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We study dynamical gravitational collapse in a theory with an infinite tower of higher-derivative
corrections to the Einstein-Hilbert action and we show that, under very general conditions, it leads to the
formation of regular black holes. Our results are facilitated by the use of a class of theories that possess
second-order equations on spherically symmetric metrics, but which are general enough to provide a basis
for the gravitational effective action in any D ≥ 5. We analytically solve the collapse of a thin shell of dust
and show that it inevitably experiences a bounce at small radius and that its motion can be extended to
arbitrary proper time. The collapse of the shell always gives rise to a singularity-free, geodesically complete
spacetime that contains horizons if the total mass is above a critical value. In that case, the shell bounces
into a new universe through a white hole explosion. Our construction provides, to the best of our
knowledge, the first fully dynamical description of formation of regular black holes, and it suggests that
higher-derivative corrections may be the most natural way to resolve the singularities of Einstein’s theory.
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Introduction—According to general relativity (GR), the
gravitational collapse of ordinary matter leads to the
formation of black holes which hide spacetime singularities
in their interiors [1,2]. Finding a mechanism for the
resolution of such singularities is one of the most prominent
open problems in fundamental physics.
One approach entails considering ad hoc modifications

of known black hole solutions whose singular interiors are
thereby replaced by regular cores [3–18]. While modifying
by hand a singular metric in order to make it regular is
usually a straightforward exercise, finding regular black
holes as solutions to actual gravitational theories is a
significantly greater challenge. For instance, there has been
progress in embedding regular black holes as solutions of
GR minimally coupled to exotic matter [19–36], but this
approach is not satisfying as these theories also contain
singular solutions—in fact, these theories contain all the
vacuum solutions of GR [37].

Aproper resolution of singularitiesmust therefore involve
a modification of gravitational dynamics. This aligns with
the idea that GR is not a complete theory and that it must be
modified in large curvature regimes. In particular, it is
expected that these modifications take the form of higher-
curvature corrections to the Einstein-Hilbert action—
see, e.g., [55–58]. In this context, it was first shown
that the singularities of charged black holes can be resolved
by higher-derivative terms with nonminimal couplings
[59–61], but this requires having a nonzero charge. The
existence of regular black holes from pure gravity remained
elusive until recently, when some of us [62] showed that the
Schwarzschild singularity in D ≥ 5 spacetime dimensions
gets fully resolved by supplementing the Einstein-Hilbert
action by infinite towers of higher-curvature corrections.
[63] This is achieved generically, without any fine-tuning
among the gravitational couplings, provided they satisfy
certain mild constraints. The models involve densities of
arbitrarily high curvature order that belong to the class of
“Quasitopological gravities” [70–78], and are broad enough
to provide a basis for the gravitational effective action
[62,79]. Hence, even though the singularity resolution
requires going beyond the perturbative regime of the
gravitational couplings, the hope is that the result captures
some features of a full quantum theory of gravity.
Some of the most important open questions of regular

black holes concern their dynamical aspects, such as their
formation and stability [11,80–83]. So far, these questions
have not been studied with enough rigor due to the lack of a
dynamical theory that predicts regular black holes. The goal
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of this letter is to show that the theories of [62] not only
predict regular black holes, but that they provide a full
dynamical description of gravitational collapse leading to
the formation of such black holes. To this end, we show that
these theories give rise to stable time evolution within
spherical symmetry, and we solve explicitly the problem of
thin-shell collapse. In a companion paper [84] we provide
additional details and further extend the results reported
here.
Quasitopological gravities—From a bottom-up pers-

pective, a gravitational effective action can be built by
including all possible diffeomorphism-invariant terms in a
perturbative expansion controlled by (a priori) uncon-
strained couplings. Such terms can be modified by pertur-
bative field redefinitions of the metric and hence different
bases of invariants may be chosen. In this Letter we
consider a particular basis of densities [85] which exists
in D ≥ 5 and whose action can be written as

SQT ¼
Z

dDx
ffiffiffiffiffijgjp

16πGN

�
Rþ

Xnmax

n¼2

αnZn

�
; ð1Þ

where GN is the Newton constant and αn are arbitrary
coupling constants with dimensions of length2ðn−1Þ. The
densities Zn are selected by the condition that they possess
second-order equations on general spherically symmetric
(SS) ansätze. In particular, they belong to a broader family of
theories known as quasitopological (QT) gravities [70–79].
The densities Zn for n ¼ 2, 3, 4, 5 can be found in the
Appendix, and it is convenient to defineZ1 ≡ R. Arbitrarily
higher-order densities can be obtained from the following
recursive formula [75]:

Znþ5 ¼ þ 3ðnþ 3ÞZ1Znþ4

DðD − 1Þðnþ 1Þ −
3ðnþ 4ÞZ2Znþ3

DðD − 1Þn

þ ðnþ 3Þðnþ 4ÞZ3Znþ2

DðD − 1Þnðnþ 1Þ : ð2Þ

When the seed densities possess second-order equations on
general SS metrics, the recursive formula preserves this
property; see the Appendix and [84].
Effective two-dimensional action—To study the spheri-

cally symmetric equations of motion of (1), it is useful to
dimensionally reduce it on a (D − 2)-sphere. Thus, we
evaluate the QT action on a metric of the form

ds2 ¼ γμνdxμdxν þ φðxÞ2dΩ2
D−2; ð3Þ

where dΩ2
D−2 is the sphere metric. After a long calculation,

we obtain a reduced action for the two-dimensional metric
γμν and for the radial scalar φ,

S2d ¼
ðD − 2ÞΩðD−2Þ

16πGN

Z
d2x

ffiffiffiffiffi
jγj

p
L2dðγμν;φÞ; ð4Þ

where ΩðD−2Þ ≡ 2πðD−1Þ=2=Γ½ðD − 1Þ=2� is the sphere vol-
ume. The key observation is that, since by construction (1)
yields second-order SS equations, then this action must be a
Horndeski theory [86]. This expectation is borne out; we
find that the Lagrangian takes the Horndeski form,

L2d ¼ G2ðφ; XÞ −□φG3ðφ; XÞ þ G4ðφ; XÞR
− 2G4;Xðφ; XÞ½ð□φÞ2 −∇μ∇νφ∇μ∇νφ�; ð5Þ

where X ≡∇μφ∇μφ, G4;X ≡ ∂XG4, and

G2ðφ; XÞ ¼ φD−2½ðD − 1ÞhðψÞ − 2ψh0ðψÞ�; ð6Þ

G3ðφ; XÞ ¼ 2φD−3h0ðψÞ; ð7Þ

G4ðφ; XÞ ¼ −
φD−2

2
ψ ðD−2Þ=2

Z
dψ

h0ðψÞ
ψD=2 ; ð8Þ

and where we defined

hðψÞ≡ ψ þ
Xnmax

n¼2

αn
ðD − 2nÞ
ðD − 2Þ ψn; ψ ≡ 1 − X

φ2
: ð9Þ

The characteristic polynomial hðψÞ is a useful object which
encapsulates many features of QT gravity solutions—
see, e.g., [76,87,88].
Birkhoff theorem—The variation of (4) with respect to

γμν and φ yields the spherically symmetric equations of
motion of the higher-dimensional theory (1), Eab ¼ 0. If we
consider the Ansatz

ds2γ ¼ −Nðt; rÞ2fðt; rÞdt2 þ dr2

fðt; rÞ ð10Þ

for γμν, and set φ ¼ r (which implies X ¼ fðt; rÞ), the
vacuum equations read

Ett ¼
ðD − 2ÞN2f

2rD−2
∂

∂r
½rD−1hðψÞ� ¼ 0; ð11Þ

Etr ¼ −
ðD − 2Þ∂tf

2rf
h0ðψÞ ¼ 0; ð12Þ

Err ¼
ðD − 2Þ∂rN

rN
h0ðψÞ − 1

N2f2
Ett ¼ 0: ð13Þ

These come from the variation of (4) with respect to γμν.
The variation with respect to φ yields the angular compo-
nents of the higher-dimensional equations of motion, which
are related to the ðt; rÞ ones via Bianchi identities.
Observe that Eqs. (11)–(13) are of first order and only

differ from those of GR via the function hðψÞ. Now, it is
straightforward to verify that imposing Eab ¼ 0 leads to the
conditions
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∂tf ¼ 0; ∂rN ¼ 0;
∂

∂r
½rD−1hðψÞ� ¼ 0: ð14Þ

Hence, f ¼ fðrÞ and N ¼ NðtÞ, which can be reabsorbed
in a redefinition of the time coordinate NðtÞ2dt2 → dt2. We
thus conclude that the most general spherically symmetric
solution of (1) is in fact static and fully determined by a
single function

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
D−2: ð15Þ

The metric function fðrÞ is uniquely determined by the
algebraic equation

hðψÞ ¼ 2M
rD−1 ; ψ ¼ 1 − fðrÞ

r2
; ð16Þ

whereM is an integration constant related to the ADMmass
[89–92] of the solution, M, through

M≡ 8πGM
ðD − 2ÞΩðD−2Þ

: ð17Þ

This proves that a Birkhoff theorem is satisfied for QT
theories of arbitrarily high curvature orders and in general
dimensions D ≥ 5, extending previous partial results pre-
sented in [70,74,93].
Regular black holes—As [62] realized, when we con-

sider an infinite tower of corrections, nmax → ∞, the
solutions of (16) are singularity-free under very general
conditions. For instance, the conditions αnðD − 2nÞ ≥
0∀ n, limn→∞jαnjð1=nÞ ¼ C > 0 are sufficient to ensure
regularity.
The explicit form of these regular black holes can be

obtained for specific choices of αn [62,64,65]. To illustrate
our results, we will consider the example αnðD − 2nÞ ¼
ðD − 2Þαn−1 [94]. In this case the series (9) yields
hðψÞ ¼ ψ=ð1 − αψÞ, and the metric function fðrÞ takes
the form

fðrÞ ¼ 1 −
2Mr2

rD−1 þ 2Mα
; ð18Þ

which is the D-dimensional Hayward black hole. Define
the critical mass Mcr ¼ 2α. When M > Mcr, this spacetime
has an outer and an inner horizon. In D ¼ 5 these are
located at

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM − 2αÞ

pq
: ð19Þ

For M ¼ Mcr, the regular black hole is extremal and
below the critical mass, the solution is a gravitating
soliton. Naturally, this solution reduces to the usual
Schwarzschild-Tangherlini solution,

fðrÞ ¼ 1 −
2M
rD−3 ; ð20Þ

for α ¼ 0 as well as for large radius. For small r we
have fðrÞ ≈ 1 − r2=α and the singularity is replaced by a
regular core.
Thin-shell collapse—Let us now consider the collapse of

a thin spherical shell of pressureless matter (“dust”). The
surface stress-energy tensor takes the form SAB ¼ σuAuB,
where σ is the surface energy density of the matter and uA is
its D velocity. In a proper time (denoted by τ) para-
mtrization of the shell, the components of the surface
stress-energy tensor are simply

Sττ ¼ σ; Sij ¼ 0; ð21Þ

where i, j are the angular components. At a given moment
of proper time, we set the radius of the shell to r ¼ RðτÞ.
Inside the shell, r < RðτÞ, we take the metric to be
Minkowski space. By Birkhoff’s theorem, the exterior of
the shell, r > RðτÞ, is necessarily the unique solution of
(16). Therefore, the spacetime metric consists of two charts
that are joined at the location of the shell,

ds2� ¼ −f�ðrÞdt2� þ dr2

f�ðrÞ
þ r2dΩ2

D−2; ð22Þ

where f−ðrÞ ¼ 1 corresponds to the inner Minkowski
region and fþðrÞ is the solution of (16).
The spacetime trajectory of the shell, ðt�; rÞ ¼

ðT�ðτÞ; RðτÞÞ, is determined by the junction conditions
appropriate to the theory. The first junction condition, as in
GR, requires that the metric be continuous across the shell.
The induced metric on the shell is

ds2Σ ¼ −
�
f�ðRÞṪ2

� −
Ṙ2

f�ðRÞ
�
dτ2 þ RðτÞ2dΩ2

D−2; ð23Þ

and demanding continuity (taking into account that τ is the
proper time), we find that

f�ðRÞṪ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�ðRÞ þ Ṙ2

q
≡ β�: ð24Þ

The second junction condition is more subtle. It is most
simply obtained from the action principle as the boundary
equations of motion [95,96],

Π−
AB − Πþ

AB ¼ 8πGNSAB; ΠAB ≡ 16πGNffiffiffiffiffiffijhjp δStotal

δhAB
; ð25Þ

where hAB is the boundary metric and Stotal ¼ Sþ Sbdry is
the total gravitational action including boundary terms that
make the variational principle well-posed. As we explain in
[84], in spherical symmetry the computation of ΠAB can be
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rigorously performed with the aid of the two-dimensional
action (4), whose boundary terms are known [97]. The final
result reads

Π−
ττ − Πþ

ττ ¼ 8πGNσ; ð26Þ

d
dτ

½RD−2ðΠ−
ττ − Πþ

ττÞ� ¼ 0; ð27Þ

where

Π�
ττ ¼

ðD − 2Þ
R

Z
β�

0

dzh0
�
1þ Ṙ2 − z2

R2

�
: ð28Þ

The second of the two equations above implies that the
shell’s proper mass is conserved,

m≡ σΩD−2RD−2 ¼ constant: ð29Þ

On the other hand, the first equation can be reduced to a
master equation that determines the motion of the shell,

m
RD−1 ¼

Z
∞

R

drMðD − 1Þ
rD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ṙ2 − R2

r2 ½1 − fðrÞ�
q ; ð30Þ

where we defined m≡ 8πGNm=½ðD − 2ÞΩD−2� in analogy
with (17) to ease notation. This is one of the main results of
our study. It is valid for any QT theory of the class
considered in (1). Plugging the black hole metric function
fðrÞ for the chosen model yields an integro-differential
equation for RðτÞ, the solution of which determines the fate
of the collapsing shells.

It is helpful to recast (30) in the form

Ṙ2 þ VðRÞ ¼ M2

m2
− 1; ð31Þ

where VðRÞ is an effective potential. In the case of Einstein
gravity, for which fðrÞ is given by (20), the potential can be
easily found to be

VðRÞ ¼ −
M

RðD−3Þ −
m2

4R2ðD−3Þ : ð32Þ

This is a monotonously decreasing function of R, and
starting at any finite radius Rð0Þ ¼ R0, the shell collapses
leaving behind a Schwarzschild black hole and reaching
R ¼ 0 after a finite proper time; see Fig. 1.
For any QT theory admitting regular black hole solutions

and a Birkhoff theorem, since the metric function is
asymptotically given by the Schwarzschild metric to
leading order, the large R behavior of the potential is the
same as in Einstein gravity (32). On the other hand, the
small R behavior of the metric is completely altered. Using
the fact that the metric function of a regular black hole
behaves near r ¼ 0 as

fðrÞ ¼ 1 −
r2

C
þ � � � ð33Þ

for some constant C, we obtain for the effective potential

VðRÞ ¼ −
R2

C
for R → 0: ð34Þ

Rather than diverge, the potential limits to zero as R → 0
and is smooth. Constructing the potential at intermediate

FIG. 1. Left: effective potential VðRÞ of the thin-shell equation (31) in the case ofD ¼ 5 Einstein gravity (red) and a QT gravity theory
of the form (1) with αn ¼ ½3=ð5 − 2nÞ�αn−1 (blue). We have set M ¼ 1, m ¼ 1.05, and α ¼ 1=10. The dashed pink line shows the
analytical approximation (34) for the effective potential near the origin and the orange points are the turning points of the second
potential. Right: shell radius as a function of the proper time τ. For Einstein gravity, the shell collapses reaching R ¼ 0 after a finite
proper time (red star), forming a Schwarzschild black hole. For the QT theory, the shell collapses forming a Hayward black hole, it
reaches some finite minimum radius Rmin and bounces back, emerging in a new universe, where the process is repeated once it reaches
R0 again.
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values of R generally requires numerical methods. We
show this result for theD ¼ 5Hayward black hole; see (18)
in Fig. 1. While this plot is for a particular solution, we
observe that the qualitative features are generic, i.e., it
vanishes at the origin and at infinity and it contains a
minimum at some intermediate R.
If the total mass is above the critical threshold M > Mcr,

a shell that starts collapsing at some finite radius R0 > rþ
keeps on decreasing its size, eventually giving rise to a
regular black hole. As the shell continues to collapse, it will
cross r ¼ r− and the inner horizon will form. By the use of
Kruskal-Szekeres-like coordinates, the original coordinate
patch may be extended into two causally disconnected
regions r− ≥ r ≥ 0 (regions III in Fig. 2). One of these
contains the shell, inside of which the spacetime is flat,
while the other region corresponds to a “de Sitter core” in
which the line r ¼ 0 is fully regular [98]. Ultimately, the
shell starts climbing the potential and reaches a turning
point at which Ṙ ¼ 0 and R ¼ Rmin; this always happens in
region III. At that point, a bounce occurs. The shell begins
increasing its size, crossing the inner and outer horizons
and emerging in a new universe from a white hole. The
shell will grow up to r ¼ R0, at which point the process of
collapse restarts. If the total mass is below the critical
threshold, the shell experiences a bounce as well, but
horizons never form.
Discussion—We have shown that regular black holes are

the endpoint of gravitational collapse in a purely gravita-
tional theory. This is a generic consequence of a theory

containing an infinite tower of higher-curvature corrections
with only very mild and qualitative conditions on the
couplings. This provides a mechanism for the resolution of
singularities and the formation of regular black holes in any
dimensionD ≥ 5. We believe this is the first time results of
such generality have been achieved.
Although the D ¼ 4 case is more challenging because

we lack the simplification provided by QT gravities, we
expect that our conclusions apply as well. As a hint of this,
we note that cosmological singularities in D ¼ 4 can be
resolved by an infinite tower of higher-derivative correc-
tions [100], and this signals a potential resolution of
singularities in Oppenheimer-Snyder collapse [101].
Our model affords considerable opportunity to address

important problems in the theory of regular black holes and
singularity resolution. Among these, for example, is the
possibility to consider more complicated shell configura-
tions [102], other forms of matter collapse, or to consider
the problem of critical scaling [103]. The stability problem
of the inner horizon can also be studied in the spherically
symmetric sector. While it is not possible to avoid an inner
horizon, in our setup the inner horizons can be extremal for
certain parameter ranges [64], which can avoid mass
inflation instabilities [83]. Moreover, the two-dimensional
Horndeski theory we have identified can be utilized to
understand the effects of strong quantum gravitational
fluctuations in the vicinity of near extremal regular black
holes [104]. These effects will likely play an important role
in the final stages of regular black hole evaporation.
Whether or not the mechanism we have identified is the

one responsible for singularity resolution in nature remains
to be seen. What is clear is that it provides a robust
mechanism where many long-thought impossible questions
can be finally addressed.
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FIG. 2. Penrose diagram associated with the dynamical col-
lapse of a spherical thin shell in D ¼ 5 in the theory (1) with
ð5 − 2nÞαn ¼ 3αn−1. It is assumed that matter existed from
ancient times and was assembled into a spherical thin shell at
some point by a future civilization.
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End Matter

Appendix: Quasitopological gravities satisfying a Birkhoff
theorem—Let Lðgab; RcdefÞ be any D-dimensional (with
D ≥ 5) higher-curvature theory of gravity constructed
from arbitrary contractions of the Riemann curvature
tensor with the metric. In particular, no covariant
derivatives of the curvature are assumed to appear. The
gravitational equations of motion of Lðgab; RcdefÞ take
the following form [105]:

PacdeRb
cde −

1

2
Lgab þ 2∇c∇dPacbd ¼ 0; ðA1Þ

where we defined Pabcd ¼ ð∂L=∂RabcdÞ. Take a general
D-dimensional spherically symmetric ansatz for the
metric (the arguments also work for planar or hyperbolic
symmetry):

ds2N;f¼−Nðt;rÞ2fðt;rÞdt2þ 1

fðt;rÞdr
2þr2dΩ2

D−2; ðA2Þ

where dΩ2
D−2 stands for the metric of the round (D − 2)-

dimensional sphere. In this Letter we have considered
those higher-curvature theories of gravity Lðgab; RcdefÞ
for which the equations of motion on top of (A2) are
strictly of second order in derivatives and, furthermore,
satisfy naturally a Birkhoff theorem. Specifically, we
require that

∇c∇dPacbdjN;f ¼ 0; ðA3Þ
where jN;f denotes evaluation on (A2), and that spherical
symmetry at the level of the equations of motion further
implies the staticity of the solution. Concretely, this will
happen if the equations of motion demand that

∂rN ¼ ∂tf ¼ 0: ðA4Þ
Therefore, one can always set N ¼ 1 after a time
reparametrization, if needed. As it turns out, higher-
curvature theories fulfilling this condition may be found
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at all curvature orders. They correspond to a special
subclass of the set of quasitopological gravities,
characterized by admitting nonhairy generalizations of
the static Schwarzschild-Tangherlini solution with N ¼ 1
(see [70,71] and further bibliography cited in the
main text).

Let ZðnÞ denote a D-dimensional (with D ≥ 5) theory of
gravity constructed from n th order curvature invariants
fulfilling conditions (A3) and (A4). If Wabcd denotes the
Weyl curvature tensor and Zab the traceless part of the Ricci
curvature tensor, instances of such theories up to n ¼ 5 read
as follows:

Zð1Þ ¼ R; ðA5aÞ

Zð2Þ ¼
1

ðD − 2Þ
�
WabcdWabcd

D − 3
−
4ZabZab

D − 2

�
þ

Z2
ð1Þ

DðD − 1Þ ; ðA5bÞ

Zð3Þ ¼
24

ðD − 2ÞðD − 3Þ
�
Wac

bdZa
bZ

c
d

ðD − 2Þ2 −
WacdeWbcdeZa

b

ðD − 2ÞðD − 4Þ þ
2ðD − 3ÞZa

bZ
b
cZc

a

3ðD − 2Þ3 þ ð2D − 3ÞWab
cdWcd

efWef
ab

12ðDððD − 9ÞDþ 26Þ − 22Þ
�

þ 3Zð1ÞZð2Þ
DðD − 1Þ −

2Z3
ð1Þ

D2ðD − 1Þ2 ; ðA5cÞ

Zð4Þ ¼
96

ðD − 2Þ2ðD − 3Þ
�ðD − 1ÞðWabcdWabcdÞ2

8DðD − 2Þ2ðD − 3Þ −
ð2D − 3ÞZf

eZe
fWabcdWabcd

4ðD − 1ÞðD − 2Þ2 −
2WacbdWcefgWd

efgZab

DðD − 3ÞðD − 4Þ

−
4ZacZdeWbdceZa

b

ðD − 2Þ2ðD − 4Þ þ
ðD2 − 3Dþ 3ÞðZb

aZa
bÞ2

DðD − 1ÞðD − 2Þ3 −
Zb
aZc

bZ
d
cZa

d

ðD − 2Þ3 þ ð2D − 1ÞWabcdWaecfZbdZef

DðD − 2ÞðD − 3Þ
�

þ
4Zð1ÞZð3Þ − 3Z2

ð2Þ
DðD − 1Þ ; ðA5dÞ

Zð5Þ ¼
960ðD − 1Þ

ðD − 2Þ4ðD − 3Þ2
�ðD − 2ÞWghijWghijWab

cdWcd
efWef

ab

40DðD3 − 9D2 þ 26D − 22Þ þ 4ðD − 3ÞZb
aZc

bZ
d
cZe

dZ
a
e

5ðD − 1ÞðD − 2Þ2ðD − 4Þ

−
ð3D − 1ÞWghijWghijWacdeWbcdeZa

b

10DðD − 1Þ2ðD − 4Þ −
4ðD − 3ÞðD2 − 2Dþ 2ÞZb

aZa
bZ

d
cZe

dZ
c
e

5DðD − 1Þ2ðD − 2Þ2ðD − 4Þ

−
ðD − 3Þð3D − 1ÞðD2 þ 2D − 4ÞWghijWghijZd

cZe
dZ

c
e

10DðD − 1Þ2ðDþ 1ÞðD − 2Þ2ðD − 4Þ þ ð5D2 − 7Dþ 6ÞZh
gZ

g
hWabcdZacZbd

10DðD − 1Þ2ðD − 2Þ

þ ðD − 2ÞðD − 3Þð15D5 − 148D4 þ 527D3 − 800D2 þ 472D − 88ÞWab
cdWcd

efWef
abZh

gZ
g
h

40DðD − 1Þ2ðD − 4ÞðD5 − 15D4 þ 91D3 − 277D2 þ 418D − 242Þ

−
2ð3D − 1ÞZabWacbdZefWe

c
f
gZd

g

DðD2 − 1ÞðD − 4Þ −
Zb
aZc

bZcdZefWeafd

ðD − 1ÞðD − 2Þ þ ðD − 3ÞWacdeWbcdeZa
bZ

g
fZ

f
g

5DðD − 1Þ2ðD − 4Þ

−
ðD − 2ÞðD − 3Þð3D − 2ÞZa

bZ
b
cWdaefWefghWgh

dc

4ðD − 1Þ2ðD − 4ÞðD2 − 6Dþ 11Þ þWghijWghijZacZbdWabcd

20DðD − 1Þ2
�

þ 5Zð1ÞZð4Þ − 2Zð2ÞZð3Þ
DðD − 1Þ þ

6Zð1ÞZ2
ð2Þ − 8Z2

ð1ÞZð3Þ
D2ðD − 1Þ2 : ðA5eÞ

For higher orders of n, one may use the recursive formula presented in the main text:

Zðnþ5Þ ¼
3ðnþ 3ÞZð1ÞZðnþ4Þ
DðD − 1Þðnþ 1Þ −

3ðnþ 4ÞZð2ÞZðnþ3Þ
DðD − 1Þn þ ðnþ 3Þðnþ 4ÞZð3ÞZðnþ2Þ

DðD − 1Þnðnþ 1Þ : ðA6Þ
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The proof that this formula is guaranteed to produce
theories satisfying (A3) and (A4) for arbitrary n goes as
follows. First, we note that the first five densities (A5) on
top of (A2) may be equivalently written as a Horndeski
theory for two-dimensional gravity with a scalar, as
explained in the main text [cf. (5)] and proved in the
companion paper [84]. Then, by direct substitution in (A6),

one checks that the equivalent Horndeski theories (5) fulfill
the recursive relation (A6) for any n. Since such Horndeski
theories have second order equations and satisfy a Birkhoff
theorem [see (14)], the D-dimensional theories of gravity
Zðnþ5Þ will also comply to conditions (A3) and (A4) for
arbitrary n and we conclude.
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