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Abstract: This study proposes an optimized genetic algorithm-based wavelet image fusion
technique for printed circuit board (PCB) detection, incorporating an improved Genetic
Algorithm (GA) with the Elite Strategy and integrating it with discrete wavelet transform
(DWT). The proposed method aims to enhance both the accuracy and efficiency of image
fusion, which is crucial for defect detection in PCB inspection. A DWT is utilized to decom-
pose images into multiple frequency components, where the low-frequency band preserves
the structural integrity of the image, and the high-frequency band retains essential fine
details such as edges and textures, which are critical for identifying defects. An improved
genetic algorithm is applied to optimize the fusion process, incorporating the Elite Strategy
to retain the best solutions in each evolutionary iteration. This strategy prevents the loss
of optimal wavelet decomposition weights, and ensures steady convergence towards the
global optimum. By maintaining superior solutions throughout the evolutionary process,
the algorithm effectively enhances the fusion quality and computational efficiency. Exper-
imental evaluations validate the effectiveness of the proposed approach, demonstrating
superior performance over conventional fusion methods. The enhanced algorithm achieves
significant improvements in key performance metrics, including relative standard devi-
ation (RSD), peak signal-to-noise ratio (PSNR), image clarity, and processing efficiency.
The team developed a prototype system and conducted simulations in a relatively realistic
environment to validate the proposed method’s potential for high-precision PCB detection.
The results demonstrate that the approach offers a robust solution for automated defect
detection and quality assessment.

Keywords: genetic algorithm; DWT; image fusion; industrial inspection

1. Introduction
The printed circuit board (PCB) is the heart of modern electronic devices, providing

the foundation for components to be connected functionally and compactly. As techno-
logical advances continue, the complexity and miniaturization of PCBs have dramatically
increased. Consequently, the inspection and detection of defects in PCBs have become vital
aspects of ensuring the quality, functionality, and reliability of electronic products. PCBs
are integral to a wide range of industries, including consumer electronics, automotive,
aerospace, and telecommunications. Defects such as misaligned components, soldering
issues, cracks, and short circuits can adversely affect the performance of electronic devices.

Appl. Sci. 2025, 15, 3217 https://doi.org/10.3390/app15063217

https://doi.org/10.3390/app15063217
https://doi.org/10.3390/app15063217
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2587-9440
https://doi.org/10.3390/app15063217
https://www.mdpi.com/article/10.3390/app15063217?type=check_update&version=1


Appl. Sci. 2025, 15, 3217 2 of 16

Therefore, accurate, efficient, and automated defect detection methods are essential to
minimize the risks of faulty products reaching the market.

Traditional PCB inspection techniques, such as manual visual inspection and simple
image processing methods, often fail to meet the growing demands for precision and
efficiency [1,2]. Manual inspection, being time-consuming and prone to human error,
struggles to detect subtle defects, especially small or hidden within the board’s intricate
layers. Basic image processing methods, including edge detection and thresholding, are
also limited in their capacity to handle complex images, especially those containing noise
or poor contrast. Given these challenges, researchers have increasingly turned to advanced
image fusion techniques to improve the accuracy and robustness of PCB defect detection.

Image fusion is a technique that combines information from multiple source images
to produce a single image that contains enhanced features and details [3]. In the context
of PCB inspection, image fusion can provide a more comprehensive view of the board by
merging different types of images. Doing so helps preserve critical information, such as
fine details of the edges, textures, and structures, which are essential for accurate defect
detection. Among the various image fusion techniques, wavelet-based fusion methods have
gained significant attention due to their unique ability to decompose images into different
frequency bands, capturing both low-frequency structural information and high-frequency
details like edges and textures.

Wavelet-based image fusion methods rely on the discrete wavelet transform (DWT),
which decomposes an image into a set of wavelet coefficients corresponding to different
frequency subbands [4,5]. The low-frequency bands capture the overall structure and
large-scale features of the image, while the high-frequency bands retain fine details, such
as edges, textures, and small-scale features. These properties make wavelet-based fusion
particularly useful for applications like PCB inspection, where both the macrostructure and
microstructure are equally important for accurate defect detection. Wavelet fusion aims
to combine the strengths of multiple images by selecting the most relevant information
from each frequency band. Genetic algorithms (GAs) are a class of optimization techniques
inspired by the principles of natural selection and evolution [6]. GAs have been successfully
applied in many optimization problems, including image fusion, because they can explore a
large solution space and converge towards optimal solutions. A genetic algorithm involves
a population of candidate solutions over several generations, with the best solutions
selected for reproduction and the next iteration. The key strength of GAs lies in their ability
to balance exploration.

Despite the advantages of wavelet-based image fusion, effectively optimizing the
fusion process remains a significant challenge. Selecting appropriate coefficients from
each image and determining their optimal combination is complex. Traditional fusion
techniques often rely on heuristic rules or statistical measures, which may not always yield
optimal results. Additionally, these methods may struggle to balance high fusion quality
with computational efficiency, particularly when handling large or high-resolution images.
Meanwhile, conventional GAs are susceptible to premature convergence, where the algo-
rithm converges to a suboptimal solution due to a loss of diversity within the population.

To address these issues, an improved Genetic Algorithm-Based Wavelet Image Fusion
Technique can be employed. The Elite Strategy is a technique that ensures the best solutions
in each generation are retained and passed on to the next iteration. This helps to preserve
the most promising candidates, preventing the algorithm from losing high-quality solutions
during the evolutionary process. By integrating the Elite Strategy into the genetic algorithm,
we can improve the convergence speed and the overall fusion quality, leading to a more
effective and efficient fusion process. The contributions of this paper are listed below:
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(1) An elite strategy-enhanced genetic algorithm (ESGA) is proposed to improve the
robustness and convergence efficiency of fusion weight optimization. By preserving
high-quality individuals across generations and integrating an adaptive mutation
mechanism, ESGA effectively mitigates premature convergence while maintaining
solution diversity, enhancing fusion performance.

(2) A synergistic framework combining the improved genetic algorithm with DWT is
developed for multiscale image decomposition. Haar wavelet is selected as the basis
function due to its computational efficiency and ability to balance localization in both
spatial and frequency domains. The low-frequency subbands capture the overall
structure of the image, while high-frequency subbands retain critical details such as
edges and textures. This approach effectively integrates the strengths of both source
images, avoiding deficiencies in overall appearance or detail retention.

(3) A prototype system was developed and tested in a realistic environment to validate
the effectiveness of the proposed method. Experimental results demonstrate that the
proposed image fusion method significantly enhances the accuracy and efficiency
of PCB detection, providing a reliable solution for automated defect detection and
quality assessment.

2. Related Work
Image fusion has become a pivotal technique for combining complementary informa-

tion from multiple image sources, enhancing visual interpretation and decision-making in
fields such as medical diagnosis, remote sensing, and surveillance. X. Li, G. Zhang et al.
present a competitive mask-guidance fusion method for infrared and visible images,
utilizing a multimodal semantic-sensitive mask selection network and a bidirectional-
collaboration region fusion strategy to effectively integrate advantageous target regions
from different modalities, significantly improving the saliency and structural integrity of
fused images [7]. Cheng, C. et al. introduce FusionBooster, a model designed for image
fusion tasks, which improves fusion performance through a divide-and-conquer strategy
controlled by an information probe, consisting of probe units, a booster layer, and an assem-
bling module, with experimental results showing significant improvements in fusion and
downstream detection tasks [8]. Yang Z, Li Y, Tang X and Xie M present a novel infrared
and visible image fusion method that leverages a multimodal large language model with
CLIP-driven Information Injection (CII) and CLIP-guided Feature Fusion (CFF) strategies
to enhance image quality and address complex scene challenges without relying on com-
plex network structures [9]. ReFusion is a meta-learning-based image fusion framework
that dynamically optimizes fusion loss through source image reconstruction, employing a
parameterized loss function and a three-module structure to adapt to various fusion tasks
and consistently achieve superior results [10].

Other contributions in the field include a wavelet-based medical image fusion method
proposed by Yang et al., which combines human visual system characteristics with wavelet
coefficients’ physical meaning [11]. Furthermore, Wang-yang et al. present a wavelet-
based multi-focus image fusion algorithm that combines SSIM and edge energy matrices to
select high-frequency coefficients, improving fusion quality by reducing ringing effects and
information loss [12]. Similarly, Jadhav proposes a wavelet-based image fusion technique
using dual-tree complex wavelet transform to preserve local perceptual features, thus
avoiding ghosting, aliasing, and haloing when combining images captured from different
instruments [13]. An advanced wavelet-based fusion method, proposed by Yuan and
Yang, integrates wavelet transform with a Fourier random measurement matrix [14]. This
approach reduces time complexity while improving performance through compressive
sensing sampling. In the domain of multi-focus image fusion, Yang et al. utilize a dual-tree
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complex wavelet-based framework that improves fusion accuracy through contrast-based
initial fusion and decision-map-guided final fusion [15].

In the field of wavelet-based image fusion, Pei et al. introduce a fusion algorithm
integrating histogram equalization and sharpening techniques to enhance degraded images
by improving contrast and detail clarity [16]. Singh et al. present a wavelet-based multi-
focus image fusion method using method noise and anisotropic diffusion, which enhances
real-time surveillance images by improving clarity and visual quality [17]. Additionally,
Dou et al. propose a wavelet-based multi-focus image fusion method that optimizes
image quality using genetic algorithms and HVS-based weighting to ensure enhanced
perceptual clarity [18]. A wavelet-based multi-view fusion method enhances LSFM imaging
by integrating directional information, improving contrast and detail without requiring
PSF knowledge [19].

Several studies have also explored the integration of GA into wavelet-based fusion
to further optimize fusion processes [20,21]. The integration of GAs into wavelet-based
methods has further optimized fusion processes by dynamically selecting optimal fusion
rules and parameters [22–24]. A. Ganjehkaviri, M.N. Mohd Jaafar, S.E. Hosseini and
H. Barzegaravval explores GA in multi-objective energy system optimization, addressing
Pareto front accuracy, convergence, uniqueness, and dimension reduction, proposing
effective quantitative methodologies [25]. Recent advancements have introduced novel
frameworks such as hybrid genetic algorithms for feature selection and super-resolution
algorithms for medical image enhancement, combining discrete wavelet transforms with
adaptive feature selection to improve CT image quality [26,27].

Furthermore, Wavelet-based fusion techniques continue to evolve, as demonstrated
by Soniminde and Biradar, who improve wavelet-based image fusion by incorporating
weighted averages of great boost and CLAHE, enhancing image quality by reducing
blurring and artifacts [28]. Singh et al. improve fusion techniques for real-time surveil-
lance, presenting a wavelet-based multi-focus fusion approach that uses method noise
and anisotropic diffusion [17]. Srivastava et al. develop the Deep-AF model, which inte-
grates CNN-based decision maps, sparse coding, and cross-modality transitions to improve
multimodal medical image fusion [29].

Wavelet transforms also have a significant role in enhancing image clarity and feature
preservation across various fields. The integration of Particle Swarm Optimization (PSO)
and Stationary Wavelet Transform (SWT) has been proposed to optimize parameters for
better edge resolution and detail preservation [30]. Additionally, Ravichandran et al.
propose an image fusion method using PSO and Dual-Tree Discrete Wavelet Transform
(DTDWT), optimizing fusion weights to improve fusion quality [31].

Therefore, image fusion techniques, particularly wavelet-based methods, combine
complementary information to improve image quality. Integrating GAs optimizes fusion by
dynamically selecting the best parameters, enhancing detail preservation. In PCB detection,
a GA-based wavelet fusion approach significantly improves clarity, aiding in the detection
of subtle defects and enhancing fault analysis, thus offering substantial practical value for
industrial applications.

3. Method
The DWT in this paper serves as a cornerstone for multiscale image fusion frame-

works due to its ability to decompose images into spatially localized frequency components
while preserving critical edge and texture information. In the context of multispectral
image fusion between visible (VS) and infrared (IR) modalities, the DWT-driven mech-
anism systematically addresses spectral disparities through hierarchical decomposition
and reconstruction.
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To ensure compatibility between input images, a preprocessing module enforces
dimensional consistency through automated resizing and interpolation. Let I′ IR represent
the resized IR image derived from the original IIR of dimensions p × q:

I′ IR = γ(IIR, m, n), γ : Rp×q → Rm×n (1)

where γ denotes a bicubic interpolation operator. This step mitigates spatial misalignment
artifacts in subsequent fusion operations.

The decomposition process begins by applying a mother wavelet to each input image.
This operation splits the images into approximation and detail coefficients at multiple scales.
The approximation coefficients capture low-frequency content, representing the overall
structure of the image, while the detail coefficients encode high-frequency information,
such as edges and textures, in three orientations: vertical, horizontal, and diagonal. By
iterating this decomposition across multiple levels, the framework constructs a hierarchical
representation of the input images, enabling precise control over feature extraction at
different spatial resolutions. This multiscale approach ensures that global thermal patterns
and fine structural details are preserved for subsequent fusion. The subband fusion process
employs distinct strategies for low-frequency and high-frequency components to optimize
complementary information retention. For low-frequency subbands, an energy-adaptive
weighting scheme dynamically allocates fusion weights based on the relative energy contri-
butions of the vs. and IR modalities. This prioritizes the modality with stronger energy
signatures in coarse-scale regions, ensuring the preservation of thermal patterns from IR
and structural integrity from vs. For high-frequency subbands, a gradient saliency maxi-
mization criterion selectively retains coefficients with higher edge activity by comparing
local gradient energy between modalities.

The inverse wavelet reconstruction phase synthesizes the fused approximation and
detail coefficients into a final fused image. This critical step reverses the multilevel de-
composition process through the inverse discrete wavelet transform (IDWT). The fused
low-frequency subband provides the foundational structure of the image, while the fused
high-frequency subbands inject detailed edge and texture information. The fused approx-
imation AJ

F and detail coefficients {Dj
v,F,Dj

h,F,Dj
d,F} are synthesized through the inverse

DWT (IDWT):

IF = IDWT(AJ
F, {Dj

v,F, Dj
h,F, Dj

d,F}
J

j=1
) (2)

The reconstruction guarantees perfect invertibility, ensuring no information loss dur-
ing fusion. In addition, in this study, we utilize a specialized version of GA, called the
Elite Decision-Making Genetic Algorithm (EDA), to optimize the parameters involved in
wavelet-based image fusion. The elite decision-making approach ensures that the best
solutions from each generation are retained, enhancing the convergence rate of the algo-
rithm. In the application of the EDA to wavelet-based image fusion, the selection and
dynamic adjustment of key parameters, including mutation rate, crossover probability, elite
strategy, population size, and selection pressure, are essential for optimizing performance
and ensuring effective convergence. In this study, the mutation rate is set to 0.2 to facilitate
exploration by introducing diversity into the population. As the algorithm progresses, the
mutation rate is dynamically reduced using a linear decay function, allowing for more
focused exploitation of high-quality solutions. Similarly, the crossover probability is set to
0.8 to promote the recombination of superior solutions, with a potential decrease in the later
stages of optimization to fine-tune and exploit existing solutions. The elite strategy further
enhances convergence by retaining the top 20% of the best-performing individuals in each
generation, ensuring they are directly passed to the next generation without modification.
The population size is set to 50, which plays a critical role in balancing exploration with
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computational efficiency and can be dynamically adjusted throughout the algorithm to
improve convergence.

The fitness function F(xi) evaluates the quality of an individual solution by measuring
how well the fusion performs in terms of edge preservation, contrast enhancement, and
feature extraction. Each individual i is a vector xi = (xi1, xi2, xi3, ...), where xij represents the
parameters related to wavelet transformation. A composite fitness score is used, combining
multiple performance metrics:

F(xi) = αA(xi)− βB(xi) + γC(xi) + δD(xi) (3)

where A(xi) represents RSD, B(xi) represents PSNR, C(xi) represents SF, D(xi) represents
image clarity, α, β, γ and δ are weight coefficients. RSD measures the consistency and
uniformity of the image fusion process. Lower values of RSD indicate better consistency
across the fused image. PSNR is a measure of the quality of the reconstructed image.
Higher PSNR values indicate that the fused image retains more of the original image
quality. SF measures the amount of information or detail in the image. A higher spatial
frequency indicates that the image contains more spatial detail, which is important for
accurate feature extraction. Image clarity quantifies the sharpness and overall visual clarity
of the fused image. Higher clarity values suggest better preservation of important features
and edges. The elite selection mechanism ensures that only the top solutions are chosen
to form the next generation. Crossover and mutation operations are applied to generate
new candidate solutions based on the selected individuals. After applying crossover
and mutation, the best solutions, elite individuals, are directly carried over to the next
generation without alteration, improving the convergence speed and avoiding premature
stagnation. The genetic algorithm proceeds iteratively until convergence is reached or a
predefined number of generations are completed.

Finally, the final fused image I f (x, y) is obtained by applying two-dimensional inverse
discrete wavelet transform (IDWT) to each subband after fusion:

I f (x, y) = W−1(LL f used(x, y), LH f used(x, y), HL f used(x, y), HH f used(x, y)) (4)

where I f (x, y) presents the final fused image in the spatial domain which gives the pixel
intensity at the spatial location (x,y) after the fusion process is complete. W−1 denotes the
IDWT operator whose role is to reconstruct the spatial-domain image from the wavelet
subband coefficients. LL f used(x, y) refers to the fused low-frequency subband. LH f used(x, y)
refers to the fused high-frequency subband that contains horizontal detail information.
HL f used(x, y) refers to the fused high-frequency subband that contains vertical detail in-
formation. HH f used(x, y) refers to the fused high-frequency subband corresponding to
diagonal details.

4. Experiment Results and Discussion
This study employs a comprehensive set of evaluation metrics for image fusion as-

sessment, encompassing RSD, PSNR, SF, and image clarity. In addition, the experimental
platform includes a 13th Gen Intel(R) Core(TM) i9-13900HX 2.20 GHz (Intel Corpora-
tion, Santa Clara, CA, USA) and an NVIDIA GeForce RTX 4060 Laptop GPU (NVIDIA
Corporation, Santa Clara, CA, USA).

The designed model first loads the two images to be fused from the specified file paths,
retrieves the previously imported image data through the handles structure, converts
these data into a double-precision matrix, and normalizes it to a range between 0 and 1.
Subsequently, the dimensions of the two images are made identical using the clip_images
function. The two images are then decomposed using a two-dimensional wavelet transform.
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Following this, the wavelet coefficients of the two images are input into an enhanced
genetic algorithm with improvements. Initially, the algorithm generates a random initial
population, where each individual represents a potential solution. Each individual is
evaluated using a fitness function, which is designed to assess the quality of the current
solution. In this study, the fitness function incorporates the RSD, PSNR, SF, and image clarity
as evaluation criteria. During the selection process for each generation, the individual with
the highest fitness is retained, leading to the identification of the optimal solution. This
approach accelerates the convergence of the genetic algorithm and ensures that high-quality
solutions are preserved, ultimately yielding the best fusion weight combination. A set of
image fusion results is illustrated in Figure 1. Figure 1a,b show the original images to be
fused, while Figure 1c presents the final fusion result. A total of ten image groups were
used for testing in this study, with the results presented in Table 1.
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Table 1. Performance results of image fusion.

Testing RSD PSNR SF Image Clarity

Test1 0.98136 32.5008 149.545 439.8995
Test1-enhanced 0.99999 97.8943 220.2694 679.6867

Test2 1.0301 30.3599 120.1008 178.4979
Test2-enhanced 1 112.1457 80.0046 114.7729

Test3 0.97715 29.2599 51.2645 132.952
Test3-enhanced 1 114.5844 112.0137 249.4875

Test4 0.91353 19.1415 564.3926 1940.7664
Test4-enhanced 0.91938 21.2168 551.8391 1928.7157

Test5 0.92662 30.5541 70.7639 199.5201
Test5-enhanced 1 137.9181 154.353 301.5207

Based on the results, the RSD values of the improved method are generally close to
or equal to 1, indicating that the enhanced image stability has not significantly improved.
In some cases, the RSD values have slightly increased, such as in Test4, which rose from
0.91353 to 0.91938. However, the proposed method demonstrates outstanding performance
in enhancing PSNR, SF, and overall image clarity, leading to a significant improvement in
image quality. The PSNR values after enhancement show a notable increase, particularly
in Test1-enhanced and Test5-enhanced, where the values are substantially higher than
those of the original test method. This suggests that the enhancement process effectively
improves image quality and reduces noise. Although there are a few cases where the
PSNR did not increase significantly or decrease slightly, the overall trend indicates an
improvement in PSNR after enhancement. The SF generally exhibits an upward trend
following enhancement, implying that the enhancement operation typically improves
image details and sharpness. While some tests show a slight decrease in SF, the overall effect
suggests that enhancement contributes to increased spatial frequency. Furthermore, image
clarity is generally improved, with the enhancement process demonstrating a significant
effect in enhancing image sharpness, particularly in the representation of image details.
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Additionally, the proposed approach was further compared with commonly used
image fusion methods, including the pixel averaging method and the Pulse Coupled
Neural Network (PCNN) method [32,33]. A set of representative examples illustrating the
image fusion performance of the improved approach, the conventional method, the pixel
averaging method, and the PCNN method is presented in Figure 2. Specifically, Figure 2a
shows the fusion result obtained using the pixel averaging method, Figure 2b displays the
result from the PCNN method, Figure 2c presents the fusion outcome of the conventional
method before improvement, and Figure 2d demonstrates the fusion result achieved by the
proposed approach.
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As observed in Figure 2, from a human visual perspective, Figure 2a, the pixel averag-
ing method exhibits relatively poor performance. In Figure 2b, the distant object (flag) and
the foreground object (person) in the PCNN method appear somewhat blurred compared
to the proposed approach in Figure 2d. Similarly, in Figure 2c, the distant object (flag) in
the conventional method appears less sharp than in Figure 2d. The proposed approach, as
shown in Figure 2d, achieves clearer image fusion across all regions. Furthermore, a com-
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parative analysis of the fusion performance of the proposed method, the pixel averaging
method, and the PCNN method across five sets of images is presented in Table 2.

Table 2. Comparison of image fusion for PCNN, pixel and the proposed method.

Testing RSD PSNR SF Image Clarity

Test1-pcnn 1.0436 25.2648 76.8715 283.8339
Test1-pixel 0.53968 12.3961 151.9143 1009.5947

Test1-enhanced 1 123.239 112.036 292.1254
Test2-pcnn 1.0344 30.8631 52.361 235.1239
Test2-pixel 0.66872 12.3547 214.3243 1579.4983

Test2-enhanced 1 105.5136 41.3933 183.1299
Test3-pcnn 0.98147 20.6539 567.7331 2543.2436
Test3-pixel 0.57115 11.5747 433.7942 3174.5184

Test3-enhanced 0.97342 23.656 477.058 1958.1544
Test4-pcnn 1.0415 28.3053 25.6012 56.7975
Test4-pixel 0.55526 15.4697 64.3871 491.5934

Test4-enhanced 1 114.7225 22.7556 38.648
Test5-pcnn 0.5114 11.9283 102.1155 915.6302
Test5-pixel 0.85461 23.1537 10.5997 140.6647

Test5-enhanced 1 120.192 12.4773 160.055

As shown in Table 3, the proposed approach demonstrates superior performance
across multiple key metrics, particularly excelling in PSNR and image clarity, compared to
the PCNN method. Additionally, it exhibits greater stability and sharpness than pixel-level
fusion methods. The enhanced fusion approach effectively improves image quality while
achieving a well-balanced performance across various aspects, ensuring the preservation
of image details, sharpness, and overall quality.

Table 3. Comparison of image fusion for pixel, tradition, PCNN, PCA, CVT and proposed method.

Name RSD PSNR SF Image Clarity

Pixel 0.65176 14.182 15,003.6267 2835.5546
Traditional method 1.0058 32.2585 14,792.8102 978.6103

PCNN 1.0906 26.4838 17,739.3792 1080.2649
PCA 1.006 32.1594 14,800.5607 982.0337
CVT 1.0171 28.6622 17,403.4301 1646.0088

Proposed 1 124.5946 15,101.3567 1022.9067

The proposed method shows a significant advantage in PSNR, with particularly high
values in Test1-enhanced, whose PSNR equals 123.239, and Test5-enhanced, whose PSNR
equals 120.192, where it notably outperforms both the PCNN and pixel-level methods. This
indicates that the enhanced fusion method better retains image details and signal integrity
while reducing noise introduced during the fusion process. A high PSNR value typically
signifies superior image quality with minimal distortion.

Furthermore, the proposed method consistently achieves an RSD value of approxi-
mately 1, indicating excellent stability and consistency in image fusion. While pixel-level
methods tend to have lower RSD values, the enhanced method maintains a well-balanced
performance through optimized algorithms, minimizing variations between images with-
out compromising image quality. In terms of SF, the Test-enhanced method exhibits a
moderate yet effective performance, particularly in Test3-enhanced, whose SF equals
477.058, and Test2-enhanced, whose SF equals 41.3933, demonstrating strong capability
in preserving image details. Although its SF values are generally lower than those of
pixel-level fusion methods, the proposed approach maintains clearer image structures
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and detailed information compared to the PCNN method, particularly excelling in edge
and texture detail representation. The Test-enhanced method also achieves consistently
high image clarity, particularly in Test1-enhanced, whose image clarity equals 292.1254,
and Test5-enhanced, whose image clarity equals 160.055, highlighting its effectiveness
in enhancing image sharpness. Higher image clarity signifies more distinct details and
improved visual perception, allowing for a better presentation of fine features and contours.
Consequently, while the Test-enhanced method generally improves image clarity, it may not
always result in an overall perceptual improvement in clarity across all images. Therefore,
despite its success in many cases, the method’s ability to consistently enhance image clarity
may vary depending on the specific fusion context and image properties. Therefore, for
many application scenarios, the Test-enhanced method provides a high-quality fusion
solution, making it an ideal choice for improving image quality and sharpness.

For further extension of our proposed method, extra experiments have been performed
in Figure 3.
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The proposed method outperforms other methods in multiple metrics, especially in
terms of PSNR reaching 124.5946, far exceeding all other methods, indicating that its fused
images have extremely high signal-to-noise ratio and fidelity. Meanwhile, its RSD is 1,
which is lower than PCNN, CVT, and PCA, demonstrating better grayscale stability. In
terms of SF, the proposed method achieved 15,101.3567, although not as good as PCNN and
CVT, it is still relatively high and can effectively preserve the detailed information of the
image. In addition, its Image Clarity is 1022.9067, which is better than in traditional method
and PCA, and second only to CVT and PCNN, showing good performance. Overall, the
proposed method performs outstandingly in terms of PSNR and achieves excellent levels
in other key indicators, making it particularly suitable for application scenarios that require
extremely high fusion quality.

Subsequently, the proposed method was applied to a more practical scenario involving
the detection of temperature anomalies in components on printed circuit boards (PCBs).
During PCB operation, components may malfunction, especially when the circuit input is
subjected to external excitation. In these cases, the malfunctioning component typically
experiences abnormal heating, resulting in a higher temperature rise than during normal
circuit operation. This thermal anomaly is often a key indicator of component failure.
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To address this issue, a fault detection system was designed to identify and mark areas
with abnormally high temperatures in infrared images. The method aims to accurately
detect thermal anomalies that could signify potential faults, thus providing a reliable tool
for monitoring the health of PCBs. The prototype designed for this purpose is shown in
Figure 4. Figure 4a presents the overall framework of the prototype, while Figure 4b,c
show the front and back views of the physical prototype, respectively. This system aims
to enhance the detection and diagnosis of temperature-related faults in PCBs, which is
essential for improving the reliability and safety of electronic devices.
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The design of the prototype closely resembles that of a standard camera, incorporating
a familiar form factor and operational logic that aligns with user expectations. The front of
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the prototype is equipped with a sensor module that is responsible for capturing image data
and ensuring the quality and accuracy of the data acquisition process. This sensor module
consists of an infrared array sensor and a visible light camera. The Mlx90640 infrared array
sensor, a 32 × 24 pixel thermal infrared sensor that adheres to industrial standards and
has been pre-calibrated, was chosen for its affordability and cost-effectiveness compared
to other infrared sensors on the market. The sensor communicates with the Raspberry Pi
via I2C, enabling the collection of infrared image data from the target area. To capture
visible light images, a universal USB optical camera was selected. This camera is easily
integrable, highly compatible, and capable of capturing high-quality visible light images.
On the rear of the prototype, a display module is integrated to provide a clear view of the
collected images and offer intuitive visual feedback to the user. At the top of the prototype,
a simple and user-friendly interface is designed, featuring a power button and a camera
button, allowing users to effortlessly power the device and capture images with a single
press. Internally, the model includes all necessary circuit connections, power modules, and
the main control board. The main control board utilizes a Raspberry Pi 4B, ensuring the
system’s performance and stability while preserving the simplicity and elegance of the
external design.

The overall operational flow of the prototype is illustrated in Figure 5. The image
acquisition module is responsible for capturing image data from the prototype. The infrared
image acquisition function establishes communication with the thermal imaging camera
via the SMBus library, configures the camera parameters, and uses the mlx90640 library
to retrieve temperature data. The temperature data are then normalized, and bilinear
interpolation is applied to enhance the image resolution, ultimately generating a colorized
thermal map. Testing results indicate that the infrared image refresh rate achieves a level
of 2 frames per second. The visible light image acquisition function integrates physical
buttons controlled by GPIO. It interacts with the USB visible light camera via the OpenCV
library, capturing and storing both the current visible light and infrared images locally
upon button activation for subsequent processing. The data transmission module, based
on user input, sends the image data to a central processing platform via TCP socket. After
that, the acquired visible light and thermal images are processed to ensure uniformity
in format and size. Subsequently, the images undergo DWT decomposition, resulting
in four subbands: LL, LH, HL, and HH. Among these, LL represents the low-frequency
subband, while LH, HL, and HH correspond to the high-frequency subbands, which
capture the horizontal, vertical, and diagonal high-frequency components, respectively.
Each subband is assigned a weight, which is calculated using the system’s ESGA. This
weight is determined based on the potential RSD, PSNR, SF, and image clarity values
achievable from the fused image. Once the weights are assigned, the system produces
the fused subbands: LLF, LHF, HLF, and HHF, where ‘F’ denotes the fused version of the
subband. The system then performs the IDWT, resulting in the fused image, and outputs
its RSD, PSNR, SF, and image clarity values.

In the testing experiment, as illustrated in Figure 6, a typical functional PCB was
selected and tested after being powered on using the proposed system. The visible light
image, infrared image, and fused image of the PCB in its normal operating state were
recorded, as shown in Figure 6a–c, respectively. Based on these reference images, an auto-
matic annotation algorithm for thermal imaging was designed within the system. When
the system detects red high-temperature regions that deviate from the distribution pattern
observed in Figure 6b, it automatically annotates the corresponding areas in the image.
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Figure 6. A PCB in its normal operating state. (a) Visual; (b) Infrared; (c) Fused.

Subsequently, a specific component region on the PCB was artificially heated to
simulate a component failure scenario. After powering on, the system was used to test the
PCB, and the prototype captured both visible light and thermal images. These images were
then transmitted to the central processing platform, which in this case was a PC. The visible
light and thermal images were imported into the Wavelet Transform Image Fusion Scheme
Based on the Improved Genetic Algorithm designed for this project, which produced the
fused image and highlighted the areas with abnormal heating. The processed image was
then transmitted to the prototype’s display screen. Upon receiving the image data from the
sensors, the system first converts the format of the images and scales them to a resolution
of 320 × 240 pixels to match the screen size. It then calls a drawing function that maps
the image data onto the screen, converting the pixel color values to a 16-bit color format
for display. Figure 7 illustrates the process, where Figure 7a shows the original visible
light image, Figure 7b displays the thermal image, Figure 7c presents the fused image, and
Figure 7d shows the image after automatic annotation of the abnormal heating areas.

Based on the functionality tests performed and the analysis of the resulting images, it
is possible to identify the locations of abnormally high temperatures, which correspond to
the components with the highest likelihood of failure. The proposed system introduces
an innovative approach to monitoring errors in PCBs by utilizing both visible light and
thermal infrared images for fusion and analysis. This dual-modal imaging technique
enhances the system’s ability to detect anomalies, such as overheating, that may not
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be easily identified through visual inspection alone. The system captures high-quality
visible light and thermal images, which are then fused using a Wavelet Transform Image
Fusion Scheme based on an Improved Genetic Algorithm. This process generates a fused
image that effectively highlights areas of abnormal heating, providing a more accurate and
comprehensive view of the PCB’s operational status. Experimental results demonstrate the
system’s effectiveness in detecting errors, as it successfully captured and processed both
visible and thermal images of a PCB with an artificially heated component region. The
fused image displayed clear indications of the overheated areas, which were annotated
by the system’s automatic annotation algorithm. This capability is crucial for real-time
monitoring, allowing immediate detection of potential issues such as overheating that could
lead to component failures. The combination of thermal and visible light data improves
error detection accuracy, providing a clearer representation of both thermal characteristics
and visual context. This is especially useful in scenarios where visual inspection alone may
fail to detect hidden issues like hot spots or malfunctions. The system’s ability to annotate
abnormal heating areas further enhances its utility by enabling quick identification and
localization of faults.
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5. Conclusions
In this study, we proposed an advanced image fusion framework that integrates

a two-dimensional wavelet transform with an enhanced genetic algorithm, employing
a comprehensive evaluation scheme based on RSD, PSNR, SF, and image clarity. The
designed model preprocesses the input images through normalization and dimensional
alignment before decomposing them via wavelet transform. By incorporating an improved
genetic algorithm, the method efficiently identifies the optimal fusion weight combination.
Experimental results across multiple test sets demonstrated that, although the RSD values
remained near unity, which indicates consistent image stability, the enhancements in
PSNR, SF, and image clarity were substantial. Specifically, the enhanced method yielded
significantly higher PSNR values in several tests, reflecting superior noise reduction and
detail preservation. Compared with traditional pixel averaging and PCNN-based fusion
methods, the proposed approach consistently outperformed them in maintaining image
sharpness and structural details.
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Furthermore, the applicability of the proposed fusion technique was verified in a prac-
tical scenario involving PCB fault detection. By integrating both infrared and visible light
imaging in a custom-designed prototype, the system successfully captured, processed, and
fused multimodal images to highlight temperature anomalies accurately. This capability
facilitates the early detection of potential component failures and underscores the practical
significance of the fusion method in real-world applications.

In summary, the proposed image fusion framework demonstrates a well-balanced
performance by effectively enhancing image quality while preserving critical details. Its
robust performance across diverse metrics and successful application in PCB fault detection
highlights its potential for broader use in various imaging domains. Future work may
focus on further optimizing the algorithm, extending its adaptability to different imaging
conditions, and exploring additional real-world applications to fully harness its capabilities.
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