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ABSTRACT Accurate electricity consumption forecasting is essential for effective power management,
especially in the presence of unpredictable events that disrupt typical consumption patterns. Using the
COVID-19 pandemic as a case study for such unpredictable events, this study proposes an improved hybrid
LSTM-XGBoost model with adapted wavelets to capture complex, irregular fluctuations in energy demand.
Themodel first applies wavelet decomposition to the original data, extractingmultiple frequency components
that highlight short-term variations and long-term trends. By incorporating these wavelet coefficients as
features, the model is sensitized to anomalous events, resulting in more accurate forecasts over a more
extended period without the need for frequent retraining. The hybrid approach takes advantage of the
LSTM’s ability to model temporal sequences and uses XGBoost to adjust for residual errors. Experimental
results show that the model can effectively forecast energy demand with minimal error, especially on regular
weekdays, and achieves robust performance in the face of unforeseen anomalies. This methodology shows
a promising aspect for improving the reliability of energy forecasting models with potential applications in
smart grid management and sustainable energy planning.

INDEX TERMS Discrete wavelet transform, electricity consumption, hybrid LSTM-XGBoost, time series
prediction, unpredictable events, wavelet-enhanced forecasting.

I. INTRODUCTION
Electricity consumption forecasting plays a vital role in
addressing both economic and operational challenges in
power management. Accurate predictions enable elec-
trical companies to make informed decisions, optimize
supply strategies, and minimize the risks of operational
conflicts and costs associated with industrial and com-
mercial power supply. Forecasting is particularly critical
during peak demand periods, where balancing supply and
demand becomes essential to ensure system reliability [1],
[2], [3], [4].
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In recent years, machine learning (ML)models have shown
significant promise in enhancing forecasting accuracy [5].
By incorporating various influential factors, such as renew-
able energy contributions and large-scale energy storage
capacities, these models allow for more precise and adaptable
forecasting strategies. Techniques such as Extreme Gradient
Boosting (XGBoost) and Long Short-TermMemory (LSTM)
networks have emerged as effective tools for electric-
ity forecasting, especially in residential contexts where
incorporating weather and spatial data enhances model
performance [6]. This growing focus on machine learning
reflects a trend toward data-driven approaches that leverage
diverse variables to tackle the complexities of modern power
grids.
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Historical load data forms the foundation of these fore-
casting models, as it helps the models capture essential
consumption patterns. During pre-processing, data quality
issues like missing values and outliers are corrected to
ensure reliable training data. The load data is then com-
bined with other impactful variables, including weather
and event data, to improve accuracy [7]. Once aggregated,
multiple models are assessed to identify the most accurate
one for implementation. However, forecasting accuracy
often depends on location-specific and equipment-based
factors, which must be incorporated as input variables
where data availability allows. Challenges such as data
gaps, anomalies, and missing values can impact preci-
sion and require tailored solutions. Improving forecasting
accuracy can yield substantial financial benefits for utility
companies, as even a 1% reduction in mean absolute
percentage error (MAPE) can significantly lower generation
costs [8], [9].
Electricity demand forecasting poses unique challenges

due to the complexity of power systems and variability in
consumption patterns. Seasonal and periodic fluctuations,
nonlinearity, and a firm reliance on past consumption values
often characterize power consumption data. To address
these challenges, advanced forecasting models must capture
both short-term and long-term dependencies in time-series
data [10]. Integrating weather, calendar, and sector-specific
data into forecasting models has been shown to improve
accuracy significantly. Cluster-based methods have also been
employed, allowing models to learn patterns from similar
buildings or contexts, which further improves predictive
performance [11], [12], [13].

Deep learning architectures, particularly LSTM networks,
have shown exceptional promise in capturing the sequential
dependencies essential to electricity load forecasting [14].
Designed to address the long-term dependency prob-
lem of traditional recurrent neural networks (RNNs),
LSTMs are capable of retaining information over extended
sequences, making them highly effective for sequence-
dependent tasks like load forecasting [15], [16], [17].
LSTM networks leverage non-linear transformations and
high-level abstractions to automatically learn complex
temporal patterns, thanks to an internal memory struc-
ture that enables them to manage long-term dependencies
efficiently [18], [19].

In addition to standalone models, hybrid approaches
that combine XGBoost and LSTM models have gained
attention for their ability to leverage the strengths of both
methods [20]. For instance, XGBoost can capture feature-
based relationships effectively, while LSTM networks handle
temporal dependencies within the data. Li et al. developed
a hybrid approach where multiple XGBoost models are
used for initial feature-based predictions, which are then
refined through an LSTM model to produce a final fore-
cast. This hybrid method has been effective in enhancing
forecast accuracy by managing non-linear patterns and time-
series dependencies in electricity consumption data [21].

Similarly, Jaimes et al. proposed a unique two-dimensional
framework that combines XGBoost and LSTM, extending
forecast horizons and improving accuracy for electricity
market prices. These hybrid models address challenges
associated with power system complexity and variability
in consumption patterns, demonstrating their potential for
efficient energy management and planning. By incorporating
the capabilities of both XGBoost and LSTM models, hybrid
methods provide an adaptable and accurate solution for elec-
tricity forecasting, crucial for modern power grids [22], [23].
In this study, we contribute to the literature on electricity

consumption forecasting by integrating wavelet decomposi-
tion, LSTM, and XGBoost in a hybrid model specifically
designed to address unpredictable events. The wavelet trans-
formation isolates different frequency components, allowing
the model to learn from diverse time scales and effectively
capture sudden, unpredictable events such as the impact of
COVID-19. This approach enhances the model’s sensitivity
not only to seasonal and cyclical variations but also to
abrupt and anomalous fluctuations that challenge traditional
forecasting models. By combining LSTM and XGBoost, the
hybrid model capitalizes on their complementary strengths.
LSTM networks excel at capturing temporal dependen-
cies in sequential data, while XGBoost effectively models
feature-based interactions and residual patterns. The hybrid
LSTM-XGBoost model bridges the limitations of traditional
models like ARIMA and SARIMA by combining the tempo-
ral learning capabilities of LSTM with the feature-learning
strength of XGBoost [24], [25]. The adaptation results in
a flexible and highly accurate forecasting framework that
addresses both temporal dependencies and external factors
effectively. This constructive interaction enables the hybrid
model to achieve robust forecasting accuracy, particularly
in scenarios involving non-linear patterns and unpredictable
shifts.

Additionally, wavelet-based features enhance the model’s
ability to analyze diverse time scales, further improving its
adaptability for both short-term and long-term forecasting
horizons. This work provides valuable insights for developing
more adaptable forecasting models that respond effectively
to unpredictable events, which is crucial for efficient energy
management amid the increasing integration of renewable
energy sources and the complexities of modern power
grids.

II. METHODOLOGY
A. OVERVIEW OF THE LSTM-XGBoost HYBRID MODEL
The dataset used in the study is available on the IEEE
Dataport website; it includes meteorological data, as well
as unpredictable changes in the electricity consumption of
an unnamed region in the COVID-19 [26]. The proposed
hybrid model consists of two main components: LSTM for
sequential learning and XGBoost for error correction. In this
way, it is aimed to model the load consumption in the
dataset that exhibits both regular patterns before COVID-19
and irregular ‘‘unpredictable events’’ during the pandemic.
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The inclusion of the Discrete Wavelet Transform (DWT)
in the training data, in addition to the meteorological data,
allows for a multi-resolution analysis of the time series,
capturing both high and low-frequency components that
are critical to addressing unpredictable variations in the
data.

B. DISCRETE WAVELET TRANSFORM FOR FEATURE
EXTRACTION
Let x(t) represent the original time series. The Discrete
Wavelet Transform (DWT) decomposes x(t) into multi-
ple frequency bands, providing a representation in both
time and frequency domains. The DWT can be expressed
as [27]:

x(t) =

∑
j

∑
k

Aj,kψj,k (t) (1)

where, ψj,k (t) are the wavelet basis functions, Aj,k are
the approximation coefficients (low-frequency components),
j and k represent the scale and translation parameters in (1),
respectively.

For this study, the wavelet transformation is used to
decompose the load data into various frequency components
using the Daubechies wavelet (dbN) up to level 5, generating
both approximation Aj and detail Dj coefficients. This
decomposition results in an approximation component (A5)
representing the long-term trends, and five detail compo-
nents (D1 − D5) that capture the short-term changes. The
detail components represent progressively lower frequency
variations, with D1 capturing the highest frequency changes
(e.g., noise or rapid fluctuations) and D5 representing
lower-frequency localized variations. These components are
particularly valuable for forecasting because they help the
model identify and learn patterns associated with sudden
changes, potential anomalies like ‘unpredictable events’,
or seasonal effects [28], [29].
The wavelet decomposition at level 5 can be summarized

as in (2):

x(t) = A5 + D5 + D4 + D3 + D2 + D1 (2)

These coefficients are then used as input features for the
LSTM-XGBoost hybrid model.

C. LSTM FOR SEQUENCE PREDICTION
LSTM is a recurrent neural network (RNN) architecture that
is capable of learning long-term dependencies through its cell
states and gating mechanisms. The key equations governing
the LSTM model are given in (3), (4), (5), (6), (7) and (8)
below:

Forget gate:

ft = σ (Wf · [ht−1, xt ] + bf ) (3)

Input gate:

it = σ (Wi · [ht−1, xt ] + bi) (4)

C̃t = tanh(WC · [ht−1, xt ] + bC ) (5)

Cell state update:

Ct = ft · Ct−1 + it · C̃t (6)

Output gate:

ot = σ (Wo · [ht−1, xt ] + bo) (7)

ht = ot · tanh(Ct ) (8)

where, Wf , Wi, Wo are the weight matrices for the forget,
input, and output gates respectively. σ is the sigmoid
activation function, and tanh is the hyperbolic tangent
function, ht is the hidden state, and Ct is the cell state at
time t [14].

The LSTM model takes as input the sequences generated
from the original time series and the wavelet features. Let
XLSTM ∈ RT×d be the input sequence with T time steps
and d features (including wavelet features), and let y ∈ RT be
the target load values [18]. The LSTM is trained to minimize
the mean squared error (MSE) defined as in (9):

MSELSTM =
1
N

N∑
i=1

(yi − ŷi)2 (9)

where, yi are the values of actual load and ŷi are the values of
predicted load from the LSTM model.

D. RESIDUAL ERROR CORRECTION WITH XGBoost
Once the LSTM predictions are obtained, the residual
errors rt are calculated as:

rt = yt − ŷt (10)

where, yt is the actual load value, and ŷt is the LSTM
prediction at time t in (10). These residuals rt represent
the part of the data that LSTM is unable to capture, which
often corresponds to unpredictable events and short-term
fluctuations.

XGBoost is used to model and correct these residuals.
XGBoost operates by sequentially adding weak learners
(decision trees) that fit the residual errors [30]. The objective
function of XGBoost is to minimize the residual loss in (11),
expressed as:

L(r) =

N∑
i=1

l(ri, r̂i) +

K∑
k=1

�(fk ) (11)

where, l(ri, r̂i) is the loss function (squared error) for the
residuals, �(fk ) is the regularization term to penalize the
complexity of the model, fk represents the k-th decision tree
in the ensemble [31].

The parameters of XGBoost, such as ‘max_depth’,
‘learning_rate’, and ‘n_estimators’, are optimized using
RandomizedSearchCV to further enhance the model
performance.

E. HYBRID LSTM-XGBoost PREDICTION
The final prediction ŷt

final from the hybrid model in (12) is
obtained by combining the LSTM predictions ŷt with the
XGBoost corrections r̂t as:

ŷt
final

= ŷt + r̂t (12)

VOLUME 13, 2025 58673



A. Ajder et al.: Wavelet-Enhanced Hybrid LSTM-XGBoost Model

FIGURE 1. Hourly load and weekly moving average trends over time.

F. MODEL EVALUATION
The hybrid model is evaluated using the following
metrics (13), (14) and (15):

Mean Squared Error (MSE):

MSE =
1
N

N∑
i=1

(yi − ŷi
final)2 (13)

Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi
final)2 (14)

Mean Absolute Error (MAE):

MAE =
1
N

N∑
i=1

|yi − ŷi
final

| (15)

Willmott Index (WI):

WI = 1 −

∑N−1
i=0 (ŷi − yi)2∑N−1

i=0 (|ŷi − mean(y)| + |yi − mean(y)|)2
(16)

where yi represents the actual values, ŷfinali represents the
predicted values, and N is the total number of data.
Lower values of MSE , RMSE , and MAE indicate better
model performance in capturing both regular patterns and
unpredictable events.

The combination of Discrete Wavelet Transform (DWT),
LSTM, and XGBoost enables effective handling of datasets
with unpredictable events. DWT’s multi-resolution analysis,
combined with LSTM’s sequence-learning capability and
XGBoost’s residual error correction, results in a robust model
capable of accurately forecasting load values in volatile time
series data.

III. RESULTS
Unpredictable events, such as sudden economic shifts, natural
disasters, or pandemics, pose significant challenges in time
series forecasting. This study addresses these challenges by
focusing on the impact of COVID-19 on energy demand
as an example of an unpredictable event, employing a
wavelet-enhanced hybrid LSTM-XGBoost model to improve
the accuracy of predictions. Fig. 1 shows the hourly load

FIGURE 2. Correlation matrix of the features used in the model.

data and the weekly moving average. Although the hourly
data exhibit a wide variation, the weekly moving average
makes the trend smoother and the seasonal effects more
apparent. Demand variations observed throughout the year
reflect the impact of cooling and heating systems on energy
consumption.

The correlation between the features used in the study is
shown in Fig. 2. In the figure, red colors indicate a positive
correlation and blue colors indicate a negative correlation,
while color intensity indicates the strength of the correlation.
In particular, a significant positive correlation (+0.56) is
observed between electricity consumption and temperature.
This indicates that energy demand increases with temper-
ature, which is especially significant for situations where
energy demand increases, such as the use of air conditioners
in hot weather. In addition, a more meaningful analysis can
be made by separating the wind into horizontal (u) and
vertical (v) components instead of using the wind direction
and speed given in the dataset separately. Although there is no
significant correlation between wind direction components
and load, these components have the potential to increase the
predictive power of the model.

Fig. 3 shows the model’s flow diagram. The dataset is
taken from IEEE Dataport [26]. The dataset covers the
period from March 2017 through November 2020, capturing
both pre-pandemic patterns and the initial impact phase
of COVID-19, and hourly electricity consumption data
shows distinct daily and weekly patterns, as expected. The
training dataset contains 31912 hourly observations with
corresponding meteorological variables including tempera-
ture, humidity, cloud cover, pressure, and wind components.
By checking the missing values in the raw data, months,
days of the week, and hours, which are highly relevant
for electricity demand forecasting, are added to the data as
features.
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FIGURE 3. Flow chart of the wavelets enriched LSTM-XGBoost hybrid
model.

To ensure data integrity, missing values are handled
using statistical and machine learning-based imputation
techniques. Missing meteorological variables are estimated
based on correlations with historical features. After the pre-
processing, the wavelet transform is applied to decompose
the data into different frequency components. This decom-
position separates the data into components at varying time
scales, facilitating more effective learning of trends and
details.

Additionally, linear interpolation is applied to align
wavelet coefficients across different frequencies, ensuring
consistency in the dataset. These pre-processing steps
maintain robustness, particularly during irregular fluctuations
such as those caused by COVID-19, allowing the model to
learn temporal dependencies and feature-based relationships
effectively. The wavelet coefficients are then integrated
into the feature set, enhancing the model’s sensitivity to
sudden and unpredictable events such as COVID-19. Fig. 4
illustrates the decomposition of energy demand data into
different frequency components using the wavelet transform,
which is crucial for analyzing the impact of unpredictable
events in the time series, the main focus of this study.
The dataset is decomposed into five levels of detail and
one level of approximation. The approximation compo-
nent represents the long-term trends. Detail 1 and Detail 2

FIGURE 4. Wavelet decomposition of the load data.

correspond to the highest frequency components of the data.
These components capture short-term fluctuations, including
noise and rapid changes in the load data. While these
high-frequency details are often less significant for overall
trend forecasting, they play a crucial role in identifying
anomalies or unexpected spikes in the data. For example,
D1 captures the fastest variations that may correspond to
transient noise, whereas D2 represents slightly slower, high-
frequency changes. Detail 3, Detail 4 and Detail 5 represent
the lower frequency components that correspond to medium-
and long-term variations, respectively, capturing significant
fluctuations in the data. It is evident from Fig. 4 that the
frequency components have different lengths. To ensure
uniformity in the feature set, interpolation is applied to make
all wavelet components the same length before integrating
them into the model.

Then, the LSTM model is used to train the model for
forecasting time series data. The LSTM model is expected to
be particularly effective on wavelet transform enriched data
due to its ability to learn long-term dependencies. In this step,
the hyperparameters (e.g., number of layers, learning rate) of
themodel in Table 1 are selected and adjusted by optimization
processes.

TABLE 1. LSTM model parameters.

Prediction errors (residuals) are calculated over the
predictions obtained from the LSTM model. These errors
are corrected by processing with the XGBoost model,
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TABLE 2. XGBoost model parameters.

which is optimized with different parameter values given
in Table 2. XGBoost aims to make more accurate forecasts at
these points by learning the points where LSTMmakes errors.
Thus, a more powerful hybrid predictionmodel is obtained by
combining the two models.

A validation process evaluates the model’s performance.
Here, a stopping criterion is determined by analyzing the
prediction errors on the validation set. These criteria are
optimized so that the validation loss is reduced to a certain
level and a certain number of iterations are reached. If the
stopping criteria are not met, different values for the model’s
hyperparameters are tried.

Hyperparameter tuning plays a crucial role in optimizing
the predictive performance of models. The optimal parame-
ters are determined as 100 units, an L2 regularizer of 0.07,
a dropout rate of 0.3, and a learning rate of 0.0001 for
the LSTM model. Similarly, for the XGBoost model, the
best-performing configuration, identified using Randomized-
SearchCV, includes a max depth of 6, a min child weight of 1,
a learning rate of 0.1, and 200 estimators.

To ensure systematic optimization, we employ Random-
Search within the Keras Tuner library for LSTM, minimizing
validation loss across five trials with three executions per trial
for reliable results. We utilize RandomizedSearchCV from
Scikit-Learn, which efficiently explores the hyperparameter
space with 20 iterations and 3-fold cross-validation, optimiz-
ing for the negative mean squared error (MSE) metric for
XGBoost.

These optimizations significantly contributed to the
improved accuracy of the hybrid LSTM-XGBoost model,
ensuring a balance between generalization and computational
efficiency. Finally, once the optimization process is complete,
the model is ready to be used for future data predictions. This
version of the model is trained on wavelet transform-enriched
dataset and optimized to correct the prediction errors. In this
process, it is observed that the wavelet transform provides
better capture of unpredictable events by separating the
data into different frequency components, and the hybrid
LSTM-XGBoost approach improves the overall prediction
performance of the model.

The dataset is published in IEEE Dataport as part of a
forecasting competition in which daily forecasts were made
using the entire dataset. At the end of each day, the actual

TABLE 3. Error metrics for different models.

FIGURE 5. Comparison of actual and predicted load (kW) using different
models.

FIGURE 6. Error distribution of hybrid model and the state-of-art models.

values were disclosed, allowing the model to be retrained
for the next day’s predictions. In this study, we aim to
train the model for a full one-month forecasting period
covered by the competition. To evaluate the performance of
the proposed hybrid LSTM-XGBoost model, a comparative
study is conducted with a standalone LSTM model and
a standalone LSTM model without wavelet components.
Table 3 presents comparative results, showing that the hybrid
model consistently outperformed the standalone methods in
terms of MAE, RMSE, MAPE and WI.

These findings highlight the complementary strengths
of the hybrid approach, where LSTM effectively captures
temporal dependencies and XGBoost enhances feature-
based learning. Furthermore, the hybrid model demonstrated
better adaptability in capturing abrupt changes in load data,
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TABLE 4. Time of day analysis for load forecasting metrics.

underscoring its suitability for real-world forecasting appli-
cations. The one-month forecast results of the comparative
study are presented in the Fig. 5.

Fig. 6 highlights the hybrid LSTM-XGBoost model’s
superior adaptability, particularly in handling the struc-
tural shift in electricity consumption caused by COVID-19.
Since pre-COVID data is abundant, models relying solely
on historical patterns, such as LSTM with wavelet fea-
tures and LSTM without wavelets, exhibit a positive
bias in post-COVID predictions, overestimating demand
due to the sharp consumption decline. However, the
hybrid approach mitigates this problem by using wavelets
and XGBoost to model non-linear relationships. The
LSTM-XGBoost model provides a balanced error distri-
bution, proving its robustness to unpredictable changes in
energy demand and strengthening its suitability for real-world
applications.

The performance of the hybrid model is then analyzed in
different periods of the day (Morning, Afternoon, Evening,
and Night), as shown in Table 4. These results highlight
how the accuracy of the model varies depending on the
time of day and reflects the different consumption patterns
and operational challenges. In addition, the hourly analysis
provides insight into the temporal aspects of electricity
consumption forecasting and the ability of the model to
adapt to these changes. Despite the hybrid model’s overall
good performance during morning hours, as indicated
by traditional error metrics, the lower Willmott’s Index
suggests that the model is less successful at fully capturing
consumption dynamics in this period compared to other
times of day. Moreover, for the morning, a Standalone
LSTM and LSTM without Wavelets models have WI values
of 0.62 and 0.73, respectively, indicating they perform
significantly worse than the hybrid model in capturing the
underlying patterns during this period. Besides, the increased
error rates during the evening and nighttime hours suggest
that incorporating additional features or training-specific
models for these periods can improve accuracy. This temporal
analysis not only highlights the strengths and weaknesses of
the model but also provides essential insights for improv-
ing forecasting accuracy in energy management systems.
Aligning forecasting models with daily consumption patterns
can lead to more reliable and responsive energy management
strategies.

Despite the encouraging results of the proposed hybrid
LSTM-XGBoost model, some limitations should be taken
into account. Since consumption patterns on public holidays
are not included in the dataset, the accuracy of the model

may be affected when forecasts coincide with holidays.
Supply-side disruptions such as grid failures and power
outages are not directly accounted for in the model may
influence forecasting accuracy. Likewise, uncommon events
such as policy-driven energy transitions or large-scale
industrial changes are not extensively represented in the train-
ing data, potentially affecting performance. Additionally,
long-term shifts, such as economic downturns or regula-
tory modifications, may necessitate periodic retraining to
ensure sustained accuracy. Future studies could enhance the
model’s robustness by integrating external contextual data,
real-time supply-side information, and adaptive retraining
strategies.

IV. CONCLUSION
In this study, a wavelet-enhanced hybrid LSTM-XGBoost
model is developed to forecast electricity consumption in the
presence of unpredictable events, specifically demonstrated
through the impact of COVID-19 on energy demand. The
dataset utilized is designed for daily forecasting in the
IEEE Dataport competition, where models were retrained
regularly with daily updates. However, our approach diverges
by aiming to predict an entire month’s energy consumption
without continuous retraining, which presents a challenging
scenario for time series models. By decomposing the
original data into multiple frequency components through
wavelet transformation, we extract approximation and detail
coefficients, capturing both short-term fluctuations and long-
term trends. This decomposition enables the hybrid model
to gain sensitivity to sudden, irregular events, which are
typically difficult for traditional time series models to
handle.

The hybrid approach leverages LSTM’s ability to learn
sequential dependencies, while the XGBoost model is used to
correct residual errors, enhancing overall prediction accuracy.
The model has achieved promising results, especially for
intraday morning and afternoon forecasts, but it has been
observed that it does not work well on some particular
days. These differences highlight the potential for further
improvements, such as the inclusion of day-specific pat-
terns or additional context-sensitive features. For example,
the hybrid model can be adapted for global-scale dis-
ruptions by integrating economic indicators (e.g., GDP,
unemployment rates) for economic crises and incorporat-
ing real-time meteorological data for significant weather
events. Enhancements like transfer learning, scenario-
specific training, and real-time data inputs strengthen the
model’s ability to handle dynamic changes in electricity
consumption.

In conclusion, the integration of wavelet transformation
with a hybrid LSTM-XGBoost model offers a robust
framework for energy forecasting under conditions of
high volatility and uncertainty. This methodology not only
enhances the model’s adaptability but also improves its
predictive accuracy by dynamically responding to complex
temporal patterns. Future research may extend this work
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by exploring additional real-world datasets, optimizing
model parameters for specific seasonal or calendar effects,
and incorporating adaptive learning mechanisms to handle
day-to-day fluctuations more effectively. This approach
contributes a robust forecasting framework for energy
systems, which is essential for grid stability, economic
planning, and effective energy management amid evolving
challenges.
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