
MNRAS 538, 1789–1799 (2025) https://doi.org/10.1093/mnras/staf285 
Advance Access publication 2025 February 17 

Neural network-based model of galaxy power spectrum: fast full-shape 

galaxy power spectrum analysis 

Svyatoslav Trusov , 1 ‹ Pauline Zarrouk 

1 and Shaun Cole 

2 

1 Laboratoire de Physique Nucl ́eaire et de Hautes Energies (LPNHE), CNRS/IN2P3 & Sorbonne Universit ́e, 4 place Jussieu, F-75005 Paris, France 
2 Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK 

Accepted 2025 January 13. Received 2024 November 22; in original form 2024 April 5 

A B S T R A C T 

We present a neural network-based emulator for the galaxy redshift-space power spectrum that enables several orders of 
magnitude acceleration in the galaxy clustering parameter inference, while preserving 3 σ accuracy better than 0.5 per cent 
up to k max = 0.25 h Mpc −1 within Lambda-cold dark matter ( � CDM) and around 0.5 per cent w 0 –w a CDM. Our surrogate 
model only emulates the galaxy bias-invariant terms of one-loop perturbation theory predictions, these terms are then combined 

analytically with galaxy bias terms, counter-terms, and stochastic terms in order to obtain the non-linear redshift-space galaxy 

power spectrum. This allows us to a v oid any galaxy bias prescription in the training of the emulator, which makes it more 
fle xible. Moreo v er, we include the redshift z ∈ [0 , 1 . 4] in the training which further a v oids the need for re-training the emulator. 
We showcase the performance of the emulator in reco v ering the cosmological parameters of � CDM by analysing the suite of 25 

ABACUSSUMMIT simulations that mimic the Dark Energy Spectroscopic Instrument luminous red galaxies at z = 0 . 5 and 0.8, 
together as the emission line galaxies at z = 0 . 8. We obtain similar performance in all cases, demonstrating the reliability of the 
emulator for any galaxy sample at any redshift in 0 < z < 1 . 4. We will make our emulator public at github repository. 

Key w ords: softw are: data analysis – dark energy – miscellaneous. 
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 I N T RO D U C T I O N  

pectroscopic galaxy surv e ys yield detailed 3D maps of the cosmic
arge-scale structures (LSS) by mapping the distribution of several 

illions of galaxies in the sky. Such maps are now a well-established
osmological probe to understand our universe’s content and its 
ysterious late-time expansion. Standard galaxy clustering analyses 

ely on summarising the rich but noisy 3D information with two- 
oint statistics: 2-point correlation function (2PCF) and its Fourier 
ransform the power spectrum. We exploit two main features in 
he galaxy two-point statistics in order to constrain the expansion 
istory of the universe and the growth of structures: baryon acoustic 
scillations (BAO, Cole et al. 2005 ; Eisenstein et al. 2005 ) and
edshift-space distortions (RSD, Kaiser 1987 ). The first feature is the 
mprint on the galaxy clustering left by perturbations in the baryon- 
hoton plasma of the early universe that propagated as sound waves 
ntil decoupling. It led to a characteristic scale that corresponds to the
osition of the BAO peak or wiggles in the galaxy two-point statistics
nd that can be used to measure the expansion rate of the universe
cross time. The second feature introduces anisotropies in the full 
hape of galaxy clustering due to the line-of-sight (LOS) component 
f galaxy peculiar velocities when inferring distances from redshifts. 
he sensitivity of galaxy clustering to structure growth through RSD 

llows us to perform direct tests of gravity, and thus to test the
alidity of general relativity (GR) at cosmological scales. (e.g. Guzzo 
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t al. 2008 ). The standard method for galaxy full-shape analysis
onsists in compressing the observed multipoles into a set of three
arameters: two scaling parameters parallel and perpendicular to 
he LOS α‖ and α⊥ 

also called the Alcock–Paczynski parameters 
Alcock & Paczynski 1979 ), and the amplitude f σ8 where f is the
inear growth rate of structures and σ8 is the amplitude of linear

atter power spectrum at 8 h Mpc −1 scales (Peebles 1980 ); while
eeping the linear power spectrum fixed (template-based approach). 
he constraints on this set of compressed parameters are then 

nterpreted in terms of cosmological parameters of a given model, 
uch as the so-called Lambda-cold dark matter ( � CDM) model.
he latest state-of-the art standard galaxy clustering analyses have 

eached 3 per cent precision on the equation of state of dark energy
nd a 10 per cent precision on the growth rate of structures at three
f fecti ve redshifts in the range 0 . 4 < z < 0 . 7 (Alam et al. 2021 ).
 orthcoming spectroscopic surv e ys with e xquisite statistical power,
uch as the Dark Energy Spectroscopic Instrument (DESI, DESI 
ollaboration 2016 ), promise advances on the nature of dark energy
nd validity of GR at cosmological scales. By collecting the spectra
f about 40 million extrag alactic g alaxies and quasars in 0 < z < 3 . 5,
ESI will increase the number of measurements of the growth rate
 v er redshift by a factor of 3 and impro v e the precision on cosmo-
ogical parameters by a factor of 2–10 depending on the redshift
in. 
Thanks to impro v ements in computing facilities, it is also more

nd more possible to directly vary the underlying parameters 
f a cosmological model to fit the observed two-point statistics. 
his approach is called direct fitting or Full-Modelling and has 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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eceived lot of attention recently as it enables tighter constraints on
ome cosmological parameters without including cosmic microwave
ackground (CMB) priors with respect to the standard template
pproach (Ivano v, Simono vi ́c & Zaldarriaga 2020 ; d’Amico et al.
020 ). These standard analyses (either the standard template-based
r Full-Modelling approach) are usually limited to scales of galaxy
eparation where we can use an analytic model of the redshift-
pace two-point statistics based on perturbation theory (PT) in
he mildly non-linear regime. Recent developments proposed to
omplement PT predictions with additional nuisance parameters
o account for the small-scale physics and ensure that the models
re not sensitive to the associated galaxy formation processes that
an impact at quasi-linear scales. This extension is referred to as
f fecti ve field theory (EFT, e.g. Vlah, White & Aviles 2015 ). In
he Full-Modelling approach, when performing parameter inference,
he shape of the linear power spectrum changes at each step of the

arkov Chain Monte Carlo (MCMC) sampler. It implies computing
he linear power spectrum using a Boltzmann code at each step, in
ddition to the calculations of the PT corrections. Therefore, the
ull-Modelling approach is computationally very expensive, which
oti v ates the need to accelerate the e v aluation time of the underlying

heoretical model, especially in the context of the unprecedented
mount of data that is coming from the new generation galaxy
urv e ys. 

Such f ast lik elihood e v aluation can be achieved by the use of an
mulator which can approximate the predictions of a given summary
tatistic for a given set of cosmological parameters in a much more
fficient way while preserving the accuracy of the model. One can
se emulators based on either a Taylor series expansion such as in
aus, Chen & White ( 2023 ), Gaussian processes (e.g. Nishimichi

t al. 2019 ; Mootoovaloo et al. 2020 ) or machine-learning algorithms
e.g. DeRose et al. 2022 ; Spurio Mancini et al. 2022 ; Cuesta-Lazaro
t al. 2023 ). 

In this paper, we present a neural-network (NN) emulator for
he public state-of-the-art Lagrangian PT (LPT)-based model called
ELOCILEPTORS that also includes EFT terms (Chen, Vlah & White
020 ; Chen et al. 2021 ). In Section 2 , we re vie w the theoretical
ackground of the model in order to highlight the key quantities we
ant to emulate. In Section 3 , we describe the NN-based emulator

nd its performance in reproducing the reference non-linear power
pectrum. In Section 4 , we present the simulations, methodology,
nd results we obtain when performing a cosmological inference
rom Full-Modelling using either our NN-based emulator or the
eference analytic model. To assess the performance of the emulator
n constraining the parameters of LCDM, we use N -body simulations
hat reproduce the luminous red galaxies (LRG) of DESI at redshifts
 = 0 . 5 and 0.8 and the emission line galaxies (ELG) of DESI at
edshift z = 0 . 8. We conclude in Section 5 . 

 F RO M  DENSITY  CONTRASTS  TO  G A L A X Y  

L USTERIN G  

n this section, we briefly describe the LPT, we use as the theoretical
odel we choose to emulate. We also present the theory module of

he analysis pipeline and the portion the emulator replaces to describe
he main quantities we need to emulate for our chosen LPT. This is
one to reduce the dimensionality of the input array and to a v oid
mulating dependencies on parameters that are not directly related
o cosmology, such as galaxy biases and counter-terms. We will

ostly follow the description from Chen et al. ( 2020 ) and Matsubara
 2008 ). 
NRAS 538, 1789–1799 (2025) 
.1 Lagrangian perturbation theory 

PT tracks the trajectories x ( q , t) = q + � ( q , t), of infinitesimal
uid elements originating at Lagrangian positions q . This can be
onnected to the density contrast δ( x ) in configuration and Fourier
paces as: 

 + δ( x ) = 

∫ 

d 3 q δD 

( x − q − � ( q )) (1) 

2 π ) 3 δD 

( k ) + δ( k ) = 

∫ 

d 3 q e −i k ·( q + � ( q )) (2) 

here δD 

( x) is the Dirac delta function. 
The equation of motion go v erning the evolution of � under the

nfluence of gravity can be written as: 

¨
 + H ̇� = −∇� ( x ) (3) 

here � ( x) is the gravitational potential, dots represent deri v ati ves
ith respect to the conformal time, and H = aH is the conformal
ubble parameter. We adopt the approach of PT around the linear

nitial density contrast δ0 and solve this equation order-by-order by
xpanding � = � 

(1) + � 

(2) + · · · , where we can describe the terms
n the expansion as: 

 

( n ) 
i ( q ) = 

i n 

n ! 

∫ 

k , p 1 ... p n 

d 3 k 
n ∏ 

i= 1 

d 3 p i e i k ·q 

×δD 

k − p L 

( n ) 
i ( p 1 ... p n ) ̃ δ0 ( p 0 ) ... ̃ δ0 ( p n ) (4) 

here L 

( n ) 
i are the PT kernels, which are described in more detail in

atsubara ( 2008 ), for instance. This also allows us to define the real-
pace pairwise displacement field as 	 i = 
 i ( q 1 ) − 
 i ( q 2 ), which
ill be used later. 
Cosmological surv e ys observ e discrete tracers such as galaxies

ather than the underlying matter distribution, therefore one needs to
onnect the statistical properties of galaxies with those of the matter
ensity field. This connection, also called the galaxy bias model,
ncodes information about non-perturbative effects and baryonic
hysics. In the Lagrangian framework, we include a bias functional
n the initial conditions, F [ δ0 ( q )], that relates the tracer o v erdensity
eld to the linear matter field in the form of a Taylor series. In Fourier
pace, this results in 

(2 π ) 3 δD 

( k ) + δg ( k ) = 

∫ 

d 3 q F [ δ0 ( q )] e −i k ·( q + � ( q )) 

F [ δ0 ( q )] = 1 + b 1 δ0 + 

1 

2 
b 2 ( δ0 ( q ) 2 −

〈
δ2 

0 

〉
) + b s ( s 

2 
0 ( q ) −

〈
s 2 

〉
) 

+ b 3 O 3 ( q ) 

here b 1 can be connected to the linear Eulerian bias b 1 , e as b 1 =
 1 , e − 1, s 0 = ( ∂ i ∂ j / ∂ 

2 − δij / 3) δ0 is the initial shear tensor, where
e follow the notation of Chen et al. ( 2020 ). There is only one non-
egenerate cubic contribution in the bias model at one-loop order
hich we include schematically as O 3 . In this paper, we set b 3 = 0

nd we refer to Maus et al. (in preparation) for further tests of this
ssumption. 

Galaxy redshifts contain two dominant contributions for galaxy
lustering analysis, one that corresponds to the Hubble flow and
nother one that corresponds to the LOS component of the galaxy
eculiar velocity. The second contribution is responsible for the so-
alled RSD (Kaiser 1987 ) of the galaxy two-point statistics. This
ffect needs to be accounted for in the model by boosting the
isplacement field � along the LOS ˆ z as follows: 

 s = � + 

ˆ z ( v · ˆ z ) 

H 

, (5) 
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here v is the galaxy peculiar velocity. In a matter-dominated 
niverse, one can relate the displacement shift due to peculiar velocity 
o the linear growth rate of structures, f such that for each of the
erturbative kernels of order n (Matsubara 2008 ): 

 

( n ) 
s = � 

( n ) + nf ( ̂ z · � 

( n ) ) ̂ z , (6) 

ventually, we define the pairwise displacement field in redshift 
pace as 	 s = 
 s ( q 1 ) − 
 s ( q 2 ), and we can obtain the redshift-
pace galaxy power spectrum Chen et al. ( 2020 ) as: 

 g,s ( k ) = 

∫ 

d 3 q 
〈
e i k ·( q + 	 s ) F ( q 1 ) F ( q 2 ) 

〉
q = q 1 −q 2 

. (7) 

here F ( q ) = F [ δ0 ( q )]. 
In this paper, we consider the public state-of-the-art EFT code 

amed VELOCILEPTORS 1 (Chen et al. 2020 ; Chen et al. 2021 ) as
ur reference theory. This model is one of the EFT models used in
ESI for the Full-Shape analysis of the DR1 galaxy samples. More
recisely, we focus on the moment expansion model as implemented 
n the MomentExpansion module of VELOCILEPTORS . 

.2 Moment expansion 

he redshift power spectrum can be expanded as: 

 s ( k ) = 

∞ ∑ 

n = 0 

i n 

n ! 
k i 1 ...k i n � 

( n ) 
i 1 ...i n 

( k ) (8) 

here each of the moments � 

( n ) 
i 1 ...i n 

can be presented with density 
eighting, following Chen et al. ( 2020 ) as: 

 

( n ) 
i 1 ...i n 

= 

∫ 

d 3 r e i k ·r 〈 (1 + δ1 )(1 + δ2 ) 	v i 1 ...	v i n 〉 (9) 

e can immediately notice that the zeroth moment is just a real-space
ower spectrum, while the first and second are the mean pairwise 
elocity v 12 ,i and the velocity dispersion σ12 ,ij which are the main 
ngredients of the moment expansion model. We will not present the 
omplete deri v ation, which can be found in Chen et al. ( 2020 , 2021 ),
ut instead we will provide the final expressions only. Before that, 
e will define a shorthand notation for different correlators: 

 

mn 
i = 

〈
δm ( q 1 ) δ

n ( q 1 ) 	 i 

〉
A 

mn 
ij = 

〈
δm ( q 1 ) δ

n ( q 1 ) 	 i 	 j 

〉
 ijk = 

〈
	 i 	 j 	 k 

〉
ome of the correlators in the final expression will have linear 
nd loop corrections separated, we will denote them that by a 
orresponding superscript. 

We can expand the real-space galaxy power spectrum P g ( k) into 12
osmology-dependent terms multiplied by the biases b 1 , b 2 , b s , b 3 : 

P g ( k) = 

∫ 
d 3 q e i k q e −

1 
2 k i k j A 

lin 
ij 

{
1 − 1 

2 
k i k j A 

loop ij + 

i 

6 
k i k j k k W ijk 

+ b 1 
(
2 ik i U i − k i k j A 

10 
ij 

) + b 2 1 

(
ξlin + ik i U 

11 
i − k i k j U 

lin 
i U 

lin 
j 

)

+ 

1 

2 
b 2 2 ξ

2 
lin + 2 ib 1 b 2 ξlin k i U 

lin 
i − b 2 

(
k i k j U 

lin 
i U 

lin 
j + ik i U 

20 
i 

)
+ b s 

(−k i k j ϒ ij + 2 ik i V 
10 
i 

) + 2 ib 1 b s k i V 
12 
i + b 2 b s χ + b 2 s ζ

+ 2 ib 3 k i U b 3 ,i + 2 b 1 b 3 θ + αP k 
2 + ... 

} + R 

3 
h 

= C 0 + b 1 C 1 + b 2 1 C 2 + b 2 2 C 3 + b 1 b 2 C 4 + b 2 C 5 + b s C 6 

+ b 1 b s C 7 + b 2 b s C 8 + b 2 s C 9 + b 3 C 10 + b 1 b 3 C 11 + αP k 
2 + ... (10) 
 https:// github.com/ sfschen/ velocileptors 

2

3

The mean pairwise velocity v 12 can be expanded in a similar
ashion into eight terms: 

ˆ n i v 12 ,i ( k ) = ˆ n i 

∫ 

d 3 q e i k q e −
1 
2 k i k j A 

lin 
ij 

{
ik j Ȧ ji − 1 

2 
k j k k Ẇ jki 

+ 2 b 1 
(
U̇ i − k k U 

lin 
k k j Ȧ 

lin 
ji + k j Ȧ 

10 
ji 

)
+ b 2 1 

(
2 i k j U 

lin 
j U̇ 

lin 
i + i ξlin k j Ȧ 

lin 
ji + U̇ 

11 
)

+ b 2 
(
U̇ 

20 + 2 ik j U 

lin 
j 

) + 2 b 1 b 2 ξlin U̇ 

lin 
i + 2 b s 

(
V̇ 

10 
i + ik j ϒ̇ ji 

)
+ 2 b 1 b s V̇ 

12 
i + 2 b 3 U̇ b 3 ,i + αv k i + 

}
... + R 

4 
h σv 

= C 12 + b 1 C 13 + b 2 1 C 14 + b 2 C 15 + b 1 b 2 C 16 + b s C 17 + b 1 b s C 18 

+ b 3 C 19 + αv k i + ... (11) 

The pairwise velocity dispersion σ12 in the same manner can be 
hown to be decomposed into five cosmology-dependent terms: 

σ12 ,ij ( k ) = 

∫ 

d 3 q e i k q e −
1 
2 k i k j A 

lin 
ij 

{
Ä ij + ik n Ẅ nij − k n k m 

Ȧ 

lin 
ni Ȧ 

lin 
mj 

+ b 1 
(
2 i k n U 

lin 
n Ä 

lin 
ij + 2 i k n 

[
Ȧ 

lin 
ni U̇ 

lin 
j + Ȧ 

lin 
nj U̇ 

lin 
i 

] + 2 Ä 

10 
ij 

)
+ b1 2 

(
ξlin Ä 

lin 
ij + 2 ̇U 

lin 
i U̇ 

lin 
j + 

) + 2 b s ϔ ij 

+ ασ δij + βσ ξ 2 
0 ,L 

(
ˆ q i ̂  q j − 1 

3 
δij 

)
+ ... 

}
+ R 

3 
h s 

2 
v δij (12) 

he expression can be decomposed into transversal and longitudinal 
omponents as: 

ij = σ0 ( k) δij + 

3 

2 
σ2 ( k) 

(
ˆ k i ̂  k j − 1 

3 
δij 

)
(13) 

Finally, adding the counter-terms αi , stochastic terms and the 
ingers of God (FOG) effect σ 2 

v , and the total galaxy redshift-space
ower spectrum obtained using the moment expansion P 

ME 
g,s ( k ) is

iven by: 

P 

ME 
g,s ( k ) = 

(
P ( k) + i( kμ) v 12 , ̂ n ( k ) − ( kμ) 2 

2 
σ 2 

12 , ̂ n ̂ n ( k ) 
)

+ 

(
α0 + α2 μ

2 + α4 μ
4 + ... 

)
k 2 P lin , Zel ( k) + R 

3 
h (1 + σ 2 

v ( kμ) 2 + ... ) 

(14) 

.3 Theory module of the analysis pipeline 

ig. 1 presents the theory module of the analysis pipeline, or in
ther words how to predict the galaxy non-linear power spectrum 

ultipoles from the input parameters which are the � CDM cosmo-
ogical parameters and the redshift. The upper branch corresponds 
o the default pipeline where we first compute the linear power
pectrum using COSMOPRIMO , 2 a PYTHON wrapper for CLASS , 3 a
imulator of the evolution of the linear cosmological perturbations, 
hich is used as input for VELOCILEPTORS . As shown in the previous

ection, we can split the contributions of each ingredient of the model
etween bias-invariant terms that depend on the cosmological model 
nly and cosmology-independent terms that correspond to the bias 
odel, counter-terms, and FOG and stochastic terms. Therefore, we 

an replace the generation of the linear power spectrum and the
omputation of the cosmology terms of the model by an NN. This
orresponds to the lower branch of Fig. 1 . Once the bias-independent
erms are obtained with the NN emulator, they can be added to the
ther terms in order to produce the non-linear power spectrum using
quation ( 14 ). 
MNRAS 538, 1789–1799 (2025) 

 https:// github.com/ cosmodesi/ cosmoprimo 
 https:// lesgourg.github.io/ class public/ class.html 

https://github.com/sfschen/velocileptors
https://github.com/cosmodesi/cosmoprimo
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M

Figure 1. Schematic of the theory module in the analysis pipeline: the classical approach consists in first predicting the linear power spectrum and then 
computing the non-linear power spectrum with an EFT model such as VELOCILEPTORS . We propose to replace the computation of the linear power spectrum and 
of the bias-invariant terms in the PT model by an NN emulator. These bias-invariant terms that depend only on the cosmological model are combined with the a 
set of bias and nuisance parameters, common to the VELOCILEPTORS and NN pipeline, to predict the non-linear redshift-space galaxy power spectrum. 
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By only emulating the 31 bias-independent terms which de-
end just on the cosmological parameters, our task is significantly
implified. Also emulating these terms a v oids the computational
 xpensiv e bottleneck of computing the fast Fourier transforms
FFTs) required in VELOCILEPTORS . In our approach, the training
ample for the emulation is based on VELOCILEPTORS predic-
ions but measurements from N -body simulations could be used
nstead as, for instance, in Modi, Chen & White ( 2020 ). Both
pproaches are limited to quasi-linear scales as the bias expansion
s valid only on scales where the baryonic effects (such as active
alactic nuclei feedback and ionizing radiation) are small enough
hat they can be treated as perturbative corrections to the total
ower spectrum (e.g. Lewandowski et al. 2018 ; Chisari et al.
019 ). Moreo v er, in our approach, as the NN model is trained
n PT predictions, it has the same range of validity as PT. We
ecall that we aim at significantly accelerating the cosmological
nference and not at extracting information from the non-linear
egime. 

In the realistic surv e ys, ho we ver, the distances are usually con-
erted from redshifts using a fiducial cosmology, which can be
ifferent from the underlying one. In order to account for this
ifference, we use the methodology presented in d’Amico et al.
 2020 ). 

 F RO M  A NA LY T I C A L  C O M P U TAT I O N S  TO  

E U R A L  N E T WO R K S  

n this section, first, we describe the architecture of the NN-based
mulator and then present its performance. 

.1 Ar chitectur e of the emulator 

 fully connected NN can be used to approximate a function f such
hat y = f ( x | θ), where x represents the features of the data set, y 
he desired outputs, and θ the free parameters of the network which
lso can be referred to as trainable parameters. The optimal function
 is defined by the set of parameter values θ that minimizes the loss
unction (the form of which is discussed below). The loss function
rovides a measure of the performance of the model when e v aluated
n the data set. 
NRAS 538, 1789–1799 (2025) 
Fig. 2 presents the architecture of our NN. The input parameters of
he � CDM model are C = 

{
ω cdm 

, ω b , log 
[
10 10 A s 

]
, n s , h 

}
and the

edshift z. For w o w a CDM, we just add the two parameters describing
he dark energy equation of state, the present-day parameter w 0 and
he time evolution parameter w a . The training set comprises of 3000
6000 for w o w a CDM) samples drawn from a Latin hypercube (Jin,
hen & Sudjianto 2005 ) featuring the six (eight for w o w a CDM)
osmological parameters and implemented using SMT toolkit (Saves
t al. 2024 ), and the redshift in the range 0 < z < 1 . 4. All the
ata sets are generated using MomentExpansion module of VE-
OCILEPTORS . Table 1 summarizes the very broad flat un-informative
riors used for the cosmological parameters when defining the Latin
ypercube. We group the training data into a 31 × 50 matrix, where
1 is the number of bias-independent terms described in Section 2.2
nd 50 is our fiducial choice for the number of k bins. 

A feed-forward fully connected model based on the machine
earning framework PYTORCH 

4 is created for each such matrix. We
se two hidden layers of 16 238 neurons and the Gaussian Error
inear Units (GELU) acti v ation function (Hendrycks & Gimpel

https://github.com/pytorch/pytorch
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Table 1. Definitions and ranges of the parameters of the training set for the emulator. 

Parameter Interpretation Prior range 

ω cdm 

Physical cold dark matter density parameter [0.05, 0.30] 
ω b Physical baryon density parameter [0.01, 0.04] 
log 

[
10 10 A s 

]
The primordial normalization of the matter power spectrum at k = 0 . 05 Mpc h −1 [2, 4] 

n s Spectral index of the primordial power spectrum [0.8, 1.1] 
h Normalized Hubble constant at z = 0 [0.5,0.8] 
z Redshift [0.0, 1.4] 
w 0 Present-day dark energy equation of state [ −0.5, −2] 
w a Time evolution of the dark energy equation of state [ −3, 0.3] 
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Table 2. Ranges of the parameters used for the multipole testing. 

Parameter Range 

ω cdm 

[0.10, 0.14] 
ω b [0.01, 0.03] 
log 

(
10 10 A s 

)
[2.5, 3.5] 

h [0.64, 0.72] 
n s [0.9, 1.0] 
b 1 [ −1, 3] 
b 2 [ −10, 10] 
b s [ −20, 20] 
b 3 [ −20, 20] 

Figure 3. Comparison between the galaxy redshift-space power spectrum 

multipoles of the emulator P �, NN and of the theoretical version P �, th for � = 0 
(top), � = 2 (middle), and � = 4 (bottom), for � CDM. The dashed curves 
represent the 3 σ scatter and the solid curves the individual realizations. 
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016 ), which can be represented as 

ELU ( x) = 0 . 5 x 

[
1 + erf 

(
x √ 

2 

)]
. (15) 

he o v erall outputs (PT terms) and the inputs (cosmological param-
ters) x i are normalized x i ∈ [ −1 , 1]. 

The training is done in batches of 128 for 5000 epochs, meaning
hat the training data set is divided into groups of 128, where the
lements of each group are then simultaneously passed through the 
N, and after that the weights are adjusted using backpropagation. 
hese groups are called batches, and we do this until all of the
ossible groups have been used. That constitutes an epoch. This 
rocedure is therefore repeated 5000 times. The validation data set 
onsists of 1000 samples, constituting a hypercube with the same 
arameters as the training data. We minimize the L1 norm loss
unction defined by: 

 = 

1 

N 

N ∑ 

i= 0 

| y i true − y i predicted | , (16) 

ith optimization performed using PYTORCH realization of the Adam 

ptimizer (Kingma & Ba 2014 ). The learning rate is set to 4 × 10 −7 .
e stopped the training after 100 epochs when the validation loss

which is the same as for the training) was not improving. The tests of
he emulator were done separately, and are described in the following 
ection. 

.2 Performance of the emulator 

irst, we assess the performance of the emulator in predicting the 
egendre multipoles of the power spectrum defined as: 

 � ( k ) = 

(2 � + 1) 

2 

∫ 1 

−1 
d μ P ( k , μ) L � ( μ) (17) 

here L � ( μ) is the Legendre polynomial of order � . In this work,
e consider the monopole � = 0, the quadrupole � = 2 and the
exadecapole � = 4. 
In order to assess the performance of the emulator at the 

evel of the multipoles, we generate N = 10 000 sets of the
osmological and nuisance parameters taken from the ranges 
iven in Table 2 . Then, we produce the multipoles using both
he original VELOCILEPTORS code and our emulator. Fig. 3 
hows the ratio of the NN LPT emulator multipole P l, NN 

o the theoretical prediction from VELOCILEPTORS P l, th for the 
onopole (top), quadrupole (middle), and hexadecapole (bottom), 

or � CDM. The dashed curves show the 3 σ scatter. Up to k max =
 . 25 h Mpc −1 , the o v erall multipoles computed from the emula-
or agree with the ones from the reference analytic version at 
MNRAS 538, 1789–1799 (2025) 
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Figure 4. Same as for Fig. 3 , but for w o w a CDM. We reco v er a performance 
somewhat worse than that for the � CDM case, due to the two additional 
parameters and despite additional samples in the training set, but with ∼
0 . 5 per cent in precision at 3 σ . 

b  

1

C  

c  

p
 

m  

n  

t  

e  

t  

a  

a  

d  

f  

d

4

I  

c  

s  

c  

E

Figure 5. Speed performance of the NN emulator with respect to the original 
code as a function of the number of simultaneously computed multipoles. 
The ratio of computation time for the time with original code to that of our 
emulator is plotted against the batch size: number of simultaneously computed 
non-linear power spectra. 
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elow 0.5 per cent at 3 σ , which means below 0.2 per cent at
 σ . 
Fig. 4 shows the same information as Fig. 3 , but for w o w a 

DM model. We reco v er a similar accurac y ev en for this e xtended
osmological model with the emulator predicting the multipoles at a
recision below 0.2 per cent at 1 σ up to k max = 0 . 25 h Mpc −1 . 
We test the impro v ement in speed to compute the power spectrum
ultipoles by generating 50 batches of multipoles with the variable

umber of multipoles in each n b = [0 , 10 , 25 , 50 , 100 , 200], such
hat we can estimate the performance boost as a ratio between the
lapsed time for their production with the original code to the time
aken by the emulator. The corresponding proportion is then plotted
gainst the number of multipoles in a single batch in Fig. 5 . We
ttribute most of the speed growth with increasing the batch size as
ue to the parallelization o v er Graphics Processing Units (GPU), a
eature that the original VELOCILEPTORS software does not support
ue to the very sequential nature of its code. 

 C O S M O L O G I C A L  INFERENCE  

n this section, first we describe the simulations we use to compare the
osmological constraints from the emulator described in the previous
ection and its analytic version. Then, we present the results of the
osmological inference when using either the emulator or the original
FT code. 
NRAS 538, 1789–1799 (2025) 
.1 DESI-like simulations 

e use the ABACUSSUMMIT suite of cosmological N -body simula-
ions (Maksimova et al. 2021 ) that were run with the ABACUS N -body
ode (Garrison et al. 2021 ). We use the 25 base simulations each with
30 billion particles in a 2 ( h 

−1 Gpc ) 3 volume which corresponds to
 mass resolution of 2 × 10 9 M � h 

−1 . The baseline cosmology is
lanck 2018 (Planck Collaboration VI 2020 ), specifically the mean
f base plikHM TTTEEE lowl lowE lensing . We consider
wo snapshots z = 0 . 5 and 0.8 and only cubic boxes. 

In order to test the performance of the emulator in extracting
obust cosmological inference, we create three sets of ABACUS galaxy
ocks: two LRG boxes at z = 0 . 5 and 0.8 and one ELG box at
 = 0 . 8, which allows us to test both the effect of redshift evolution
nd the dependence on the nature of the tracer. We populate the
ark matter haloes with galaxies with similar clustering properties to
hose found by DESI, using the halo occupancy distribution (HOD)
ormalism which connects the probability for a halo of a given mass
o host a galaxy. In this formalism, we treat separately the central
alaxies located at the centre of the halo and satellite galaxies. We
ollow the prescriptions and HOD parameter values that are tuned
n DESI early data release (DESI EDR, DESI Collaboration 2023 ).
ore precisely, for LRG we use the results from Yuan et al. ( 2024 )

nd for ELG the ones from Rocher et al. ( 2023 ). 
The probability for a halo of mass M h to host a central LRG galaxy

s given by: 

 cen , LRG ( M h ) = 

1 

2 
p max erfc 

(
log 10 ( M cut /M h ) √ 

2 σM 

)
(18) 

here M h is the halo mass, log 10 M cut corresponds to the mass where
nly half of the haloes hosts a central galaxy, log σM 

controls the
idth of the transition from hosting zero to one central galaxy, and
 max controls the saturation level of the occupation probability or in
ther words it can be seen as the maximal probability that a halo
osts a central galaxy. 
The model of central galaxies HOD is more complex for ELGs. We

re using the one called the high mass quenched model as proposed
n Alam et al. ( 2020 ), based on a skewed distribution, allowing for a
eduction of the central galaxies in higher mass haloes. It introduces
arameters Q , setting the quenching efficiency for higher mass haloes
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nd γ controlling the skewness of the distribution. The o v erall HOD
odel for the ELG central galaxies can be written as: 

 cen , ELG ( M h ) = 2 Aφ( M h ) � ( γM h ) 

+ 

1 

2 Q 

[
1 + erf 

(
log 10 ( M h /M cut 

0 . 01 

)]
(19) 

here: 

( x) = N ( log 10 M cut , σM 

) (20) 

 ( x) = 

∫ x 

−∞ 

φ( t)d t = 

1 

2 

[
1 + erf 

(
x √ 

2 

)]
(21) 

 = 

p max − 1 /Q 

max ( 2 φ( x ) � ( γ x ) ) 
. (22) 

The number of the satellite galaxies N sat for both LRG and ELG
s given by: 

 N sat 〉 ( M h ) = 

(
M h − κM cut 

M 1 

)α

(23) 

here M 1 characterizes a typical mass of the halo hosting one satellite 
alaxy, and κM cut controls the minimal mass for a halo to host a
atellite galaxy. In order to create the ELG mocks we use the modified 
odel taken from Rocher et al. ( 2023 ), where Q tends to infinity. We

se the public code package ABACUSHOD (Yuan et al. 2022 ) which is
art of the ABACUSUTILS package 5 to apply these HOD prescriptions 
o the dark matter haloes of the ABACUSSUMMIT simulations and the 
alues of the HOD parameters for LRG and ELG are summarized in
able 3 . 

.2 Methodology 

or each of the 25 ABACUS mocks, we compute the two-point 
edshift-space power spectrum multipoles ( � = 0 , 2 , and 4) and the
ssociated window function for the cubic boxes using PYPOWER 

6 

he code is based on the methodology described in Yamamoto et al.
 2006 ) and Hand et al. ( 2017 ). The density δ( x) is computed on a
esh of size 512 3 , then using FFT, first we can obtain the quantities

� defined as: 

� ( k) = 

∫ 

d 3 x 

(2 π ) 3 
e −i k ·x δs ( x ) L � ( ̂ k · ˆ x ) (24) 

Those terms later can be combined into the power spectrum 

ultipoles as: 

 � ( k) = (2 � + 1) 
∫ 

d �

4 π
δ� ( k ) δ0 ( −k ) (25) 

here δ0 = δl= 0 and � is the solid angle. As we are planning to apply
t to boxes, we assume the sky to be flat, and take the LOS to be along
 box side. 

Once we measure the multipoles, we use the mean of 25 simula-
ions to create a Gaussian analytic covariance matrix following the 

ethodology in Grieb et al. ( 2016 ): 

C 

G 
� 1 ,� 2 

( k i , k j ) = 

2(2 π ) 4 (2 � 1 + 1)(2 � 2 + 1) 

V s V 

2 
k 

δij 

×
∫ k i + 	k 

k i −	k 

k 2 
[∫ 1 

−1 

(
P ( k, μ) + 

1 

n 

)
L � 1 ( μ) L � 2 ( μ)d μ

]
d k 

(26) 
 https:// github.com/ abacusorg/ abacusutils 
 https:// github.com/ cosmodesi/ pypower

T  

7

where V s is the volume of a sample, V k is the volume of a shell in
 -space, and the 1 

n 
term represents the shot-noise contribution, which 

e assume to be negligible. 
Once we have both the multipoles and the covariance, we can

ompute the log-likelihood L ( p 1 , ..., p n ) with respect to the chosen
heory and a set of cosmological and nuisance parameters as: 

log ( L ( p 1 , ..., p n )) = 

∑ 

� 1 � 2 

∑ 

i,j 

(
P � 1 ( k i ) − P 

th 
� 1 

( k i ) 
)

× (
� 

−1 
)� 1 � 2 

i,j 

(
P � 2 ( k j ) − P 

th 
� 2 

( k j ) 
)

(27) 

here P 

th 
� are the theoretical predictions of the power spectrum 

ultipoles, { p 1 , ..., p 2 } are the parameters of the model including
he cosmological parameters, but also the galaxy bias and nuisance 
erms. We use EMCEE 7 package (F oreman-Macke y et al. 2013 ) for
he MCMC sampling in order to infer the cosmological parameters 
f interest. All of the MCMC chains are run just to the convergence,
hich is tracked using integrated autocorrelation time for which we 

equire to be τ > N/ 100 (Sokal 1996 ), where N is the number of
teps that w alk ers in the sampler have made. 

.3 Consistency test of the multipoles 

e perform a consistency test at the level of the multipoles between
he measured and predicted multipoles using the same test set as the
ne used to produce Fig. 3 for � CDM and Fig. 4 for w o w a CDM. To
o so, we define 	χ2 = χ2 

emu − χ2 
th where χ2 can be defined from a

aussian likelihood as 

2 = −2 log ( L ( p 1 , ..., p n ) ) + C (28) 

here C is a normalization constant for the likelihood distribution. 
his test allows us to estimate the difference in terms of likelihoods
enerated using VELOCILEPTORS and our emulator by inputting the 
ame cosmological and bias parameters into both models, with 
he parameters being sampled from uniform distribution defined in 
able 2 . For the ‘data’ vector, we use the mean of 25 LRG z = 0 . 8
ocks, and for the covariance we use the analytic covariance for

he same sample. We then compute the χ2 for each model, and then
ake their difference 	χ2 and divide it by the value obtained from
he VELOCILEPTORS model. Figs 6 and 7 show the distribution of
χ2 /χ2 for this test within � CDM and w o w a CDM, respectively.
he standard deviation of this statistic is σ ( 	χ2 /χ2 ) = 0 . 005 with a
ean of μ( 	χ2 /χ2 ) = 0 . 003. This shows that for the vast majority

f cases we will obtain the correct likelihood with a sub-per cent
evel of precision. 

.4 Cosmological inference: comparison between the emulator 
nd VELOCILEPTORS 

e assess the performance of the NN LPT emulator in inferring
he cosmological parameters with respect to the original LPT code 
y fitting the mean of the 25 ABACUS mocks for the three sets:
ESI LRG-like at z = 0 . 5, DESI LRG-like at z = 0 . 8, and DESI
LG-like at z = 0 . 8. The fits are performed for � = 0 , 2 , and 4
ultipoles of the power spectrum in k -ranges of [0.02,0.2] in

ins of 	k = 0 . 005. Fig. 8 shows the cosmological constraints
btained from full modelling using either the NN LPT emulator 
red) or MomentExpansion module of VELOCILEPTORS (green). 
he dashed curves represent the 1 σ error from each model. Both
MNRAS 538, 1789–1799 (2025) 

 https:// emcee.readthedocs.io/ en/ stable/ 

https://github.com/abacusorg/abacusutils
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Table 3. Definitions and ranges of the galaxy–halo connection parameters for the the simulations used to test the emulator. 

Parameter Interpretation LRG z = 0 . 5 LRG z = 0 . 8 ELG z = 0 . 8 

log ( M cut ) Minimum halo mass to host a central 12.79 12.64 11.75 
log ( M 1 ) Typical halo mass to host one satellite 13.88 13.71 19.83 
σM 

Scatter around the mean halo mass or M cut ? 0.21 0.09 0.31 
α Power-la w inde x for the mass dependence of the number of satellites 1.07 1.18 0.72 
κ Parameter that modulates the minimum halo mass to host a satellite 1.4 0.6 1.8 
p max Maximal probability of a galaxy to occupy a halo 1 1 0.08 
γ Quenching efficiency n/a n/a 1.39 
αc Central velocity bias 0.33 0.19 0.19 
αs Satellite velocity bias 0.80 0.95 1.49 

Figure 6. Distribution histogram of the ratios of the difference in χ2 obtained 
with our emulator and the original code to the χ2 obtained with the original 
code. 

Figure 7. Same as for Fig. 6 , but for w o w a CDM. 
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odels yield very consistent results, both for the best-fitting values
nd the uncertainty. 

We summarize the results of the comparison between the NN
mulator (triangles) and the analytic code (circles) in Fig. 9 where
e show the best-fitting values and 1 σ error for the three main

osmological parameters that are well constrained with full-shape
nalysis. We can see that both methods yield very consistent and
imilar results with less than 0.3 σ for the largest difference seen
n h . 
NRAS 538, 1789–1799 (2025) 
.5 Cosmological inference: comparison between the emulator 
nd the truth 

e also want to assess the performance of the emulator with
espect to the expected v alues gi ven the cosmological model that
as used for the simulations. In order to do that, we fit the 25

ndividual realizations for each case and in Fig. 10 , we show the
esults for the cosmological parameters by plotting the difference
etween measured and truth divided by the error on the measured
arameter as a function of mock number. Blue triangles represent
he results for LRG at z = 0 . 5, green ones for LRG z = 0 . 8, and
range ones for ELG at z = 0 . 8. All the results are consistent with
he expected truth values within 1 σ–2 σ , which further validates the
bility of the emulator to reco v er precise and unbiased cosmological
onstraints. 

 C O N C L U S I O N S  

e have developed an NN-based emulator for the non-linear redshift-
pace galaxy power spectrum that is tailored for galaxy clustering
nalysis that relies on the ef fecti ve field theory of large-scale
tructures. It takes as input the cosmological parameters and the
edshift and emulates only the cosmology-dependent terms of a one-
oop LPT which, in this work, is taken to be the one implemented in
he public code VELOCILEPTORS (Chen et al. 2020 , 2021 ). The other
erms of the theory (bias expansion, EFT terms also called counter-
erms and stochastic terms) are kept analytical and combined with
he output of the NN in order to obtain the non-linear redshift-
pace galaxy power spectrum. First and foremost, it bypasses the
eed to generate a linear matter power spectrum from a Boltzmann
ode such as CLASS or CAMB which is the most computationally
emanding task. As a consequence, it enables acceleration of the
ull inference pipeline by a factor of O(10 3 ). Moreo v er, there is
n additional speed-up that comes when running the emulator on
PU which is not possible with the original VELOCILEPTORS code.
e have also shown that the accuracy of the emulator meets the

equirements for the new generation of galaxy surv e ys such as DESI
DESI Collaboration 2016 ). First, we have checked the residuals
etween the emulated and analytical multipoles of the redshift-space
alaxy power spectrum, then we have examined the χ2 difference
 of the likelihood e v aluation between the emulated and predicted
ultipoles. Ev entually, we hav e performed a full-inference analysis

n order to compare the posterior on the cosmological parameters
etween the two methods. For the last two tests, we have created
hree sets of mocks that mimic DESI galaxy samples using the
ublic ABACUSSUMMIT N -body simulations: LRG at z = 0 . 5, LRG
t z = 0 . 8, and ELG at z = 0 . 8. 
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Figure 8. Comparison of cosmological constraints obtained with the NN emulator and with MomentExpannsion when fitting the mean of the 25 ABACUS 

mocks for the three configurations. 
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In addition to the significant speed-up that the emulator provides 
ith respect to the original analytical code, the emulator has also 
ther key advantages: 

(i) Accur ate . We hav e showed that our emulator can predict
he multipoles of the redshift-space galaxy power spectrum with 
.5 per cent accuracy at k max = 0.25 h Mpc −1 at 3 σ within � CDM. 
(ii) Fle xible . We ha ve found similar performance of the emulator

ndependently of the redshift and of the nature of the tracer. We
ested the case of DESI-like LRG and ELG, but we stress that any
alaxy sample could be used. Because we decided to emulate only 
he bias-independent terms that depend on the cosmological model 
nd combine a posteriori with the bias expansion terms and nuisance 
erms, the emulator is very flexible with respect to any type of galaxy
ample considered. Moreo v er, the inclusion of the redshift in the
raining implies that no additional re-training is needed from the 
ser’s point of view. Therefore, although we provide all the tools
ecessary to train the emulator, this is not needed if the emulator is
sed in the cosmological and redshift ranges indicated in Table 1 . 
(iii) Differentiable. By construction the emulator is fully differ- 

ntiable which makes it useful for gradient-based inference such 
s Hamiltonian Monte Carlo (e.g. Betancourt 2017 ) which is more
fficient for high-dimensional parameter space sampling. 

(iv) Beyond - � CDM . We have also considered an extension of the
osmological parameter space by including the time parametrization 
f the dark energy equation of state w o , w a . We obtain a slightly
orse performance as in the � CDM case with the emulator re-
roducing the multipoles with around 0.5 per cent precision at 3 σ
p to k max = 0.25 h Mpc −1 , while using the same architecture with
dditional samples in the training set. 

The use of NNs for cosmological power spectra emulation has 
een more and more common. CosmoNET was one of the NN-based
mulator developed for accelerating the calculation of CMB power 
MNRAS 538, 1789–1799 (2025) 
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Figure 9. The cosmological parameters obtained from Full-Modelling fits 
with the NN emulator and with the original code obtained from the mean of 
different mock types with rescaled covariance matrix. 
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Figure 10. The deviation of different cosmological parameters in terms of 
the error σ from the expected theoretical value obtained from the individual 
mock fits for three mock types: for LRGs with z = 0 . 5, for LRGs with 
z = 0 . 8, and for ELGs with z = 0 . 8. 
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pectra, matter transfer functions and likelihoods (Auld, Bridges &
obson 2008 ). More recently, Spurio Mancini et al. ( 2022 ) developed
OSMOPOWER that emulates both the CMB power spectra and matter
ower spectrum computed by Boltzmann codes. We found similar
ain in speed and performance for the LSS part with the main
ifference being that in our case, we obtain directly a prediction of
he non-linear redshift-space galaxy power spectrum by emulating
he bias-invariant terms of the LPT kernels and combining them with
 bias expansion model and nuisance terms including counterterms
rom EFT. Therefore, our k- and z-ranges are limited to the validity
f EFT/LPT in the quasi-linear regime and to the typical redshift
ange probed by galaxy clustering (0 < z < 1 . 5). In DeRose et al.
 2022 ), they also use NNs as fast surrogate for the non-linear redshift-
pace galaxy power spectrum, but also for the real-space galaxy,
alaxy–matter, and matter–matter power spectra so that it can be
sed for both galaxy clustering and weak lensing analyses. Ho we ver,
heir cosmological parameter space is more restricted than ours with
 s fixed and without including the redshift z in the training set,
hich means the user has to re-train the emulator for each redshift

onsidered. Moreo v er, the y include galaxy bias terms, counter-terms,
nd stochastic terms in the training set. Although their prior ranges for
hese non-cosmological parameters are broad, their emulator cannot
e used as it is for more exotic bias expansion models which would
equire a re-training operation. 
NRAS 538, 1789–1799 (2025) 
The development of machine learning algorithms as surrogate
odels for cosmological observables has been moti v ated by the

eed to decrease the computational cost of parameter estimation.
his is more and more true as the models increase in complexity
ith additional nuisance parameters in order to meet the strin-
ent accuracy requirements imposed by more precise cosmological
easurements. In this work, we have focused on speeding up the

rediction of the non-linear redshift-space galaxy power spectrum
hich implies a speed-up of the full inference pipeline from direct
tting of the galaxy two-point statistics. In a future work, we
ill use this NN emulator to perform a multitracer analysis of

he DESI BGS DR1 (Trusov et al., in preparation). Accelerating
he inference pipeline as proposed in this work becomes even

ore crucial for multitracer as, in the case of the DESI BGS,
e analyse jointly blue, red and cross-power spectra or correla-

ion functions, which increases significantly the dimensionality of
he parameter space and the computational expense of parameter
stimation. 
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