
AI-Powered Federated Task Scheduling and
Self-Healing Framework in Dynamic Cloud Systems

Umit Demirbaga∗, Omer Rana†, Ashiq Anjum‡, Gagangeet Singh Aujla§
∗Department of Computer Engineering, Bartin University, Türkiye

†Department of Computer Science and Informatics, Cardiff University, United Kingdom
‡Department of Computing and Mathematical Sciences, University of Leicester, United Kingdom

§Department of Computer Science, Durham University, United Kingdom
Email: udemirbaga@bartin.edu.tr, ranaof@cardiff.ac.uk, aa1180@leicester.ac.uk, gagangeet.s.aujla@durham.ac.uk.

Abstract—Federated cloud environments have emerged to in-
tegrate multiple cloud providers like AWS, Azure, and Google
Cloud seamlessly into cloud computing. Optimising resource
utilisation and ensuring high availability in such environments
pose significant challenges. This paper comprehensively inves-
tigates federated task scheduling algorithms and self-healing
mechanisms in autonomous federated cloud setups. The research
objectives include the development of an independent task-
scheduling algorithm capable of intelligently distributing com-
puting tasks across federated clouds based on workload charac-
teristics, resource availability, and network latency. Furthermore,
the study investigates implementing self-healing mechanisms to
detect faults and performance degradation, triggering automatic
recovery processes for uninterrupted service availability. The
proposed approaches are evaluated through real-world experi-
ments, considering diverse cloud workloads and failure scenarios,
focusing on resource utilisation efficiency, system performance,
and the effectiveness of the self-healing mechanisms in mitigating
cloud failures and maintaining seamless operations within the
federated environment.

Index Terms—Federated learning, Federated cloud computing,
MapReduce, Artificial intelligence, Big data analysis

I. INTRODUCTION

FEDERATED learning is a decentralised machine learning
(ML) paradigm that allows several devices or entities to

train a single model while storing and protecting their data
locally [1]. In federated learning, each device node performs
model training using its local data and shares only the model
updates with the central server instead of providing raw data.
The global model is then updated with the help of these
aggregated changes before being transmitted once more to
the involved nodes. This privacy-preserving distributed learn-
ing paradigm tackles data privacy concerns by decentralising
sensitive information, making it especially ideal for situations
involving huge and sensitive data, such as mobile devices, edge
computing, and Internet of Things (IoT) settings [2].

The concept of federated cloud or cloud federation emerges
to overcome the major issues and limitations of single-cloud
setups, offering flexibility, scalability, and improved privacy.
Creates a unified, connected cloud environment across mul-
tiple cloud service providers that aggregates all computing
resources and services to accelerate end-user engagements [3].
Given this capability, the federated cloud enables customers to
access various custom services such that vendor lock-in risk is

mitigated and tailors individualised needs. To handle this, AI
systems learn from continuous real-time data collected from
cloud resources [4], including task execution times, resource
utilisation, network latency, and workload characteristics [5].
By analysing these performance metrics, AI models identify
patterns and trends, such as bottlenecks, straggler tasks, or
underutilised resources. The learning process involves training
machine learning models on this data to detect inefficiencies
and predict task delays. These models are continuously up-
dated with new data to adapt to the dynamic conditions of
cloud environments.

Some researchers have investigated task rescheduling de-
ployments in cloud computing environments. The authors of
[6] propose a novel approach termed MALO, which com-
bines elite-based differential evolution with hybrid antlion
optimisation to address the issue of efficient job scheduling
in cloud computing. Their approach minimises makespan
while maximising resource utilisation, a crucial objective in
cloud computing. Extensive experiments were conducted on
synthetic and real trace datasets, utilising the CloudSim toolkit
[7]. The limitation of this work lies in the need for further
exploration and validation across a broader range of com-
plex optimisation problems and real-world cloud computing
scenarios. The paper [8] addresses big data task scheduling
challenges in cloud computing, focusing on achieving mini-
mal makespan and efficient resource utilisation. The authors
present BigTrustScheduling, a three-stage trust-aware schedul-
ing solution that computes VM trust levels, determines task
priorities, and facilitates trust-aware scheduling. Nonetheless,
a constraint of the proposed solution resides in the need
for further exploration and adaptation to other computing
environments beyond cloud, IoT, and parallel computing to
ensure the generalisability and effectiveness of its trust model.

Developing an autonomous task scheduling algorithm that
intelligently allocates computing tasks across diverse cloud re-
sources while accommodating workload diversity and resource
heterogeneity presents a formidable challenge. The dynamic
nature of federated clouds demands a real-time scheduling
mechanism capable of adapting to varying conditions, optimis-
ing resource utilisation, and ensuring efficient task distribution.
Additionally, implementing fault detection mechanisms suit-
able for identifying issues within federated cloud components

and initiating automatic recovery processes is essential to en-
sure high availability. To this end, we investigate the following
research questions (RQs) in this paper:

• (RQ1) How can real-time monitoring techniques effec-
tively detect straggler tasks in dynamic cloud systems?

• (RQ2) What are the most effective strategies for dynam-
ically reallocating straggler tasks across federated clouds
to minimise delays and optimise resource utilisation?

• (RQ3) How does managing stragglers impact the over-
all system performance, resource efficiency, and service
availability in federated cloud environments?

A. Contributions

A thorough assessment of the suggested AI-driven federated
task scheduling and self-healing approaches is sought through
extensive real-world tests, taking into account a variety of
cloud workloads and failure scenarios to assess their efficacy,
scalability, and applicability within the federated cloud ecosys-
tem. By focusing on these goals, this research hopes to support
the creation of a reliable and effective distributed computing
architecture while optimising and improving resource utili-
sation, fault resilience, and overall performance in federated
cloud settings. To this end, we propose an AI-powered self-
healing framework for federated cloud systems. It focuses on
detecting straggler tasks and autonomously reallocating them
to ensure high availability and optimal resource utilisation.
Here are the key contributions of the paper:

• Developing a real-time straggler detection mechanism
which identifies delayed tasks that hinder performance
in dynamic cloud environments.

• Proposing an AI-driven task reallocation framework,
which autonomously relocates straggler tasks to alterna-
tive cloud clusters, thus reducing delays and improving
resource utilisation.

• Conducting comprehensive performance evaluations on
federated clouds, demonstrating the impact of the self-
healing framework on improving resource efficiency, and
system reliability.

II. PROPOSED SYSTEM: FEDCLOUDX

In this section, we introduce FedCloudX, a Python-based
system that serves as a comprehensive task-scheduling and re-
source management system within the federated cloud environ-
ment, empowered with full control over both cloud systems.
By gathering real-time monitoring data from a time-series
database, FedCloudX gains insights into the performance-
related metrics of the Hadoop clusters, allowing it to effi-
ciently detect and address slow tasks, commonly referred to as
stragglers. Leveraging this monitoring capability, FedCloudX
continuously evaluates the system’s health status, identifying
instances of stragglers or tasks awaiting execution in the
queue, indicative of resource insufficiency within the main
cloud provider. In such scenarios, FedCloudX dynamically
initiates the scheduling process, intelligently allocating the
stragglers or waiting tasks to the Hadoop cluster in the

secondary cloud provider. Through this proactive task allo-
cation mechanism, FedCloudX optimises resource utilisation,
ensures timely task execution, and maintains seamless opera-
tions across the federated cloud. The advanced capabilities of
FedCloudX contribute to enhanced performance, scalability,
and self-healing, facilitating efficient big data processing and
empowering the federated cloud ecosystem with heightened
responsiveness and adaptability to fluctuating workloads.

Internet

Federated Cloud FedCloudX

1

1

2

2

2 2

1

3

3

3

AI-driven Straggler Detection

Federated Task Scheduler

Monitoring

1

Gateway

RabbitMQ

1

User N

User 2

User 1

1

2 - Streaming monitoring information1 - User requests 3 - Rescheduled task

1

 - Scheduler

data
transfer

data
transfer

Fig. 1. FedCloudX system architecture in cloud federation

FedCloudX comprises three pivotal components, depicted
in Fig. 1. The first component, Real-time Monitoring and
Performance Insights, is central to continuously collecting
and analysing performance-related metrics from the Hadoop
cluster. Through this component, FedCloudX gains valuable
insights into the health status of the federated cloud infrastruc-
ture, which promptly stragglers and identifies nodes where re-
source availability becomes insufficient. The AI-Driven Strag-
gler Detection model constitutes the second essential compo-
nent, which employs statistical methods and AI algorithms to
analyse metrics obtained by SmartMonit to detect stragglers.
Following identifying these stragglers, the Federated Task
Scheduling component schedules them concurrently across
multiple cloud providers using the streaming data from the
straggler detection algorithm to address the challenges, includ-
ing network latency, and resource availability.

A. Real-time Monitoring and Performance Insights

FedCloudX employs SmartMonit [9], a real-time big data
monitoring system, to collect log data from cloud-based big
data systems, including job execution time, task progress,
data block locations, node resource utilisation (CPU/memory),
network consumption, and disk usage. Through such real-time
data analysis, FedCloudX can gain valuable insight into the
overall operation of the federated cloud system.

B. AI-Driven Straggler Detection for Task Scheduling

The performance of MapReduce jobs is severely hampered
by stragglers, increasing the chance of data loss and task
execution delays. We employ artificial intelligence algorithms
to examine performance indicators gathered and stored by
SmartMonit to tackle this difficulty.

Combining the statistical technique proposed by [10] with
the Isolation Forest-based approach, we develop Algorithm
1 to detect stragglers in a streaming data environment. The
algorithm takes two data streams as input, namely the exe-
cution time (τ) and progress (ρ), representing the execution
time and progress metrics of mapper tasks, respectively. The
algorithm then proceeds to normalise the τ and ρ data (lines
2 and 3), followed by calculating the performance metric σ
for each mapper (lines 4 to 6). Then we use the Isolation
Forest model to find σ number of stragglers based on P from
line 8. The results (σ) are then added to the list of stragglers
(Line 11). Line 14 adds a small waiting period before the
algorithm retrieves the next streaming data set. It runs in the
loop (line 2 to line 3) and can make real-time discovery with
quick reactions in streaming big data systems.

Algorithm 1: AI-Driven real-time straggler detection
Input : τ , Streaming execution time of each task
Input : ρ, Streaming progress of each task
Output: List of stragglers σ

1 while Streaming data is available do
2 τ̂ ← normalizeData(τ) // Normalize τ̂
3 ρ̂ ← normalizeData(ρ) // Normalize ρ̂
4 P ← [] // Initialize P list
5 for i← 1 to length(τ) do
6 P [i] ← ρ̂[i]

τ̂ [i]
// Calculate performance (P)

7 end
8 σ ← detectStragglers(P) // Detect σ using Isolation

Forest
9 for i← 1 to length(σ) do

10 if σ [i] = −1 then
11 List of σ ← σ;
12 end
13 end
14 Wait () // Wait before fetching the next set of data
15 end

We first introduce a model for the streaming execution time
and progress as stochastic processes to explore some mathe-
matical complexity of the algorithm. Consider a normalised
execution time process τ̂(t) and the corresponding normalised
progress process ρ̂(t) as functions of time t. Driven by these
stochastic processes, we can characterize what is referred to
as a joint Probability Density Function (PDF) fτ̂ ,ρ̂(τ̂ , ρ̂, t)
which models the probability that a specific execution time
and progress level are observed at time t.

fτ̂ ,ρ̂(τ̂ , ρ̂, t) = lim
∆τ̂ ,∆ρ̂→0

Pr[τ̂ ≤ τ̂ +∆τ̂ , ρ̂ ≤ ρ̂+∆ρ̂, t ≤ T]

∆τ̂∆ρ̂
(1)

, where T denotes the total streaming duration. Integrating
this joint PDF over the entire time interval yields the marginal
PDFs fτ̂ (τ̂) and fρ̂(ρ̂), which characterises the distributions
of normalised execution time and progress, respectively:

fτ̂ (τ̂) =

∫ +∞

−∞
fτ̂ ,ρ̂(τ̂ , ρ̂, t)dρ̂ (2)

fρ̂(ρ̂) =

∫ +∞

−∞
fτ̂ ,ρ̂(τ̂ , ρ̂, t)dτ̂ (3)

The normalisation here refers to scaling the execution time
values and progress to a range between 0 and 1, where 0
represents the start, and 1 represents the completion of the
execution or task. For instance, if a task is halfway through
execution, ρ̂(t) would be approximately 0.5 at that time.

C. Federated Task Scheduling for Self Healing and Resilience

When faced with stragglers or there is a task in the queue
waiting to be processed in a situation where the resources
of the current cloud provider’s cluster become insufficient,
FedCloudX dynamically initiates the scheduling process. In
response to these scenarios, the system intelligently allocates
the stragglers and waiting tasks to the Hadoop cluster in an-
other cloud provider [11]. By leveraging real-time monitoring
data, FedCloudX continuously evaluates the performance of
the clusters, detecting instances of stragglers and assessing the
adequacy of resources in the main cloud provider’s cluster.
Finally, the system promptly and adaptively allocates tasks
to an alternate cluster, optimising resource utilisation and
ensuring timely task execution.

Cluster 1

Short-time
pending tasks

Stragglers

Queue

FedCloudX scheduler

…

Long-time
pending tasks

Cluster 2

Tasks copying

Transfer the results

…
Queue

…
Cluster 3Queue

Fig. 2. An example of task scheduling in FedCloudX

Fig. 2 illustrates the task rescheduling mechanism of Fed-
CloudX, showcasing the dynamic reallocation of straggling
and long-time pending tasks among distinct cloud clusters
to optimise resource utilisation and enhance overall system
performance. By dynamically detecting and rescheduling them
to different clusters within other cloud systems, the solution
overcomes the problem of straggling work within a cluster. Us-
ing statistical and ML techniques, notable delays are detected
in real-time by tracking their progress and execution times and
comparing them. Concurrently, FedCloudX identifies long-
time pending tasks in the queue, awaiting processing for
extended periods. FedCloudX enhances overall system perfor-
mance by reallocating these stragglers and long-time pending
tasks to underutilised clusters in separate cloud systems.

We develop Algorithm 2 to improve task scheduling per-
formance and reduce job completion time in a MapReduce
framework, focusing on two major issues: "STRAGGLER"
that take longer to complete due to various reasons like data

Algorithm 2: Federated task scheduling algorithm
Input : List of σ // predictions from Algo. 1

1 localClusterQueue ← []
2 remoteClusterQueue ← []
3 schedulingDelay ← 5 // Set to 5 seconds
4 maxWaitingTime ← 30 // Set to 30 seconds
5 Function submitTask(taskId, priority, startTime, executionTime):
6 newTask ← Task(taskId, priority, startTime, executionTime,

’WAITING’);
7 localClusterQueue ← task;
8 Function scheduleTasks():
9 while localClusterQueue is not empty do

10 task ← localClusterQueue;
11 if task.status = ’WAITING’ and currentTime -

task.startTime > maxWaitingTime then
12 Set task.status = ’STRAGGLER’;
13 remoteClusterQueue ← task;
14 end
15 else
16 Wait (schedulingDelay sec.);
17 if task.status = ’WAITING’ then
18 remoteClusterQueue ← task;
19 end
20 end
21 end
22 while remoteClusterQueue is not empty do
23 task ← remoteClusterQueue;
24 if task.status = ’STRAGGLER’ then
25 Set task.status = ’WAITING’;
26 localClusterQueue ← task;
27 end
28 end
29 submitTask(1, 2, currentTime, 10) // Example task submission

with priority 2 and execution time 10 seconds
30 scheduleTasks();

skew or resource contention, and "WAITING" jobs that are
waiting to be executed in the queue. This algorithm monitors
two task queues: the local and remote cluster queues. First,
tasks are added to the local cluster queue upon submission.
Then, the algorithm selects "STRAGGLER" jobs depending on
the predefined maximum waiting time "WAITING" tasks in
the local queue are also transferred to the remote cluster queue
after a brief wait. They are returned to the local cluster queue
after they have completed their execution on the remote cluster.
The algorithm’s lines 1 through 30 carry out the following
steps: To store tasks sent to the local cluster, line 1 initialises
the queue as an empty list. The remote cluster queue is then
initialised as an empty list by Line 2 to hold tasks detected
as stragglers and moved to the distant cluster. Subsequently,
the scheduling delay is set to 5 seconds by Line 3, indicating
the time the algorithm waits before searching the local cluster
queue for stragglers. Line 4 sets the maximum waiting time
to 30 seconds as a threshold to determine if a task becomes a
straggler based on its waiting time in the local queue. Further-
more, the submitTask function (Line 6) creates a new task
object with the given parameters (taskId, priority, startTime,
executionTime), and its status is set to "WAITING". The task
is then promptly added to the local cluster queue in Line 7.
The scheduleTasks function, outlined in Line 10, starts its
operation by retrieving the next task from the front of the local
cluster queue for processing. As the algorithm progresses,

Line 11 checks if the current task is in "WAITING" status
and whether its waiting time in the local queue exceeds the
maximum waiting time (30 seconds). If this condition is met,
the task is identified as a straggler, and its status is set to
"STRAGGLER" in Line 12. Consequently, the task is moved
from the local cluster queue to the remote cluster queue for
execution on a different cluster in Line 13. On the other hand,
if the task’s status is still "WAITING" after a short scheduling
delay (5 seconds) in Line 16, it is determined that the task is
better suited for execution on the remote cluster. Subsequently,
it is added to the remote cluster queue in Line 18. The
algorithm continues its task management by processing tasks
in the remote cluster queue in Lines 23 and 25. If a task is
identified as a straggler (status is "STRAGGLER"), it is moved
back to the local cluster queue in Line 26 after it finishes
execution on the remote cluster. Throughout the algorithm’s
execution, Line 29 exemplifies the submission of tasks to
the local cluster queue, showcasing different priorities and
execution times. Ultimately, Line 30 culminates the process
by calling the scheduleTasks function, thus initiating the
scheduling algorithm and ensuring smooth task distribution
across clusters, mitigating straggler problems.

Si =


W × e

−λ
∫ t

STi
dτ
, if Si = S

S, if Si = W and t− STi > MWT

Si, otherwise
(4)

Where λ : Rate of decay, λ = − 1

MWT
(5)

The presented formula (Eq. 4) encapsulates the mathemat-
ical expression characterising the dynamic adjustment of a
computational task’s status (Si) within the algorithm. In this
context, the symbol W signifies the waiting tasks, and S
represents the stragglers. The equation employs an exponential
decay function, e−λ

∫ t
STi

dτ , where λ denotes the rate of decay.
If Si is identified as a S, its status transforms to W governed
by the decay function. The parameter MWT represents the
threshold for the maximum waiting time, and the rate of decay
(λ) is calculated as − 1

MWT (Eq. 5).

III. EXPERIMENTAL SETUP AND EVALUATION

To establish a federated cloud environment, we meticu-
lously configured Hadoop clusters within distinct cloud ser-
vice providers and ensured seamless communication between
these clusters. This federated cloud architecture allows us to
conduct successful experiments by leveraging the combined
capabilities of both cloud providers.

A. Experimental setup

For conducting the experiments, we utilised two prominent
cloud service providers, AWS and Azure, to establish separate
four-node Hadoop clusters, each node has 4 CPUs and 16 GB
of memory in a federated cloud environment.

1) Setting clusters communication: It takes a long setup
process with many components and parameters to connect the
two Hadoop clusters in AWS and Azure. To ensure compati-
bility, virtual networks (VNets) in Azure and virtual private
clouds (VPCs) in AWS must be set up. Network Security
Groups, or NSGs, are configured in Azure to control traffic
entering and exiting clusters while maintaining strict authori-
sation. Firewall rules are adjusted to permit communication
on specific ports needed by Hadoop components. Cluster
configuration parameters are changed to enable cross-cluster
communication by specifying essential network information,
such as IP addresses or domain names.

2) Data replication and synchronisation: To ensure real-
time data consistency between clusters, we employ Event-
Driven Synchronisation, which entails installing systems that
initiate data synchronisation operations automatically when
particular events or changes occur in one cluster. So, we used
Azure Functions and AWS Lambda to execute the code re-
sponding to cluster data change events. These serverless func-
tions, which preserve real-time data synchronisation between
the clusters, are triggered by events generated by AWS and
Azure services like Amazon S3 and Azure Blob Storage. In
addition, we employ AWS DMS (Database Migration Service)
and Azure Data Factory for routine data replication tasks
that provide continuous data synchronisation and consistency
across the clusters. This approach focuses on managing storage
across multiple NameNodes. Our system, by contrast, ensures
real-time, automated synchronisation across cloud platforms,
providing greater flexibility in managing data consistency and
task execution across federated environments.

B. Data Transmission Time Calculation in Federated Cloud

Moving these responsibilities to a new Hadoop cluster
hosted in a different cloud architecture is one noteworthy
strategy used in this work. A necessary precondition for
successfully rescheduling is the availability of the required
data blocks in the desired cloud cluster. This study also aims
to assess the effectiveness of the suggested method using a
customised algorithm designed for this particular situation,
which will further enhance self-healing and resource allocation
strategies in federated cloud systems. We use Eq. 6 to do this.

N =
T × 8

C × U × 3600×H
(6)

, where N denotes the Number of Days needed for data trans-
mission in an AI-driven fault-tolerant system and federated job
scheduling inside independent federated cloud environments.
The data volume in Terabytes to be transported is indicated
by T . The available network bandwidth, denoted by C, is
measured in CIRCUIT gigabits per second (Gbps). The pro-
portion of network utilisation is shown by U . Last, H denotes
the total number of hours available daily, which is essential
for figuring out how long data transmission will take. A key

tool for assessing the effectiveness of data migration in cloud
systems is the formula1.

C. Performance and Efficiency Analysis

1) Straggler Detection Evaluation: The integrated logic
used for straggler identification is shown in Fig. 3, which
combines statistical methods with the ML algorithm Isolation
Forest to improve the detection process’ efficacy and accuracy.

Progress (%)

35
40

45
50

55
60 Ex

ecu
tio

n t
im

e (
sec

)

16
18

20
22

24
26

28
30

32

Pe
rfo

rm
an

ce

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.907
1.110

1.107
1.3651.3651.368

1.017
0.938

1.138

0.3860.324

1.004

1.000
1.364

1.245
1.181

0.974

1.109

Performance of each task
Outperformed tasks
Stragglers

0.4

0.6

0.8

1.0

1.2

Pe
rfo

rm
an

ce
 ra

ng
e

Fig. 3. Straggler detection in FedCloudX

2) Makespan Development Evaluation: To evaluate the
system’s performance, we carried out in-depth tests, each
performed five times for improved accuracy over a wide range
of task quantities, from 40 to 240. Fig. 4(a) showcases the
remarkable mitigation of straggler-related issues when Fed-
CloudX is employed, while Fig. 4(b) highlights the system’s
proficiency in handling long-time pending jobs. These results,
supported by error rate data, underscore the efficacy of Fed-
CloudX in significantly improving the overall performance and
efficiency of cloud-based computing environments, offering a
promising solution for enhancing the reliability and produc-
tivity of cloud systems. The results in Fig. 5 demonstrate that
applying the FedCloudX leads to a noteworthy reduction in
makespan. FedCloudX not only improves the makespan by
around 15% for straggler cases and around 22% for long-time
pending jobs.

3) CPU and Memory Consumption of FedCloudX: Table
I provides a detailed breakdown of the memory and CPU
utilisation associated with two distinct components within
the FedCloudX system, where straggler detection consumes
3.78% of system memory and 5.23% of CPU resources, while
task rescheduling imposes slightly higher demands, utilising
4.08% of memory and 4.61% of CPU resources.

1https://docs.aws.amazon.com/whitepapers/latest/overview-aws-cloud-data-
migration-services/time-and-performance.html

https://docs.aws.amazon.com/whitepapers/latest/overview-aws-cloud-data-migration-services/time-and-performance.html
https://docs.aws.amazon.com/whitepapers/latest/overview-aws-cloud-data-migration-services/time-and-performance.html

WordCount Grep K-means PageRank
Benchmarks

0

50

100

150

200

250

300

M
ak

es
pa

n
(s

ec
)

Number of tasks
40 80 120 160 200 240

(a) Makespan evaluation of stragglers rescheduling

WordCount Grep K-means PageRank
Benchmarks

0

50

100

150

200

250

300

M
ak

es
pa

n
(s

ec
)

Number of tasks
40 80 120 160 200 240

(b) Makespan evaluation of long-time pending jobs rescheduling

Fig. 4. Makespan evaluation of different sized jobs for stragglers and long-time pending jobs across different benchmarks with FedCloudX

0 5 10 15 20 25
Makespan development (%)

Straggler
task

rescheduling

Pending
jobs

rescheduling

Number of tasks
40 80 120 160 200 240

Fig. 5. Percentage-based makespan improvement using FedCloudX

TABLE I
RESOURCE OVERHEAD CAUSED BY FEDCLOUDX COMPONENTS

Components Mem (%) CPU (%)
FedCloudX straggler detection 3.78 5.23
FedCloudX task rescheduling 4.08 4.61

IV. CONCLUSION

This study aims to provide an AI-powered solution for
identifying and mitigating straggler jobs in federated cloud
environments. A key focus has been developing a real-time
monitoring system that identifies stragglers and an autonomous
task scheduling algorithm that dynamically reallocates these
delayed tasks across federated cloud resources. The proposed
system effectively enables the accomplishment of tasks very
fast and optimal resource utilisation using AI and real-time
data, as well as removing stragglers from existence. Further-
more, by introducing self-healing mechanisms, we can quickly
overcome performance degradations to increase system re-
silience and availability of the services. Their approaches
have been tested extensively in the real world, and they have
achieved significant improvements in efficiency and scalability,
as well as handling various workloads and failure scenarios.

ACKNOWLEDGMENT

This work was supported by the Engineering and Physi-
cal Sciences Research Council (EPSRC) for project CHED-
DAR: Communications Hub For Empowering Distributed
ClouD Computing Applications And Research [Grant number
EP/X040518/1].

REFERENCES

[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[2] Z. Zhang, L. Wu, D. He, Q. Wang, D. Wu, X. Shi, and C. Ma, “G-vcfl:
grouped verifiable chained privacy-preserving federated learning,” IEEE
Transactions on Network and Service Management, vol. 19, no. 4, pp.
4219–4231, 2022.

[3] U. Demirbaga and G. S. Aujla, “Mapchain: A blockchain-based verifi-
able healthcare service management in iot-based big data ecosystem,”
IEEE Transactions on Network and Service Management, vol. 19, no. 4,
pp. 3896–3907, 2022.

[4] Y. Wu, “Cloud-edge orchestration for the internet of things: Architecture
and ai-powered data processing,” IEEE Internet of Things Journal,
vol. 8, no. 16, pp. 12 792–12 805, 2020.

[5] Ü. Demirbaga, G. S. Aujla, A. Jindal, and O. Kalyon, “Big data
monitoring,” in Big Data Analytics: Theory, Techniques, Platforms, and
Applications. Springer, 2024, pp. 155–170.

[6] L. Abualigah and A. Diabat, “A novel hybrid antlion optimization algo-
rithm for multi-objective task scheduling problems in cloud computing
environments,” Cluster Computing, vol. 24, pp. 205–223, 2021.

[7] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[8] G. Rjoub, J. Bentahar, and O. A. Wahab, “Bigtrustscheduling: Trust-
aware big data task scheduling approach in cloud computing environ-
ments,” Future Generation Computer Systems, vol. 110, pp. 1079–1097,
2020.

[9] U. Demirbaga, A. Noor, Z. Wen, P. James, K. Mitra, and R. Ranjan,
“Smartmonit: Real-time big data monitoring system,” in 2019 38th
symposium on reliable distributed systems (SRDS). IEEE, 2019, pp.
357–3572.

[10] Ü. Demirbaga, G. S. Aujla, A. Jindal, and O. Kalyon, “Debugging big
data systems for big data analytics,” in Big Data Analytics: Theory,
Techniques, Platforms, and Applications. Springer, 2024, pp. 171–192.

[11] Y. F. Ugurluoglu, D. Williams, and M. Xia, “Enhancing genetic
algorithm-based process parameter optimisation through grid search-
optimised artificial neural networks,” in 2023 28th International Con-
ference on Automation and Computing (ICAC). IEEE, 2023, pp. 1–6.

	Introduction
	Contributions

	Proposed System: FedCloudX
	Real-time Monitoring and Performance Insights
	AI-Driven Straggler Detection for Task Scheduling
	Federated Task Scheduling for Self Healing and Resilience

	Experimental Setup and Evaluation
	Experimental setup
	Setting clusters communication
	Data replication and synchronisation

	Data Transmission Time Calculation in Federated Cloud
	Performance and Efficiency Analysis
	Straggler Detection Evaluation
	Makespan Development Evaluation
	CPU and Memory Consumption of FedCloudX

	Conclusion
	References

