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We establish that regular black holes can form from gravitational collapse in allD ≥ 5. Our model builds
on a recent construction that realized regular black holes as exact solutions to purely gravitational theories
that incorporate an infinite tower of higher curvature corrections [P. Bueno et al., Regular black holes from
pure gravity, Phys. Lett. B 861, 139260 (2025).]. We identify a two-dimensional Horndeski theory that
captures the spherically symmetric dynamics of the theories in question and use this to prove a Birkhoff
theorem and obtain the generalized Israel junction conditions. Armed with these tools, we consider the
collapse of thin shells of pressureless matter, showing that this leads generically to the formation of regular
black holes. The interior dynamics we uncover is intricate, consisting of shell bounces and white hole
explosions into a new universe. The result is that regular black holes are the unique spherically symmetric
solutions of the corresponding theories and also the end point of gravitational collapse of matter. Along the
way, we establish evidence for a solution-independent upper bound on the curvature, suggestive of
Markov’s limiting curvature hypothesis.
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I. INTRODUCTION

The Penrose-Hawking singularity theorems were a tri-
umph of the early days ofmathematical relativity and remain
a cornerstone of modern gravitational theory [1,2]. The
theorems rigorously establish that singularities are the
generic outcome of gravitational collapse in General
Relativity, a discovery which earned Penrose his share of
the 2020 Nobel Prize in Physics. However, this triumph also
revealed a foundational problem. Our theories of Nature
breakdown at singularities, and if singularities are real, it
would mean an unassailable indeterminacy in our descrip-
tion of reality. It is therefore widely expected that singular-
ities will be resolved by quantumgravitational effects. There
are good reasons for this expectation—the singularity
theorems assume (among other things) classical energy
conditions, which can be violated by quantum matter.

In the absence of a known mechanism for singularity
resolution, many authors have considered its phenomeno-
logical implications. Perhaps the paradigmatic example of
this is the program of research on regular black holes.
Dating to the early work of the 1960s [3,4], authors have
considered models of black holes with singularity-free
(regular) cores and studied their geometrical properties.
Importantly, as these metrics are postulated on heuristic
grounds, they do not a priori solve the equations of motion
of any known theory. Nevertheless, it has been possible to
learn a variety of general features that apply to broad
classes of regular black hole metrics. For example, it is
often—but not always—necessary to violate energy con-
ditions in the construction of these metrics [5,6]. Moreover,
regular black holes provide a setting in which a self-
consistent picture of the black hole evaporation process can
be studied, at least in principle [7,8]. On the other hand, all
known examples of regular black hole metrics possess an
inner Cauchy horizon, suggesting potential instabilities
[9–12]. There is a vast amount of literature on the pheno-
menology of regular black holes, which has recently
received renewed attention [13–23].
While phenomenological considerations can reveal

much, they cannot tell the complete story. To fully assess
the viability of regular black holes, at some point, it
becomes necessary to find these metrics as solutions of
bona fide theories and to prove that they are the outcome of
gravitational collapse. Over the years, there have been
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various approaches to finding regular black holes as
solutions, e.g., Refs. [24–50].1 The approach that has
garnered the most attention has been that of nonlinear
electrodynamics [55–67]. In fact, as nicely detailed in
Ref. [68], this can often be reduced to a procedural
exercise: given a regular black hole metric, a theory of
nonlinear electrodynamics can be constructed that admits it
as a solution.
However, this perspective is not fully satisfactory. There

are a number of important and pervasive issues associated
with regular black holes in nonlinear electrodynamics.
For example, the theories required often do not recover
Maxwell electrodynamics in the weak field limit, thus
postulating new and exotic matter for singularity resolution.
Moreover, this matter is required for singularity resolution,
with the fully singular Schwarzschild metric being recov-
ered when the charged matter is switched off. Another issue
is that the regular black holes, while indeed solutions of
these theories, are not the general solutions. Instead, they
require fine-tuning between integration and coupling con-
stants [68]. Therefore, the most general solutions of these
theories remain singular, even in spherical symmetry.
A different approach to the problem, which is capable of

resolving some of the above issues, is to consider higher-
derivative corrections featuring nonminimal couplings to
matter. In fact, two of us have previously shown that
regular, electrically charged black holes may be found in
four dimensions as solutions to certain higher-derivative
extensions of Einstein-Maxwell theory [38,39]. Remark-
ably, the mass and the charge can vary independently in this
setup, without the need for fine tuning of coupling and
integration constants. A similar approach applies in three
dimensions [41] and likely also in D ≥ 5 [69]. Neverthe-
less, all of these models continue to suffer from the issue of
requiring charge for singularity resolution, recovering the
Schwarzschild singularity when the charged matter is
switched off. To address this problem, a purely gravita-
tional mechanism for singularity resolution seems to be
required.
Recently, three of us have put forth a model in which

regular black holes are obtained as exact solutions of a
purely gravitational theory [70]. More specifically, it was
shown that when the Einstein-Hilbert action is supple-
mented by an infinite tower of higher-curvature corrections,
then the Schwarzschild singularity is resolved generically
in any D ≥ 5. The approach makes use of a class of
gravitational theories known as quasitopological gravities
[71–78]. These theories—as we review in detail below—
are constructed to have particularly desirable properties in
spherical symmetry. They exist at any order in curvature for

anyD ≥ 5 [76,78], and, notably, for a static and spherically
symmetric ansatz, the equations of motion reduce to a
single algebraic equation that determines the metric func-
tion. The key observation of Ref. [70] was that precisely
when an infinite number of quasitopological densities are
included in the action, the black hole singularity is
resolved. This is achieved without fine-tuning, requiring
only very mild assumptions on the coupling constants of
the different terms pertaining to their sign and relative
growth.
One may worry that selecting a particular class of

theories makes the results finely tuned in the space of
theories, even if not in the space of solutions to those
theories. However, quasitopological gravities are suffi-
ciently general to provide a basis for the gravitational
effective action in vacuum [70,79]. Therefore, in the regime
of effective field theory, quasitopological gravities capture
the most general corrections to General Relativity for any
D ≥ 5. While the resolution of the singularity requires
going beyond the regime of effective field theory (because
the full tower of corrections is being resummed), one is free
to instead treat the couplings perturbatively, in which
case regular black hole metrics can be matched to any
desired accuracy in the perturbative expansion. Altogether,
this provides strong support for the generality of the
results.
In this paper, we tackle a different question—the for-

mation of regular black holes from gravitational collapse,
providing a more detailed description of the results reported
in [80]. Until now, the study of the dynamical collapse of
matter into a regular black hole solution of the theory
controlling such dynamics had remained out of reach. Here,
we accomplish this goal by extending and improving upon
the results of Ref. [70] in several ways.
A key tool in our analysis is the identification of a two-

dimensional Horndeski theory that captures the spherically
symmetric sector of quasitopological gravities. This two-
dimensional theory is obtained directly, by dimensionally
reducing the higher-dimensional theories on the sphere.
Armed with this, we are able to present explicit, fully
resummed and covariant two-dimensional actions that
describe the corresponding fully resummed spherical com-
pactifications of the higher-dimensional theories. Using this,
we prove that a Birkhoff theorem holds at all orders in
quasitopological gravity, so that the static and spherically
symmetric regular black hole solutions considered in
Ref. [70] are in fact the unique spherically symmetric
solutions of the corresponding theories. We then obtain the
generalization of the Israel junction conditions for the theories
at hand and study the problem of spherically symmetric thin
shell collapse. In General Relativity, the collapse of a thin
shell results in the formation of the Schwarzschild metric in
finite time, including its singular interior. In stark contrast to
this, in our setup, we find that regular black holes generically
result from the collapse of matter.

1Another avenue to motivate the existence of regular black
holes is to include quantum effects, such as those coming from
the semiclassical Einstein equations or from the renormalization
of Newton’s constant. See, e.g., Refs. [51–54].
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The dynamics of the thin shells is intricate, but exhibits
general patterns. We observe that a shell, beginning from
rest, collapses, leaving behind one of the regular black hole
solutions of Ref. [70] in the exterior. In the interior, the
shells continue to collapse before ultimately reaching a
turning point. As we establish using a master formula for
the shell dynamics, this occurs regardless of the particular
model considered. Then, a bounce occurs, with the shell
rebounding and emerging into a new universe through a
white hole explosion. The situation is very similar to that
considered in various quantum gravity inspired models
[81–84], here emerging naturally from the dynamics of the
underlying theory.
The result of all this is an explicit model in which regular

black holes are the unique solutions to the corresponding
equations of motion and arise as the product of gravita-
tional collapse, generically, in any dimensionD ≥ 5. While
it is not yet clear whether the resummation of higher-
derivative terms in the effective action is responsible for
singularity resolution in Nature, what is clear is that our
implementation of this provides a comprehensive approach
to the program of regular black holes. Without further ado,
let us begin the analysis with a detailed description of
quasitopological theories.

II. QUASITOPOLOGICAL GRAVITIES

Let us consider a general D-dimensional theory of
gravity built from contractions of the Riemann tensor
and the metric,

I ¼ 1

16πGN

Z
dDx

ffiffiffiffiffi
jgj

p
Lðgab; RcdefÞ; ð1Þ

where GN is Newton’s constant. In the absence of matter,
the equations of motion read

Eab ¼ Pa
cdeRbcde −

1

2
gabL − 2∇c∇dPacdb ¼ 0; ð2Þ

where we defined

Pabcd ≡
�

∂L
∂Rabcd

�
; ð3Þ

which inherits the symmetries of the Riemann tensor.
Naturally, the above equations are of fourth order in
derivatives of the metric, except in the case in which the
third term is absent, namely, when

∇dPacdb ¼ 0 ⇔ Lovelock gravity: ð4Þ

As indicated above, this can be seen as the defining
property of Lovelock gravities [85–87]. For those, the
equations of motion are second order for general space-
times. They exist and have nontrivial dynamics for

curvature orders n ≤ bðD − 1Þ=2c, and they are topological
in the critical dimension n ¼ D=2. Hence, for any space-
time dimension D, there is always a finite number of
nontrivial Lovelock densities. In other words, reaching
arbitrarily high-order nontrivial Lovelock densities would
require D → ∞.
In this paper, we shall consider a more general class of

higher-curvature gravities which, in any number of dimen-
sionsD ≥ 5, contains nontrivial densities of arbitrarily high
order. In order to define it, let us consider a general static
and spherically symmetric (SSS) ansatz,

ds2SSS ¼ −NðrÞfðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
ðD−2Þ: ð5Þ

We say that our higher-curvature gravity is of the quasi-
topological (QT) class whenever

∇dPacdbjf ¼ 0 ⇔ QT gravity; ð6Þ

where jf stands for evaluation on the SSS ansatz (5) with
NðrÞ ¼ 1. This makes it possible to solve the equations
and find black hole solutions analytically. Explicit forms
for QT Lagrangians of arbitrary order can be found in
Refs. [76,78].

A. QT gravities with a Birkhoff theorem

QT gravities have an important level of degeneracy, in
the sense that, at a given curvature order, one finds different
QT Lagrangians that yield identical equations for SSS
metrics. All these Lagrangians are equivalent from the
point of view of SSS solutions, but their degeneracy is
generically broken if one considers more general classes of
solutions. This allows one to identify subsets of QT
Lagrangians that satisfy further constraints [88–91]. In this
paper, we consider a more restricted class of QT gravities,
defined by the condition that they possess second-order
equations of motion on general spherically symmetric (SS)
metrics. Since we do not impose staticity, this condition is
stronger than the usual definition of QT gravities based on
SSS metrics with NðrÞ ¼ 1. These theories will be espe-
cially well suited to study spherical collapse; having
second-order equations of motion, one can analyze time
evolution avoiding the pathologies associated with higher-
order time derivatives. On the other hand, all these theories
satisfy a Birkhoff theorem, as we show below, implying the
uniqueness of spherical black hole solutions. The first
examples of theories of this kind were found by
Refs. [71,92], and here we extend those results to arbitrary
high orders in the curvature in any dimension D ≥ 5. We
will refer to this family of theories by “Birkhoff QT
gravities” or simply “Birkhoff gravities.”
At the lowest orders in the curvature, one can find

instances of these theories by a brute force selection of
Lagrangians. The idea is as follows:
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(1) Write down a general (or at least, general enough)
order-n Lagrangian density, Zn, consisting of a sum
of curvature invariants with free couplings.

(2) Compute the equations of motion (2) of this
Lagrangian, and evaluate them on a general SS
(time-dependent) ansatz.

(3) Fix the couplings of the Lagrangian so that the terms
with more than two derivatives in the equations of
motion cancel out.

Remarkably, this process leads to a nonempty set of
theories beyond the Lovelock family, in dimensions
D ≥ 5. The following expressions are explicit instances
of such theories up to order n ¼ 5 and arbitrary dimension:

Zð1Þ ¼ R; ð7aÞ

Zð2Þ ¼
1

ðD − 2Þ
�
WabcdWabcd

D − 3
−
4ZabZab

D − 2

�
þ

Z2
ð1Þ

DðD − 1Þ ; ð7bÞ

Zð3Þ ¼
24

ðD − 2ÞðD − 3Þ
�
Wac

bdZa
bZ

c
d

ðD − 2Þ2 −
WacdeWbcdeZa

b

ðD − 2ÞðD − 4Þ þ
2ðD − 3ÞZa

bZ
b
cZc

a

3ðD − 2Þ3 þ ð2D − 3ÞWab
cdWcd

efWef
ab

12ðDððD − 9ÞDþ 26Þ − 22Þ
�

þ 3Zð1ÞZð2Þ
DðD − 1Þ −

2Z3
ð1Þ

D2ðD − 1Þ2 ; ð7cÞ

Zð4Þ ¼
96

ðD − 2Þ2ðD − 3Þ
�ðD − 1ÞðWabcdWabcdÞ2

8DðD − 2Þ2ðD − 3Þ −
ð2D − 3ÞZf

eZe
fWabcdWabcd

4ðD − 1ÞðD − 2Þ2 −
2WacbdWcefgWd

efgZab

DðD − 3ÞðD − 4Þ

−
4ZacZdeWbdceZa

b

ðD − 2Þ2ðD − 4Þ þ
ðD2 − 3Dþ 3ÞðZb

aZa
bÞ2

DðD − 1ÞðD − 2Þ3 −
Zb
aZc

bZ
d
cZa

d

ðD − 2Þ3 þ ð2D − 1ÞWabcdWaecfZbdZef

DðD − 2ÞðD − 3Þ
�

þ
4Zð1ÞZð3Þ − 3Z2

ð2Þ
DðD − 1Þ ; ð7dÞ

Zð5Þ ¼
960ðD − 1Þ

ðD − 2Þ4ðD − 3Þ2
�ðD − 2ÞWghijWghijWab

cdWcd
efWef

ab

40DðD3 − 9D2 þ 26D − 22Þ þ 4ðD − 3ÞZb
aZc

bZ
d
cZe

dZ
a
e

5ðD − 1ÞðD − 2Þ2ðD − 4Þ

−
ð3D − 1ÞWghijWghijWacdeWbcdeZa

b

10DðD − 1Þ2ðD − 4Þ −
4ðD − 3ÞðD2 − 2Dþ 2ÞZb

aZa
bZ

d
cZe

dZ
c
e

5DðD − 1Þ2ðD − 2Þ2ðD − 4Þ

−
ðD − 3Þð3D − 1ÞðD2 þ 2D − 4ÞWghijWghijZd

cZe
dZ

c
e

10DðD − 1Þ2ðDþ 1ÞðD − 2Þ2ðD − 4Þ þ ð5D2 − 7Dþ 6ÞZh
gZ

g
hWabcdZacZbd

10DðD − 1Þ2ðD − 2Þ

þ ðD − 2ÞðD − 3Þð15D5 − 148D4 þ 527D3 − 800D2 þ 472D − 88ÞWab
cdWcd

efWef
abZh

gZ
g
h

40DðD − 1Þ2ðD − 4ÞðD5 − 15D4 þ 91D3 − 277D2 þ 418D − 242Þ

−
2ð3D − 1ÞZabWacbdZefWe

e
f
gZd

g

DðD2 − 1ÞðD − 4Þ −
Zb
aZc

bZcdZefWeafd

ðD − 1ÞðD − 2Þ þ ðD − 3ÞWacdeWbcdeZa
bZ

g
fZ

f
g

5DðD − 1Þ2ðD − 4Þ

−
ðD − 2ÞðD − 3Þð3D − 2ÞZa

bZ
b
cWdaefWefghWgh

dc

4ðD − 1Þ2ðD − 4ÞðD2 − 6Dþ 11Þ þWghijWghijZacZbdWabcd

20DðD − 1Þ2
�

þ 5Zð1ÞZð4Þ − 2Zð2ÞZð3Þ
DðD − 1Þ þ

6Zð1ÞZ2
ð2Þ − 8Z2

ð1ÞZð3Þ
D2ðD − 1Þ2 : ð7eÞ

Here, Wabcd is the Weyl curvature tensor, and

Zab ≡ Rab −
1

D
gabR; ð8Þ

is the traceless part of the Ricci tensor. Naturally, the
density with n ¼ 1 is the Einstein-Hilbert term, while the
quadratic density n ¼ 2 is the Gauss-Bonnet invariant

(expressed in an unconventional way). The densities with
n ≥ 3 no longer belong to the Lovelock class, and
furthermore, they are not unique (e.g., one can modify
the Lagrangian by adding terms that vanish on spherically
symmetric metrics). However, in order to analyze the
properties of these theories, and to extend them to higher
orders, we need a more refined way of identifying them.
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We address this next by studying the reduced two-
dimensional action of the Birkhoff gravities.

B. Effective two-dimensional action

Let us consider an ansatz for a general D-dimensional
spherically symmetric metric,

ds2 ¼ γμνdxμdxν þ φðxÞ2dΩ2
D−2; ð9Þ

where γμν is a two-dimensional metric (we will use Greek
indices to refer to components of this two-dimensional
Lorentzian submanifold), dΩ2

D−2 is the metric of the
(D − 2)-sphere, and φðxÞ plays the role of a covariant
radial coordinate. The evaluation of a higher-dimensional
gravitational action (24) on this ansatz yields a two-
dimensional “dilaton gravity” model for the metric γμν
and the scalar φ [93,94]. The key realization is the
following: if the higher-dimensional theory possesses
second-order equations for spherically symmetric metrics,
then its reduced action must be a two-dimensional
Horndeski theory, since Horndeski Lagrangians capture
the most general scalar-tensor theory with second-order
equations of motion [95]. Let us explicitly verify that this
phenomenon holds true for the five Birkhof QTs we
presented in (7).
To this aim, we first note that the D-dimensional Weyl

curvature tensor Wabcd, traceless Ricci curvature tensor
Zab, and the Ricci scalar RðDÞ (we momentarily include the
D superscript to distinguish it from the Ricci scalar of the
two-dimensional metric γμν, suppressing the D superscript
whenever no confusion may arise) on top of (9) take the
following form:

Wab
cd ¼ Ω

�ðD − 2ÞðD − 3Þ
2

γ½acγb�d þ σ½acσb�d

−ðD − 3Þγ½a½cσb�d�
�
; ð10Þ

Zab ¼ δμaδνbSμν þ Θσab; ð11Þ

RðDÞ ¼ R − ðD − 2Þ
�
2□φ

φ
− ðD − 3Þψ

�
; ð12Þ

where γab ¼ δμaδνbγμν, σab ¼ gab − γab, R is the Ricci scalar
of γμν, □φ is the Laplacian of φ associated with γμν, and

ψ ¼ 1 − X
φ2

; X ¼ ∇μφ∇μφ; ð13Þ

Ω ¼ 2ð2φ2ψ þ 2φ□φþ φ2RÞ
ðD − 1ÞðD − 2Þφ2

; ð14Þ

Θ ¼ 2ðD − 3Þφ2ψ þ ðD − 4Þφ□φ − φ2R
Dφ2

; ð15Þ

Sμν ¼ Ξγμν − ðD − 2Þ∇μ∇νφ

φ
;

Ξ ¼ ðD − 2Þ
D

�
R
2
þ 2□φ

φ
− ðD − 3Þψ

�
: ð16Þ

Note that Sμν is a symmetric two-dimensional tensor trans-
verse to the spherical sections and ∇μ is the covariant deri-
vative associated with γμν. The following properties hold:

γabγ
bc ¼ γa

c; γabσ
bc ¼ 0; σabσ

bc ¼ σa
c; ð17Þ

γa
a ¼ 2; Sμ

μ ¼ −σaaΘ; σa
a ¼ D − 2: ð18Þ

Using the decomposition given in (10), (11), and (12), we
conclude that all D-dimensional curvature invariants evalu-
ated on (9) will be entirely expressed in terms of Ω, Θ and
contractions of Sμν. However, we can specialize even more,
since the trace of Sμν is given in terms ofΘ and contractions
of more than two Sμν tensors will be related to products of
lower-order ones through the use of Schouten identities—
i.e., expressions derived from the antisymmetrizations of
more than two indices, which are identically zero for two-
dimensional tensors. Therefore, every D-dimensional cur-
vature invariant on top of (9) may be purely written in terms
of Ω, Θ and SμνSμν, which takes the form

SμνSμν ¼ 2Ξ2 −
2ðD − 2ÞΞ□φ

φ

þ ðD − 2Þ2∇μ∇νφ∇μ∇νφ

φ2
: ð19Þ

After these preliminaries, we are in position to write the
various D-dimensional curvature invariants forming the
five Birkhof -QTs in terms ofΩ,Θ, and SμνSμν. We already
did this with the D-dimensional Ricci scalar in (12), while
the explicit expressions for the remaining quadratic, cubic,
quartic, and quintic densities appearing in (7) are collected
in Appendix A. Using those results, the evaluation of the
five Birkhoff-QT densities Zn (7) on the metric (9) can be
dramatically simplified down to the following compact
expression:

Zð2dÞ
n ¼ þHðnÞ

2 ðφ; XÞ −□φHðnÞ
3 ðφ; XÞ

þHðnÞ
4 ðφ; XÞR

− 2HðnÞ
4;Xðφ; XÞ½ð□φÞ2 −∇μ∇νφ∇μ∇νφ�; ð20Þ

where

HðnÞ
2 ¼ ðD − 2nÞðD − 2n − 1Þψn;

HðnÞ
3 ¼ 2nðD − 2nÞφ−1ψn−1;

HðnÞ
4 ¼ nψn−1; ð21Þ
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where we used the short-hand notation Hp;X ≡ ∂XHp. For
arbitrary functionsHpðφ; XÞ, the expression (20) is nothing
but the general form of the Horndeski Lagrangian in two
dimensions. Thus, the reduced Birkhoff-QT densities yield
a particular family of Horndeski theories, given by the
functions (21) at each order n ¼ 1, 2, 3, 4, 5. One could
wonder if there are additional families of densities that

generate otherHðnÞ
p ðφ; XÞ functions different from (21). We

have found no evidence of this, as all the theories that we
found fit into the pattern (21). Therefore, even though one
can obtain multiple Birkhoff-QT densities at a given order,
all of them yield the same equations of motion for spheri-
cally symmetric metrics, and it is enough to just consider
one density at each order.
With the aid of the five densities ZðnÞ with n ¼ 1, 2, 3, 4,

5 presented in (7), it is possible to construct D-dimensional
higher-curvature theories of the Birkhoff-QT class at
arbitrary curvature order. This may be done by applying
the following argumentation:
(1) Extend the definition of the two-dimensional Horn-

deski theories (20) for arbitrary n ≥ 1. For n > 5, it
is not clear at this moment if it might correspond to
the dimensional reduction of a certain nth order
Birkhoff-QT theory on (9).

(2) Now, we observe that the two-dimensional Horn-
deski theories (20) for any n ≥ 1 satisfy the follow-
ing recursive relation:

Zð2dÞ
nþ5 ¼

3ðnþ 3ÞZð2dÞ
1 Zð2dÞ

nþ4

DðD − 1Þðnþ 1Þ −
3ðnþ 4ÞZð2dÞ

2 Zð2dÞ
nþ3

DðD − 1Þn

þ ðnþ 3Þðnþ 4ÞZð2dÞ
3 Zð2dÞ

nþ2

DðD − 1Þnðnþ 1Þ : ð22Þ

(3) Starting now from the five densities ZðmÞ with
m ¼ 1, 2, 3, 4, 5 obtained in (7), consider the
D-dimensional higher-curvature theory of order n
constructed inductively by formally substituting

Zð2dÞ
n in (22) by Zn:

Znþ5 ¼
3ðnþ 3ÞZ1Znþ4

DðD − 1Þðnþ 1Þ −
3ðnþ 4ÞZ2Znþ3

DðD − 1Þn

þ ðnþ 3Þðnþ 4ÞZ3Znþ2

DðD − 1Þnðnþ 1Þ : ð23Þ

Given the first five densities ZðmÞ with m ¼ 1, 2, 3,
4, 5, it is clear than one obtains definite, explicit, and
unique expressions for Zð6Þ, Zð7Þ…, arriving at an
arbitrary curvature order n if desired. We have not
shown yet whether these latter theories are Birkhoff
-QTs.

(4) Note that the first five densities ZðnÞ presented in (7)
reduce to the Horndeski theory (20) on top of (9),
with the latter satisfying (22) for arbitrary curvature

order n. Therefore, those higher-curvature gravities
obtained from (23) at any curvature order n will
precisely boil down to (20) when evaluated on (9).
Consequently, they will have second-order equations
of motion for any configuration (9) and will belong
to the Birkhoff-QT class.

In sum, we conclude that:
(i) There exist Birkhoff-QT theories at any curvature

order n ≥ 1 and dimension D ≥ 5.
(ii) These may be found via (23).
(iii) Using (23), the subsequent theories take the form

(20) when evaluated on a spherically symmetric
ansatz (9).

Interestingly, the recursive formula (20) is identical to the
one found in Ref. [76] for ordinary QT gravities, but we
have found that if one uses Birkhoff-QT densities as a seed,
then the recursive formula also generates Birkhoff-QT
gravities.
Let us then consider the full Birkhoff-QT action with an

infinite number of terms,

S ¼ 1

16πGN

Z
dDx

ffiffiffiffiffi
jgj

p �
Rþ

X∞
n¼2

αnZn

�
; ð24Þ

where we have set α1 ¼ 1 so that the (D-dimensional)
Einstein-Hilbert term is canonically normalized. By the
previous argumentation, the reduction of this action on the
ansatz (9) yields the following two-dimensional theory,

S2d ¼
ðD − 2ÞΩD−2

16πGN

Z
d2x

ffiffiffiffiffi
jγj

p
L2dðγμν;φÞ; ð25Þ

where ΩðD−2Þ ¼ 2πðD−1Þ=2=Γ½D−1
2
� is the volume of the

(D − 2)-sphere,

L2d ¼ G2ðφ; XÞ −□φG3ðφ; XÞ þ G4ðφ; XÞR
− 2G4;Xðφ; XÞ½ð□φÞ2 −∇μ∇νφ∇μ∇νφ�; ð26Þ

and the Gp functions read

Gpðφ; XÞ ¼
1

D − 2
φD−2

X∞
n¼1

αnH
ðnÞ
p : ð27Þ

It is useful to rewrite these functions in terms of the
following “characteristic polynomial” hðψÞ,

hðψÞ≡ ψ þ
X∞
n¼2

αn
D − 2n
D − 2

ψn; ð28Þ

which encapsulates many features of QT gravity solutions,
as we shall see. In terms of this function, we obtain the
expressions
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G2ðφ; XÞ ¼ φD−2½ðD − 1ÞhðψÞ − 2ψh0ðψÞ�; ð29Þ

G3ðφ; XÞ ¼ 2φD−3h0ðψÞ; ð30Þ

G4ðφ; XÞ ¼ −
1

2
φD−2ψ ðD−2Þ=2

Z
dψψ−D=2h0ðψÞ; ð31Þ

where h0ðψÞ≡ dhðψÞ=dψ , and one should plug in the
value of ψ (13) once the derivatives and integral have been
computed. In particular, in (31), one should choose the
primitive ensuring that G4 matches precisely the definition
in (27). In another vein, a crucial aspect of these three
functions is that, since all of them are determined by hðψÞ,
they are not independent and satisfy several relations. In
fact, we get

G4;φ ¼ 1

2
G3; G2;X ¼ −

1

2
G3;φ: ð32Þ

These identities will be relevant for the simplification of the
boundary stress tensor that we study in Sec. IV.

C. Equations of motion: Birkhoff theorem
and black holes

With the explicit form of the two-dimensional action (25)
at hand, we can now compute the equations of motion of
the Birkhoff-QT theories. The full equations of motion inD
dimensions can be written as

Eab ¼ 8πGNTab; ð33Þ

where

Eab ¼
16πGNffiffiffiffiffijgjp δS

δgab
ð34Þ

is the generalized Einstein tensor and Tab is the stress
energy tensor associated to matter

Tab ¼ −
2ffiffiffiffiffijgjp δSmatter

δgab
: ð35Þ

The components of the equations of motion Eab for
spherically symmetric metrics (9) can be obtained from
the variation of (25) with respect to γμν and φ. By applying
the chain rule of the functional derivative, we have

Eμν ¼
16πGN

ΩD−2φ
D−2

ffiffiffiffiffijγjp δS2d
δγμν

; ð36Þ

Eij ¼ −
gij16πGN

2ðD − 2ÞΩD−2φ
D−3

ffiffiffiffiffijγjp δS2d
δφ

; ð37Þ

where i and j are the angular components and μ and ν are
the two-dimensional components. The explicit result from

the variation of (25) reads

Eμν ¼
D − 2

φD−2

�
G3gμ½ν∇β�∂βφ −

G2

2
gμν

�
; ð38Þ

Eij ¼
1

2φD−3

�
□φG3;φ −G2;φ −

G3

2
R

− 2∇½a∂bφ∇b�∂aφG3;X

�
gij: ð39Þ

Observe that the angular components (equivalently, the
equation for the scalar φ) are pure gauge, as they are rela-
ted to the μν components through the following Bianchi
identity2:

∇μðφD−2EμνÞ ¼ φD−3
∂νφgijEij: ð40Þ

Now, in order to make further progress, we can fix a
particular gauge for the two dimensional metric γμν.
Without loss of generality, we can put it into the form

ds2γ ¼ −Nðt; rÞ2fðt; rÞdt2 þ dr2

fðt; rÞ ; ð41Þ

while we can also fix φ ¼ r, which sets X ¼ fðt; rÞ. In this
case, the two-dimensional (time and radial) components of
the generalized Einstein tensor read

Ett ¼
ðD − 2ÞN2f

2rD−2
∂

∂r
½rD−1hðψÞ�; ð42Þ

Etr ¼
ðD − 2Þr∂tψ

2f
h0ðψÞ; ð43Þ

Err ¼
ðD − 2Þ∂rN

rN
h0ðψÞ − 1

N2f2
Ett; ð44Þ

where

ψ ¼ 1 − fðt; rÞ
r2

: ð45Þ

On the other hand, the angular components Eij can be
derived from the Bianchi identity (40). As we anticipated,
these equations are of second order, and the differences
with respect to GR are encapsulated in the function hðψÞ.
In the presence of a stress-energy tensor Tab, the

dynamics of the system is driven by the equations

∂

∂r
½rD−1hðψÞ� ¼ 16πGN

ðD − 2ÞN2f
rD−2Ttt; ð46Þ

2We recall that∇μ denotes the covariant derivative with respect
to γμν.
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∂tf
rf

¼ −
16πGN

ðD − 2Þh0ðψÞTtr; ð47Þ

∂rN
rN

¼ 8πGN

ðD − 2Þh0ðψÞ
�
Trr þ

1

N2f2
Ttt

�
; ð48Þ

together with the conservation equation ∇aTab ¼ 0. These
equations capture the full dynamical evolution of arbitrary
spherically symmetric matter for infinite towers of Birkhoff
gravities (or for finite subsets of those).

1. Vacuum solutions

In vacuum, Tab ¼ 0, and the equations above reduce to

∂tf ¼ 0; ∂rN ¼ 0;
∂

∂r
½rD−1hðψÞ� ¼ 0: ð49Þ

Hence, f ¼ fðrÞ and N ¼ NðtÞ, which can be reabsorbed
in a redefinition of the time coordinate NðtÞ2dt2 → dt2. We
thus conclude that the most general spherically symmetric
solution of (24) is in fact static and fully determined by a
single function fðrÞ,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
D−2: ð50Þ

The last equation in (49) is integrated trivially and reduces
to an algebraic equation for fðrÞ,

hðψÞ ¼ 2M
rD−1 ; ð51Þ

where M is an integration constant which is related to the
Arnowitt–Deser–Misner (ADM) mass of the solution, M,
through

M≡ 8πGM
ðD − 2ÞΩðD−2Þ

: ð52Þ

This proves that our theories satisfy a Birkhoff theorem,
extending previous results in the literature [71,75,92]. Next,
we study in detail the properties of the solutions.

III. REGULAR BLACK HOLES

The solutions of (51) are deformations of the
Schwarzschild solution (which is recovered when
αn ¼ 0 ∀ n ≥ 2), and as shown by Ref. [70], they are
singularity free for very broad choices of the αn couplings.

3

The weakening of the singularity is generic even if the
series is truncated at some n ¼ nmax, in which case one gets

fðrÞ ¼ 1 −
�
2M
αnmax

�
1=nmax

r2−ðD−1Þ=nmax þ � � � ; ð53Þ

near r ¼ 0. When an infinite tower of corrections is
included, the singularity is completely removed as long
as the function hðψÞ has an inverse for ψ > 0 and the series
that defines it, Eq. (28), has a finite radius of convergence.
These conditions are met for very general choices of the αn
couplings and for instance αnðD − 2nÞ ≥ 0 ∀ n and
limn→∞jαnj1n ¼ C > 0 are sufficient conditions.
Regularity of the solution implies that, in the presence of

an event horizon, it either features additional horizons or
corresponds to an extremal horizon [i.e., the subsequent
zero of fðrÞ would be, at least, of multiplicity 2]. This can
be argued as follows. If one assumes fðrÞ is regular and
analytic near r ¼ 0, so that fðrÞ ¼ aþ brþ cr2 þOðr3Þ
for certain constants a, b, c, then the Ricci scalar RðDÞ of
(50) takes the following form:

RðDÞ ¼ −
ða − 1ÞðD − 2ÞðD − 3Þ

r2
−
bðD − 1ÞðD − 2Þ

r
− cDðD − 1Þ þOðrÞ: ð54Þ

Therefore, regularity requires that a ¼ 1 and b ¼ 0, pro-
ducing a (anti-)de Sitter core. Since asymptotic flatness
requires limr→þ∞ fðrÞ ¼ 1, the condition limr→0 fðrÞ ¼ 1
implies that if fðrÞ has a zero in the interval r∈ ð0;þ∞Þ,
then there are only two possibilities: either it has at least
another zero or such a root is not of single multiplicity.
Consequently, the regular black holes under consideration
cannot have a single horizon of single multiplicity.
We will consider some illustrative examples in order to

discuss explicit results. The easiest possibility is to consider
a set of couplings given by

αðIÞn ¼ ðD − 2Þ
ðD − 2nÞ α

n; hIðψÞ ¼
ψ

1 − αψ
; ð55Þ

with α > 0, so that one gets the solution

fIðrÞ ¼ 1 −
2Mr2

rD−1 þ 2Mα
: ð56Þ

This is nothing but theD-dimensional Hayward black hole,
originally introduced in Ref. [7] as a simple model of a
regular black hole metric, but in our case, it appears as the
unique spherically symmetric vacuum solution of a certain
pure gravity theory with an infinite tower of higher-
derivative corrections.
Observe that this example only works in odd D. This is

because for even D the coupling with n ¼ D=2 cannot be
chosen as in (55). In fact, the term of order n ¼ D=2 does
not contribute to the series of hðψÞ in (28), and therefore
one cannot achieve a summation of the form hI. This is just
a technical nuance preventing us from finding certain

3Depending on the values of the couplings, the solutions of
(24) may also describe black holes with one or multiple horizons
featuring curvature singularities at r ¼ 0 or finite-volume singu-
larities—see also Refs. [96–98].
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simple summations of hðψÞ in even dimensions, but it does
not affect our conclusions. We further discuss this point in
Appendix B.
Interestingly, the above theory (55) can be extended to a

broader family of theories given by a resummed character-
istic polynomial

hNðψÞ ¼
ψ

ð1 − αNψNÞ1=N ; ð57Þ

with N ¼ 1; 2; 3… The values of the αðNÞn s can be easily
obtained in each case by Taylor-expanding hNðψÞ. The
metric function reads

fNðrÞ ¼ 1 −
2Mr2

½rNðD−1Þ þ ð2MαÞN�1=N : ð58Þ

For odd D, this provides an infinite family of theories and
their corresponding regular black hole solutions for general
values of N∈Zþ, including the Hayward case for N ¼ 1.
Whenever N is even, Eq. (57) is always a valid theory also
for D ¼ 4ðkþ 1Þ ¼ 8; 12; 16;…, as in that case the prob-
lematic n ¼ D=2 power is an even number, whereas only
odd powers of ψ appear in hNðψÞ. A simple interesting case
belonging to this subclass was previously reported in
Ref. [70], and it corresponds to N ¼ 2, which yields a
Bardeen-like metric [4] (though it is not exactly the same).
On the other hand, whenever N is odd, both even and odd
powers appear in the expansion of hNðψÞ, so not all cases
exist for all D ¼ 4ðkþ 1Þ. A sufficient condition for the
existence of solutions in general even D—namely, which
also includes the cases D ¼ 2ð2kþ 1Þ ¼ 6; 10; 14;…—is
given by N ≥ D=2. Hence, the simplest case which yields
solutions valid in general even dimension is given by
N ¼ D=2,

fD=2ðrÞ ¼ 1 −
2Mr2

½rDðD−1Þ
2 þ ð2MαÞD2 �2=D

: ð59Þ

An additional choice of couplings valid also for odd D
and D ¼ 4ðkþ 1Þ is given by

αðtanhÞn ¼ ðD − 2Þ
ðD − 2nÞ

ðð−1Þðnþ1Þ þ 1Þ
2n

αn−1;

htanhðψÞ ¼
arctanh½ψα�

α
: ð60Þ

In this case, the solution is determined by

ftanhðrÞ ¼ 1 −
r2

α
tanh

�
2Mα

rD−1

�
: ð61Þ

For obvious reasons, we will refer to the theory defined by
(60) as the tanh model and to the theory defined by (61) as
the tanh black hole. An interesting feature of this model is

that the solution is C∞ smooth but nonanalytic at r ¼ 0, on
account of terms of the form e−3Mαr−Dþ1

.

A. Horizon structure

Taking the Hayward metric as the prototypical example,
let us examine the horizon structure of the solution. As
usual, horizons are located at the zeros of fðrÞ. There is a
critical value of the mass parameter which separates the
different classes of solutions,

MðIÞ
cr ≡ ðD − 1Þ

4

�
αðD − 1Þ
D − 3

�ðD−3Þ
2

: ð62Þ

When M > MðIÞ
cr , there exists an event horizon ðrþÞ and an

inner horizon (r−). When 0 < M < MðIÞ
cr , there are no

horizons. In this case, the solutions should be interpreted
as gravitational solitons—static, geodesically complete,

finite energy Lorentzian metrics. When M ¼ MðIÞ
cr , the

two horizons coincide, and the metric has a degenerate
Killing horizon. This critical spacetime is in some ways
analogous to an extremal black hole—it has vanishing
Hawking temperature and an AdS2 throat. However, in
other ways, this critical spacetime is different from more
familiar classical extremal black holes. First, these solu-
tions do not mark the boundary between clothed and
nakedly singular solutions. Second, there is no sense in
which these critical solutions could be “overcharged” or
“overspun,” as there are no conserved charges at all, besides
the mass, associated to them. Since the addition of positive
energy can never drive a Hayward black hole toward this
extremal, or critical, limit, it seems the only mechanism to
move toward the extremal limit would be via the quantum
mechanical process of Hawking radiation. Third, starting
below the black hole threshold, i.e., from one of the
Hayward solitons, it seems that there would be nothing
besides the pressure of matter to prevent one from forming
an “extremal” horizon simply from the pile-up of matter (as
opposed to a charged or rotating case, where Coulomb
repulsion or centrifugal forces would play an important role
in hindering construction of the initial matter configura-
tion). However, as we will return to in the discussion, there
are reasons to believe that quantum effects will become
important near the critical mass. It would be interesting to
understand how the third law of black hole mechanics
applies to these critical solutions, as it is not clear that it will
do so in the same way as in General Relativity.
The solution space of the Hayward metric, i.e., two-

horizon black holes, critical/extremal solutions, and sol-
itons is fully characteristic of all the models considered in
this work. The only difference between models is the
relationship between the critical mass parameter and the
coupling constant, which differs depending on the chosen
resummation—for example, for the case given by (57) with
general N, the critical mass parameter reads
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MðNÞ
cr ¼ ðD − 1Þ1

N

2
ðNþ1Þ

N

�
αNðD − 1Þ
D − 3

�ðD−3Þ
2N

: ð63Þ

However, inclusion of matter or fine-tuning of parameters
can lead to even further possibilities, such as additional
inner horizons or, interestingly, inner-extremal regular
black holes [99].

B. Interplay with the limiting curvature hypothesis

Long ago, Markov argued that a universal upper limit on
the density of matter or the curvature of spacetime ought to
be a fundamental physical principle [100]. There have since
been many attempts to implement this limiting curvature
hypothesis, and it has also been discussed in the context of
regular black holes, e.g., Refs. [101,102]. For example, it
can be easily checked that the Hayward metric in any
dimension has its curvature bounded from above by

RabcdRabcd ≤
2DðD − 1Þ

α2
; ð64Þ

which is saturated as r → 0. This bound is independent of
the mass of the solution and is completely fixed once the
theory is specified via a value of α. On the other hand, not
all regular black holes have such a fixed upper bound. In
some cases, for example, with the Bardeen metric,4 the

maximal curvature is related to the mass of the solution and
hence can, in principle, grow without bound.
Does the limiting curvature hypothesis apply in our

construction? Clearly, it applies for certain resummations,
e.g., the one resulting in the Hayward black hole.
Furthermore, what can easily be proven is that the curvature
at the core of the regular black holes is always solution
independent and universal. To see this, recall that for cou-
plings αnðD − 2nÞ ≥ 0 satisfying limn→∞jαnj1n ¼ C > 0,
ψ0 ¼ C will correspond to the radius of convergence of
the series defining hðψÞ. Due to the positivity of the
coefficients, this means that hðψÞ will diverge at
ψ ¼ ψ0. Therefore, as r → 0, we will have ψ → ψ0,
indicating that the metric function behaves as
f ∼ 1 − ψ0r2. Thus, the curvature at the core of the regular
black hole will always have the limiting value

RabcdRabcd ¼ 2DðD − 1Þψ2
0: ð65Þ

Since ψ0 is simply the point where hðψÞ diverges, it is a
quantity that is specified purely by the theory and is
universal in this sense—see Sec. V B 4.
Of course, the above argument does not prove that the

curvature satisfies a universal upper bound everywhere in
spacetime, as there could be intermediate regions of strong
(but finite) curvature. Assessing this is a much more
involved problem. We have studied it on a case-by-case
basis for the resummations presented in Ref. [70], along
with the tanh black hole constructed in this work. In each of
these cases, we observe that there is a universal, solution-
independent upper bound on the curvature, though it does
not always coincide with the value of the curvature at
r ¼ 0. One such example where this occurs is the solution
(58) introduced above. We illustrate this example with
N ¼ 2, along with the Hayward one for comparison, in

FIG. 1. Left: a plot of the Kretschmann scalar K ≡ RabcdRabcd for the five-dimensional Hayward solution normalized its maximum
value Kmax ¼ 40=α2. The curves correspond toM ¼ 0.1Mcr (red),M ¼ Mcr (blue), andM ¼ 10Mcr (green). The plot illustrates a feature
that holds for all masses and in all dimensions: There exists a maximum, solution-independent curvature that is achieved as r → 0.
Right: a plot of the Kretschmann scalar for the five-dimensional model (57) with N ¼ 2. The curves correspond to M ¼ 0.1Mcr (red),
M ¼ Mcr (blue), andM ¼ 10Mcr (green). Here, we illustrate that there is again a universal, solution-independent bound on the curvature
Kmax ≈ 46.0422=α2. However, in this case, the bound is reached at intermediate values of r.

4Recall that the Bardeen metric function is [4]

fðrÞ ¼ 1 −
2Mr2

ðr2 þ l2
0Þ3=2

:

This geometry is not among those we have obtained as solutions
of resummed quasitopological theories.
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Fig. 1, both in five dimensions. Here, we show the
Kretschmann scalar as a function of radius for regular
solutions of different masses (indicated by the different
coloured curves). In the case of the solution (58) with
N ¼ 2 (the so-called Bardeen-like solution), we see that
there is a solution-independent, universal upper bound on
the curvature RabcdRabcd ≈ 46.0422=α2. However, in con-
trast to the Hayward black hole, this universal upper bound
is achieved away from r ¼ 0.
Proving the existence of an upper bound in general, or

establishing necessary and sufficient conditions on the
resummations, would be a challenging but interesting
problem—see Ref. [103] for related considerations.

IV. BOUNDARY TERMS AND JUNCTION
CONDITIONS

Assume we consider our theory (24) on aD-dimensional
manifold M with a certain domain wall Σ that splits the
spacetime into two manifolds Mþ and M−. The hyper-
surface Σ has a certain surface stress-energy tensor SAB, and
we wish to solve the modified Einstein equations in the
presence of this discontinuous matter distribution. The best
way to achieve this is through generalized Israel junction
conditions, that we derive next.
The first junction condition takes the same form as in

GR, and it simply states that the induced metric, hAB, is
continuous across the hypersurface,

hþAB ¼ h−AB; ð66Þ

where hþAB and h−AB represent the induced metric computed
at each side of the boundary (we use capital Latin indices to
refer to boundary indices).
The second junction condition does depend on the

modified Einstein’s equations, and the best way to write
it down is through the analysis of the boundary terms in the
variation of the action. To this end, we would need to
supplement the action (24) with a generalized York-
Gibbons-Hawking boundary term,

Stotal ¼ Sþ Sboundary; ð67Þ

that makes the variational problem well posed. The total
variation of this action then would read

δStotal ¼ 1

16πGN

Z
dDx

ffiffiffiffiffi
jgj

p
Eabδgab

þ 1

16πGN

Z
Σ
dD−1x

ffiffiffiffiffiffi
jhj

p
ΠABδhAB; ð68Þ

where Eab are the equations of motion as defined in (34)
and ΠAB represents the boundary equations of motion,
which we can also write as

ΠAB ¼ 16πGNffiffiffiffiffiffijhjp δStotal

δhAB
: ð69Þ

The second junction condition is written in terms of this
tensor; it states that the discontinuity of ΠAB is given by the
surface stress-energy tensor [104–107],

Π−
AB − Πþ

AB ¼ 8πGNSAB: ð70Þ

Now, the main difficulty lies in finding the boundary terms
in (67), since the variational problem in higher-derivative
theories has many issues. However, if the spacetime is
spherically symmetric, we can use the two-dimensional
action (25), which allows for a well-posed variational
problem since it is a Horndeski theory and has second-
order equations of motion.
Take a unit normal vector na to Σwhich is normalized as

nana ¼ ϵ ¼ �1. If Σ is spherically symmetric, we can
parametrize it by

hABdxAdxB ¼ hττdτ2 þ φðτÞ2dΩ2
D−2: ð71Þ

From the point of view of the two-dimensional metric γμν
[see Eq. (9)], Σ is just a curve with induced metric
ds2h ¼ hττdτ2. We can always go to a gauge in which
hττ ¼ −ϵ ¼ ∓1, so that τ represents the proper time/length
of the curve, but we will keep hττ general for now, since we
need to analyze the variational problem.
The action (25) contains second-derivative terms, and its

variation will produce terms including the variation of the
normal derivatives of φ and of the induced metric on the
curve delimiting the domain wall. As a consequence, it is
necessary to include boundary terms to fix this aspect. The
boundary terms for general Horndeski gravity were ana-
lyzed by Ref. [107], so we refer to that work for details
about the computation. We have independently computed
the boundary terms for the case of the two-dimensional
Horndesky theory (26), finding perfect agreement. The
total action with boundary terms reads

Stotal2d ¼ S2d þ
ðD − 2ÞΩD−2

16πGN
B; ð72Þ

B ¼
Z
Σ
dτ

ffiffiffiffiffiffiffiffiffi
jhττj

p
½F3 þ 2G4K þ 4□hφF4;Y �; ð73Þ

where φn ¼ nμ∂μφ, K ¼ ∇μnμ is the extrinsic curvature of
the curve Σ, □hφ is the Laplacian on Σ, and

Fl ¼
Z

φn

0

Glðφ; Y þ ϵz2Þdz; Y ¼ hττφ̇2; ð74Þ

where l ¼ 3, 4, φ̇ ¼ dφ=dτ, and hττ ¼ 1=hττ.
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The variation of this action takes the schematic form

δStotal2d ¼
Z

d2x

�
δS2d
δγμν

δγμν þ δS2d
δφ

δφ

�

þ
Z
Σ
dτ

ffiffiffiffiffiffiffiffiffi
jhττj

p
½Jττδhττ þ Jφδφ�; ð75Þ

and comparison with (68) leads, on the one hand, to the
relationships (36) and (37) and, on the other, to the
identification of the components of the (D − 1)-dimen-
sional boundary tensor ΠAB,

Πττ ¼
16πGN

ΩD−2φ
D−2 Jττ; ð76Þ

Πij ¼ −
gij16πGN

2ðD − 2ÞΩD−2φ
D−3 Jφ: ð77Þ

The variation of the two-dimensional action (72) and the
extraction of Jττ and Jφ is quite tedious, so we present here
the final result. We find

Πττ ¼
ðD − 2Þϵ
2φD−2 F3; ð78Þ

Πφ ≡ gijΠij ¼ −
ϵ

φD−3φ̇

d
dτ

ðφD−2ΠττÞ; ð79Þ

where we have imposed hττ ¼ −ϵ so that τ is the proper
time/length. These expressions match exactly those of
Ref. [107] when restricting to our particular choices of
functions G2, G3, and G4 in the two-dimensional theory
given by (72). We observe that all the relevant information
is encoded in Πττ. Using (29), this gets simplified to

Πττ ¼
ðD − 2Þϵ

φ

Z
φn

0

dzh0
�
1þ ϵφ̇2 − ϵz2

φ2

�
: ð80Þ

V. THIN-SHELL COLLAPSE

A. Shell equation

Let us consider a thin spherical shell of “dust” (that is,
presureless matter), with a surface stress-energy tensor
given by

SAB ¼ σuAuB; ð81Þ

where σ is the surface matter density and uA is the (D − 1)-
velocity field of the fluid defined on Σ. If we parametrize
the shell’s hypersurface by its proper time τ, then the
components of SAB are simply

Sττ ¼ σ; Sij ¼ 0: ð82Þ

The radius of the shell is denoted by RðτÞ. On account of
Birkhoff’s theorem, the interior region r < RðτÞ is flat
spacetime, while the exterior region r > RðτÞ must corre-
spond to the uniquemetric (50) for somevalue of themassM,

ds2− ¼ −dt2− þ dr2 þ r2dΩ2
D−2; ð83Þ

ds2þ ¼ −fðrÞdt2þ þ dr2

fðrÞ þ r2dΩ2
D−2; ð84Þ

where the time coordinates t� are in principle different in each
region. Our goal is to determine the evolution of the shell
radius RðτÞ. To this end, we make use of the junction
conditions. We parametrize the shell’s hypersurface in each
side by

ðt�; rÞ ¼ ðT�ðτÞ; RðτÞÞ ð85Þ

so that the induced metric reads

ds2Σ− ¼ −dτ2ðṪ2
− − Ṙ2Þ þ RðτÞ2dΩ2

D−2; ð86Þ

ds2Σþ ¼ −dτ2
�
fðRÞṪ2þ −

Ṙ2

fðRÞ
�
þ RðτÞ2dΩ2

D−2: ð87Þ

The first junction condition requires the continuity of the
induced metric, and furthermore, since τ is the proper time, it
must be equal to

ds2Σ− ¼ ds2Σþ ¼ −dτ2 þ RðτÞ2dΩ2
D−2: ð88Þ

Therefore, we get

Ṫ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ṙ2

p
≡ β−; ð89Þ

fðRÞṪþ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ þ Ṙ2

q
≡ βþ; ð90Þ

following the terminology of Poisson [108]. Let us note that,
while β− is always taken to be positive, the sign of βþ can
change in the black hole interior. The rule is that βþ starts
being positive in the exterior region, and the sign in front of
the square root in (90) must be flipped whenever we reach a
point with βþ ¼ 0.
Then we have to impose the second junction condition

(70). For the evaluation of Πττ in (94), we take into account
that the normal vector is spacelike ðϵ ¼ þ1Þ and given by

ðn−Þμ∂μ ¼ Ṙ∂t− þ Ṫ−∂r; ð91Þ

ðnþÞμ∂μ ¼
1

fðRÞ Ṙ∂tþ þ fðRÞṪþ∂r; ð92Þ

on each side of the shell. Then, using that φ ¼ r, we get

φ�
n ≡ ðn�Þμ∂μφ ¼ β�; ð93Þ
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where we also used (90) and (89). Therefore,

Π�
ττ ¼

ðD − 2Þ
R

Z
β�

0

dzh0
�
1þ Ṙ2 − z2

R2

�
; ð94Þ

and the junction conditions read

Π−
ττ − Πþ

ττ ¼ 8πGNσ; ð95Þ

d
dτ

½RD−2ðΠ−
ττ − Πþ

ττÞ� ¼ 0; ð96Þ

where in the second one, coming from the angular
components Π−

ij − Πþ
ij ¼ 0, we used (79). From the combi-

nation of (95) and (96), we immediately conclude that the
proper mass of the shell, m, is constant,

m≡ σRD−2ΩD−2 ¼ constant: ð97Þ

Using this result, we can write (95) as

m
RD−3 ¼

Z
β−

βþ
dzh0

�
1þ Ṙ2 − z2

R2

�
; ð98Þ

where, in analogy with (52), we have introduced the mass
parameter

m ¼ 8πGNm
ðD − 2ÞΩD−2

: ð99Þ

1. Theory-independent form of the shell equation

As we can see, the theory dependence is encoded in the
h0ðxÞ function that we need to integrate, and also implicilty
in fðRÞ that enters in βþ. We can massage (98) to make the
explicit dependence on hðxÞ disappear. To achieve this, we
perform a change of variables z ¼ zðrÞ defined by

h

�
1þ Ṙ2 − z2

R2

�
¼ 2M

rD−1 : ð100Þ

Differentiating both sides and dividing by −2z=R2, we have

dzh0
�
1þ Ṙ2 − z2

R2

�
¼ R2ðD − 1ÞM

zrD
dr: ð101Þ

On the other hand, since (100) is nothing but the equation
of fðrÞ (51), we conclude that z is given by

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ṙ2 −

R2

r2
½1 − fðrÞ�

r
: ð102Þ

Finally, in the case βþ > 0, the limits of integration are
mapped to z ¼ βþ ⇒ r ¼ R, z ¼ β− ⇒ r → ∞. There-
fore, we rewrite the shell equation (98) as

m
RD−1 ¼

Z
∞

R

drMðD − 1Þ
rD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ṙ2 − R2

r2 ½1 − fðrÞ�
q : ð103Þ

This equation is valid for any QT theory of the class
considered in (24), and remarkably it has a theory-
independent form, although of course fðrÞ must be the
solution of the corresponding theory.
In the case βþ ≤ 0, the result is slightly more complicated.

We get the same integrand, but the domain of integration
contains two intervals, corresponding to z > 0 and z < 0.
The point z ¼ 0 happens at a radius r0 given by

r0 ¼
�

2M

hð1þṘ2

R2 Þ

�
1=ðD−1Þ

; ð104Þ

and one can see that Eq. (98) becomes in this case

m
RD−1 ¼

Z
∞

R

drMðD − 1Þsignðr − r0Þ
rD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ṙ2 − R2

r2 ½1 − fðrÞ�
q : ð105Þ

Plugging the black hole metric function fðrÞ for the chosen
model either in (103) or (105) yields an integrodifferential
equation for RðτÞ. In general, we find that only one of the
equations admits for a real solution, and it corresponds to
(103) if βþ > 0 and (105) if βþ < 0, where the sign of βþ
must be flipped in the way we explained below (90). The
transition from one equation to another is, however, com-
pletely smooth, and it gives a smooth differential equation
for RðτÞ.

2. Shell equation as an energy integral

If, instead of (100), we do the change of variable

h

�
1þ Ṙ2 − z2

R2

�
¼ 2E

RD−1 ; ð106Þ

and we use E as a parameter, the integral (98) then takes the
form

m ¼
Z

M

0

dEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ṙ2 þ fðR;EÞ

p ; ð107Þ

where fðR;EÞ is the solution with mass parameter M ¼ E
and we are assuming βþ ≥ 0. Again, this formula looks
theory independent, but the theory dependence is encoded
in the form of fðR; EÞ.

B. Solution of the shell equation

The shell equation, expressed in any of its forms, (98),
(103), or (107), defines implicitly a differential equation for
RðτÞ, of the form FðR; ṘÞ ¼ 0. It is convenient to recast
this differential equation in the form

Ṙ2 þ VðRÞ ¼ M2

m2
− 1; ð108Þ
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where VðRÞ is an effective potential. The equation (98),
(103), or (107) then becomes an equation for the potential
VðRÞ. We have pulled out the factor M2

m2 − 1, which is
equivalent to an energy level, advancing that VðRÞ → 0
for R → ∞.

1. Einstein gravity

In the particular case of Einstein gravity, in which
hðψÞ ¼ ψ , the integral (98) is straightforward, and we get

m
RD−3 ¼ β− − βþ: ð109Þ

Solving this equation for Ṙ2 and further using that
fðrÞ ¼ 1 − 2M=rD−3, we obtain precisely (108) with

VðRÞ ¼ −
M

RðD−3Þ −
m2

4R2ðD−3Þ ; ð110Þ

which is a monotonously decreasing function of R as
one moves toward R ¼ 0. Starting at any finite radius
Rð0Þ ¼ R0, the shell collapses, leaving behind a
Schwarzschild black hole and reaching R ¼ 0 after a finite
proper time. In particular, near R ¼ 0, the time evolution of
the shell isRðτÞ ∼ ðτ0 − τÞ1=ðD−2Þ, which cannot be extended
for τ > τ0, signaling the breakdown of GR.

2. Hayward black hole

As a first illustrative case, we consider the Hayward
black hole (56), which we found to be an exact solution of
odd-dimensional theories given by the choice of couplings
(55). We note that in odd dimensions this metric is not
only regular—in the sense of having finite curvature
everywhere—but completely smooth (C∞). This is impor-
tant in order to avoid some issues associated to nonsmooth-
ness at r ¼ 0 [109].
The integration in (98) can be carried out explicitly, and

we obtain the following equation:

m ¼ RD−1

2ðR2 − αβ2−Þ

0
B@β− −

�
1þ 2αM

RD−1

�
βþ

þ
R2 arctan

� ffiffi
α

p ðβ−−βþÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
R2−αβ2−

p
R2−αβ−ðβ−−βþÞ

�
ffiffiffi
α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − αβ2−

p
1
CA: ð111Þ

This is too complicated to be solved analytically, but we
can obtain information about it by solving it in different
regimes. Near infinity R → ∞, the corrections to GR are
small, and we can expand the solution in powers of α
(which is essentially equivalent to an expansion in
1=RD−3). We get in this case

VðRÞ ¼ −
M

RðD−3Þ −
m2

4R2ðD−3Þ

þ α

R2

�
4M2

3R2ðD−3Þ þ
Mm2

R3ðD−3Þ þ
m4

6R4ðD−3Þ

�

þOðα2Þ; ð112Þ
and we observe that in fact the corrections do not affect the
asymptotic value of VðRÞ.
It is most interesting to understand the behavior of the

solution for small R, where we expect the corrections to be
important. Remarkably, it is also possible to obtain an
analytic expression in such a regime for VðRÞ (which is in
practice equivalent to an expansion in 1=M), and we get
that the potential takes the form

VðRÞ ¼ −
R2

α
−
RDþ1 logðRD−1

2αMÞ
2α2M

þOðRDþ3Þ: ð113Þ

The expansion of VðRÞ features logarithmic terms but is
fully regular and vanishes at R ¼ 0.
The full shape of VðRÞ can be obtained by solving (111)

numerically, and we show it in Fig. 2 in the D ¼ 5 and
D ¼ 7 cases. From this plot, we can easily understand the
motion of a collapsing shell:
(1) If the shell starts at rest at some radiusR0, thenwe have

M < m, and themotion is bounded. IfR0 is larger than
the radius at which the potential reaches its minimum,
the shell will roll down the potential toward lower
values ofR, it will cross the minimum of the potential,
and then it will reach a turning pointRmin > 0 atwhich
Ṙ ¼ 0. Here, the shell bounces and starts to expand
again, reaching the starting point R0, where the
trajectory restarts in a cyclic way—see Fig. 3.

(2) If the shell starts from rest rest at infinity, then
M ¼ m, and from the point of view of (108), the
shell moves on a “zero-energy” trajectory. Thus, the
shell will move toward smaller radii, and it will
climb the potential up to R ¼ 0, which is only
reached in an infinite time. In fact, using (113),
we can see that the motion near R ¼ 0 is given by
RðτÞ ∼ e−τ=

ffiffi
α

p
. Thus, the shell would tend to stay at

R ¼ 0, but this is an unstable equilibrium, and any
small deviation will make the shell roll again from
the R ¼ 0 toward infinity.

(3) Finally, assume that M > m. In that case, the shell
starts collapsing with a negative radial velocity at
infinity, and it will reach R ¼ 0 with finite kinetic
energy so that the shell will cross R ¼ 0 in a smooth
way. Using again (113), one can see that the motion
of the shell is given by

RðτÞ ¼ jτ0 − τj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

m2
− 1

r �
1þ ðτ0 − τÞ2

6α
þ…

�
:

ð114Þ
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FIG. 3. We plot the shell radius as a function of the proper time for five-dimensional (upper row) and seven-dimensional (lower row)
theories. In each case, the blue curve corresponds to a quasitopological theory whose vacuum SS solution is a Hayward black hole with
metric function (56), and the gray one corresponds to a theory whose vacuum SS solution is given by a tanh black hole with metric
function (61). The Einstein gravity evolution—which ends at a singularity (marked with a red star) after finite proper time—is displayed
in red in all plots. The vertical lines represent the points at which the shells cross the black hole inner horizons from the inside, appearing
in a new universe. In all cases, we set M ¼ 1, m ¼ 1.05, and α ¼ 1=10.

FIG. 2. We plot the thin shell effective potential as defined in (108) in D ¼ 5 (left) and D ¼ 7 (right), respectively, for two
quasitopological theories whose vacuum SS solutions correspond to a Hayward black hole with metric function (56) (blue) and a tanh
black hole with metric function (61) (gray). The dashed lines correspond to the respective locations of the inner and outer horizons. The
Einstein gravity shell potential, given by (110), for which the exterior solution is a Schwarzschild black hole is shown in red. In all cases,
we set M ¼ 1, m ¼ 1.05, and α ¼ 1=10.
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Since the dust particles do not interact, they can naturally
cross each other, and the motion is smooth in the sense that
each particle follows a smooth trajectory, where after
crossing R ¼ 0 each point in the shell has to be identified
with its antipodal one. Interestingly, the logarithmic terms
in (113) introduce a small nonsmoothness at R ¼ 0, as the
trajectory is actually CD at that point. However, this is
acceptable as this is higher than the order of the equations
of motion.
We note that, depending on the total massM, the collapse

will give rise to a horizon, an extremal horizon, or no
horizon at all, but the motion of the shell is qualitatively the
same in all cases—obviously, the causal structure of the
spacetime is not, as we analyze below. It may come as a bit
of a surprise that gravitational collapse can produce an
extremal horizon. However, we note that precisely the same
thing happens with extremal charged shells in Einstein-
Maxwell theory [110]. If M is large enough to form a
horizon, it can be proven that the turning point always
occurs inside the inner horizon Rmin < r−.

3. Tanh black hole

Another interesting example in which to examine the
dynamical collapse of a spherical thin shell is provided by
the tanh model presented in (60). In this case, the
expression (98) can be fully integrated into

m ¼ RD−1

2
ffiffiffi
α

p

2
6664
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αR2−α2β2−

p
ðβ−−βþÞ

R2þαβ−ðβþ−β−Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − αβ2−

p

þ
arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αR2þα2β2−

p
ðβ−−βþÞ

R2þαβ−ðβ−−βþÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ αβ2−

p
3
7775: ð115Þ

Given the highly challenging differential equation for
RðτÞ posed by (115), we may only hope to obtain a
numerical profile for RðτÞ. Nevertheless, we may indeed
obtain an analytic expression for the potential VðRÞ near
infinity and for sufficiently small R. On the one hand,
asymptotically the potential VðRÞ takes the form

VðRÞ ¼ −
M

RðD−3Þ −
m2

4R2ðD−3Þ

þ α2

6R4

�
m6

10R6ðD−3Þ þ
m4M

R5ðD−3Þ þ
18m2M2

5R4ðD−3Þ

þ 4M3

R3ðD−3Þ

�
þOðα4Þ: ð116Þ

On the other hand, obtaining the potential for small R turns
out to be particularly difficult, as the function tanhðx−1Þ is

not analytic at x ¼ 0 [although limx→0þ tanhðx−1Þ ¼ 1 and
limx→0þ

d
dxk ½tanhðx−1Þ� ¼ 0 for all k > 0]. As a matter of

fact, one may derive the following behavior of VðRÞ near
R ¼ 0:

VðRÞ ¼ −
R2

α
þ logð2ÞRDþ1

2α2M
þOðRDþ3; e−4Mα=RD−1Þ: ð117Þ

Hence, we obtain the very same leading quadratic piece that
we found in the previous case, but the subleading terms are
naturally different, and they contain nonanalytic exponen-
tial terms. Interestingly, we find no evidence of logðRÞ
terms this time, which implies that VðRÞ is C∞. The motion
of a collapsing shell shares the same qualitative features as
in the Hayward black hole case (observe the graphs in
Fig. 3), so we refer to the previous subsection for a detailed
explanation of the dynamical collapse of the shell.

4. General considerations

As one could suspect, some of the qualitative properties
of the last two examples are generic and do not depend on
the particular theory and solution considered. The most
relevant observation is that the behavior of VðRÞ near
R ¼ 0 is universal. To prove this, we recall from our earlier
discussion around (65) that, in all theories with regular
black holes, the solution behaves as

fðrÞ ¼ 1 − ψ0r2 þ… ð118Þ

around r ¼ 0, where ψ0 is independent of the mass. Then, it
is most useful to consider the form (107) of the shell
equation. For a given value of M, if R is taken sufficiently
small, then (118) holds in most of the integration domain.
Since ψ0 is independent of the mass, the integral in (107)
can be carried out trivially, and we get

m ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ṙ2 þ 1 − ψ0R2

p þ…; ð119Þ

where the ellipsis denote subleading terms in the R → 0
limit. Therefore, we conclude that

VðRÞ ¼ −ψ0R2 þ… ð120Þ

This result is important because it implies that the reso-
lution of the singularity of thin-shell collapse is generic in
these theories. Furthermore, since the potential vanishes at
R ¼ 0 and at R → ∞, this implies that the potential must
necessarily have at least one minimum at some intermediate
value of R.5 We suspect that, for all regular black holes with

5Here, we are naturally assuming that the solution for the
potential exists for all values of R.
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two horizons, the potential has exactly one minimum and
therefore always has the shape of the potentials in Fig. 2. It
would be interesting to find examples with additional
minima, which would perhaps require additional horizons.
Finally, it can also be observed that, if the shell

experiences a bounce, Ṙ ¼ 0, this must always happen
in a “static region” with fðRÞ > 0. This follows from the
fact that the shell equation would become complex if Ṙ ¼ 0
and fðrÞ < 0; for instance, in (103), βþ would become
imaginary. In the case of the typical two-horizon regular
black holes, this implies that the shell always bounces in the
“de Sitter core” after crossing the inner horizon, and it
never bounces in the intermediate region r− < r < rþ.

VI. CAUSAL STRUCTURE

Let us now discuss the causal structure of the regular
spacetimes arising from the dynamical collapse of a thin
shell in the infinite tower of Birkhoff theories given by (24).
Such a casual structure will heavily depend on the number
of event horizons displayed by the solution. For the sake of
simplicity, we will restrict to those theories for which fðrÞ
has at most two zeros in the regionþ∞ > r ≥ 0, as it is the
case for all regular black holes considered in the manu-
script. Within this set of theories, we will keep our
discussion as theory independent as possible, describing
the main generic qualitative features of the causal structure
of the subsequent regular spacetimes. Depending on the
value of the mass of the solution, one may have nonex-
tremal black holes, showcasing outer and inner horizons;
extremal solutions, in which these horizons merge; or
solitonic configurations. This latter case is somewhat
trivial, as the causal structure would be equivalent to that
of Minkowski spacetime. Let us then focus on the causal
structure of nonextremal and extremal regular black holes
arising from the collapse of a spherical thin shell.

A. Nonextremal black holes

Let us consider the collapse of a thin shell into a
nonextremal black hole with outer horizon at r ¼ rþ and
inner horizon at r ¼ r−. To this aim, we may think of a
sufficiently advanced civilization that compiles enough
matter into a spherical thin shell, which is freely set to
collapse at some moment. Let R0 be the initial position of
the shell. By gravitational collapse, the shell will shrink
into smaller values of r, crossing at some point r ¼ rþ and
forming the outer horizon. As the coordinates used in (50)
are singular at rþ, one would need to resort to Kruskal-
Szekeres–like coordinates to describe the region around
r ¼ rþ. Nevertheless, differently from the situation with an
eternal (regular) black hole, the introduction of these
coordinates does not provide an extension of the original
spacetime, since prior to the formation of the thin shell
there was no black hole. However, the situation changes
dramatically as the shell crosses r ¼ r−. From that moment
on, the inner horizon is formed, and one would need to use

a different set of Kruskal-Szekeres–like coordinates to
patch a neighborhood of r ¼ r−. This new set of coor-
dinates does allow one to extend the original spacetime,
obtaining a new region which is causally disconnected from
the interior of the thin shell and contains an r ¼ 0 hyper-
surface (see region III’ in Fig. 4, left). Although the interior
of the shell is Minkowski spacetime, the new region III’
corresponds to the interior of the inner horizon, with no
singularity whatsoever—as particles hit r ¼ 0 there, one
can always continue worldlines through antipodal identi-
fication. In particular, the inner horizon is no longer a
Cauchy horizon. Afterward, the shell reaches a minimum
radius Rmin, concludes its collapse, and initiates a bounce
toward the recovery of its initial size. Specifically, it crosses
the other r ¼ r− hypersurface created through the Kruskal-
Szekeres extension and approaches a new r ¼ rþ horizon
in the region II’ (cf. Fig. 4, left). This corresponds to a white
hole horizon, and the shell emerges into a new universe.
The shell will continue its growth up to r ¼ R0, from
which the collapse and bounce of the shell is replicated
ad infinitum, leaving behind myriads of new universes.

B. Extremal black holes

Let us now assume that the mass of the spherical thin
shell is tuned to produce an extremal black hole, in which

FIG. 4. Penrose diagrams associated with the dynamical
collapse of a spherical thin shell in theories of the form (24)
whose spherically symmetric black holes display two event
horizons. Left: nonextremal black hole. Right: extremal black
hole. In both cases, matter is assumed to exist from past infinity
and congregated into a spherical shell at some point, from which
the shell initiates its collase. R0 stands for the initial radius of the
shell (corresponding to its maximum size), while Rmin stands for
the minimum radius, at which the shell initiates its bounce.
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the outer and inner horizons merge into a single one, say, at
r ¼ rh. If the shell starts its collapse from rest at r ¼ R0, it
will shrink and eventually approach and trespass r ¼ rh,
giving rise to an extremal black hole. Afterward, the shell
will acquire its minimum size and begin its bounce back
towards the initial radius. By extending the original
spacetime with the aid of the Kruskal-Szekeres coordinates,
the shell will approach a new r ¼ rh hypersurface that
corresponds to a while hole horizon. The shell will come
out in a new universe, in which it will reattain its maximum
size at r ¼ R0. The collapse is then restarted, and the shell
will undergo through an infinite sequence of collapses and
bounces into new universes. This situation is depicted in the
Penrose diagram shown in Fig. 4 (right).

VII. DISCUSSION

Exactly how—or even if—the singularities of General
Relativity are resolved in Nature remains a fundamental
problem without a clear answer. It could be the case, for
example, that singularity resolution is truly “quantum,”
occurring at a stage when a classical metric description is
no longer valid. On the other hand, it could be the case that
singularity resolution occurs when classical metrics and
fields are still sensible concepts, at least approximately. In
the absence of the ability to experimentally probe these
questions, if either—or another—perspective is to be taken
seriously, it becomes crucially important to construct
explicit examples that demonstrate the physics at hand.
It is this latter perspective to which our results apply.
We have shown that the Schwarzschild singularity is

generically resolved, without any fine-tuning when one
incorporates into the action an infinite tower of higher
curvature corrections, corrections general enough that they
provide a basis for gravitational effective field theory in
vacuum. More than this, we have demonstrated that the
resulting black holes are the unique black hole solutions of
the corresponding theories, owing to a Birkhoff theorem.
Most notably, we have shown these regular black holes are
precisely those objects that are formed when matter collap-
ses. This is the first example, to the best of our knowledge, of
amodel of such generality to appear in the literature, and as a
consequence of well-motived purely gravitational theories.
Altogether, this lends credibility to the second option for
singularity resolution mentioned above.
The model and tools developed here offer considerable

opportunity for further developments. A natural extension
of this work would be to relax the assumption of a shell of
dust, allowing for shells of matter with pressure. A further
extension would be to consider the problem of multiple
shells. Even in General Relativity, this simple extension of
a one-body to two-body problem presents rich dynamics,
including eternally oscillating shells or black hole forma-
tion exhibiting critical phenomena [111]. It would be
interesting to understand the implications of higher curva-
ture corrections and singularity resolution on these results.

An important problem would be to assess the stability of
these regular black holes from the higher-dimensional
perspective. This is very challenging for several reasons.
One must consider the entire tower of higher-curvature
corrections, as truncating the model at any finite order in
curvature may introduce spurious instabilities. This is made
more subtle due to the degeneracy properties of quasitopo-
logical theories. As we explained earlier, at each order in
curvature, there can exist several distinct densities that give
rise to the same equations of motion in spherical symmetry.
This degeneracy is due to the existence of curvature
invariants that vanish identically in spherical symmetry.
Hence, adding to a given quasitopological theory one of
these “spherical-trivial” invariants results in a different
covariant action but does not alter the equations of motion
in spherical symmetry, dimensional reduction on the sphere,
or regular black hole solutions. However, these terms will
contribute to the perturbations outside of the spherical
sector. A thorough analysis would therefore require a
complete classification of spherical-trivial densities, which
would be an interesting mathematical problem.
Another chief aspect concerns inner horizons in regular

black hole solutions. As is well known in the case of
General Relativity, infalling matter is blueshifted to enor-
mous energy densities at inner (Cauchy) horizons, the
backreaction of which is expected to result in singularities
(thereby enforcing strong cosmic censorship). Blueshift
instabilities have a kinematical origin, but how the geom-
etry reacts to the buildup of energy is fundamentally a
dynamical question. It is therefore not obvious that the
same mass inflation phenomena that backreact in a singular
fashion in General Relativity will do so also in a theory
capable of resolving curvature singularities. Our model can
be used to assess this dynamical question, insofar as it can
be addressed in a spherically symmetric setting. In this
regard, it has been recently shown [99] that regular black
holes in this construction can be inner extremal. This
means that the inner horizon has vanishing surface gravity,
even if the event horizon does not. Inner-extremal regular
black holes have drawn some attention because they avoid
the classical mass inflation instabilities associated with the
inner horizon [12]. While not fully generic in the space of
solutions, these examples are expected to be the best
behaved in terms of the classical stability of the interior.
Of course, if the black hole forms dynamically and
ultimately evaporates quantum mechanically, the inner
horizon may not be as problematic as often thought.
A notable feature of all regular black holes is that they

admit critical, or extremal, limits when the inner and event
horizons coincide. These solutions bear many similarities
to familiar extremal black holes of General Relativity,
including having zero Hawking temperature, an AdS2
throat, and (apparently) finite entropy. It has been recently
understood that quantum gravitational fluctuations become
large for extremal black holes in General Relativity, driving
the entropy at extremality to zero in the absence of
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supersymmetry [112]. It is natural to expect that quantum
gravitational fluctuations will be important for these critical
black holes as well. Using the two-dimensional dilaton
gravity theory identified here, it would be possible to obtain
a Jackiw-Teitelboim–like limit and understand the impli-
cations of strong quantum fluctuations on these black holes.
These considerations would be especially relevant for
understanding the final stages of the Hawking evaporation
process for regular black holes, as Hawking radiation will
gradually drive a nonextremal solution toward the extremal
limit. It is known that, in these final moments, there can be
large bursts of radiation [113,114] which these strong
quantum gravitational fluctuations are perhaps sufficient
to tame.
We have observed in a case-by-case analysis that in each

of the resummations studied, there is a universal, solution-
independent upper bound on the Kretschmann scalar. This
observation is suggestive of Markov’s limiting curvature
hypothesis. It would be interesting to establish this con-
nection more rigorously, or to find counterexamples. There
are several possibilities for an exploration of this kind. For
example, one may consider the restriction to the two-
dimensional dilaton theory and attempt to prove a version
of the limiting curvature hypothesis in this setting. A more
ambitious goal would be to attempt to establish a similar
bound in the resummed higher-dimensional theory, consid-
ering, for example, geometries beyond spherical symmetry.
Our model requires very little in terms of constraints on

the coupling constants of the higher-curvature terms. Going
forward, it would be interesting to use physical consid-
erations to determine whether some resummations are more
viable than others. Along these lines, it is worth mentioning
that not all singularities in General Relativity are neces-
sarily bad. For example, Horowitz and Myers argued that
the resolution of the negative mass Schwarzschild singu-
larity could signal that the theory under consideration lacks
a well-defined ground state [115]. One could imagine
constraining the viable resummations by the requirement
that negative mass solutions remain singular. This is the
case for the resummation resulting in the Hayward black
hole, but certainly not the case for all possible choices.
It is simultaneously remarkable and puzzling that the

same, purely gravitational mechanism can resolve the
Schwarzschild singularity in all dimensions larger than
4. From a physical perspective, it is perhaps unexpected
that resolving singularities in higher dimensions is some-
how “easier” than resolving singularities in four

dimensions, as the gravitational potential becomes more
singular with increasing dimension. From a mathematical
perspective, the fact that our mechanism does not apply in
four dimensions is simply because quasitopological theo-
ries do not exist in four dimensions and there are no
theories that afford the same level of simplicity. It may be
that this is only a technical issue that can be overcome by
brute force calculation. But it is also conceivable that this is
hinting at a deeper complexity of the singularities in a four-
dimensional world.
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APPENDIX A: EVALUATION OF
HIGHER-CURVATURE INVARIANTS

ON A SS METRIC

In this appendix, we present the explicit expressions
resulting from the evaluation of all invariants appearing
in the quasitopological densities (7) on a general
D-dimensional spherically symmetric ansatz of the form
(9). We find

WabcdWabcd ¼ ðD − 1ÞðD − 2Þ2ðD − 3ÞΩ2

4
; ZabZab ¼ ðD − 2ÞΘ2 þ SμνSμν; ðA1aÞ

WabcdWcdefWef
ab ¼ ðD − 1ÞðD − 2ÞðD − 3ÞðD3 − 9D2 þ 26D − 22ÞΩ3

8
; ðA1bÞ
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WabcdWebcdZe
a ¼ −

ðD − 1Þ2ðD − 2ÞðD − 3ÞðD − 4ÞΘΩ2

8
; ðA1cÞ

WabcdZacZbd ¼ ðD − 2ÞðD − 3ÞððD2 − 2Dþ 2ÞΘ2 − SμνSμνÞΩ
4

; ðA1dÞ

ZacZcbZa
b ¼

ðD − 2ÞððD2 − 4Dþ 6ÞΘ2 − 3SμνSμνÞΘ
2

; ðA1eÞ

WacbdWcefgWd
efgZab ¼ −

DðD − 1Þ2ðD − 2ÞðD − 3Þ2ðD − 4ÞΘΩ3

32
; ðA1fÞ

WabcdWaecfZbdZef ¼
ðD − 2ÞðD − 3Þ2ððD − 2Þð3DΘ2 þ SμνSμνÞ þ 4Θ2ÞΩ2

16
; ðA1gÞ

ZacZdeWbdceZa
b ¼ −

ðD − 2ÞðD − 3ÞðD − 4ÞððD2 − 2Dþ 2ÞΘ2 − SμνSμνÞΘΩ
8

; ðA1hÞ

Zb
aZc

bZ
d
cZa

d ¼ ðD − 2ÞΘ4 þ ðD − 2Þ4Θ4 þ 2ðD − 2Þ2Θ2SμνSμν þ ðSμνSμνÞ2Þ
2

; ðA1iÞ

Za
bZ

b
cWdaefWefghWgh

dc ¼ ðD3 − 6D2 þ 11D − 6ÞððD − 3Þ3SμνSμν − 2ðD − 5ÞΘ2ÞΩ3

16
; ðA1jÞ

WacdeWbcdeZa
bZ

d
cZc

d ¼ −
ðD − 2ÞðD − 3Þ2ððD4 − 4D3 þ 8D − 8ÞΘ3 − ðD2 − 4ÞΘSμνSμνÞΩ2

32
; ðA1kÞ

Zb
aZc

bZcdZefWeafd ¼ −
ðD − 2ÞðD − 3ÞððD − 4ÞΘ2 − SμνSμνÞððD2 − 2Dþ 2ÞΘ2 − SμνSμνÞΩ

8
; ðA1lÞ

Zb
aZc

bZ
d
cZe

dZ
a
e ¼

ðD − 2ÞΘðððD − 2Þ4 þ 4ÞΘ4 − 5ðSμνSμνÞ2Þ
4

: ðA1mÞ

where the relevant objects appearing in the right-hand side
of the equations are defined in Sec. II B.

APPENDIX B: REGULAR BLACK HOLES IN
EVEN DIMENSIONS

As explained in the main text, Birkhoff-QT gravities
admit SSS black hole solutions characterized by a single
function,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
ðD−2Þ; ðB1Þ

where the metric fðrÞ is determined by the algebraic
equation

hðψÞ ¼ 2M
rD−1 ; where hðψÞ≡ ψ þ

X∞
n¼2

αn
ðD − 2nÞ
ðD − 2Þ ψn;

ψ ≡ 1 − fðrÞ
r2

: ðB2Þ

Convenient choices of αn satisfying the generic properties
explained above yield simple analytic expressions for fðrÞ
[70]. However, a subtlety arises when D is even. In that
case, there exists a curvature order, corresponding to
n ¼ D=2, for which QT gravities make no contribu-
tion to the characteristic polynomial hðψÞ [76]. In other
words—and analogously to Lovelock theories—QT
gravities of order n ¼ D=2 make no contribution to the
equation of fðrÞ. While this does not affect the behavior
near r ¼ 0 and therefore all the conclusions obtained in
Ref. [70] regarding singularity resolution as well as
analyticity properties of the different solutions remain
valid, the functional form of fðrÞ does get modified.
Consider for instance the case of a Hayward black hole.

This is achieved, for odd D, by choosing

αn ¼
ðD − 2Þ
ðD − 2nÞ α

n−1 ⇒ hðψÞ ¼
X∞
n¼1

αn−1ψn

¼ ψ

1 − αψ
⇒ fðrÞ ¼ 1 −

2Mr2

rD−1 þ 2Mα
ðoddDÞ: ðB3Þ
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On the other hand, the corresponding characteristic poly-
nomial in the even D case reads instead

hðψÞ ¼
XD=2−1

n¼1

αn−1ψn þ
X∞

n¼D=2þ1

αn−1ψn

¼ ψ

1 − αψ
− α

D−2
2 ψ

D
2 ; ðevenDÞ; ðB4Þ

namely, one needs to remove the n ¼ D=2 term from the
sum. As anticipated, this new form of hðψÞ does not allow
(B2) to be solved analytically for fðrÞ for general values of
D. In Fig. 5, we show the results obtained inD ¼ 6, 8 from
solving for fðrÞ the even-dimensional equation with the
actual characteristic polynomial given by (B4) and

how they compare with the extrapolation obtained from
the simpler odd-dimensional case of (B3). As expected,
the Hayward-like approximation is excellent both asymp-
totically and near r ¼ 0 but becomes worse in the inter-
mediate region, where the effects of the missing
n ¼ D=2 term are more relevant. In both cases, it is
possible to find the exact solutions analytically, but the
form of fðrÞ is way messier than the Hayward one.
Simpler explicit solutions can be found in even dimen-

sions by making appropriate choices of the couplings
which avoid the problematic n ¼ D=2 term. Examples
of this kind have been presented in the main text in (58)
and (60).
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