
uch as the order and driver’s characteristics in the order assignment

and routing decisions. In our paper, to tackle the dynamic scheduling
and routing problem in online meal delivery service, we develop an
anticipatory solution approach that incorporates information about
future requests into routing decisions.

Research on real-time vehicle routing and scheduling. Our prob-
em is also related to the dynamic vehicle routing problem (DVRP)
Powell et al., 1995). A vehicle routing problem is dynamic (i.e., real-

time or online) if information about the problem is unknown in advance
o the decision maker and arrives in real time during the routing

horizon. Dynamic information may include customer demand, travel
times, service time or customer requests (Ehmke et al., 2015).

In the literature, two major classes of solution approaches have
been reported to solve such kind of problems, which differ mainly
in the way they process the dynamic information. The first class of
methods is called the myopic approach (Powell et al., 2000) or the local
pproach (Chen & Xu, 2006), which optimizes and reoptimizes the dis-
atching routes solely based on known information without considering
uture information. At each period, a static model consisting of known
rders up to the current time point is solved. These methods do not
eed any advance information about future events and can be used for
ituations where future orders are difficult to predict. Recent studies
n myopic approaches for DVRP include insertion algorithms (Ichoua

et al., 2000), nearest neighbor (Naccache et al., 2018), recursive ap-
proaches (Arslan et al., 2019), column generation (Chen & Xu, 2006),
nd others. The second class of methods is called the anticipatory
pproach (Berbeglia et al., 2010) or the look-ahead approach (Chen

& Xu, 2006). This approach tries to incorporate the probabilistic or
orecasted information about the future into the static problem. These
ethods require anticipated information about future events and can be
sed for situations where at least some probabilistic information about
uture events is known in advance. With the recent developments in
nformation and communication technologies, it becomes easier and
ore affordable to explore historical data and to extend anticipa-

tory approaches. We refer the reader to the extensive review on the
stochastic DVRP by Soeffker et al. (2021).

All of the above research, however, concern the dynamic scheduling
nd routing problem with only a professional delivery fleet, i.e., in-
ouse drivers. With the adoption of on-demand crowdsourced drivers,

the DVRP needs to be able to integrate more stochastic factors, under
which the choice of drivers is a crucial element to determine the
ultimate operational costs.

Research on crowdshipping. The significant increase in the online
meal delivery service requires the platform to construct a highly effi-
cient logistics network tackling a large-volume of time-sensitive and
fluctuating requests. Therefore, relying only on inhouse drivers is no
longer a viable strategy. In recent years, the adoption of crowdsourced
drivers gives the service providers more flexibility in facing the demand
luctuations (Cachon et al., 2017). As a result, the online platforms are

able to reduce costs and fixed assets through crowdshipping.
We can notice a growing interest in routing with crowdshipping

in the literature, and we refer to Archetti and Bertazzi (2021) for a
detailed review. Archetti et al. (2016) first introduced the crowdship-
ping in routing problems under the name vehicle routing problem with
occasional drivers (VRPOD). The authors studied the basic setting in
which each occasional driver (OD) could serve one customer request
at most and they provided insights on the impact of different com-
pensation schemes on the solution quality. Later, Arslan et al. (2019)
studied a problem in which dedicated vehicles are considered as an
option for the crowdsourced drivers and studied the case in which
oth the customers’ orders and the ODs’ availability are uncertain and
ynamic. Dayarian and Savelsbergh (2020) designed two rolling hori-

zon dispatching approaches to address a stochastic same-day delivery
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problem and quantified the potential benefits of crowdshipping for
same-day delivery. Fatehi and Wagner (2021) investigated the labor
planning and pricing for crowdsourced last-mile delivery systems to
satisfy on-demand orders. They developed a model to combine crowd-
sourcing, robust queueing, and robust routing theories to derive the
optimal delivery assignments to available independent crowdsourced
drivers given their optimal hourly wage. Zehtabian et al. (2022) pro-
vided a reliable estimation of arrival times in a crowd-shipping context
with both uncertain requests and (future) occasional drivers partici-
pation, among which, they modeled the dynamic pickup and delivery
problem as an MDP and developed two look-ahead heuristic methods
to address it.

Most of the above studies assume that the fleet sizes are exogenously
given or only focus on the crowdshipping force. Therefore, we conclude
that the crowdshipping delivery mode still needs further exploration,
especially in the routing optimization if the delivery force is mixed and
heterogeneous.

Detailed comparison with close literature. Finally, we would like
to compare our work with studies closely related to ours to better
position our contribution in the literature. On the one hand, this article
shares a similar assumption about the arrival of crowdsourced drivers
in Ulmer and Savelsbergh (2020). Starting from this, we address a
different real-time scheduling and routing problem in the OMD service
with a cost-minimal objective and develop online solution approaches
to effectively solve this challenging problem. On the other hand, our
findings also correspond to an analysis of the effect of crowdsourcing
versus hiring in-house on the total cost, thereby determining an optimal
fleet size. To achieve this, we adopt continuous approximation to esti-
mate the required size. In this regard, Yildiz and Savelsbergh (2019b)
estimate the service region (radius of a circle) and capacity level for
crowdsourced delivery from the viewpoint of a single restaurant, which
diverges significantly from our purpose. Our main emphasis lies in
adopting an overall perspective that not only investigates fleet size
decisions at the tactical level but also prioritizes operational aspects
such as uncertain driver supply, order assignment, and route opti-
mization (with pickup and delivery constraints). Consequently, our
study contributes extensively to the OMD field by offering a systematic
plan to address these crucial business problems, including planning,
scheduling, and routing decisions.

3. Scheduling and dispatching operational problem in OMD

In this section and the next section, we focus on the operational
problem of finding the best request assignment and routing policy for
a given number of 𝑀 inhouse drivers and uncertain occurrence of
crowdsourced drivers.

3.1. OMD operational process

The OMD operations of the company that motivated our research
consist of order scheduling and meal dispatching activities. The whole
OMD process depicted in Fig. 2 involves customers, drivers, meal
providers, and the company managing the platform (i.e., the decision
maker). As a customer visits an online meal platform webpage to order
a meal, the webpage first displays a few shops (or restaurants) close
to her location. Given the displayed information, the customer then
chooses her favorite dish from a particular shop and places an order
for it. After confirmation with the customer, the platform notifies
the provider (e.g., restaurant, shop, etc.) to process the required meal
accordingly. Meanwhile, the platform assigns a driver to collect the
meal at the shop and deliver it to the customer location. The meal
will be picked up when it is ready at the restaurant, and dispatched
to the customers. Once a driver finishes a delivery task, she can get the
corresponding reward for that order. The service time of a platform is
defined as the total duration from an order arrival until the customer
receives her meal, which is subject to a service time target defined by
142 
Fig. 2. Order scheduling and meal dispatching process in an OMD platform (Vasi,
2019).

the platform. Usually, the target is limited by a range of 30∼60 minutes.
The platform assigns orders in real-time to the drivers and proposes a
dispatching route for each driver given her holding tasks.

In the perspective of the decision maker, she seeks to fulfill all the
delivery tasks at a minimum total cost, i.e., the fixed cost associated
with inhouse drivers and the variable cost (compensation) paid to both
inhouse and crowdsourced drivers, which is related to the number of
served orders considering travel time and drivers types, plus the penalty
cost due to the lost-sales of unserved orders.

In the following section we formally define the problem as a Markov
Decision Process (MDP). For ease of exposition, all notations are sum-
marized in Table 2.

3.2. MDP assumptions and notations

Let  = {0, 1,… , 𝐿} be the set of all potential locations in the
problem, where the depot for inhouse drivers is 0 and the locations of
customers, en route drivers and restaurants are denoted by {1,… , 𝐿}.
We define, within set , the restaurants set  and the customers set ,
such that  ∩  = ∅, ∪  ∪ {0} ⊆ . The drivers could be located at
any place in . Let 𝑑𝑖𝑗 denote the deterministic travel time between any
two locations 𝑖, 𝑗 ∈ . The estimation of these parameters are further
discussed in Section 5.1.

The exogenous stimulus of the platform is fed by a sequence of
order requests. Formally, it is represented by a sequence of increasing
real numbers 𝑡, which denotes the arrival time of a request. Upon the
request at time 𝑡, its characteristics are revealed as a tuple 𝐼(𝑡) ≡
(𝑡, 𝑖, 𝑗), where 𝑖 ∈  and 𝑗 ∈  are the customer and restaurant
locations, respectively. We call (𝑖, 𝑗) an O-D pair hereafter. For ease
of modeling, we assume the meal’s processing time for each request is
equal to the same value 𝜈, and we relax this hypothesis in the numerical
experiments. The production capacity is assumed to be infinite in all
restaurants. Therefore, the earliest time for a driver to pick up a meal is
𝜈 minutes after the request arrival. As a consequence, (𝑡, 𝑖, 𝑗) completely
characterizes a realized order information.

Now, we further clarify the definition of arrival time 𝑡 for a request.
We assume that requests are placed by the customers during the time
horizon [0, 𝑇 ]. A random variable 𝑇𝑖𝑗 , representing the time at which
the order request is placed, is associated with every customer 𝑖 ∈ 
and restaurant 𝑗 ∈  . For all O-D pairs (𝑖, 𝑗), we have

𝑇𝑖𝑗 =

{

𝑇 𝑖𝑗 with probability 𝜃𝑖𝑗 , (1)

𝑇 + 1 with probability 1 − 𝜃𝑖𝑗 .
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Table 2
Notation in the MDP modeling.

Notation Meaning

Parameters:

𝑇 The planning horizon
 All potential locations in the service area
 The restaurant locations
 The customer locations
𝑑𝑖𝑗 Traveling time between locations 𝑖 and 𝑗
𝜃𝑖𝑗 The probability that a customer 𝑖 demands food from a restaurant 𝑗
𝛺 All potential realizations of crowdsourced drivers arrival events
𝜔 A possible realization of the crowdsourced driver arrival events
𝑟0 The fixed amount of wage paid to an inhouse driver
𝑟1 , 𝑟2 The unit cost to accept and serve an order by an inhouse or crowdsourced driver
𝑟3 The unit cost to reject an order (resembling to assign it to a specialized costly driver)
𝑛 Index of an interim stage, 𝑛 ∈ {1, 2,… , }
(𝑇 , ∅, ∅) The final stage
 The set of inhouse drivers
𝑛 The set of active crowdsourced drivers at stage 𝑛
𝑄 The set of potential O-D pairs (i.e., customer-restaurant paired locations)
𝐼𝑛 A tuple of an order arrival indicating the arrival time, customer and restaurant locations

Functions:

𝑓𝑖𝑗 , 𝐹 𝑖𝑗 The PDF and CDF of an order’s arrival time for customer 𝑖 demanding food from restaurant 𝑗 within 𝑇
𝐹𝑖𝑗 The CDF of an order’s arrival time for customer 𝑖 demanding food from restaurant 𝑗
𝑉 𝜋
𝑛 The cost-to-go function from stage 𝑛 for a policy 𝜋 given a crowdsourced drivers realization 𝜔

 The expected total cost given all possible crowdsourced driver realizations

Random variables:

𝑇𝑖𝑗 A random variable indicating an order’s arrival time for customer 𝑖 demanding food from restaurant
𝛿𝑗 The service duration of a crowdsourced driver
𝐒𝑛 The state vector at stage 𝑛
𝐔𝑛 The state vector of active drivers at stage 𝑛
𝐑𝑛 The set of rejected orders until stage 𝑛
𝐘𝑢
𝑛 The open (unfinished) orders of a driver 𝑢 at stage 𝑛

𝐩𝑢𝑛 The scheduled path of a driver 𝑢 to deliver the open orders
𝑙𝑢𝑛 The real time locations of driver along 𝑝𝑢𝑛 at stage 𝑛

Decision variables:

𝐚𝑛 The action taken at stage 𝑛
𝑧𝑛 The accept or reject action indicator
𝑘𝑛 The driver index assigned to the order
u
s

where 𝑇 𝑖𝑗 is a continuous random variable with known Cumulative
istribution Function (CDF) 𝐹 𝑖𝑗 and Probability Density Function (PDF)

𝑓 𝑖𝑗 . Thus, we have

𝐹 𝑖𝑗 (𝑡) =
⎧

⎪

⎨

⎪

⎩

0 if 𝑡 ≤ 0,
∫ 𝑡0 𝑓 𝑖𝑗 (𝑥)𝑑 𝑥 if 0 < 𝑡 ≤ 𝑇 ,
1 if 𝑡 > 𝑇 .

(2)

For a potential request of O-D pair (𝑖, 𝑗), 𝜃𝑖𝑗 is the probability that
a request arises from a customer 𝑖 demanding meal provided by a
restaurant 𝑗 within 𝑇 ; we formally define 𝑇 + 1 as a conventional time
point when ‘‘no-show’’ requests are placed. The CDF of 𝑇𝑖𝑗 can thus be
written as

𝐹𝑖𝑗 (𝑡) = 𝜃𝑖𝑗𝐹 𝑖𝑗 + (1 − 𝜃𝑖𝑗 )𝟏(𝑡 ≥ 𝑇 + 1) (3)

where 𝟏(𝑡) is an indicator function. We assume that requests arise
ndependently from different paired locations.

The delivery force is composed of a set  = {1, 2,… , 𝑀} of inhouse
drivers, and unaffiliated crowdsourced drivers. Suppose active busy
drivers move as the designed routes such that it is possible to keep track
of their locations at anytime. We also assume each idle driver acts as
a random walker in the region when she does not provide service, and
the probability of moving towards four directions is evenly distributed.
One may argue that the idle driver keep staying in a restaurant location,
which is just a special case of the current assumption. Inhouse drivers
traverse routes starting and ending at the depot, and keep active within
he planning horizon.

As a supplement to the inhouse drivers, the platform also hires a
certain amount of crowdsourced drivers, whose availability is revealed
as an exogenous stimulus. The set of all possible crowdsourced driver
 r
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arrivals is denoted by 𝛺, i.e., each element 𝜔 ∈ 𝛺 is a realization
of crowdsourced driver arrivals and each realization 𝜔 is assumed to
be equally likely to occur. The realization 𝜔 consists of a sequence of
crowdsourced driver arrivals, 𝜔 = {(𝑢𝜔𝑗 , 𝑡𝜔𝑗 , 𝑙𝜔𝑗 , 𝛿𝜔𝑗 )}, 𝑗 = 1,… , |𝜔|, where
the number of drivers |𝜔| varies for different realizations (| ⋅ | denotes
the cardinality of a set). More precisely, each crowdsourced driver 𝑢𝜔𝑗 is
characterized by a start-time 𝑡𝜔𝑗 ∈ [0, 𝑇 ], a start-to-work location 𝑙𝜔𝑗 ∈ 
and a working duration 𝛿𝜔𝑗 ∈ [0, 𝑇 − 𝑡𝜔𝑗 ]. We only become aware of a
crowdsourced driver at her starting time 𝑡𝜔𝑗 . Furthermore, 𝛿𝜔𝑗 represents
the duration that a crowdsourced driver will work, indicating that she
leaves the system at time 𝑡𝜔𝑗 + 𝛿𝜔𝑗 . After this, she will not accept any
future requests. A crowdsourced driver can leave only when she is idle.
Hereafter, we denote the active crowdsourced drivers at time 𝑡 as a set
𝑡. This setting for crowdsourced drivers resembles the configuration
studied in Ulmer and Savelsbergh (2020). For the sake of readability,
in the following we describe the MDP associated with each realization
𝜔 of crowdsourced driver arrivals, avoiding the use of index 𝜔 in the
notation.

The rewards of inhouse drivers consist of two parts: on the one
hand, they receive a fixed amount of wage 𝑟0, independent of their daily
delivery performance; on the other hand, they also acquire a bonus of
𝑟1 per delivery task completed. For the crowdsourced drivers, they are
paid a reward 𝑟2 by completing a delivery task. Since dynamic pricing
is out of scope for current study, we assume that 𝑟1 and 𝑟2 are constant
values, representing the average rewards for inhouse and crowdsourced
drivers, respectively. We further assume 𝑟2 ≥ 𝑟1, consistently with the
realistic situation reported in the Table 1. Note that, we rule out the
ncertainties in traveling and service times, therefore each order is
upposed to be delivered on time if the driver follows the designed
oute.
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We keep track of the status of open orders, that is, the order arrival,
pick-up at a restaurant and delivery to a customer. Once the meal is
eceived by the customer, its delivery task is completed, the service is
inished and the order is closed. If we define the service time target as
, it means that each request should be served within 𝜅 units of time,
ay minutes. In case an order cannot be served within 𝜅 minutes by
ny active driver, we assume that the platform assigns the request to
n external operator, asking for an extremely high reward 𝑟3. This is
quivalent to decline the request at a high lost-sales value 𝑟3 and we
efer to this action as rejecting the request in the following.

Given the above assumptions, the scheduling and routing problem
can be modeled as an MDP in continuous-time scale. We sketch the key
lements of the MDP in the following.

3.3. MDP description

At each stage a decision is taken based on the orders information
vailable on the platform. Then two types of stages should be con-
idered in the MDP: interim stage and final stage. An interim stage is
he arrival of a request at time 𝑡 ∈ [0, 𝑇 ], and the final stage is the
chievement of the time horizon 𝑇 . In each interim stage, the decision
s about rejection or acceptance-scheduling of a request. An interim
tage is described as a request tuple (𝑡, 𝑖, 𝑗), where 𝑡 is the time of
ccurrence, 𝑖 is the customer location asking for meal and 𝑗 is the
estaurant. The final stage is defined as (𝑇 , ∅, ∅). Since every customer
ay request meal from any potential restaurant at most once, the

ystem has at most |||| requests, and the set of potential O-D pairs
s  = {(𝑖, 𝑗) ∶ 𝑖 ∈ , 𝑗 ∈ }. We denote 𝑛 ∈ {1, 2,… , ℎ} (ℎ ≤ |||| + 1)

as the stage counter and 𝑡𝑛 as the time at which stage 𝑛 takes place.
The state of the system has to include all the information about the

current status of drivers and their allocated orders. Given the inhouse
drivers and a crowdsourced driver realization 𝜔 ∈ 𝛺, we know that
pon the arrival of request 𝐼𝑛 = (𝑡𝑛, 𝑖𝑛, 𝑗𝑛), the set of active drivers

circulating in the service area at stage 𝑛 can be denoted as 𝐔𝑛 = ∪𝑛.
For each active driver 𝑢 ∈ 𝐔𝑛, we define a tuple (𝐘𝑢𝑛,𝐩

𝑢
𝑛, 𝑙𝑢𝑛), where

set 𝐘𝑢𝑛 includes 𝑢’s open (unfinished) orders, vector 𝐩𝑢𝑛 represents 𝑢’s
scheduled path at 𝑡𝑛 to deliver these open orders of 𝐘𝑢𝑛, and scalar 𝑙𝑢𝑛
tracks 𝑢’s location along 𝐩𝑢𝑛 at time 𝑡𝑛. Notably, if 𝐘𝑢𝑛 = ∅, then the
driver 𝑢 is idle at time 𝑡𝑛; otherwise, 𝐘𝑢𝑛 records the holding orders’
relevant information and indicates whether these orders are picked-
up or not. Thus, we describe the state of the system at the 𝑛th stage
as 𝐒𝑛 =

⋃

𝑢∈𝐔𝑛 (𝐘
𝑢
𝑛,𝐩

𝑢
𝑛, 𝑙𝑢𝑛). In the initial stage, only the inhouse drivers

are active and the initial state is 𝐒0 =
⋃

𝑢∈(∅, ∅, 0). At the end of the
𝑛th stage, we define a set 𝑛 to represent appeared O-D pairs, i.e., the
customer and restaurant paired locations occurred until the 𝑛th stage,
and 0 = ∅.

Decision epochs are associated with any new order request arrival.
An action is made upon the decision epoch, which comprises two
components: reject/accept the request and select a driver if accept.
Hence, we can represent the action for each decision epoch as a tuple
𝐚𝑛 = (𝑧𝑛, 𝑘𝑛), where 𝑧𝑛 is a binary rejection/acceptance indicator and
𝑘𝑛 indicates the unique index for the selected driver. If 𝑧𝑛 = 1, a driver
of index 𝑘𝑛 will be selected from the drivers set and assigned to the
request. Moreover, since the active drivers set at stage 𝑛 is  ∪ 𝑛,
we know that when 𝑘𝑛 ≤ 𝑀 , an inhouse driver is selected to serve
the request; otherwise, 𝑘𝑛 represents a crowdsourced driver. A driver
can be assigned to a request if there exists a route for the driver to
dispatch all on-hand orders including the new one. Note that, due to
computational efficiency requirements, it is too cumbersome to search
for optimal routes in practical environments. Thus, routes are generated
in a fast-effective heuristic way in this paper and are illustrated in
Section 4.2.

Once an action is chosen in an interim stage, we have a state transi-
ion. The transition associated with the 𝑛th interim stage, identified by
he request tuple (𝑡 , 𝑖 , 𝑗 ), is 𝐒 =

⋃

(𝐘𝑢 ,𝐩𝑢 , 𝑙𝑢) where the values
𝑛 𝑛 𝑛 𝑛 𝑢∈∪𝑛 𝑛 𝑛 𝑛
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are updated as follows. First of all, whatever 𝑧𝑛 = 0 or 𝑧𝑛 = 1, the state
components are updated as follows, for all 𝑢 ∈  ∪ 𝑛,

𝐩𝑢𝑛 = 𝐩𝑢𝑛−1 ⧵ 𝜻
𝑢
𝑛−1,𝑛, 𝑙𝑢𝑛 = 𝜂𝑢𝑛 , 𝐘𝑢𝑛 = 𝐘𝑢𝑛−1 ⧵ 𝝃

𝑢
𝑛−1,𝑛. (4)

Here, we need to clarify several details regarding the state update:
ssume a driver 𝑢 moves as the designed route 𝐩𝑢𝑛−1 between stage 𝑛− 1
nd 𝑛. At the beginning of 𝑛th stage, 𝜂𝑢𝑛 is its real-time location, 𝜻𝑢𝑛−1,𝑛
re the visited restaurants and customers locations within the interval,
nd 𝝃𝑢𝑛−1,𝑛 denotes the set of finished orders by the driver. The route
𝑢
𝑛−1 is derived by a route generation approach given the unvisited
ocations related to the driver 𝑢’s open orders at the beginning of stage
− 1, as shown in Section 4.2.

Furthermore, if 𝑧𝑛 = 1, given the determined route, the attributes
𝑢
𝑛 and 𝐩𝑢𝑛 are updated as follows:

𝐘𝑢𝑛,𝐩
𝑢
𝑛 =

{

𝐘𝑢𝑛 ∪ {(𝑡𝑛, 𝑖𝑛, 𝑗𝑛)},𝐩𝑢𝑛 ⊕ {(𝑡𝑛, 𝑖𝑛, 𝑗𝑛)} 𝑢 = 𝑘𝑛 (a)
𝐘𝑢𝑛,𝐩

𝑢
𝑛 𝑢 ≠ 𝑘𝑛 (b) (5)

In (5a), 𝐩𝑘𝑛⊕{(𝑡𝑛, 𝑖𝑛, 𝑗𝑛)} represents the new route obtained by the afore-
mentioned generation method when incorporating the newly accepted
order.

For ease of exposition, we also define an operator 𝛤 to describe the
bove state transition process, that is, 𝐒𝑛 = 𝛤 (𝐒𝑛−1, 𝑡𝑛, 𝑖𝑛, 𝑗𝑛, 𝐚𝑛), meaning
hat the state 𝐒𝑛 is determined by state 𝐒𝑛−1, a request arrival tuple
𝑡𝑛, 𝑖𝑛, 𝑗𝑛) and the corresponding action 𝐚𝑛.

Lastly, minimizing the total cost is the objective of the delivery
platform. It is measured by the fixed wages for inhouse drivers plus
compensation cost for delivered orders. Given the strategic decision as-
sociated with the inhouse fleet size𝑀 , the fixed wages are exogenous to
the operational level. Therefore, focusing on the operational decisions,
we define 𝑉 𝜋

𝑛 (𝐒𝑛−1, 𝑡𝑛, 𝑖𝑛, 𝑗𝑛) to represent the expected compensation
cost-to-go function produced by a given policy 𝜋 when the interim stage
(𝑡𝑛, 𝑖𝑛, 𝑗𝑛) occurs in the system state 𝐒𝑛−1. We write 𝜋∗ for the optimal
policy that achieves 𝑉 ∗

𝑛 = min𝜋{𝑉 𝜋
𝑛 } where:

𝑉 ∗
𝑛 (𝐒𝑛−1, 𝑡𝑛, 𝑖𝑛, 𝑗𝑛) = min

𝐚𝑛

{

𝑟1 ⋅ 𝟏(𝑧𝑛 = 1, 𝑘𝑛 ≤𝑀) + 𝑟2 ⋅ 𝟏(𝑧𝑛 = 1, 𝑘𝑛 > 𝑀)

+ 𝑟3 ⋅ 𝟏(𝑧𝑛 = 0) + E
[

𝑉𝑛+1(𝛤 (𝐒𝑛−1, 𝑡𝑛, 𝑖𝑛, 𝑗𝑛, 𝐚𝑛),

𝑡𝑛+1, 𝑖𝑛+1, 𝑗𝑛+1)
]

}

. (6)

𝑉 ∗
ℎ (𝐒ℎ−1, 𝑇 , ∅, ∅) = 0 (7)

Eq. (7) indicates the state cost associated with the final stage
𝐒ℎ = (𝑇 , ∅, ∅) under the optimal policy, which is zero. Backwardly,
Eq. (6) is derived through the induction from the final stage, where
𝛤 (𝐒𝑛−1, 𝑡𝑛, 𝑖𝑛, 𝑗𝑛, 𝐚𝑛) represents the transition function to the new state
𝐒𝑛 with the aforementioned action 𝐚𝑛 = (𝑧𝑛, 𝑘𝑛).

The above recursively cost-to-go function 𝑉 ∗ is derived given a
specific crowdsourced drivers realization 𝜔 ∈ 𝛺, as illustrated in Ulmer
and Savelsbergh (2020). For notation convenience, let us denote such
an optimal compensation cost to serve all orders (from the initial stage
to the end of planning horizon) as 𝑉 ∗

0 (𝐒0|𝜔, 𝑀) for a given fleet size
𝑀 . As a realization 𝜔 ∈ 𝛺 occurs with even probability, we thus have
an expected compensation cost given uncertain crowdsourced drivers
scenarios as

∗(𝐒0, 𝛺 , 𝑀) =
∑

𝜔∈𝛺 𝑉
∗
0 (𝐒0|𝜔, 𝑀)
|𝛺|

(8)

3.4. MDP optimal policy analysis

In this section, we discuss the structural properties of optimal
policies for the problem described above. Obviously, since 𝜔 is an
exogenous factor to the cost-to-go function and each realization 𝜔 is
equally likely to occur, we only need to characterize the properties
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for the recursive function (6) for one realization. For the sake of
conciseness, all proofs are moved to Appendix 7.1.

We start by deriving the optimal policy that minimizes the cost-
to-go Eq. (6), on the basis of the transition functions between stages.

t the final stage (𝑇 , ∅, ∅), the cost-to-go function associated with any
olicy 𝜋 is deterministic because of no further request and incurring
ost, we thus have 𝑉 𝜋

ℎ (𝐒ℎ−1, 𝑇 , ∅, ∅) = 0. For an interim stage (𝑡, 𝑖, 𝑗), that
s, at stage 𝑛 ∈ [0, ℎ), we need to compute the transition probabilities
o the next stage in order to derive the expected cost-to-go value. We
irst analyze the cost-to-go function for the interim stage (𝑡𝑛+1, 𝑖𝑛+1, 𝑗𝑛+1)
hen the state is 𝐒𝑛. This means that, at time 𝑡𝑛+1, a request of O-D pair
𝑖𝑛+1, 𝑗𝑛+1) is placed and we aim to estimate the expected compensation
ost-to-go function for the current stage.

Lemma 3.1. Assume that the interim stage (𝑡𝑛+1, 𝑖𝑛+1, 𝑗𝑛+1) occurs with
ystem at state 𝐒𝑛. Then, the probability that stage 𝑛+ 2 is an interim stage
ccurring at time 𝑡 > 𝑡𝑛+1, and involves an O-D pair (𝑖, 𝑗) ∈  ⧵ 𝑛+1, is
escribed as
𝑝min((𝑖, 𝑗)|𝑡𝑛+1,𝑛+1) = ∫

𝑇

𝑡𝑛+1
𝜓 𝑡
𝑖𝑗|𝑡𝑛+1 ,𝑛+1

(𝑡)𝑑 𝑡 (9)

where 𝑛 represent the already requested O-D pairs in 𝐒𝑛, 𝑛+1 = 𝑛 ∪
{(𝑖𝑛+1, 𝑗𝑛+1)} and

𝜓 𝑡
𝑖𝑗|𝑡𝑛+1 ,𝑛+1

(𝑡) =
⎡

⎢

⎢

⎣

∏

(𝑖,𝑗)∈⧵𝑛+1∪{(𝑖,𝑗)}

(

1 − 𝜃𝑖𝑗𝐹 𝑖𝑗 (𝑡)
1 − 𝜃𝑖𝑗𝐹 𝑖𝑗 (𝑡𝑛+1)

)

⎤

⎥

⎥

⎦

𝜃𝑖𝑗𝑓 𝑖𝑗 (𝑡)

1 − 𝜃𝑖𝑗𝐹 𝑖𝑗 (𝑡𝑛+1)
.

(10)

Moreover, the probability that stage 𝑛 + 2 is the final stage is

𝜓𝑇
∅|𝑡𝑛+1 ,𝑛+1

= 𝑝min(∅|𝑡𝑛+1,𝑛+1) =
∏

(𝑖,𝑗)∈⧵𝑛+1

(

1 − 𝜃𝑖𝑗
1 − 𝜃𝑖𝑗𝐹 𝑖𝑗 (𝑡𝑛+1)

)

. (11)

From Lemma 3.1, we know the transition probabilities from 𝑛 + 1
to 𝑛 + 2. With the transition probabilities to next stages, we derive the
orresponding optimal expected compensation cost-to-go function.

Proposition 3.2. The expected compensation cost-to-go function 𝑉 𝜋
𝑛+1

(𝐒𝑛, 𝑡𝑛+1, 𝑖𝑛+1, 𝑗𝑛+1) under the optimal policy 𝜋∗ can be expressed recursively
as:

𝑉 ∗
𝑛+1(𝐒𝑛, 𝑡𝑛+1, 𝑖𝑛+1, 𝑗𝑛+1) = min

𝐚𝑛+1

{

𝑟1 ⋅ 𝟏(𝑧𝑛 = 1, 𝑘𝑛 ≤𝑀)

+ 𝑟2 ⋅ 𝟏(𝑧𝑛 = 1, 𝑘𝑛 > 𝑀)

𝑟3 ⋅ 𝟏(𝑧𝑛 = 0) +
∑

(𝑖,𝑗)∈⧵𝑛+1
∫

𝑇

𝑡𝑛+1
𝑉 ∗
𝑛+2(𝐒𝑛+1, 𝑡, 𝑖, 𝑗)𝜓 𝑡𝑖𝑗|𝑡𝑛+1 ,𝑛+1 (𝑡)𝑑 𝑡

+𝑉 ∗
𝑛+2(𝐒𝑛+1, 𝑇 , ∅, ∅)𝜓𝑇∅|𝑡𝑛+1 ,𝑛+1

}

(12)

where 𝐒𝑛+1 = 𝛤 (𝐒𝑛, 𝑡𝑛+1, 𝑖𝑛+1, 𝑗𝑛+1, 𝐚𝑛+1) represents the state transition
utcome given the current state 𝐒𝑛, request (𝑡𝑛+1, 𝑖𝑛+1, 𝑗𝑛+1) and action
𝑛+1 = (𝑧𝑛, 𝑘𝑛), following Eqs. (4), (5a), or (5b).

Proposition 3.2 states the optimal policy for the expected compen-
sation cost-to-go function. Theoretically, following Eq. (12), we are
able to identify the optimal action for each state through backward
induction. However, it is obvious that, except for trivial cases, an
xact evaluation of the formula in Proposition 3.2 is intractable. Even

though it is computationally prohibitive to derive the optimal policy
backwardly from the final stage, it still provides some hints: mimicking
the transition behavior within limited stages enables to include future
information into a fast-effective algorithm development, as explained
in Section 4.

Proposition 3.3. The optimal expected compensation cost ∗(𝐒0, 𝛺 , 𝑀)
of (8) is non-increasing in the inhouse driver size 𝑀 .
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Proposition 3.3 is straightforward. Once an additional inhouse
driver is available, it is always possible to mimic the optimal policy
in the case without this driver. Furthermore, given that the variable
compensation for an inhouse driver is less than that of a crowdsourced
river (i.e., 𝑟1 < 𝑟2), the overall compensation cost 𝑉 ∗

0 (𝐒0|𝜔, 𝑀) will
ot increase. As ∗(𝐒0, 𝛺 , 𝑀) is a convex combination of 𝑉 ∗

0 (𝐒0|𝜔, 𝑀)
n (8), it also implies that ∗(𝐒0, 𝛺 , 𝑀) is non-increasing in 𝑀 .

Since the aforementioned MDP suffers from the curses of dimen-
ionality in the states, we now develop four fast-effective solution

approaches to solve the problem in practical environments. Further-
more, to assess the effectiveness of any developed policy 𝜋, we define
a metric Gaps(%) measuring the average performance deviation of the
policy 𝜋 from the optimal policy 𝜋∗, i.e., Gaps(%) =

(

𝜋−∗

∗

)

× 100. Such

metric is particularly useful when dealing with small-scale state spaces
due to its computationally viability (as shown in Section 4.4). For large-
scale state spaces situations, obtaining ∗ can be intractable and it is
often necessary to resort to approximations or heuristic approaches.

4. MDP solution approaches

In this section we present fast-effective policies for the scheduling
and routing decisions of the MDP operational problem of Section 3,
for a given fleet size 𝑀 . We introduce dynamic procedures to tackle
he information involvement and routes generation decisions, and later
ntegrate these approaches together leading to four algorithms for the
perational level problem.

The idea behind each approach is to take one decision at each stage,
which is to determine the rejection/acceptance of a new request and the
ssignment of the new order to a specific driver, more precisely, to an

inhouse driver or a crowdsourced driver. These approaches incorporate
two sequential components: information involvement (Info) and routes
generation (Route). For each component we provide two alternatives
and integrate them together pair-wisely, thus obtaining four algorithms
to solve the scheduling and routing problem. We now explain the
details of Info and Route strategies in Sections 4.1 and 4.2, respec-
tively. Note that all approaches are applied to a given realization 𝜔 of
crowdsourced driver arrivals.

4.1. Information strategies

We propose two strategies to tackle the information involvement
issue, which are mainly different in whether the future requests infor-

ation gets involved into the decision process. These two strategies are
named as Myopic- and Monte-Carlo-strategy.

Myopic-strategy (MY). This approach, summarized in Algorithm 1
n Appendix 7.3, makes a decision by using the information available
t the time a decision is made, without considering future information.
hat is, upon each request arrival, the decision maker searches for the
ost suitable driver to serve the request on the basis of the realized

nformation only. The driver selection is guided by a hierarchically
reedy rule. When the 𝑛th request arrives, the active drivers set is
∪ 𝑛. On the top-level (line 5 of the Algorithm 1 in Appendix 7.3),

he decision maker chooses a (or a set of) driver 𝑈 ⊆  ∪ 𝑛 with
he minimum cost to dispatch this request. Note that, as we assume
hat 𝑟1 ≤ 𝑟2 and the compensation is the same for all drivers of the
ame type, then either 𝑈 is composed by inhouse drivers only, or it is
omposed by crowdsourced drivers only (in case there is no inhouse
river who can feasibly serve the request). The decision is dependent
n the selected drivers’ type and the corresponding rewards paid to
erve the order. Given the chosen driver(s), on the low-level, the Route
trategies (see Section 4.2) are adopted to generate a route 𝐩𝑢𝑛 for

each driver candidate 𝑢 ∈ 𝑈 and the additional travel time 𝛥𝑇 𝑇 𝑢𝑛 is
determined. At last, the driver with the minimum additional travel time
is chosen. This strategy is simple and intuitive, since it assigns an order
to the ‘cheapest’ and ‘near-by’ driver.
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Monte-Carlo-strategy (MC). This approach uses Monte-Carlo sim-
ulation to predict the expected performance over the scheduling and
outing decision. In particular, upon a new request arrival, a number of
cenarios about future possible order arrivals are generated according
o the request arrival probability distribution function. Given each
cenario, the value obtained by a policy is evaluated.

Specifically, the probabilities of the future possible requests are
computed as follows. Recall that, when the 𝑛th request 𝐼𝑛 ≡ (𝑡𝑛, 𝑖𝑛, 𝑗𝑛)
arises at time 𝑡𝑛 associated with a customer 𝑖𝑛 and a restaurant 𝑗𝑛, the
state 𝐒𝑛−1 records the requests already received (both accepted and
rejected). We also know the already appeared O-D pairs set 𝑛−1 and
hus have 𝑛 = 𝑛−1 ∪ {(𝑖𝑛, 𝑗𝑛)}. The probability 𝜃𝑛𝑖𝑗 that a request will
rise from an O-D pair (𝑖, 𝑗) ∈  ⧵ 𝑛 can be computed using the CDF
𝑖𝑗|𝑡𝑛 on the random variable 𝑇𝑖𝑗 , given that no request has occurred
or the O-D pair (𝑖, 𝑗) within [0, 𝑡𝑛]. For all 𝑡 ∈ (𝑡𝑛, 𝑇 ), according to the

probability function Eq. (3), we get

𝐹𝑖𝑗|𝑡𝑛 (𝑡) =
P(𝑡𝑛 < 𝑇𝑖𝑗 ≤ 𝑡)
P(𝑇𝑖𝑗 > 𝑡𝑛)

=
𝐹𝑖𝑗 (𝑡) − 𝐹𝑖𝑗 (𝑡𝑛)
1 − 𝐹𝑖𝑗 (𝑡𝑛)

=
𝜃𝑖𝑗 (𝐹 𝑖𝑗 (𝑡) − 𝐹 𝑖𝑗 (𝑡𝑛))

1 − 𝜃𝑖𝑗𝐹 𝑖𝑗 (𝑡𝑛)
(13)

Thus, we have

𝜃𝑛𝑖𝑗 = 𝐹𝑖𝑗|𝑡𝑛 (𝑇 ) =
𝜃𝑖𝑗 (1 − 𝐹 𝑖𝑗 (𝑡𝑛))
1 − 𝜃𝑖𝑗𝐹 𝑖𝑗 (𝑡𝑛)

,∀(𝑖, 𝑗) ∈  ⧵𝑛 (14)

which represents the probability to have a request for the pair (𝑖, 𝑗) after
𝑡𝑛.

Given the request arrival probability distributions, the MC strate-
gies sample the future requests arrival events thereby providing the
prospected information. At each stage, the decision procedure consists
of three key steps, Monte-Carlo time sampling, Evaluation and Decision.
These components are organized as in Algorithm 2 in Appendix 7.3 and
heir details are described as follows:

1. Monte-Carlo time sampling. Given the 𝑛th stage request 𝐼𝑛, we
randomly generate a set  of scenarios, where for each potential
order request, the arrival time is determined. More precisely,
each scenario 𝑠 ∈  is a sequence of stages (𝑡𝑖𝑗 ,𝑠, 𝑖, 𝑗) with the
O-D pair (𝑖, 𝑗) ∈  ⧵ 𝑛, and 𝑡𝑛 < 𝑡𝑖𝑗 ,𝑠 < 𝑇 . Note that an arrival
time is generated for every O-D pair (𝑖, 𝑗) ∈  ⧵ 𝑛 according to
the CDF Eq. (3) with new 𝜃𝑛𝑖𝑗 of Eq. (14), but only requests with
arrival time less than 𝑇 are kept in scenario 𝑠.

2. Evaluation. Given the active drivers set  ∪ 𝑛 at stage 𝑛, for
each scenario 𝑠, MC evaluates 1 + 𝑀 + |𝑛| different possible
actions. In particular, (i) it rejects the request 𝐼𝑛, (ii) it assigns
the request 𝐼𝑛 to an inhouse driver in , (iii) it assigns the
request 𝐼𝑛 to a crowdsourced driver in 𝑛, and then schedules
all future requests of 𝑠 through the MY-based algorithm (see Sec-
tion 4.3). Notably, in practical implementation, we can shorten
the evaluation process by only processing a restricted number
of future requests, rather than scheduling all requests in 𝑠, thus
leading to a rollout algorithm (RA). In particular, we restrict the
evaluation to the first 𝜒 requests (temporarily-wise) appearing in
each scenario 𝑠, where 𝜒 represents the roll out period (Goodson
et al., 2017). Theoretically, according to the recursive equation
in Proposition 3.2, this procedure can evaluate all possible future
events occurrence by letting 𝜒 → ∞ and choose the decision that
minimize the expected total cost, and this would correspond to
the optimal policy.

3. Decision. After evaluating the potential decision regarding the
request 𝐼𝑛 on all scenarios in , the MC-based approach computes
∑

𝑠∈ 𝜎𝑢(𝑠)∕|| for all 𝑢 ∈ ∪𝑛∪ {0} and selects the driver with
minimum total cost as the final decision (or rejects the request).
Note that, we can also prioritize either inhouse or crowdsourced
drivers during this decision step. However, the performance of
this approach has been found to be less effective than the general
selection process without prioritization (The detailed analysis is
available in Appendix 7.4).
 t
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Obviously, the MC-based algorithm should achieve a better perfor-
mance than MY but at the expense of intensive computational efforts.

In addition to the Info incorporation decision, another important
issue regarding the decision procedure is the route generation for each
candidate driver given the collected orders information. Specifically,
we need to provide fast-effective routing guidelines for the chosen
driver to deliver the unfinished orders. This is discussed in the following
subsection.

4.2. Routing strategies

In this section, we introduce two routes generation strategies to
build routes efficiently, namely, Non-adaptive and Adaptive routes gen-
ration approaches. The difference between the two is that the former

inserts new locations into the original route without modifying the
equence of visits of other locations, while the latter reshuffles the
urrent route and designs a completely new route given all provided
ocations.
Non-adaptive routes generation (NR). This method inserts the

new request’s locations into the original route without modifying the
previous visiting sequence. The scheme of the approach is presented
n Algorithm 3 in Appendix 7.3. The idea is to insert the locations
ssociated with the new request in the current route, without modifying
he visiting sequence of the vertices already included in the route.
iven the request 𝐼𝑛 = {𝑡𝑛, 𝑖𝑛, 𝑗𝑛} to be inserted, vertices 𝑖𝑛 and 𝑗𝑛
re inserted in the current route in the position leading to the least
dditional traveling time associated with the detour. Note that index 𝑛

is discarded in the Algorithm 3 for the ease of reading. The insertion
position needs to satisfy the following feasibility conditions:

1. Time windows condition (TW): Each visited node in the route
should satisfy the corresponding time windows, i.e., (earliest
time) the meal can be fetched only if it is ready at the restaurant,
and (latest time) each customer should receive the meal before
the service time target. These requirements will be checked for
all the nodes in the route. Note that the earliest time condition is
checked only for nodes 𝑖 and 𝑗 associated with the new request as
they are satisfied by construction for the other nodes. Operator
𝑇 𝑊 (𝑟, 𝑖, 𝑗) in the Algorithm 3 checks whether vertex 𝑖 can be
feasibly inserted in route 𝑟 after vertex 𝑗, i.e., it checks whether
time windows constraints are satisfied for 𝑖 and for all vertices
following 𝑗 once 𝑖 is inserted in 𝑟.

2. Pickup-delivery condition (PD): Node 𝑗 (the customer location
associated with the new request) has to be visited after node 𝑖
(the restaurant location associated with the new request). This
condition is checked through operator 𝑃 𝐷(𝑟, 𝑖, 𝑗) where vertex 𝑖
is inserted in route 𝑟 after vertex 𝑗.

As described in the algorithm, the routes generated by NR does
not modify the visiting sequence of vertices already present in the
route. Such a procedure is efficient (i.e., fast), however, the solution
quality might be penalized as it lacks flexibility and does not explore
for better sequences to connect the unvisited locations. Motivated by
this drawback, we design a more effective routes generation scheme as
follows.

Adaptive routes generation (AR). Compared to the NR approach,
he AR method reshuffles all nodes inside the original route. Therefore,
t shows more adaptive characteristics when including the new infor-
ation. In detail, this method first constructs a graph 𝐺𝑛 = (𝑉𝑜∪𝑉𝐼 , 𝐴𝑛)
here 𝑉𝑜 are the unvisited nodes, 𝑉𝐼 are the pickup and delivery
ertices of the new request, and 𝐴𝑛 are the directed arcs between the
odes. The immediate destination of the original route is taken as the
tarting (depot) position. Then a completely new route is generated
rom scratch according to the cheapest insertion (Rosenkrantz et al.,

1974) procedure considering the TW and PD conditions. We present
he AR details in Appendix 7.3 Algorithm 4. In principle, the AR



Y. Zhao et al. European Journal of Operational Research 323 (2025) 139–152 
Table 3
Integrated algorithms for operational scheduling and routing decisions.

Route
Info Myopic (MY) Monte-Carlo (MC)

Non-adaptive (NR) Myopic Non-adaptive (MY-NR) Monte-Carlo Non-adaptive (MC-NR)
Adaptive (AR) Myopic Adaptive (MY-AR) Monte-Carlo Adaptive (MC-AR)
Fig. 3. The 1-D (left) and 2-D (right) geographical locations for shop (inside box) and customers.
Table 4
Gaps and Opt between heuristic and optimal policies for simple instances.
Policies 1-D 2-D

Inhouse driver Mixed drivers Inhouse driver Mixed drivers

Gaps (%) Opt (%) Gaps (%) Opt (%) Gaps (%) Opt (%) Gaps (%) Opt (%)

MY-NR 7.4 72.3 3.6 71.7 8.7 70.2 2.6 68.8
MY-AR 2.2 91.7 0.5 91.6 0.5 98.3 0.6 96.9
MC-NR 6.1 76.8 3.3 76.2 8.7 70.2 2.4 67.9
MC-AR 0.1 99.5 0.1 99.4 0.3 99.1 0.6 97.6
method should produce better solutions than NR with a sacrifice of com-
putational efficiency. Compared with Ulmer and Savelsbergh (2020)
and Zehtabian et al. (2022), where the cheapest insertion method is
used, our AR method incorporates additional constraints and intro-
duces more adaptability through reshuffling, thereby resulting in the
generation of higher-quality solutions.

4.3. Integrated algorithms

Given the aforementioned Info and Route strategies, we integrate
them together pair-wisely and derive four algorithms to solve the oper-
ational level scheduling and routing problems, which are the MY-NR,
MY-AR, MC-NR and MC-AR algorithms (see Table 3).

4.4. Comparison of algorithms on simple instances

To give an illustration of the algorithms’ advantage, we compare
them on simple instances and shed light on the optimal policy. The
setting of these instances are summarized as follows: time horizon 𝑇 = 7
units, food processing time 𝜈 = 1 unit, service time target 𝜅 = 4 units,
and food quantity 𝑞 = 1 unit. There is only one restaurant correspond-
ing to the depot (where all routes, for both inhouse and crowdsourced
drivers, start from) and 4 customers, which are distributed as one-
dimensional (1-D) and two-dimensional (2-D) space as in Fig. 3. If we
set the requests arising probabilities for all O-D pairs as 1, then there
are 840 (i.e., 𝐴4

7) order events scenarios.
We consider two cases of driver arrivals: a case with only one

inhouse driver circulating in the system, and a case with mixed drivers
(i.e., an inhouse driver and a crowdsourced driver). We set unit costs
as (𝑟1, 𝑟2, 𝑟3) = (6, 8, 18). The performance comparison of the proposed
algorithms and the optimal policy 𝜋∗ are summarized in Table 4. The
performance of policy 𝜋∗ is determined by enumerative analysis for
each order events scenario. The column Gaps (%) has been defined in
Section 3.4. In addition, given the optimal result known for each order
arrival scenario, we also measure in column Opt (%) the percentage of
scenarios where the heuristic algorithm 𝜋 achieves the same value as
the optimal policy 𝜋∗.

The results show that the strategies of incorporating both future
information and adaptive route design are indeed advantageous. In
147 
particular, comparing the MC-AR with MY-NR among all scenarios
composed by 1-D/2-D and different number of drivers, the overall
average gaps to optimality are reduced by 5.3% and the proportion of
instances reaching the value of the optimal policy 𝜋∗ is increased by
28.2%. Moreover, the MC-AR policy outperforms the remaining ones,
indicating the benefits of considering future information and invest
efforts to produce better routes.

5. Numerical experiments

In this section, we present computational tests with a real dataset to
verify the efficiency of the algorithms presented in Section 4, and also
to identify whether the performance of different solution approaches
depends on problem characteristics. We first describe the instances on
which the tests have been performed in Section 5.1, and then show the
computational results in the following sections.

5.1. Data preprocessing

We use the dataset from the OMD platform Meituan for our nu-
merical experiments. We had access to a monthly dataset, from 3rd
to 30th July 2017, including detailed orders and drivers information.
The order information contains: Order ID, order arrival time, restaurant
ID, locations of the restaurant and the customer, food processing time
and delivery starting and ending time. Driver information contain
minute-wise number of idle and busy drivers in the network.

We now clarify the process of deriving key system parameters
from the real dataset. Specifically, each location within the dataset
is identified through a coordinate pair of latitude and longitude. By
eliminating duplicate coordinate pairs, we construct the set of locations
, which includes coordinates for all customers and restaurants over
the month. The two subsets are denoted as  ⊊  for customers
and  ⊊  for restaurants, respectively. Furthermore, our compu-
tational experiments are primarily focused on two scenarios: no-rush
(𝑇𝑜) and rush (𝑇𝑟). 𝑇𝑜 includes all orders placed between 7:00-10:00
during the month, whereas 𝑇𝑟 encompasses orders from 10:00-14:00.
Consequently, we can approximate the order request probability 𝜃𝑖𝑗
for each scenario, which represents the probability in the Bernoulli
distribution. Specifically, by analyzing orders in 𝑇 , we define sets
𝑟
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Table 5
Accuracy test of the approximation model: Comparison with LKH-3.

Instance Nodes Area (k m2) 𝛿 (∕k m2) 𝜌 (k m) 𝐶 𝑚 𝑇 (h) 𝑤1 𝑆1 𝑙1 𝑑1 𝑤2 𝑆2 𝑙2 𝑑2 LKH 𝑀 Gaps (%)

CMT01H 50 36.5 1.4 4 30 8 4 8.4 30 2.6 3.0 8.4 25.8 2.3 3.0 2.5 2 20.73
CMT03T 100 48.1 2.1 5 30 8 4 6.8 30 2.1 2.5 6.8 31.8 2.3 2.5 2.2 4 12.79
CMT04Q 150 48.1 3.1 5 30 8 4 5.5 30 1.7 2.1 5.5 38.9 2.3 2.0 2.6 5 19.14
CMT05H 200 48.1 4.2 5 30 8 4 4.8 30 1.5 1.9 4.8 45.0 2.3 1.8 1.7 7 12.15
SR200 200 76 2.6 6 30 2 1.3 3.0 30 3.8 1.3 3.0 23.4 2.9 1.4 1.1 9 24.17
SR400 400 76 5.3 6 30 2 1.7 2.1 30 2.7 1.0 2.1 42.1 3.8 0.9 0.9 14 13.57
SR600 600 76 7.9 6 30 3 2.0 2.1 30 1.8 1.0 2.1 49.4 2.9 0.9 1.0 20 10.12
SR800 800 76 10.5 6 30 4 2.1 2.1 30 1.3 1.1 2.1 52.3 2.3 0.9 0.9 27 16.64
SR1000 1000 76 13.2 6 30 4 2.4 1.9 30 1.2 1.0 1.9 67.3 2.7 0.8 0.9 34 14.69

SR𝑇 3
𝑜

320 76 4.2 6 30 6 3 3.7 30 1.5 1.6 3.7 43.8 2.3 1.5 – 10 –
SR𝑇 3

𝑟
3516 76 46.3 6 30 8 4 1.6 30 0.5 0.9 1.6 139.2 2.3 0.6 – 118 –

SR𝑇 6
𝑜

390 76 5.1 6 30 6 3 3.7 30 1.5 1.6 3.7 43.8 2.3 1.5 – 13 –
SR𝑇 6

𝑟
2904 76 38.2 6 30 8 4 1.6 30 0.5 0.9 1.6 139.2 2.3 0.6 – 97 –

SR𝑇 9
𝑜

462 76 6.1 6 30 6 3 3.7 30 1.5 1.6 3.7 43.8 2.3 1.5 – 15 –
SR𝑇 9

𝑟
4158 76 54.7 6 30 8 4 1.6 30 0.5 0.9 1.6 139.2 2.3 0.6 – 139 –

∗𝑣 = 18 k m∕h, 𝜏 = 0, 𝛿𝑝 = 𝛿𝑐 = 𝛿∕2, 𝑆1 = 𝐶 , 𝑆2 =
𝑣𝑇

𝑣𝜏+(4𝑚∕3(𝛿𝑝+𝛿𝑐 ))1∕2
, see Appendix 7.2 for more details about the notations.
i
e

b

t
r

a

f
t
t
t
d

p
s
o
r
T
e
w

l
𝑇
o

a

a

of customer locations 𝑟 and restaurant locations 𝑟. The request
robability 𝜃𝑟𝑖𝑗 is estimated based on the frequency of orders from

customer 𝑖 ∈ 𝑟 to restaurant 𝑗 ∈ 𝑟, calculated as the total number
of orders for the pair (𝑖, 𝑗) during the month divided the number of
days observed (28 days from 3rd to 30th of July), where the probability
0 ≤ 𝜃𝑟𝑖𝑗 ≤ 1 is guaranteed since a customer typically places at most
one order per mealtime. Additionally, we assume that the inter-arrival
time of requests within rush hours adheres to a uniform distribution.
The parameters for this distribution are determined from the average
otal number of orders placed during rush hours per day, based on
istorical data. This approach to approximating 𝜃𝑟𝑖𝑗 and assuming a
niform distribution for inter-arrival times facilitates the simulation
f daily order arrivals in a stationary manner, excluding fluctuations
y focusing on shorter periods such as rush hours, as demonstrated
n Fig. 1. In a similar vein, for the no-rush scenario, 𝑇𝑜, we determine the

customer locations (𝑜), restaurant locations (𝑜), request probabilities
𝜃𝑜𝑖𝑗), and the distribution of inter-arrival times.

Without loss of generality, we simplify our approach by selecting
rder data from three specific days (July 3rd, 6th, and 9th) and using
his information to simulate order streams. This simulation replicates
he actual historical data regarding order arrival times, customer and
estaurant locations, and food processing time. For clarity, let us denote
he orders during the rush hour on July 3rd as 𝑇 3

𝑟 , with analogous labels
for the other days and for no-rush periods. For these chosen days, the
volume of orders in rush and no-rush periods are |𝑇 3

𝑟 | = 1758, |𝑇 6
𝑟 | =

1452, |𝑇 9
𝑟 | = 2079 and |𝑇 3

𝑜 | = 160, |𝑇 6
𝑜 | = 195, |𝑇 9

𝑜 | = 231, respectively.
We use these detailed scenarios, 𝑇𝑜 and 𝑇𝑟, as initial data points to
estimate the lower- and upper bounds for the required inhouse driver
fleet size 𝑀 , as described in Section 5.2.

5.2. Determining the range of fleet size 𝑀 by continuous approximation

In this section, we aim to provide a range of the optimal number of
inhouse drivers engaged for the delivery service, given the estimated
set of orders to serve. With the notations of Section 3.2, the total
cost function (to minimize) associated with a fleet size 𝑀 is 𝐶(𝑀) =
∗(𝐒0, 𝛺 , 𝑀) + 𝑟0𝑀 , where 𝑟0 is the wage of an inhouse driver. Note
hat 𝐶(𝑀) can be decomposed into a strictly increasing term 𝑟0𝑀

and a non-increasing term ∗(𝐒0, 𝛺 , 𝑀) (see Proposition 3.3), hence
otivating a binary search on optimal 𝑀∗. Even though we cannot

mathematically prove that the marginal compensation cost decreases
when 𝑀 increases, we indeed observed such a trend in our tests. Thus,
we now aim at finding good lower and upper bounds of the value of
𝑀 to start the binary search. The upper bound 𝑀 is estimated through
a continuous approximation method inspired by Daganzo (1987) as
hown in Appendix 7.2 with the orders information in rush hours 𝑇𝑟.
imilarly, the lower bound 𝑀 is obtained with the orders information
 d
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in no-rush hour 𝑇𝑜. Given the values of 𝑀 and 𝑀 , we then estimate the
number of required inhouse drivers 𝑀∗ ∈ [𝑀,𝑀] which minimizes
the total cost by a dichotomic search, using the methods described
n Section 4 to solve the operational problem for each value of 𝑀
xamined during that search.

As a followup, we conducted numerical tests to verify the accuracy
of the approximation method. Specifically, we applied the method on
enchmark instances for the vehicle routing problem with pickup and

delivery and on instances derived from our dataset. Then, we compare
he average travel time per point computed by the state-of-art vehicle
outing problem solvers and the approximation method. The LKH-

3 (Helsgaun, 2017; Lin & Kernighan, 1973) heuristic is adopted here
as the state-of-art solver for benchmark cost computation.

The parameters required in the approximation formula and results
re summarized in Table 5. The testbed consists of several standard

CMT-instances from Salhi and Nagy (1999) and SR-instances generated
rom our real dataset. The CMT-instances cover 50∼200 nodes with
ime windows and pickup-delivery information. The SR-instances own
he same information but cover 200∼1000 nodes. We do not report
he accuracy comparison with over 1000 nodes because the LKH-3 has
ifficulties in tackling instances over this scale. In Table 5, we first use

the approximation model to derive the number of vehicles 𝑀 required
to cover the whole area. Such 𝑀 is taken as an input parameter to
the LKH-3 heuristic to compute the benchmark average travel time.
Column Gaps (%) measures the difference of average travel time per
oint computed between the approximation formula and the LKH-3
olution, i.e., |𝑑1 − LKH|∕LKH× 100 or |𝑑2 − LKH|∕LKH× 100, depending
n which approximation formula 𝑑1 or 𝑑2 in Appendix 7.2 is tight. The
esults show that such gaps are fairly acceptable (on average 16%).
herefore, we conclude that the approximation model performs well in
stimating the number of required vehicles for delivery service. Finally,
e determine that the upper bound 𝑀 = 139 and the lower bound

𝑀 = 10, where the upper bound represents the highest value of 𝑀
calculated from the scenarios of 𝑇𝑟 over three selected days, while the
ower bound is derived from the lowest value of 𝑀 in scenarios of
0. Consequently, our subsequent analyses will explore the fleet size
f in-house drivers 𝑀 within the range between 10 and 139.

5.3. Policies performance

Given the estimated range of inhouse drivers fleet size 𝑀 , we now
test the routing and scheduling algorithms presented in Section 4 with
extensive computational tests. All performances are calculated as the
verage values under the selected three days’ order streams.
Default parameters. We set the default configuration of parameters

s follows. First of all, we assume that the arrival of crowdsourced
rivers follows a Poisson process with rate 𝜇, dependent on the time
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of a day. More precisely, the hourly arrival rates are 𝜇𝑟 in the rush
cenario and 𝜇𝑜 in the no-rush scenario. According to our observation
rom Fig. 1, we set 𝜇1𝑟 = 25 for 10:00–12:00, 𝜇2𝑟 = 10 for 12:00–14:00,

and 𝜇𝑜 = 5 for 7:00–10:00. Each crowdsourced driver appears randomly
in the region and will leave after 3∼4 hours working duration, following
an uniform distribution 𝑈 (3, 4). With these assumptions, we generated
10 different realizations of the crowdsourced drivers arrivals as the set
𝛺 (i.e., |𝛺| = 10). Each driver is restricted to hold at most 9 unfinished
orders in parallel during the delivery. Moreover, the service time target
is set as 𝜅 = 60 minutes, indicating that each received order should be
completed within an hour. Finally, the algorithms are tested with order
arrivals during both no-rush and rush hours, i.e., 7:00–14:00. We assume
the fixed wage 𝑟0 = 60 yuan (i.e., ∼10 USD), and variable compensation
(𝑟1, 𝑟2, 𝑟3) = (6, 8, 18) yuan per order, i.e., 0.9, 1.2, 2.8 USD. Note
that, even though the rewards parameters are constant values here,
the proposed approaches are quite adaptive to the dynamic pricing
environments if the 𝑟1 and 𝑟2 are dynamically determined as functions
of distances, busy rate and other factors. In the following simulation,
without specific clarification, we only vary the investigated parameter
for sensitivity analysis and keep the rest as the default.

Performances comparison across policies. To maintain our focus, we
oncentrate on the MC-AR policy and utilize the other algorithms as
enchmarks to evaluate its effectiveness. Fig. 4 shows that the MC-
R policy dominates the other policies, demonstrating the benefits

of incorporating future information and generating adaptive routes in
ach decision epoch. On average, the total cost is reduced by 6% when

comparing MC-AR with MY-NR, which values around USD 200 million
for the company if it used the latter policy, because the delivery related
ost is around USD 35 billion in 2022 (Meituan, 2023). Notably, the

effectiveness of the adaptive route generation algorithm appears to
utperform the impact of information involvement. Specifically, while
he MY-AR policy achieves a total cost reduction of 4.8%, the MC-NR

policy achieves a marginal reduction of 1.5%. This indicates that the
adaptive route generation plays a more significant role in enhancing
performance compared to information involvement alone. However,
incorporating future information can yield even greater benefits if the
number of rollout horizons is expanded, although this enhancement
comes at the expense of exponentially increasing computational efforts.
The 3-periods rollout strategy is embedded inside the MC-AR and MC-
NR algorithms in our computational tests. Additionally, our findings
suggest that when the capacity is sufficiently large (for example, 𝑀 ≥
80), the benefit of incorporating future information tends to diminish
rapidly. This outcome is intuitive since a lack of delivery force ceases
to be a bottleneck, and the platform primarily needs to focus on
optimizing route decisions, resulting in the AR policies maintaining
their superiority over the NR policies.

An inhouse driver size 𝑀∗ that minimizes total cost. Given the range
f 𝑀 provided by continuous approximation in Section 5.2, we first de-

termine the fleet size of inhouse drivers. Fig. 4 also presents the impact
f inhouse driver size 𝑀 on the total cost when applying the four al-
orithms for the operational decision presented in Section 4.3. Clearly,

the total cost decreases first and increases second in 𝑀 . Even though
we cannot demonstrate this observation by a rigorous mathematical
analysis, we still think that it provides key insights for practitioners.
The numerical results indicate that the platform has to balance the
trade-off related to seasonal demand: If the platform recruits more
inhouse drivers, it certainly helps to reduce the compensation cost but
also incurs higher fixed wages, which is a kind of redundant capacity
waste for the no-rush hours. By contrast, if the delivery capacity of
inhouse drivers is limited, this causes huge delay penalties due to the
lack of enough delivery force during the rush hours. Consequently,
an optimal intermediate size of inhouse drivers is required, thereby
minimizing the total cost of fixed wages and variable compensations. In
the end, one may argue that the continuous approximation to estimate
the capacity size is unnecessary as we can still find the optimal 𝑀∗ by
enumeration. However, adopting an approximation scheme restricts the
 p
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Fig. 4. Performance comparison for different policies.

Fig. 5. Cost decomposition of the MC-AR policy.

searching space into a known range and thus reduces the computational
efforts. Otherwise, the decision-maker needs to enumerate from zero
to an arbitrary upper bound. Given that the continuous approximation
requires a negligible computing time and provides a good estimation of
the required number of drivers, it definitely pays-off using it to obtain
lower and upper bounds.

The optimal fleet size of inhouse drivers is 𝑀∗ = 30 under the MC-
AR policy. By decomposing the total costs into different components
(Fig. 5), we see that the variable compensation cost is decreasing in
𝑀 (as shown in Proposition 3.3), while the fixed wages are constantly
ncreasing in 𝑀 . Note that, the marginal compensation cost decreases
n a diminishing way, verifying the viability to determine an optimal

∗ by dichotomic search. The best value 𝑀∗ achieves a good balance
etween the fixed wages and the variable compensation cost. Let us
ake a further look at the optimal decision details for simulation results
n July 3rd: The platform assigns 1290 orders to 30 inhouse drivers,
27 orders to 52 crowdsourced drivers and rejects no request. On
verage, an inhouse driver delivered 43 orders and a crowdsourced
river 12 orders. However, if the company decreases the value of 𝑀 ,
everal requests are rejected due to the shortage of drivers, while if the

latform increases 𝑀 , a higher percentage of orders are allocated to
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Table 6
Impact of the crowdsourced driver arrival rate 𝜇1

𝑟 on operational level performances.

𝑀 𝜇1
𝑟 | | |𝑚𝑎𝑥| 𝙼𝙲−𝙰𝚁 𝑇 𝑇 (s) %_in %_out %_rej

20 10 274 67 15 614 283.16 51.12 37.29 11.59
20 20 316 85 14 108 273.86 50.23 46.22 3.55
20 30 352 104 13 398 263.61 51.02 48.98 0.00

30 10 284 77 13 886 267.91 67.50 26.66 5.84
30 20 326 95 12 850 265.05 66.86 32.81 0.33
30 30 362 114 12 778 259.22 67.19 32.81 0.00

40 10 294 87 12 856 259.30 75.50 16.92 7.47
40 20 336 105 12 352 248.10 78.30 21.80 0.00
40 30 372 124 12 350 230.04 78.35 21.65 0.00

𝑎
| | is the total number of drivers appeared in system through whole planning horizon.
𝑏
|𝑚𝑎𝑥| is the maximal number of drivers appeared in system for the peak time.

Fig. 6. Trace (dash arrow line) of optimal inhouse driver size 𝑀∗ with respect to the
fixed wage 𝑟0.

inhouse drivers, but the increment of fixed wages is not compensated
by the reduction of variable cost. In the following, we focus on the
MC-AR policy with 𝑀∗ = 30 and explore additional sensitivity results.

Impact of the crowdsourced drivers availability 𝜇1𝑟 . Given a fixed size
of inhouse drivers, we would like to know the impact of crowdsourced
drivers participation on the total cost. Therefore, we vary the parameter
𝜇1𝑟 to investigate the cost changes. The results are summarized in
Table 6. First of all, crowdsourced drivers are indeed helpful to reduce
the requests rejection rate (column ‘%_rej’) especially when the inhouse
drivers resources are limited (e.g., 𝑀 = 20). In this case, the percentage
of orders allocated to the crowdsourced drivers (column ‘%_out’) also
increases in 𝜇1𝑟 since more crowdsourced drivers are available in the
platform to provide service. Sometimes, it even slightly reduces the
percentage ‘%_in’ of requests served by inhouse drivers, in order to
exploit the comparatively beneficial (e.g., nearby) crowdsourced re-
sources. On the other hand, if the platform already recruited a large
amount of inhouse drivers, the benefits of using crowdsourced drivers
diminish as more orders are assigned to inhouse drivers. Besides, we
find that the average travel time (column ‘𝑇 𝑇 (𝑠)’) is decreasing in 𝜇1𝑟
due to more available drivers. In summary, through our experiments,
we conclude that the adoption of crowdsourced drivers is beneficial to
address the seasonal demand in OMD platforms, while such benefits are
diminishing as the inhouse driver fleet capacity is expanded.

Impact of the inhouse driver fixed wage 𝑟0. From the total cost defi-
nition, the optimal value of 𝑀 is also affected by the fixed wage 𝑟0.
Note that if 𝑟0 is very large, the total cost increases in 𝑀 , given that
the increasing wage cost 𝑟0 ⋅𝑀 is not compensated by the decreasing
compensation cost ∗. However, for the range [0,100] of 𝑟 considered
0
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Fig. 7. Impact of the compensation ratio 𝑟 and the inhouse driver size 𝑀 on total
cost.

in our tests, we observe that the total cost is decreasing first and
increasing second in the inhouse drivers fleet size. As indicated in
Fig. 6, the optimal value of 𝑀 (non-strictly) decreases in 𝑟0. In detail,
if 𝑟0 is small, the platform prefers to recruit as many inhouse drivers
as possible, since it is more expensive to compensate a crowdsourced
driver than an inhouse driver. By contrast, if 𝑟0 is large, the company
prefers to adopt more crowdsourced drivers because the fixed wages
paid to the inhouse drivers accounts for a high percentage of total cost.
This is shown in Fig. 6 (top curve), where the incremental of total
cost is dominantly caused by the fixed wages which are almost linearly
increasing in the number of employed inhouse drivers.

Impact of the compensation ratio 𝑟. From the expected compensation
cost-to-go function, we know that a key factor for the resource alloca-
tion (scheduling) decision is the compensation ratio 𝑟 = [(𝑟2∕𝑟1) − 1]⋅100.
Thus, we also investigate how this ratio affects the optimal capacity
planning for inhouse fleet size and the order scheduling solutions.
Intuitively, the percentage of orders allocated to crowdsourced drivers
should be non-increasing in 𝑟. Given this trend, the optimal value
of 𝑀 is non-decreasing in 𝑟 (see the dash red line of Fig. 7) as the
additional fixed cost is covered by the reduction of the crowdsourced
drivers compensation. Therefore, the inhouse drivers and crowdsourced
drivers are complementary in offering the meal delivery service. This
is a useful insight for the platform managers, as they can build a team
of inhouse drivers by determining the optimal size at the beginning
and manipulate the compensation cost parameter to balance the orders
allocation for total cost minimization. After all, the fleet size is a long-
term decision and it is not altered easily in daily decisions, while the
compensation cost can be adapted dynamically, as dynamic (surge)
pricing studies indicated in this field (see for example Cachon et al.,
2017).

Impact of the anticipatory assignment strategy. We conclude this sec-
tion by analyzing the impact of the anticipatory assignment strategy
(e.g., MC-AR) on scheduling outcomes, particularly in comparison to
the myopic insertion policy (e.g., MY-NR). First, we found that the
anticipatory assignment strategy results in shorter average travel times
(y-axis ‘𝑇 𝑇 (𝑠)’ in the left panel of Fig. 8). This occurs because the
planner can group nearby delivery tasks when future order arrivals
are anticipated, reducing overall travel time. However, the adaptive
routing strategy can sometimes increase travel time, as it balances
additional travel with the potential to serve more orders, in contrast
to the non-adaptive routing approach which focuses on least travel
time. Moreover, as shown in Fig. 8 (right panel), the anticipatory
assignment strategy helps assign more orders to inhouse drivers (‘%_in’
of MC-AR) and reduces the number of rejected orders (‘%_rej’ of MC-
AR). This preference for inhouse drivers is primarily driven by their
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Fig. 8. Comparing the average travel time (in seconds) and the allocation of orders (in percentage) across different algorithms.
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lower unit costs, encouraging planners to use them whenever available.
Additionally, factors like order consolidation and non-urgent service
levels also favor the use of inhouse drivers. For instance, our analysis
shows that orders assigned to crowdsourced drivers have an average
ood processing time (FPT) of 10 minutes, while those assigned to

inhouse drivers have an FPT of 20 minutes. This insight provides valu-
able guidance for planners in designing assignment strategies for OMD
practitioners. When FPT is short and the associated time windows are
tight, crowdsourced drivers can be a cost-efficient resource, allowing
planners to reserve inhouse drivers for nearby or consolidated orders,
which are more cost-effective.

In summary, we evaluate the performance of several developed
olicies for scheduling and routing orders in the OMD platform. By
xamining key design parameters, such as fleet size and the unit costs
f using inhouse or crowdsourced drivers, we further gain valuable
nsights for practitioners that are helpful when making decisions.

6. Conclusions

In this paper, we studied the operational scheduling and dispatching
problem in OMD platforms. The seasonal demand phenomena including
rush and no-rush hours render the operational costs control rather
challenging in practice: a large force secures the high service quality
but also incurs high cost, while a small team reduces the cost and harms
the service level, thus an appropriate capacity decision significantly im-
acts the operational cost. We are motivated by the practical operations
f the Meituan platform in China. Meituan addresses the service quality
nd operational cost trade-off problem under seasonal demand by
dopting the mixed delivery force (inhouse and crowdsourced drivers),
hich is a widely accepted strategy in most OMD platforms. We con-

ribute to existing OMD studies by hierarchically addressing the plan-
ing, scheduling and routing problems. More precisely, given a known
nhouse driver capacity, we described the operational level dynamic
cheduling and dispatching problem as a Markov Decision Process and
e presented the recursive formulation of the optimal compensation

ost. We then developed simple-yet-efficient solution approaches to
olve the scheduling and routing problem, through exploitation of
he future information and adaptive routes generation procedures.
oreover, determining the inhouse driver fleet size that can minimize

otal cost under the uncertain crowdsourced drivers participation is
et another open question to consider. Thus, we tackled this issue
y estimating the required capacity range through a continuous ap-
roximation model under the rush and no-rush scenarios, and further
erforming a dichotomic search for an appropriate capacity level.
hrough extensive numerical experiments based on a real dataset from
eituan, we observed that the designed policy is effective to solve the

perational problems, confirming the benefits of incorporating future
nformation, designing adaptive routes and determining appropriate
apacity, thereby leading to the total cost reduction by 6% (at best)
ompared to the policy without these procedures.

By leveraging the system parameters for sensitivity analysis, our
esearch leads to several important managerial insights. First of all,
e find that it is possible to estimate the upper- and lower-bound of
 i
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the required fleet size for online platforms endowed with the seasonal
emand phenomenon, which provides a range for the managers to build

(mixed) delivery force for service requirements. Moreover, through
omputational tests on the real-time scheduling and routing policies,
e conclude that incorporating both future information and smart

outes design is indeed beneficial to improve the operational perfor-
ances. More importantly, a skillful routes generation scheme seems

o be more effective in improving the performance compared to the
nformation incorporation strategy, enlightening that if the practical
omputational resources are sufficient, the MC-AR policy is certainly
he first choice, otherwise, deploying these limited resources into the
oute design optimization would be more advantageous to acquire an
cceptable performance improvement even under the myopic strategy.
inally, the proposed hierarchical decision scheme to solve the strategic
nd operational problems supports the managers to determine the
ptimal size of inhouse force given the uncertain participation of the
rowdsourced counterparts. Interestingly, we find that an intermediate
ize of inhouse fleet is optimal to minimize the total cost, which is also

robust in the compensation ratio between inhouse and crowdsourced
drivers, enabling the decision maker to set a dynamic compensation
fee.

Our proposed policies and insights can be implemented in other
latforms facing similar resource allocation challenges with mixed de-

livery force. For instance, Amazon builds its Prime team, together with
Flex drivers to fulfill the growing e-commerce delivery tasks (Archetti &
Bertazzi, 2021). These drivers allow the company to tackle the peak de-
mand during Black Friday and Christmas holidays, without maintaining
a large self-owned delivery team. Another example is related to retailers
uch as Walmart grocery, who also need to address similar strategic and
perational problems with mixed delivery force.

We see several venues for future research. Our model could be
extended to include the uncertain service and travel times of delivery
orce (Liu et al., 2021). Another venue would be studying the benefits

of delaying the scheduling timing with an intentional postponement
so as to create a thicker marketplace and provide more advantageous
scheduling opportunities (Zhao et al., 2024). Lastly, a theoretically
significant but challenging extension would be to develop performance
guarantees for the proposed policies, as suggested in prior works (see,
e.g., Ledvina et al., 2022; Simchi-Levi et al., 2005).
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