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We study the complete parameter space of a bulk axion in flat and warped extra spacetime dimensions.
We characterize in detail the regimes where no single KKmode is produced along the canonical QCD axion
line, and instead, it is maximally deviated along with several other axions that constitute a multiple solution
to the strong CP problem. In both flat and Randall-Sundrum scenarios, and assuming that all Peccei-Quinn
breaking comes from QCD, we find that these solutions are however subject to tight phenomenological
constraints. In light of these results, we expect that only KK canonical patterns (with the zero-mode close to
the standard QCD line) can emerge from a bulk axion in one or more extra spacetime dimensions. As a
byproduct, we generalize the axions eigenvalue and eigenvector equations for an arbitrary number of
spacetime dimensions and compactifications.
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I. MOTIVATION AND SUMMARY

Axions are among the most compelling candidates for
new physics and, today, one of the most prominent targets
of small-scale experiments built all over the world. They are
associated with continuous shift symmetries, which can be
broken by nonperturbative dynamics, endowing the axions
with a mass m2

i ∼ Λ4
ins=f

2
i , where Λins denotes an instanton

scale. Therefore, they can be naturally light and weakly
interacting while providing a window to deep UV physics
that might otherwise be beyond our reach. This connection
is further strengthened by quantum gravity consistency
requirements and string theory compactifications [1–3],
which lead us to expect a plethora of axions at low energy
populating diverse scales. Following the Peccei-Quinn
(PQ) paradigm, the strong CP problem could be solved
if one combination of these fields remains light at the QCD
scale to dynamically explain the absence of CP violation in
the strong sector. This motivates searches for the QCD
axion in a precise band where m2

af2a ¼ Λ4
QCD.

Recently, it has been shown that if such light combina-
tion mixes with other fields, the solutions to the strong CP
problem could be located outside the canonical single axion

band, with the maximal departure possible given by
gi ≡m2

i f
2
i =Λ4

QCD ¼ n⋆, the number of QCD axions in
Nature [4]. Following the previous work, we denote the
axions satisfying this mass-scale relation by QCD maxions.
Such a scenario leads to a new displaced QCD axion band
where all the n⋆ signals are aligned, which is a direct
consequence of the QCD axion sum rule [4]:

Xn⋆
i¼1

1

gi
¼ 1; ð1:1Þ

which has been derived for generic mixing potentials that
preserve a PQ symmetry at the classical level. Finding a
compelling UV framework where such large deviations are
realized could radically change the axion phenomenology
by redefining the target of many axion experiments, with-
out the need to extend the SM gauge group. However, the
first difficulty that one encounters in trying to build such a
setup is that the large deviations must then be associated
with a large number of axions that mix sizably into each
other. While this is challenging from a 4D perspective, such
a large number of axions is a direct prediction in models
with extra spacetime dimensions, where one axion propa-
gating in the bulk of the extra dimension is identified with
an infinite tower of Kaluza-Klein (KK) modes upon
dimensional reduction [5,6]. We are therefore led to search
for the noncanonical axions in such scenarios, assuming
that the SM is localized on a 4D brane.
Phenomenological studies of a 5D QCD axion have been

presented in a series of seminal works [7–9] and
have garnered renewed attention in recent years [10–16].
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One motivation for this framework is to produce a weak
axion coupling to gauge bosons from a high fundamental
PQ scale by the same mechanism that lowers the Planck
scale in the higher dimensional theory. Importantly, this
framework also allows one to decouple the mass of the zero
mode from the PQ scale, mPQ, which can be instead set by
the scale of the extra dimension, R−1, as first pointed out in
Ref. [7]. Moreover, the presence of the KK tower can
impact substantially the experimental bounds, as well
as provide a mechanism for dynamical dark matter in
which the relic abundance is shared among several of the
KK fields. These aspects have been discussed extensively
in the literature in the context of flat extra-dimensional
models [17–19].
In this work, we will focus on the critical role of the KK

tower in solving the strong CP problem in the full
parameter space of both flat and curved Randall-
Sundrum (RS) [20,21] scenarios. We will prove that an
extra-dimensional bulk axion can either give rise to one
canonical axion or a set of N deviated QCD maxions
predicted by the sum rule (1.1) that is maxions are the
noncanonical solutions of generic extra spacetime dimen-
sional models (assuming that QCD is the only source of PQ
breaking). The two possible patterns that can arise are
shown schematically in Fig. 1, represented by an orange or
a blue line. The first indicates a canonical QCD axion
solution, where all but one mode are decoupled from the
solution to the strong CP problem. The second type of
pattern corresponds to the extra-dimensional QCD maxion
scenario, where no single axion is found close to the
canonical band. Such maximal mixing regimes arise if
Aμ1=mPQ ≲ 1, with μ1 denoting the lightest graviton mass

and A the warping factor associated with the curvature of
the extra dimension. Such curvature can take the QCD
maxions further out of the canonical line and separate
significantly the zero mode from the rest of the KK tower;
this is representated by the dashed blue line in Fig. 1.
The aim of our work is to, first, characterize fully the

axion patterns stemming from extra dimensions and show
how the location of the KK modes encodes a mapping to
the fundamental properties of the higher-dimensional bulk
axion. In flat extra-dimensional scenarios, the mass spec-
trum and the KK couplings have been previously computed
in a series of works [7,17,18]. Nonetheless, we will obtain a
general formalism from which wewill rederive these results
and extend them to the case of a warped extra dimension.
Moreover, we will obtain generalized expressions for the
eigenvalues and eigenvector equations that apply to a
broader class of higher-dimensional axion models with
arbitrary compactifications and number of spacetime
dimensions, whose relevance extends beyond the scope
of our work.
Secondly, we will take into account the most con-

straining phenomenological probe to identify which of
these patterns are allowed by current data. We will be
mostly interested in understanding whether the extra-
dimensional maxion scenarios, with gi ≫ 1, survive this
scrutiny. Such scenarios are the most interesting ones in
what concerns the possibility of identifying new regions of
signal to search for QCD axions. Moreover, some of the
patterns represented in Fig. 1 are common to other frame-
works, namely the string axiverse [23] and grand unified
theories [24]. (This is not surprising, as these patterns
follow directly from the generic QCD axion sum rule.)

FIG. 1. Current axion bounds [22] and schematic representation of possible KK axion patterns arising from extra dimensions. The
dashed lines highlight gaps in the mass spectrum.
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For this reason, investigating the constraints on KK signals
from extra-dimensional models is essential to eventually
discriminate the origin of a potential multiple axion pattern
observed in Nature.
We will show that the QCD maxion patterns from a PQ

bulk field are tightly constrained by a combination of
consistency, astrophysical, and gravitational bounds. To the
best of our knowledge, this result is completely new for
scenarios with a warped extra dimension. Moreover, this
result holds independently of the number of (universal)
spacetime dimensions and the VEV profile of the PQ field
in the bulk. We, therefore, expect that more complex con-
structions, with additional bulk fields or less generic com-
pactifications, are required to produce themost exotic patterns
in Fig. 1. In turn, the observation of a plateau of heavy fields
together with a canonical QCD axion could be explained by a
single PQ field, propagating in the bulk of a hidden
dimension. We will demonstrate how a potential observation
of such a plateau could in this case hint toward the location of
the zero mode in the canonical QCD axion band.

II. EXTRA DIMENSIONAL MODELS

We consider the Einstein-Hilbert action in d ¼ 4þ δ
spacetime dimensions

SEH ¼ M2þδ
d

2

Z
d4x

Z
πR

−πR
dy1…

Z
πR

−πR
dyδ

ffiffiffi
g

p ðR − 2ΛBÞ;

ð2:1Þ

with ya denoting a coordinate of the extra dimensions,
which we assume to be compactified on a ðS1=Z2Þ orbifold
of universal radius R. Accordingly, ya → −ya are identified
for all points in the interval ½−πR; πR�. In the equation
above, g is the determinant of the metric,R the Ricci scalar,
Md the d-dimensional Planck mass, and ΛB the vacuum
energy of the bulk.1 Regarding the matter content, we focus
on models where the SM fields are localized on the branes,
which are the boundaries of the extra dimensions.
The action in Eq. (2.1) features an extra-dimensional

graviton, hMNðx; yÞ. As usual, to obtain the effective theory
in four spacetime dimensions, the δ-dimensional fields can
be decomposed into a tower of KK modes via a set of
orthonormal functions fψ n⃗ðyÞg; in the case of the graviton,

hμνðx; yÞ ¼
1

ð2πRÞδ=2
X∞
n

hðnÞμν ðxÞψnðyÞ: ð2:2Þ

The relation between the extra-dimensional and 4D Planck
mass can then be obtained by matching the 4D EFT to
general relativity (GR), and ultimately amounts to a rescal-
ing controlled by the volume of the extra dimensions (Vδ):

m2
P ¼ VδM

2þδ
d ¼ ð2πRÞδ

ψ2
0

M2þδ
d ; ð2:3Þ

where mP is the reduced Planck mass.
On top of the gravitational interactions, wewill introduce

an axion field that propagates in the bulk of all dimensions.
(We discuss later departures from this assumption.) The
corresponding action for such a field is

Sa ¼
Z

d4x
Z

πR

−πR
dy1…

Z
πR

−πR
dyδ

ffiffiffi
g

p �
1

2
Mδ

sgAB∂Aa∂Ba

þ αs
8π

a
fd

GμνG̃
μνδðδÞðy − πRÞ

�
; ð2:4Þ

where the δ function localizes the axion couplings to QCD
on the SM brane, at ya ¼ πR. The interactions above are
assumed to be generated at a fundamental scaleMs, with fd
denoting the PQ breaking scale. The former can be
removed from the kinetic term by an appropriate redefi-
nition of the axion field and the axion decay constant.
Analogously to the graviton case, the extra-dimensional

axion can be decomposed as

aðx; yÞ ¼ 1

ð2πRMsÞδ=2
X
n

ânðxÞψnðyÞ: ð2:5Þ

The canonical kinetic and mass terms for these KK states
are obtained by imposing the following normalization
conditions:

1

ð2πRÞδ
Z

πR

−πR
dy

ffiffiffi
g

p
gμνψnðyÞψmðyÞ ¼ δn;mη

μν; ð2:6Þ

1

ð2πRÞδ
Z

πR

−πR
dy

ffiffiffi
g

p
gab∂aψnðyÞ∂bψmðyÞ ¼ −μ2nδn;m; ð2:7Þ

where μn is the mass of the nmode obtained by solving the
Sturm-Liouville problem of the equations of motions
(EOM) of the free theory

∂Bð
ffiffiffi
g

p
gAB∂AaÞ ¼ 0; ð2:8Þ

which depends on the background metric of the extra
dimensions.
From here on, we restrict the discussion to the case δ ¼ 1

(once again, departures from this assumption will be
discussed in the next sections of our work). The effective
action for the KK modes reads, in this case:

1We will denote coordinates belonging to the full extra-
dimensional models, to the 4D EFT, and to the extra dimensions
with capital indices (e.g., xA), Greek letters (e.g., xμ with
μ ¼ 0; 1; 2; 3), and in Latin lowercase (e.g., xa with
a ¼ 5; 6;…; d, or ya with a ¼ 1;…; δ), respectively. We will
also make use of y ¼ ðy1;…; yδÞ to highlight the full set of extra-
dimensional coordinates.
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S4 ⊃
Z

d4x
X
n

�
1

2
ð∂μânÞ2 −

1

2
μ2nâ2n

�

þ 1

fPQ

αs
8π

�X
n

ânψnðπRÞ
�
G̃μνGμν; ð2:9Þ

where fPQ ≡ f4 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πRMs

p
f5 is the effective PQ scale in

4D. Below, we match the parameters of this EFT to the flat
and RS models. The following sections are dedicated to a
detailed study of the emergent axion phenomenology.

A. Flat extra dimension

In a flat extra-dimensional model, the background metric
is given by2

ds2 ¼ ημνdxμdxν − dy2; ð2:10Þ

where ημν is the Minkowski flat metric, and ΛB ¼ 0. This
leads to the following identification of the reduced Planck
mass:

m2
P ≡ ð2πRÞM3

5; ð2:11Þ

such that the theory is effectively ruled by a single
parameter.
The EOM of the 5D axion reads

∂μ∂
μaþ ∂5∂

5a ¼ 0: ð2:12Þ

This reproduces the canonical KG equation if and only if
one imposes

∂5∂
5ψn ¼ μ2nψn: ð2:13Þ

The solutions to this equation that are compatible with the
orbifold symmetry read

ψnðyÞ ¼ Nn cosðμnyÞ; ð2:14Þ

where Nn is fixed by the normalization conditions in
Eq. (2.6):

Nn ¼
�
1 n ¼ 0;

ð−1Þn ffiffiffi
2

p
n > 0:

ð2:15Þ

Note that a minus sign was included in these factors, for
convenience in subsequent steps. By imposing the boun-
dary condition ∂5ψnðπRÞ ¼ 0, one obtains the mass spec-
trum of the theory:

μn ¼
n
R
: ð2:16Þ

The WFs on the IR brane, therefore, read

ψnðπRÞ ¼
�
1 n ¼ 0;ffiffiffi
2

p
n > 0:

ð2:17Þ

B. Randall-Sundrum

In the RS model, the curvature is manifested via a
conformal factor in front of the 4D metric:

ds2 ¼ e−2kjyjημνdxμdxν − dy2; ð2:18Þ

with k≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ΛB=6

p
. The exponential AðyÞ≡ e−kjyj is typ-

ically called the warp factor, which reduces to 1 in the
flat case (where k → 0). The connection to GR is now
encoded by

m2
P ≡M3

5

k
ð1 − e−2μπÞ; ð2:19Þ

where μ≡ kR. Therefore, the model is ruled by two
parameters. We recall that in flat models, current limits
on R are incompatible with a solution to the Higgs
hierarchy problem with δ ¼ 1. On the contrary, due to
the warp factor in this setup, the Higgs mass is expected to
be∼e−μπM5 in the IR brane so that the hierarchy problem is
solved even for M5 ∼mP and μ ∼Oð10Þ. We will not
attempt to solve this problem in the current analysis.
The RS metric can be expressed using an alternative

coordinate, dy ¼ AðyÞdz, such that it becomes conformally
flat3:

ds2 ¼ A2ðzÞðημνdxμdxν − dz2Þ: ð2:20Þ

In terms of this coordinate, the EOM for the axion
[cf. Eq. (2.8)] reads

A3
∂μ∂

μa − ∂zðA3
∂zÞa ¼ 0; ð2:21Þ

which, upon KK reduction, leads to the following eigen-
value equation:

∂zðA3
∂zÞψn ¼ −A3μ2nψn: ð2:22Þ

The solutions are given by

ψnðyÞ ¼ Nne2kjyj½J2ðznÞ þ αnY2ðznÞ�; ð2:23Þ

where

2We adopt the “mostly minus” convention for the metric.

3The relation between the two sets of coordinates can be
obtained by integrating AðyÞ−1dy ¼ dz. One can set A ¼ e−ky ¼
1=ðzkÞ by appropriately choosing the integration boundaries.
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zn ≡ μn
ekjyj

k
; ð2:24Þ

andNn is a normalization constant. The constants αn and μn
are determined by the boundary conditions ∂yψnjy¼0;πR ¼ 0.
We obtain

αn ¼
J1
�
μn

eμπ
k

	
Y1

�
μn

eμπ
k

	 ; ð2:25Þ

while the masses μn are the solutions of the transcendental
equation

J1

�
μn

eμπ

k

�
Y2

�
μn
k

�
− J2

�
μn
k

�
Y1

�
μn

eμπ

k

�
¼ 0: ð2:26Þ

There is no general solution to this equation, but in the limit
eμπ ≫ 1, we find

ψnðφ ¼ yR−1Þ ≈ −
ffiffiffiffiffiffiffiffi
2πμ

p eμð2jφj−πÞ

J0ðγnÞ
J2ðγneμðjφj−πÞÞ;

μn ≈ γnke−μπ; ð2:27Þ

where γn ≈ πðnþ 1=4Þ is the nth zero of the Bessel function
J1ðxÞ. In the opposite limit, i.e., k ≪ 1, the setup reduces to
the flat model. On the IR brane, these WFs read

ψnðπRÞ ≃
ffiffiffiffiffiffiffiffi
2πμ

p
×

�
1 n ¼ 0;

eπμ n > 0;
ð2:28Þ

where we have used the identity J2ðγnÞ ¼ −J0ðγnÞ.

III. GENERAL MASS MATRIX

The EFT in Eq. (2.9) predicts a very particular mixing
structure for the KK axions, which in full generality can be
written as

ðM2Þij ¼ m2
PQ

�
ψ iψ j þ y2

�
μi
μ1

�
2

δij

�
; ð3:1Þ

i.e.,

M2

m2
PQ

¼

0
BBB@

ψ2
0 ψ0ψ1 ψ0ψ2 …

ψ1ψ0 ψ2
1 þ y2 ψ1ψ2 …

ψ2ψ0 ψ2ψ1 ψ2
2 þ y2ðμ2μ1Þ2 …

… … … …

1
CCCA;

where

y≡ μ1
mPQ

; ψ i ≡ ψ iðπRÞ; ð3:2Þ

m2
PQ ≡ χQCD=f2PQ is the standard PQ mass and

χQCD ≡m2
πf2π

mumd

ðmu þmdÞ2
ð3:3Þ

is the QCD topological susceptibility. Such a mass matrix
reproduces any of the models described in the previous
section, by simply matching the WFs to Eqs. (2.17) (flat)
and (2.28) (RS). Note that the main difference between
these constructions in the μ ≫ 1 limit lies not in the mass
ratios, but rather in the expressions for these WFs, which
are exponentially enhanced by the curvature.
We aim to diagonalize this mass matrix exactly. Even

though this is challenging in general, the problem can be
simplified under the assumption that

ψ i ¼ ψ j; ∀ i; j > 0; ð3:4Þ

which holds in both the flat and RS models in the
interesting limits. Under this assumption, we find that
the eigenvalues m2

λ ≡ λ2m2
PQ are the solutions to the

following equation:

X∞
n¼0

ðψnÞ2
λ2 − ðμn=μ1Þ2y2

¼ 1; ð3:5Þ

see App. A for details. We note that while this formula has
been derived in Ref. [7] for the flat scenario, here we prove
that it holds also for RS models. A more general approach
to obtain the eigenvalues will also be derived in Sec. VI.

IV. MAXIMAL DISPLACEMENTS OF KK AXIONS

To identify all possible patterns of KK axions in the mass
vs coupling parameter space, we turn to the computation of
the gi factors, as defined in Ref. [4].
Let us denote by U the rotation matrix that diagonalises

the mass matrix in Eq. (3.1), such that the physical fields
are identified via the relation

âi ¼
X
λ

Uiλaλ: ð4:1Þ

The physical couplings in the mass basis,

L ⊃
αs
8π

aλ
fλ

GG̃; ð4:2Þ

are given by

1

fλ
¼ 1

fPQ

�X∞
n¼0

ψnUnλ

�
: ð4:3Þ

Consequently, the g factor of each eigenstate reads
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gλ ≡m2
λf

2
λ

χQCD
¼

�
λP∞

n¼0 ψnUnλ

�
2

: ð4:4Þ

The detailed calculation of the rotation matrix is pre-
sented in Appendix A. Using the results therein, we find

Uiλ ¼ N λ
ψ i

λ2 − ðμi=μ1Þ2y2
; ð4:5Þ

with

N λ ¼
�X∞
n¼0

�
ψn

λ2 − ðμn=μ1Þ2y2
�

2
�−1=2

: ð4:6Þ

The g factors can now be found using Eqs. (4.4) and (3.5):

gλ ¼
λ2

N 2
λ

¼
X∞
n¼0

�
λψn

λ2 − ðμn=μ1Þ2y2
�

2

: ð4:7Þ

Remarkably, using the definition above, one rediscovers the
QCD axion sum rule in the extra-dimensional models:

X
λ

�
1

gλ

�
¼

X
λ

�
N 2

λ

λ2

�
¼ 1; ð4:8Þ

proven in all generality in Ref. [4]. In the flat scenario, this
result has been previously derived in Ref. [7]. In
Appendix B, we present a different proof that extends
beyond the flat case. We will now infer the consequences
of these general results to the models introduced in the
previous section.

A. QCD maxions in flat space

In flat scenarios, the sum in Eq. (3.5) can be performed
exactly:

πλ

y
cot

�
πλ

y

�
¼ 1þ 2

�
λ2 − ψ2

0

ψ2
1

�
: ð4:9Þ

By inserting the values of ψ0;1, we obtain

πλ

y
cot

�
πλ

y

�
¼ λ2; ð4:10Þ

in agreement with what was previously found in Ref. [7].
Similarly, one finds

gflatλ ¼ 1

2

�
π2ψ2

1

2y2
þ 3λ2 − ψ2

0

λ2
þ 2ðλ2 − ψ2

0Þ2
λ2ψ2

1

�

¼ 1

2
ðλ2 þ 1þ ðπ=yÞ2Þ: ð4:11Þ

This formula encodes some of possible patterns of axions
represented in Fig. 1. To see how, let us first consider the

limit y ≫ 1. In this case, the expression above reduces to
λ0 ∼ 1, such that g0 ¼ 1. The zero mode therefore behaves
as the canonical QCD axion, being, e.g., localized in the
same position as the orange bullet in Fig. 1.
On the contrary, maxion patterns can appear only when

the mass matrix is not diagonal, i.e., when the diagonal
elements are subleading with respect to the off-diagonal
ones, for a subset of modes n < n⋆. This leads to the
condition:

y ≪
μ1
μn⋆

ψ1; ð4:12Þ

which, in the present model, requires y≲ 1. In such limit,
we find the masses to be well described by

λn ¼
�
nþ 1

2

�
y
�
1 −

y2

π2
þOðy4Þ

�
: ð4:13Þ

Hence, for the zero mode, we have

λ0 ≈
y
2
; ð4:14Þ

g0 ≈
π2

2y2
; ð4:15Þ

f0 ≈ f4 ×
ffiffiffi
2

p π2

y2
: ð4:16Þ

Indeed, in this limit, the third term in Eq. (4.11) dominates
over the mass term: This is not only true for the zero mode
but for several of the KK axions in the tower. We, therefore,
expect to find n⋆ ∼ g0 QCDmaxions with the same g factor
and deviated from the canonical line by a factor of

ffiffiffiffiffi
g0

p
.

Technically, these are approximately maxions as their g
factors are almost identical, but not exactly equal. Such
behavior can be checked explicitly by using the same
Eq. (4.13) for the first n eigenvalues as long as the
condition (4.12) is satisfied; we find

λn>0 ≈
�
nþ 1

2

�
y; ð4:17Þ

gn>0 ≈
π2

2y2
; ð4:18Þ

fn>0 ≈ f4 ×

ffiffiffi
2

p

1þ 2n
π2

y2
: ð4:19Þ

These results confirm our expectations and agree with
previous studies of the mass spectrum of this theory [17].
The tower of QCD maxions is always accompanied by a

plateau of heavier modes that decouple from the sum rule.
Since the QCD contribution to the mass is negligible for
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these modes, i.e., they are already eigenstates in the basis of
Eq. (2.9), we must find λplateau ∼ ny. The plateau is then
expected to appear for modes with n≳ n⋆ ≈ π=y2, for
which the g factors are dominated by the mass term in
Eq. (4.11). [Note that such modes no longer satisfy the
condition for large mixings; see Eq. (4.12).] Working out
the expressions explicitly, we obtain

λplateau ≈ ny; ð4:20Þ

gplateau ≈
n2y2

2
¼ n2y2

ψ2
1

; ð4:21Þ

fplateau ≈
f4ffiffiffi
2

p ¼ f4
ψ1

: ð4:22Þ

These are consistent with the previous arguments and
show that the plateau’s contribution to the sum rule,P∞

n¼n⋆
1=gn ∼

P∞
n¼n⋆

1=ðnyÞ2, falls rapidly to zero ensur-
ing its convergence.
By performing a numerical analysis, we have obtained

representations of the eigenmodes for different values of y,
as shown in Fig. 2(a). While the observation of n⋆ aligned
axions would be a probe of the extra dimension scale in
units of the Peccei Quinn mass, the observation of the
plateau would allow us to extract the coupling ψ1=f4.
Combining these two features, we would be able to
determine the value of R corresponding to the pattern of
axions observed. This scale is determinant to understand
whether such a pattern complies with current bounds.
While large R values displace the QCD axion canonical
band to the right, f4 can enhance the plateau coupling
making it visible to experiments.

B. QCD maxions in curved space

In the RS model, the computations are more elaborate as
μn ∝ γn. The sum in Eq. (3.5) can be performed exactly by
means of the identity [25]

Jνþ1ðzÞ
JνðzÞ

¼
X∞
k¼1

2z
γ2ν;k − z2

; ð4:23Þ

where γν;n is the nth zero of the Bessel-function JνðzÞ,
which leads to the following eigenvalue equation:

�
z1
2

�
J2ðz1Þ
J1ðz1Þ

¼ ψ2
0 − λ2

ψ2
1

; z1 ≡ γ1λ=y: ð4:24Þ

The computation of the g factors can also be performed
starting from Eq. (4.23), as

X∞
k¼1

�
1

γ2k − z2

�
2

¼ 1

2z
∂z

�
1

2z
J2ðzÞ
J1ðzÞ

�

¼ 1

4z4

�
z2 − 4þ

�
z
J0ðzÞ
J1ðzÞ

�
2
�
: ð4:25Þ

By employing the recurrence relation for Bessel functions
J0ðzÞ=J1ðzÞ ¼ 2=z − J2ðzÞ=J1ðzÞ jointly with Eq. (4.24),
this expression can be further simplified, leading to the RS
g factors:

gRSλ ¼ γ21
4y2

ψ2
1 þ

2λ2 − ψ2
0

λ2
þ ðλ2 − ψ2

0Þ2
λ2

1

ψ2
1

: ð4:26Þ

FIG. 2. Representative patterns of KK axions in flat (left) and RS (right) models. The solid black line and the black star represent,
respectively, the single QCD axion mass-scale relation and the benchmark point of mPQ ¼ 1 eV. (a) Flat. (b) RS ðy ¼ 1Þ.
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Let us now study the limiting cases of these formulas to
characterize the axion patterns that emerge in this setup.
The lightest eigenvalue can be estimated by Taylor expand-
ing Eq. (4.24) around λ ∼ 0, yielding

λ0 ≈
ffiffiffi
8

p

γ1
y
�
ψ0

ψ1

�
; ð4:27Þ

g0 ≈
γ21
8y2

ψ2
1; ð4:28Þ

f0 ≈ f4 ×
γ21
8y2

�
ψ2
1

ψ0

�
: ð4:29Þ

In comparison to the flat result, the lightest mode becomes
exponentially suppressed by the warp factor, while its g
factor and interaction scale are enhanced by ψ2

1.
The mass and couplings of the next n > 0 modes can be

similarly derived; namely in the ψ1 ≫ 1 limit, one must
have z1 ≈ γ2;n in order to satisfy Eq. (4.24). More precisely,
we obtain

λn>0 ≈
γ2;n
γ1

y; ð4:30Þ

gn>0 ≈
γ21
4y2

ψ2
1; ð4:31Þ

fn>0 ≈ f4 ×
γ21

2γ2;ny2
ψ1: ð4:32Þ

We therefore find that several of the modes have the same g
factor, mostly identical to that of the zero mode. This
confirms the existence of QCD maxion solutions also for
this model. Nevertheless, the couplings of these modes are
exponentially enhanced relative to that of the zero mode, in
deep contrast with what was found in the flat model. Some
exact solutions to the equations above are represented in
Fig. 2(b), where it is apparent that the distance of the
maxions to the QCD axion canonical line is exponentially
enhanced by the curvature of the extra dimension.
The coupling of the plateau modes is also exponentially

enhanced with respect to the flat model. To see this, we
consider λ ∼ γny as the QCD contribution is negligible for
these modes. The mass of the first mode in the plateau can
then be derived by finding the n⋆ at which the decoupling
limit is enforced, or equivalently for which the condition
(4.12) is no longer satisfied. A more precise value can be
obtained by finding the n⋆ at which the terms enhanced by
the mass in Eq. (4.26) become comparable to the maxions g
factor:

γn⋆ ≈ πn⋆ ∼
γ21
2y2

ψ2
1: ð4:33Þ

For n≳ n⋆, we therefore find

λn;plateau ≈
γn
γ1

y; ð4:34Þ

gplateau ≈
�
y
γn
γ1

�
2

×
1

ψ2
1

; ð4:35Þ

fplateau ≈
f4
ψ1

: ð4:36Þ

These results, together with Eq. (4.33), allow us to estimate
the localization of the lightest eigenvalue, as well as of the
plateau, for the several scenarios represented in Fig. 2(b).
We note that a partial study of the mass spectrum of this
model was previously presented in the literature [26], while
expressions for the masses and some mixing factors were
derived in Ref. [27].

V. THEORETICAL AND EXPERIMENTAL
CONSTRAINTS

To infer whether an experiment could detect the KK
maxion patterns, it is essential to identify the cutoff of the
KK EFT in Eq. (2.9) below which we can rely on a
perturbative treatment of the tower.4 With this aim, let us
consider a process with gluons scattering off the gluonic
axion combination, at a fixed center of mass energyffiffiffi
s

p
≫ mn. Such a combination interacts with overall

strength

1

F
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼0

�
αsψn

8πf4

�
2

vuut ≈
ffiffiffiffi
N

p αsψ1

8πf4
: ð5:2Þ

Taking N ≈
ffiffiffi
s

p
=μ1, we then expect that the scattering

amplitude scales as5

M ∝
s
F2

∼
�
αsψ1

8πf4

�
2 s3=2

μ1
≲ 1; ð5:3Þ

4The perturbative unitarity constraints based on the scattering
of KK gravitons have been already obtained for the RS model
with one extra dimension, by studying the process hihj → hkhl.
The corresponding unitarization scale is given by [28]

Λgravity ≈ 1.9
M5

ψ1

≈ 1.9

�
μ1m2

P

ψ2
1

�
1=3

: ð5:1Þ

5Note that the sum over propagators can be divided into three
regimes, depending on whether s ≫ m2

n, s ∼m2
n, or s ≪ m2

n. The
resonant regime is expected to involve only a small number of
modes, while in the third regime, the propagators are dumped by
the heavy masses. We, therefore, expect these contributions to be
subleading with respect to those in the first regime, where the
propagator scales as 1=s for N ∼

ffiffiffi
s

p
=μ1 modes; this justifies the

form of the scattering amplitude in Eq. (5.3).
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from which follows a naive perturbative bound on the
energy by requiring that the expansion parameter is less
than unity. The result agrees, up to Oð1Þ factors, with the
more rigorous calculation presented in Appendix C that
leads to the following constraint:

Λ ≈ ð36πÞ ×
�
μ1f24
ψ2
1

�
1=3

: ð5:4Þ

By rewriting the equation above in terms of the
parameters in the fundamental theory, we find that it is
in fact the 5D axion scale that sets the strength of the
axion couplings when the full tower is taken into account.
This is the expected result of the KK resummation;
see Eq. (5.1).
The final expressions for the g factors will depend on this

cutoff scale, as well as on the mass of the lightest graviton.
It is therefore necessary to introduce gravity constraints in
our setup. A detailed discussion on the impact of the full
KK tower to such bounds is beyond the scope of this work
and does not change the overall conclusions. We therefore
consider the bounds on massive gravity induced only by the
presence of the lightest graviton. For very small masses, the
latter induces long-distance forces that modify Newton’s
potential and enter the ballpark of fifth-force searches.
Experiments look for deviations in the form

VðrÞ ¼ −GN
m1m2

r
½1þ αe−r=λ�; ð5:5Þ

where GN is the Newton constant. Taking into account the
4D Planck mass definition in Eq. (2.3) and upon factorizing
GN , the contribution from the first massive KK-graviton
fixes α ≈ ð4=3Þðψ1=ψ0Þ2 and λ ≈ 1=μ1 [29] so that current
limits [30–37] can be reinterpreted in terms of our model
parameters. For larger graviton masses, astrophysics
bounds from stellar cooling [38,39] become dominant,
while for masses larger than μ1 ≳ 100 MeV, relevant
constraints come from beam-dump and collider searches
[28,40,41]. The resulting two-parameter space bounds are
presented in Fig. 3. In the flat scenario, where ψ1=ψ0 is
fixed, the bound reads R−1 ≳ 6 × 10−3 eV.
To combine these constraints, motivated by the form of

the eigenvalue equation (3.5), we consider a simplified
approach to extra-dimensional maxions that relies on using
the 2 × 2 block mass matrix

M2 ¼ m2
PQ

� ðψ0Þ2 ψ0ψ
π
1

ψπ
1ψ0 ðψπ

1Þ2 þ y2

�
: ð5:6Þ

This is equivalent to truncating the sum in Eq. (3.5) to the
second term. The lightest eigenvalue can then be predicted
up to an accuracy of Oðμ1=μ2Þ2 and, in the limit
y;ψ0 ≪ ψ1, reads

λ20;2×2 ≈ y2
�
ψ0

ψ1

�
2

:

In the same limit, we find

FIG. 3. Collection of bounds on massive gravitons as a function of the lightest KK graviton mass, μ1. The red, green, and purple
regions are excluded by fifth force experiments [30–37], astrophysics [38,39], and collider searches [28,40,41], respectively. The black
dashed line corresponds to the threshold mass value below which KKmaxions can be generated; see Eq. (5.8). This assumes that the KK
tower remains perturbative up to TeV energies.
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g0 ≈
ψ2
1

y2
¼ ψ2

1

f24

χQCD
μ21

≈ ð36πÞ3 χQCD
μ1Λ3

; ð5:7Þ

which approximates very well the expressions in
Eqs. (4.11) and (4.28). In light of these results, let us
argue why this approximation makes sense. The lightest
eigenmode obtained in this approach corresponds to the
lightest maxion of the full model, while the second one is
forced to go close to the canonical line to satisfy the sum
rule (for whatever truncation of the mass matrix, the KK
interactions preserve always a PQ symmetry at the classical
level). By considering more scalar fields, i.e., going beyond
the 2 × 2 approximation, the number of maxions increases
but the prediction for g0 remains reliable, as the mixing
angles between the light fields are all similar. Nevertheless,
the realistic pattern of maxions that reproduce the low-
energy consequences of the full model, with no canonical
eigenstate in the y ≪ 1 limit, can only be recovered by
considering a much larger number of fields n⋆, such
that n⋆=g0 ≈ 1.
In Eq. (5.7), we have expressed the g factors in terms of

the EFT cutoff identified in Eq. (5.4), up until our perturba-
tive predictions are valid. After this step, requiring the g
factor to be larger than the unity results in the condition

μ1 ≲ ð36πÞ3 χQCD
Λ3

; ð5:8Þ

which is independent of the (exponential) differences
between the flat and RS models. We will consider scenarios
withΛ≳ 1 TeV. Such value ensures that the UV resonances
that complete the 5D axion gluonic interaction, such as
colored fermions localized on the IR brane [9], evade LHC
bounds.6 Even though more exotic constructions with extra
branes and throats could weaken these limits, a smaller
cutoff scale would induce large corrections to QCD reso-
nances, namely to the mass of the η0.7 It follows then from
the previous expression that noncanonical KK axions could
arise for μ1 ≪ Oð10Þ eV. Using the conservative one-
graviton bounds in Fig. 3, we find that this value is 3 orders
of magnitude above the limit imposed by tests of the
fifth force.
Let us then explore the limiting case of μ1 ∼ 10−2 eV

which, according to Eq. (5.7), would lead to the largest
value possible for

g0 ≈ 4.5 × 103 ×

�
10−2 eV

μ1

��
1 TeV
Λ

�
3

: ð5:9Þ

Such mass is not yet ruled out experimentally in the flat
scenario, but for RS setups, only larger values for μ1 are
viable and therefore smaller g factors; see Fig. 3.
The previous expression localizes the maxion modes, but

those that interact more strongly with the SM are the heavy
ones in the plateau, for which

107 GeV
fplateau

≈ 1.2

�
μ1

10−2 eV

�
1=2

�
1 TeV
Λ

�
3=2

; ð5:10Þ

according to Eqs. (4.22) and (4.36). In terms of the
coupling represented in Fig. 1,

gaiγγ ≡
α

2π

jCaγj
fi

; ð5:11Þ

we obtain gaγγ;plateau ≈ 2.5 × 10−10 GeV−1, after fixing
μ1 ∼ 10−2 eV, Λ ∼ 1 TeV and jCaγj ≈ 1.92 since all axions
inherit the same model-independent coupling to photons
from the original interaction in Eq. (2.4). Such coupling is
on the verge of the constraints imposed by single-axion
searches in stars; see Fig. 1. We note that model-dependent
interactions could be introduced in the IR brane to make the
KK axions more photophobic, at the cost of some tuning
(see, e.g., Ref. [42]). Nevertheless, supernova data probes
directly the gluonic coupling in Eq. (5.10) for the largest
possible displacements identified in Eq. (5.9). Such bound
takes into account the production of a single axion in the
star, which does not hold in our setup. However, as we
show below, the production of additional eigenstates
strengthens this limit severely in the parameter space of
interest.
By employing the approach of Ref. [19], one can obtain

the effective interaction scale of the KK axions, integrated
up to some characteristic energy Ec (around 30 MeV for
typical supernovae core temperatures):

1

f4;eff:
≡ ℵðEcÞ

f4
; ð5:12Þ

where

ℵ2ðEcÞ≡ f24
X

ðλm4Þ<Ec

1

f2λ
¼

X
ðλm4Þ<Ec

�
λ2

gλ

�
: ð5:13Þ

Let us now take some interesting limits of this expression,
assuming Ec ≫ μ1. In flat scenarios, we obtain

6For instance, a KSVZ-like interaction of the form SΨ ⊃R
d4x

ffiffiffi
g

p
yΨΨ̄LΦΨR þ H:c:, where Φ denotes the PQ field, pro-

duces heavy fermion masses that get warped down,
m2

Ψ ∼ y2ΨAðπRÞ2f25 ∼ y2ΨΛ3=ðAðπRÞMsÞ. If AðπRÞMs ∼ Λ, the
KSVZ fermions are expected at energies of the order of the
EFT cutoff scale.

7In the limit where mu;d → 0, the correction to the η0 mass is
given by Δðm0

ηÞ2 ≈ Nψ2
1Λ4

QCD=f
2
PQ ∼ Λ4

QCD=Λ2.
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ℵ2
flatðEcÞ ≈ 2 ×

8><
>:

1
3π2



μ1E3

c
m4

4

�
m4 ≫ μ1;


Ec
μ1

�
m4 ≪ μ1;

ð5:14Þ

while in the warped case,

ℵ2
RSðEcÞ ≈

8<
:

4
3πγ1



μ1E3

c
ψ2
1
m4

4

�
ψ1m4 ≫ μ1;

γ1
π



ψ2
1
Ec

μ1

�
ψ1m4 ≪ μ1:

ð5:15Þ

The results in Eq. (5.14), applicable to flat extra-dimen-
sional models, agree with previous findings reported in
Ref. [19]. In maxion-dominated regimes, ℵ2

flat ∼ y≲ 1, so
that the collective KK bounds can become weaker relative
to those obtained for a single axion. In contrast, in the
regime dominated by the plateau modes, the relation
1=f4;eff: ∼

ffiffiffiffi
N

p
=f4, where N ≈ Ec=μ1, leads to a substantial

strengthening of these constraints. Note that the transition
between this mass-dependent and flat regimes occurs
approximately at

m⋆
4 ≈

ffiffiffiffiffiffiffiffiffiffi
μ1Ec

p
2ψ1

: ð5:16Þ

By extending these results to the warped case, we find
that the curvature exponentially suppresses the maxion
regimes, while it enhances the plateau contribution.
Whichever of these effects dominates, and therefore the
fate of the bounds, depends on the parameter space of
interest.
Figure 4 shows the values of the “rescaling factor,” ℵ,

computed numerically for the flat and different RS scenar-
ios. In this figure, we can clearly identify the transition
between maxion and plateau dominated regimes,
as well as other features discussed previously. Choosing

μ1 ¼ 10−2 eV, which produces the largest g factors allowed
by fifth force constraints in the flat scenario [see Eq. (5.9)],
we find that the rescaling factor is dominated by the plateau
modes and, therefore, it is extremely large, ℵflat ∼ 105. To
compare this with curved models, we have chosen a larger
value for μ1 ¼ 1 eV that complies with gravity constraints
for ψ1 as large as 104. For the sameΛ ¼ 1 TeV (represented
by the vertical lines in Fig. 4), we infer that the
warped scenario worsens significantly the bounds, with
ℵRS ∼ ℵflatψ1 ∼ 108. Such benchmark corresponds already
to a very small displacement of theKKmodes from theQCD
canonical line, g0 ∼ 102.
We can take the argument further by computing the

minimum value of m4, in Eq. (5.15), which is compatible
with a suppression of the bounds, i.e., ℵðEcÞ < 1. Plugging
in this value in the expression for the maxion g factor, we
obtain

m2
4 ≳

�
μ1E3

c

ψ2
1

�
1=2

⇒ g0 ≈
ψ2
1

y2
≳ ψ1

�
Ec

μ1

�
3=2

: ð5:17Þ

Written in terms of the cutoff scale, as in Eq. (5.7), such
condition implies that

μ1 ≳ ψ2
1

ð36πÞ6
Λ6E3

c

χ2QCD

≈ 1010ψ2
1

�
Λ

1 TeV

�
6
�

Ec

30 MeV

�
3

GeV; ð5:18Þ

which is clearly incompatible with the maxion regime.
Indeed, the equation above is in strong contradiction with
Eq. (5.8). This shows unambiguously that ℵðEcÞ > 1 even
for maxion regimes, unless Ec is comparable to μ1.
We, therefore, conclude that the maxion patterns from

the extra-dimensional models analyzed in this work are in
severe tension with the joint combination of gravity and
astrophysical constraints.
Using this simpler 2 × 2 approximation, we also checked

the possibility of generating maxions in the continuum
clockwork model [43]. We have found that also for this
model, the previous conclusions hold: There is no param-
eter space that complies with gravity bounds where g0 > 1.
This is in part expected as the clockwork mechanism was
constructed to suppress mixings between neighbors.

VI. GENERALIZATIONS

In the previous discussion, we explored the conse-
quences of only one extra dimension and exploited the
common WFs of the KK gravitons and axions. One might
then wonder if different conclusions could be drawn in
more general scenarios. Generalizations to the previous
assumptions include an extension of the number of extra
spacetime dimensions, with the axion propagating only in a
subset of those, δ⋆ < δ, and a misalignment between the

FIG. 4. The “rescaling factor” ℵðEcÞ, defined in Eq. (5.13), as a
function of the PQ mass. The different lines correspond to
different benchmark values for μ1 and ψ1 that allow for maxion
regimes interpolating the RS and flat scenarios. The characteristic
energy was taken to be Ec ¼ 30 MeV. The parameter space to the
left of the dashed lines, where Λ > 1 TeV, is consistent with the
EFT analysis; see the text for details.
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gravitons and axionWFs due to more complex dynamics of
the PQ field in the bulk.
In the following, we briefly discuss such points with

some examples.

A. Beyond one extra dimension

The consequences of considering a larger number of
extra dimensions are not trivial to address and depend on
the size of each dimension as well as its compactification.
In general, in δ extra dimensions, the axion field can be
expanded as

aðx; yÞ ¼ 1

ð2πRMsÞδ=2
X
n

anðxÞψnðyÞ: ð6:1Þ

This results in the generalized KK Lagrangian

L4 ¼
X
n

�
1

2
ð∂μânÞ2 −

1

2
μ2nâ2n

�

þ 1

f4

αs
8π

X
n

ðânψnÞG̃μνGμν; ð6:2Þ

and in the generalized eigenvalue equation,

X
jnj≤N

ðψnÞ2
λ2 − ðμn=μ1Þ2y2

¼ 1; ð6:3Þ

see Appendix A for details. As before, μ1 is the lightest
mode of the theory, while N denotes the largest KK number
allowed by perturbative unitarity constraints, i.e.,
N ≡ Λ=μ1. Note that the above expression is completely
general and holds independently of the number of dimen-
sions and type of compactifications. It also shows a new
feature compared to the one-dimensional case: The sum
diverges logarithmically and exponentially with N for
δ ¼ 2 and δ ≥ 3, respectively. This suggests a stronger
dependence of both the eigenvalues and the g factors on the
cutoff scale with respect to the one-dimensional case.
To find explicitly these expressions, let us consider

a scenario in which each of the δ extra dimensions
respects the same orbifold symmetry as considered in
the previous sections so that the WFs can be written as
ψn ≡ ψn1ðy1Þ × � � � × ψnδðyδÞ. The smallest eigenvalue in
our problem can be then computed by approximating

X
n

fðjnjÞ ≈
Z

dδnfðjnjÞ ¼ Sδ−1

Z
N

1

dnnδ−1fðnÞ; ð6:4Þ

where Sδ−1 ≡ 2πδ=2=Γðδ=2Þ is the surface area of the δ ball.
Such an approximation is sufficient to capture the relevant
behavior of the expressions with δ (in particular, the leading
growth with N), but further precision can be achieved by
including Euler-Mclaurin correction terms [44]. In the

limits ψ1 ≫ ψ0 and N ≫ 1, we find8

λ20 ≈ y2
�
ψ0

ψ1

�
2δ
�

2δ

Sδ−1

�8><
>:

1 δ ¼ 1;

1=logN δ ¼ 2;

ðδ − 2Þ=Nδ−2 δ ≥ 3:

ð6:5Þ

Notice that in the case δ ¼ 1, we recover our previous
result, which is independent of the large N behavior.
The corresponding g factor reads in turn

g0 ≈
ψ2δ
1

y2

�
Sδ−1
2δ

�
×

8<
:

1 δ ¼ 1;

logN δ ¼ 2;

Nδ−2=ðδ − 2Þ δ ≥ 3;

ð6:6Þ

and consequently:

f0 ≈ f4 ×
ψ2δ
1

ψδ
0

�
Sδ−1
2δy2

�
×

8<
:

1 δ ¼ 1;

logN δ ¼ 2;

Nδ−2=ðδ − 2Þ δ ≥ 3:

ð6:7Þ

The previous expressions show that the potential maxion
displacements grow exponentially with the number of
dimensions. Nevertheless, the unitarity and gravity con-
straints also become stronger. Indeed, the cutoff scale must
be modified by the enhanced coupling and number of
modes contributing to the amplitude, as discussed in
Appendix C. This results in

Λδþ2 ≈ ð36πÞ3
�
2δδ

Sδ−1

��
μδ1f

2
4

ψ2δ
1

�
: ð6:8Þ

By reexpressing g0 in terms of this scale, we find

g0 ≈ ð36πÞ3 χQCD
μ1Λ3

8>>><
>>>:

1; δ ¼ 1;

μ1
Λ

�
log



Λ2

μ2
1

�
δ ¼ 2;


δ
δ−2

�

μ1
Λ

�
δ ≥ 3:

ð6:9Þ

The result is quite remarkable. On the one hand, it does not
depend on δ for a large number of extra dimensions. On the
other hand, all results beyond δ ¼ 1 are suppressed by
μ1=Λ. In fact, for δ ≥ 3, the dependence on μ1 completely
drops out. Therefore, we conclude that the inclusion of
more extra dimensions further precludes the possibility of
maxion solutions.
On the experimental side, the contribution of the lightest

gravitons with mass μ1 to fifth force experiments gets
rescaled by the number of dimensions, i.e., α ∝ δðψ1=ψ0Þ2.
The lowest values of μ1, which were allowed in the δ ¼ 1
case, are consequently excluded in scenarios with more

8The 2δ stems from summing only over the positive n.
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spacetime dimensions. Therefore, if the axion propagates in
only a subset δ⋆ ≤ 2 of the total number of spacetime
dimensions, the bounds on g0 will become stronger.
One might still wonder about the consequences of

introducing nonuniversal features among the extra dimen-
sions. Such a case is more involved and does not allow a
general answer, as fifth-force searches do not constrain the
same combination of WFs and masses that enter the
eigenvalue equation. Nevertheless, let us imagine a sce-
nario where a series of massive gravitons (and therefore
axions) develops much larger WFs than the rest, potentially
giving an important contribution to the maxions g factor.
While these would contribute to the eigenvalue equation
with a factor ∼ðψn⋆=μn⋆Þ2, this is not the combination
bounded by gravity tests, ∼ðψn⋆Þ2e−μn⋆ r. In particular, the
exponential suppression could effectively screen the con-
tribution of these modes to the Newton potential, such that
the corresponding WFs would remain essentially uncon-
strained by tests of the fifth force. This scenario would then
have the potential to change our conclusions concerning the
largest value allowed for g0. However, the contribution of
such modes to astrophysical probes as well as to the
scattering amplitude that determines the unitarization scale
is expected to scale in the same way as the contribution to
the g factor. Therefore, these two constraints could close the
parameter space for maxions even in this case.
Overall, while the above arguments are not sufficient to

completely rule out the KK maxion scenarios, they suggest
that it is unlikely to find such solutions in a generic extra-
dimensional model.

B. A different VEV profile in the bulk

The EFT in Eq. (2.4), studied throughout this work,
could be generated by a constant VEV profile of the PQ
field on the bulk. A possible straightforward extension
of our setup is then to consider a less trivial, namely
y-dependent, VEV profile for this field. To discuss this
case, we write, in a flat spacetime background, a model for
a complex PQ field,Φ ¼ ρeia=f5=

ffiffiffi
2

p
, freely propagating in

the bulk:

SΦ ¼ Ms

Z
d4xdy

ffiffiffi
g

p ½∂AΦ⋆
∂
AΦ −m2jΦj2�: ð6:10Þ

The case of a warped scenario is discussed in Ref. [45]. We
additionally include a localized potential to induce a VEV
hρðyÞiy¼πR ¼ f5 on the IR brane, i.e.,

SIR ⊂
Z

d4xdy
ffiffiffi
g

p
δðy − πRÞ

�
gAB∂AΦ⋆

∂BΦ

−
λ5
2
jΦj2ðjΦj2 − f25Þ

�
: ð6:11Þ

Let us now discuss the y profile of ρðx; yÞ ¼
hρðyÞi þ ρ̃ðx; yÞ. The free EOM for the hρðyÞi reads

ð∂25 −m2ÞhρðyÞi ¼ 0; ð6:12Þ

where m2 ¼ λ5f25 is the mass of the radial mode after
spontaneous symmetry breaking. By imposing the boun-
dary conditions

∂5hρðyÞiy¼0 ¼ 0; hρðπRÞi ¼ f5; ð6:13Þ

we obtain

hρðyÞi ¼ f5 ×
coshðmyÞ
coshðmπRÞ : ð6:14Þ

In turn, the axion EOM reads

∂A

�
∂
Aa

�hρðyÞi
f5

�
2
�
¼ 0: ð6:15Þ

By employing the KK decomposition,

aðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πRMs

p
X∞
n¼0

anðxÞϕnðyÞ; ð6:16Þ

we obtain a modified Sturm-Liouville equation:

−∂5½pðyÞ∂5ϕnðyÞ� ¼ μ2nrðyÞϕn; ð6:17Þ

where

rðyÞ ¼ pðyÞ≡
�hρðyÞi

f5

�
2

: ð6:18Þ

To find the solutions for ϕn, we require that the derivatives
vanish at the boundaries,

ð∂5ϕnðyÞÞy¼0;πR ¼ 0: ð6:19Þ

A constant function is a solution of Eq. (6.17) for μ0 ¼ 0,
corresponding to the lightest mode. After normalization,9

and defining ν≡mR, we obtain

ϕ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πνcosh2ðπνÞ

2πνþ sinhð2πνÞ

s

¼
�
1; m → 0;ffiffiffiffiffiffiffiffiffiffiffiffi
2πmR

p
; m → ∞:

ð6:21Þ

The flat model is recovered by taking m → 0.

9As in Eq. (2.6), we require:

1

2πR

Z
πR

−πR
dyrðyÞϕiðyÞϕjðyÞ ¼ δij: ð6:20Þ
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We turn now into the massive modes, for which we
obtain10:

ϕnðyÞ ¼ ð−1Þn cosðyμ̃nÞ
coshðmyÞ fðνÞ; ð6:22Þ

with

fðνÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πRμ̃n cosh2ðπνÞ

2πRμ̃n þ sinð2πRμ̃nÞ

s
: ð6:23Þ

The corresponding masses are given by

μ2n ¼ m2 þ μ̃2n; ð6:24Þ

where μ̃n are the solutions to the following equation:

m tanhðπνÞ cosðπRμ̃nÞ þ μ̃n sinðπRμ̃nÞ ¼ 0: ð6:25Þ

Such an equation has no closed solution, but in the limit of
small and large m, one finds

μ̃n ¼
1

R

�
n; m → 0;

ðnþ 1=2Þ; m → ∞;
ð6:26Þ

with n∈N. In both cases, the masses are bounded from
below, μn ≥ m.
By making use of Eq. (6.25), we can write the WFs at

y ¼ πR as

ϕnðπRÞ ¼ −ð−1Þn μ̃n
m

sinðπRμ̃nÞ
sinhðπνÞ fðνÞ; ð6:27Þ

which, in the previously considered limits, read:

ϕnðπRÞ ¼
ffiffiffi
2

p
8<
:

1; m → 0;

−


μ̃n
m

�
; m → ∞:

ð6:28Þ

Using these results, it becomes clear that in the presence
of a massive bulk PQ field, the KK axions become heavier
and the WFs more suppressed, for n > 0. The correspond-
ing mass matrix is therefore expected to become more
diagonal, and the an>0 eigenstates more decoupled from the
zero mode. In this way, in the limit where the predictions
are distinct from the ones analyzed in the previous
sections, this scenario is expected to deliver a canonical
QCD axion.

VII. THE ONLY POSSIBLE PATTERN

We have concluded that noncanonical QCD axion
patterns induced by a PQ bulk field are in significant
tension with fifth force and astrophysical bounds. This
claim was verified in both flat and RS scenarios, for
different VEV profiles of the bulk field, and independently
of the number of extra orbifolded spacetime dimensions. In
light of these results, we therefore expect that only
canonical KK patterns emerge in these generic scenarios.
The canonical pattern consists on having one axion in the

canonical QCD band plus a plateau of heavy modes,
located a distance Δm ¼ μ1 away from the former. Even
though the plateau modes are expected to be as weakly
interacting as the QCD axion, their resummation could
make the pattern more visible to experiment and eventually
lead to the identification of the QCD axion interaction
scale. For instance, in a broadband experiment like CAST,
the overall effect of the KK exchange induces a stronger
coupling to photons given by

g2aγγ;eff ∼ Ng2aγγ

≈ N

�
α

2π

�
2
�
ψ1

f4

�
2

≈
�
keV
Δm

��
α

2π

�
2
�

1

fplateau

�
2

; ð7:1Þ

which illustrates how a discovery of a multiple KK signal
could translate into an identification of the zero mode in the
canonical QCD axion band. Additional implications of the
KK photon coupling have been discussed, for instance, in
Refs. [7,46–48]. It is also worth pointing out that, while in
these regimes the massive KK modes would be decoupled
from the solution to the strong CP problem, they could
contribute sizably to the dark matter abundance of the
Universe, affecting significantly the predictions with
respect to the single axion case [17–19,27].
For large values of μ1 ∼OðMeVÞ, such that the second

mode would appear at LHC scales, the resummation effects
are expected to be substantially weaker, and instead only a
small number of modes could be tested resonantly, with no
significant implications to the QCD axion. (This conclusion
could be substantially different, however, in models
capable of generating large displacements of KK maxions.)
Finally, let us also comment on which UV parameters

could generate the patterns discussed in this work. As we
showed in previous sections, the mixing among KK modes
is fully predicted by the compactification of the higher-
dimensional theory, and it is controlled by the mixing
parameter

ψ1

y
∼ ψ2

1

Λ2
QCDmP

ðM5f5Þ3=2
; ð7:2Þ10Again, we choose the signs that are convenient in later steps,

but with no impact on the results.
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where, in the second step, we assumed thatMs ∼ f5 ≤ M5.
In particular, if we further require that all scales are equal in
the UV model, it follows that

ψ1

y
∼
�

ΛQCD

AðπRÞM5

�
2

≪ 1; ð7:3Þ

due to the requirement of perturbative unitarity in the
gravity sector up to the TeV scale [see Eq. (5.1)]. The most
natural extra-dimensional setups hence lead to the decou-
pling of the massive modes, and consequently to the
presence of a single axion in the canonical QCD line.
More hierarchical scenarios, withM5 ≫ f5, would then be
required to produce large mixings among the KK modes.
Such hierarchical scenarios could nevertheless be real-

ized in Nature, at the cost of raising new questions, e.g.,
related to the mechanism to stabilize the different UV
scales. The interest of our results is that we proved,
independently of relations among the fundamental para-
meters, that all the exotic scenarios that could arise from the
UV theory are phenomenologically constrained.
Although this holds in generic models, established upon

standard KKWFs and compactifications, engaging in more
elaborate constructions to allow sizable KK mixing could
have profound consequences on the axion phenomenology.
It remains to be tested, for instance, the possibility to
generate the extra-dimensional maxion patterns in
(1) Scenarios where QCD also propagates in the bulk

of the extra dimensions δ [12,49], enhancing a
δ⋆-axion mass and therefore that of the 4D
KK modes;

(2) More exotic constructions where the WFs of the
axion are disentangled from gravity bounds, e.g.,
due to the combination of additional bulk fields and
more involved compactifications; and

(3) The string axiverse, which provides extra mass
sources for the KK modes of higher dimensional
fields, in setups where the PQ symmetry remains
essentially unbroken at low energies. Under the
assumption that the different instanton scales are
highly hierarchical, it has been found that the mixing
of light ALPs with the axion gluonic combination is
very weak [23]. However, a study of more aligned
regimes, which could lead to the exotic phenom-
enology discussed in this work, is still lacking.

We plan to explore some of these directions in the near
future.
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APPENDIX A: EIGENSYSTEM OF THE MASS
MATRIX

1. Eigenvalues in one extra dimension

To obtain the eigenvalues in our problem, we must
compute the determinant of the following ðN þ 1Þ2 matrix,
which accounts for the mixing of the zero mode with N
massive modes:

A≡ M2

m2
PQ

− λ21

¼

0
BBBBBB@

c0 ζ ζ … ζ

ζ σ þ c1 σ … σ

ζ σ σ þ c2 … σ

… … … … σ

ζ σ σ σ σ þ cN

1
CCCCCCA
; ðA1Þ

where ζ ≡ ψ0ψ i, σ ≡ ðψ iÞ2, c0 ≡ ðψ0Þ2 − λ2, and ci ≡
ðμi=μ1Þ2y2 − λ2. By making use of the fact that linear
combinations of rows (l) and columns (c) do not change
the determinant, we can greatly simplify this matrix. For
instance, by making ln → ln − lnþ1, starting from the
second row, i.e., n ¼ 1, we find:

detðAÞ ¼

��������������

c0 ζ ζ ζ … ζ

0 c1 −c2 0 … 0

0 0 c2 −c3 … 0

0 0 0 c3 … 0

… … … … … −cN
ζ σ σ σ σ σ þ cN

��������������
: ðA2Þ

The matrix is now triangular, up to the last line. Assuming
ci ≠ 0, we will now subtract each of the lines above in order
to eliminate consecutively the elements ANn. For example,
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after the first iteration lN → lN − ðζ=c0Þl0, we get to

detðAÞ ¼

��������������

c0 ζ ζ ζ … ζ

0 c1 −c2 0 … 0

0 0 c2 −c3 … 0

0 0 0 c3 … 0

… … … … … −cN
0 −s1≡ σ− ζ2=c0 −s1 −s1 −s1 cN − s1

��������������
:

ðA3Þ

After the second iteration lN → lN þ ðs1=c1Þl1, we can
eliminate AN1 so that the next element AN2 becomes
−s2 ≡ −s1 − ðc2=c1Þs1. Denoting by −sn the ANn term
obtained after each iteration, we can work out the recursive
relation

snþ1 ¼ s1 þ
cnþ1

cn
sn; ðA4Þ

with the boundary condition

sN ¼ s1 þ
cN
cN−1

sN−1 − cN: ðA5Þ

Using now Eq. (A4) to replace the element sN−1 in the Eq.
above, and doing so consecutively for the elements sN−2,
sN−3, etc., we finally obtain

−sN ¼ cN

�
1 − s1

XN
n¼1

1

cn

�
: ðA6Þ

As the matrix is now upper triangular, the determinant reads

detðAÞ ¼
�YN−1

n¼0

cn

�
× ð−sNÞ: ðA7Þ

The eigenvalues are to be found in the zeros of such
determinant. By assumption, ci ≠ 0, so we must require

0¼! sN ∝ 1 − s1
XN
n¼1

1

cn
; ðA8Þ

that is, the eigenvalues satisfy the equation

s1
XN
n¼1

1

cn
¼ 1: ðA9Þ

In the original notation, such a relation reads

λ2
XN
n¼1

ðψnÞ2
ðμn=μ1Þ2y2 − λ2

¼ ðψ2
0 − λ2Þ: ðA10Þ

In more compact notation, it follows that

XN
n¼0

ðψnÞ2
λ2 − ðμn=μ1Þ2y2

¼ 1; ðA11Þ

where μ0 ¼ 0.

2. Eigenvectors in one extra dimension

We focus now on the eigenvectors u ofM2. As the linear
system that we are trying to solve is homogeneous,
Au ¼ 0, we can use as a starting point the result found
in the previous section, i.e., the matrix

0
BBBBBBBBB@

c0 ζ ζ ζ … ζ

0 c1 −c2 0 … 0

0 0 c2 −c3 … 0

0 0 0 c3 … 0

… … … … … −cN
0 0 0 0 0 −sN

1
CCCCCCCCCA
: ðA12Þ

Let us consider the family of N þ 1 eigenvectors, each
labeled by its eigenvalue λ, with components ui. All entries
in the last row vanish once we employ the condition in
Eq. (A8). This grants us the freedom to set one component
to an arbitrary constant, e.g., uN . By solving the eigenvector
equation, we then find a recursive relation for the eigen-
vector components

ciui ¼ ciþ1uiþ1; 1 ≤ i ≤ N − 1; ðA13Þ

which implies:

ui ¼
cN
ci

uN; ∀ i∈ ½1; N − 1�: ðA14Þ

Consequently, the first component can be written as

u0 ¼ −
ζ

c0

�XN
n¼1

un

�
¼ −ζ

cN
c0

�XN
n¼1

1

cn

�
uN ¼ −

ζ

s1

cN
c0

uN

¼ ζ

σc0 − ζ2
cNuN; ðA15Þ

where in the last steps, we made use of Eq. (A9).
Altogether, the eigenvectors can be expressed as

u ¼ N λ

�
…;

ψ1

ðμi=μ1Þ2y2 − λ2
;…;

ψ1

ðμN=μ1Þ2y2 − λ2

�
T
;

ðA16Þ

with the normalization constant N λ given by
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N λ ¼
�XN
n¼0

�
ψn

ðμn=μ1Þ2y2 − λ2

�
2
�
−1=2

: ðA17Þ

More compactly, we can write

ui ¼ N λ
ψ i

ðμi=μ1Þ2y2 − λ2
: ðA18Þ

3. Eigenvalues and eigenvectors in arbitrary dimensions

The formulas for the eigenvalues and eigenvectors found in
the one-dimensional case can be generalized to the case of an
arbitrary number of dimensions δ, without the need to make
any assumptions on ψn. The key observation is that any
matrix with different WF factors can be transformed into a
universal one, with nonuniversal terms only in the diagonal.
This allows us to use the previously obtained results.
Let us begin by revisiting the mass matrix structure for

δ ¼ 1:

ðM2Þij ¼ m2
PQ

�
ψ iψ j þ y2

�
μi
μ1

�
2

δij

�
: ðA19Þ

The same structure holds for an arbitrary δ since each
vector label n ¼ ðn1; n2;…; nδÞ can be counted using a
single n label; e.g., for δ ¼ 2:

ð0; 0Þ → n ¼ 0; ð1; 0Þ → n ¼ 1; ð0; 1Þ → n ¼ 2;

ð2; 0Þ → n ¼ 3; ð1; 1Þ → n ¼ 4; … ðA20Þ

So, in this example, the mixing in the entryM2
12 is given by

ψ1ψ2 ≡ ψ ð1;0Þψ ð0;1Þ in the notation above. We will identify
μ1 with the mass of the lightest mode in the theory (which
now can have several copies).
We now proceed with the computation of the eigenvalues

and eigenvectors.
a. Eigenvalues. The eigenvalues are found by requiring

that the determinant of the following matrix

Aij ≡m2
PQ½ψ iψ j þ ðy2ðμi=μ1Þ2 − λ2Þδij� ðA21Þ

is zero. By multiplying a row or a column by a number α,
the determinant also gets multiplied by α. This does not
affect the zeros of the characteristic polynomial. We
therefore multiply each i row by ψ0=ψ i and each j column
by ψ0=ψ j and proceed to evaluate the equation

����ψ2
0 þ

�
ðy2ðμi=μ1Þ2 − λ2Þ ψ2

0

ψ iψ j

�
δij

���� ¼ 0: ðA22Þ

This matrix has the same form as the one studied in the one-
dimensional case [see Eq. (A1)], with constant values in all
entries besides the diagonal. Therefore, by applying the
same steps as in Sec. A, we obtain the straightforward

generalization of Eq. (A11):

XN
n¼0

ðψnÞ2
λ2 − ðμn=μ1Þ2y2

¼ 1; ðA23Þ

or equivalently

X
jnj≤N

ðψπ
nÞ2

λ2 − ðμn=μ1Þ2y2
¼ 1: ðA24Þ

b. Eigenvectors. The computation of the eigenvectors
follows a similar reasoning. We aim to compute the
solutions of the homogeneous linear system defined by
Eq. (A21). Being homogeneous, we can multiply each row
by a constant without modifying the solutions: we choose
ψ0=ψ i. Regarding the columns, we redefine the jth
component of the eigenvectors (that is just a variable in
our linear system of equations) as

uj ¼
ψ0

ψ j
u0j: ðA25Þ

After these replacements, the system is again in the form of
the one we analyzed in the one-dimensional case. This
allows us to use the same results derived before, upon
replacing, in the end, each jth component by uj. By
following this procedure, one finds the result formally
reads the same, and one can replace the sum over the single
label n with the sum over all possible vector labels n.
Finally, this also implies that the expression for the

g-factors remains formally the same.

APPENDIX B: THE QCD AXION SUM RULE IN
EXTRA DIMENSIONS

The QCD axion sum rule was proved in all generality, for
an arbitrary dimensional mass matrix, in Ref. [4]. Since the
extra-dimensional models considered here are PQ invariant,
the sum rule must also apply here. One can check it
explicitly using the results derived in the previous section.
With this aim, let us consider the following unit vector:

s⃗ ¼ ð1; 0; 0; 0;…Þ: ðB1Þ

By applying this vector to the squared mass matrix in the
original basis, we can extract its first component:

ψ2
0 ¼ ðM2Þ00 ¼ sTM2s ¼ vTM2

phyv: ðB2Þ

This must be equivalent to acting with v ¼ UTs on M2
phy,

the physical mass matrix obtained after diagonalization via
the rotation matrix U ¼ ðuλ0 ;uλ1 ;…;uλN Þ. In particular,
the components of such a vector are given by

EXTRA-DIMENSIONAL AXION PATTERNS PHYS. REV. D 111, 075006 (2025)

075006-17



vi ¼
X
j

Ujisj ¼ U0i: ðB3Þ

Using Eq. (A18), it then follows that

vTM2
phyv ¼

X
λ

v2λλ
2 ¼ ψ2

0

X
λ

N 2
λ

λ2
; ðB4Þ

which—in order to match Eq. (B2)—requires

X
λ

�
N 2

λ

λ2

�
¼

X
λ

�
1

gλ

�
¼ 1: ðB5Þ

APPENDIX C: PERTURBATIVE UNITARITY
CONSTRAINTS

We will focus separately on the one- and multi-
extra-dimensional cases.
Setting δ ¼ 1 at first, let us consider the elastic scattering

aig → aig to infer a constraint from perturbative unitarity.11 The
diagrams contributing to the process are depicted in Fig. 5. We
employ partial-wave analysis (see, e.g., Ref. [50]) and compute
the J ¼ 1

M1 ≈
1

32π

Z
dðcos θÞdJ¼1

s1s2 ðθÞMs1s2ðs; θÞ; ðC1Þ

where dJs1s2ðθÞ is the Wigner d-function, and in this caseMs1s2
is the amplitude relative to the helicities s1;2 ¼ � of the initial
and final gluons. The scattering matrix element is nonvanishing
for the same initial and final color state and in the high-energy
limits reads

M1;ii¼
�
M1;þþ M1;þ−

M1;−þ M1;−−

�
¼
�
αsψ i

8πf4

�
2 s
6π

�
1=4 1

1 1=4

�
:

ðC2Þ

Perturbative unitarity imposes the smallest of the eigenvalues of
such matrix to be smaller than 1, thus implying�

αsψ i

8πf4

�
2
�

5

24π

�
s ≤ 1: ðC3Þ

If we now consider the full set of processes aig → ajg, the
number of amplitudes increases. The full scattering amplitude
matrix for this set of processes can be block built starting from
M1;ii such that

ðM1Þij ¼ M1;ij: ðC4Þ

If we consider the first N axions, then the largest eigenvalue of
such matrix is found to grow linearly withN and the condition of
Eq. (C3) becomes

N ×

�
αsψ i

8πf4

�
2
�

5

24π

�
s ≈

�
αsψ i

8πf4

�
2
�

5

24π

�
s3=2

μ1
≤ 1; ðC5Þ

where in the last step, we approximated again the number of
available axions as N ≈

ffiffiffi
s

p
=μ1. The result matches the naive

result of Eq. (5.3) corrected by a numerical factor
of 5=ð24πÞ ≈ 1=ð5πÞ.
We can therefore identify the cutoff of our EFT to be

Λ ≈
�
320π3

α2s

�
1=3

�
μ1f24
ψ2
i

�
1=3

≈ ð36πÞ
�
μ1f24
ψ2
i

�
1=3

; ðC6Þ

where we employed αsð1 TeVÞ ≈ 0.08 [51].
When dealing with a larger number of extra spacetime

dimensions, δ > 1, the previous discussion needs to be
generalized. We will obtain now the more general expres-
sion for the unitarization scale, assuming that all dimen-
sions respect the same orbifold symmetry as discussed in
Sec. VI A.
In such case, Eq. (C5) is modified since the number of

modes contributing to the amplitude now grows exponen-
tially. Denoting by N the number that saturates the
condition μn ≲ ffiffiffi

s
p

, the effective number of axions can
be estimated as

Neff ¼
X
jnj≤N

1 ≈
Sδ−1
2δδ

Nδ: ðC7Þ

As before, N ≈
ffiffiffi
s

p
=μ1 so that Eq. (C5) becomes

Neff ×

�
αsψ

δ
1

8πf4

�
2
�

5

24π

�
s ≤ 1; ðC8Þ

leading to

Λδþ2 ≈ ð36πÞ3
�
2δδ

Sδ−1

��
f24μ

δ
1

ψ2δ
1

�
: ðC9Þ

(a) (b)

FIG. 5. Feynman diagrams contributing to aig → ajg.

11Note that by considering the aig → aig process convoluted
with the gluon PDFs, or even other processes involving weaker
tree-level couplings of the axions, the unitarity bound would only
become weaker.
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