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It is known that if each point x of a dynamical system is 
generic for some invariant measure μx, then there is a strong 
connection between certain ergodic and topological properties 
of that system. In particular, if the acting group is abelian 
and the map x �→ μx is continuous, then every orbit closure 
is uniquely ergodic.
In this note, we show that if the acting group is not abelian, 
orbit closures may well support more than one ergodic 
measure even if x �→ μx is continuous. We provide examples 
of such a situation via actions of the group of all orientation-
preserving homeomorphisms on the unit interval as well as 
the Lamplighter group. To discuss these examples, we need 
to extend the existing theory of weakly mean equicontinuous 
group actions to allow for multiple ergodic measures on orbit 
closures and to allow for actions of general amenable groups. 
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These extensions are achieved by adopting an operator-
theoretic approach.
© 2025 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Temporal averages and their relation to invariant measures of a dynamical system are 
fundamental in ergodic theory. A classical notion intimately linked to this relationship 
is that of generic points [16]. Given a dynamical system (X, f) with X a compact metric 
space and f : X → X a homeomorphism, a point x ∈ X is called generic for a measure 
μ (which is invariant under f) if for every continuous function ϕ : X → R

lim 
n→∞

1 
n

n−1∑
k=0 

ϕ(fk(x)) =
∫
X

ϕ dμ.

It is well known that for each ergodic measure μ there is a set of full μ-measure all of 
whose elements are generic for μ. One may ask what happens if all points of a dynamical 
system are generic for some invariant measure. To the authors’ knowledge, the first to 
investigate this question were Dowker and Lederer [4]. As they point out, already the 
classical theory of Kryloff and Bogoliouboff gives that genericity of every point together 
with minimality of the system implies unique ergodicity, see also [20]. Indeed, weakening 
the assumption of minimality, they prove the following intriguing statement.

Theorem 1.1 ([4]). Assume that (X, f) has a unique minimal set and that all points are 
generic for some invariant measure. Then (X, f) is either uniquely ergodic or there exist 
infinitely many ergodic measures.

In 1981, Katznelson and Weiss [14] improved on this result by showing that in the 
second case, there must exist uncountably many ergodic measures. Against the backdrop 
of this interesting interplay between ergodic and topological properties, it is natural to 
look for other assumptions which have similar structural consequences when all points 
are generic.

A most natural such assumption is continuity of the map x �→ μx which sends each 
point x ∈ X to the invariant measure μx it is generic for. A priori, we can expect one 
of the following (non-exclusive) cases: (a) no further rigidity (some but not all μx are 
ergodic), (b) all μx are ergodic or (c) each orbit closure is uniquely ergodic. Recent work 
of Downarowicz and Weiss [5], Cai, Kwietniak, Li and Pourmand [2] as well as Xu and 
Zheng [27], shows the following.

Theorem 1.2 ([2,5,27]). Suppose all points of (X, f) are generic and that the map x �→ μx

is continuous. Then each orbit closure of (X, f) is uniquely ergodic.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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In fact, this strong rigidity observed for Z-actions extends to actions by (countable) 
abelian groups, see [2] and [27] (note that strictly speaking, [2] only considers integer 
actions but—as the authors point out—their techniques straightforwardly extend to the 
general abelian setting). The main contribution of the present work is to show that this 
is no longer the case when we consider actions by non-abelian groups. Indeed, we provide 
concrete counter-examples involving the group of all orientation preserving homeomor-
phisms on the unit interval as well as the Lamplighter group showing that from the above 
mentioned cases also (a) and (b) (without pointwise unique ergodicity) can occur.

Before formulating our main result, we introduce some terminology. To be able to 
average along orbits (and to be able to make sense of the notion of genericity), we need 
the notion of a (left) Følner sequence (Fn)n∈N in the acting group G. The precise nature 
of (Fn) depends on the properties of G, see Section 2.2. When G is a countable discrete 
amenable group (such as the Lamplighter group), the sets Fn are finite sets and a point 
x ∈ X is μ-generic along (Fn)n∈N (with μ an invariant measure) if

lim 
n→∞

1/|Fn| ·
∑
g∈Fn

ϕ(gx) =
∫
X

ϕ dμ

for every continuous function ϕ : X → R. Clearly, this is equivalent to

lim 
n→∞

1/|Fn| ·
∑
g∈Fn

δgx = μ,

where the limit is taken in the weak*-topology.
With this, we can state our main result, see Section 4 for the details.

Theorem 1.3. There exists an effective transitive action of the Lamplighter group G on a 
compact metric space X with two trivial ergodic measures δ∞̂ and δ∞̌ where for each of 
the following (mutually exclusive) alternatives, there is a left Følner sequence (Fn)n∈N
in G such that x �→ limn→∞ 1/|Fn| ·

∑
g∈Fn

δgx = μx is well-defined and

• x �→ μx is not continuous or
• x �→ μx is continuous and μx is not ergodic for any x ∈ X \ {∞̂, ∞̌} or
• x �→ μx is continuous and μx is ergodic for some but not all x ∈ X \ {∞̂, ∞̌} or
• x �→ μx is continuous and μx is ergodic for every x ∈ X.

Moreover, if (Fn)n∈N is a right Følner sequence, then Følner averages along (Fn)n∈N
are not continuous. Specifically,

lim 
n→∞

1/|Fn| ·
∑
g∈Fn

δgx = 1/2 · δ∞̂ + 1/2 · δ∞̌ (x ∈ X \ {∞̂, ∞̌}).

En passant, the above answers a question by Li, Ye and Yu [17, Question 7] in the 
negative: for general actions by locally compact σ-compact amenable groups, the notions 



4 G. Fuhrmann et al. / Journal of Functional Analysis 289 (2025) 111039 

of Besicovitch-mean equicontinuity and Weyl-mean equicontinuity do not coincide (for 
a background, see [10,17] and references therein). Further, our example also shows that 
the assumptions in [27, Theorem 1.7] are necessary.

The last part of Theorem 1.3 has to be seen against the background of a general 
structural result, see Theorem 3.12: if each x ∈ X is μx-generic along a fixed right 
Følner sequence and the map x �→ μx is continuous, then the conclusions of Theorem 1.2
still hold. In more general terms, this shows that already for the very basic ergodic 
properties considered in this article, there are fundamental differences between left and 
right Følner sequences.

Let us point out that we provide a second (and simpler) example which shows that 
Theorem 1.2 cannot hold in general (that is, beyond actions of abelian groups), see 
Example 3.8. That example, however, does not allow for the case where all μx are ergodic 
(case (b)) and furthermore, involves the less standard concept of thin Følner sequences 
(introduced in [24]), see Section 2.2.2 and the appendix for a background.

Finally, letting F be a fixed Følner sequence, the property that every point x ∈ X

is μx-generic along F with x �→ μx continuous is intimately linked to what is referred 
to as F-weak mean equicontinuity, see Section 3. This notion was introduced by Zheng 
and Zheng for Z-actions, see [28] and further [2,27]. We generalize (parts of) [2, Theo-
rem 4.4] as well as [27, Theorems 3.5 and 4.3] beyond the setting of countable discrete 
abelian/amenable groups, see Theorems 3.4 and 3.12. This allows us to discuss the novel 
examples from above in a unified framework. We achieve this unification by associating to 
a general F-weakly mean equicontinuous action a natural bounded linear operator S on 
C(X) (the space of all continuous functions on X). This operator is a positive contractive 
projection (meaning that Sϕ ≥ 0 if ϕ ≥ 0, S1 ≤ 1 and S2 = S) and we obtain

Theorem 1.4. The cases (a)–(c) from above translate to

(a) S(ϕSψ) = S(SϕSψ) for all ϕ,ψ ∈ C(X) (Seever’s identity);
(b) S(ϕSψ) = SϕSψ for all ϕ,ψ ∈ C(X) (S is an averaging operator) iff μx is ergodic 

for all x ∈ X;
(c) TgS = S for all g ∈ G iff each orbit closure is uniquely ergodic.

Here, Tgϕ = ϕ ◦ g for each g ∈ G and ϕ ∈ C(X), see Theorem 3.14 for the details. As 
an immediate consequence of this operator-theoretic perspective, we get that in general, 
the space of all invariant measures of a F-weak mean equicontinuous action is a Bauer 
simplex, see Corollary 3.16.

2. Preliminaries

We start by briefly reviewing some basics from topological dynamics and ergodic 
theory. For a thorough discussion of these topics from a functional analytical perspective 
(which we frequently assume in this note), see [7].
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A topological dynamical system (or simply a system) is a triple (X,G,α) where G is 
a topological group, X is a compact metrizable space and α : G × X → X is a jointly 
continuous left action of G on X. We often just write gx for α(g, x) and keep α implicit 
by simply referring to (X,G) as a system. For x ∈ X, we denote by Gx = {gx : g ∈ G}
the orbit of x.

Given a system (X,G), the action of G on X canonically defines the so-called Koopman 
representation of G on C(X)—the space of all continuous functions on X equipped with 
the sup-norm ‖ · ‖∞. Specifically, given f ∈ C(X) and g ∈ G, we write g.f for the 
mapping x �→ f(gx) in C(X). Through the dual of this representation, G further acts 
on M(X)—the collection of all Borel probability measures on X. Specifically, given 
μ ∈ M(X) and g ∈ G, we write g∗μ for the measure ν ∈ M(X) with ν(f) = μ(g.f)
for f ∈ C(X). If μ ∈ M(X) satisfies g∗μ = μ, we call μ invariant. The collection of 
all invariant measures of (X,G) is denoted by M(X,G). Recall that a measure μ ∈
M(X,G) is ergodic if each essentially invariant Borel set A ⊆ X satisfies μ(A) ∈ {0, 1}. 
Here, A is essentially invariant if μ(A�gA) = 0 for each g ∈ G with � the symmetric 
difference.

2.1. Wasserstein distance

We throughout consider M(X) and M(X,G) equipped with the weak*-topology. 
Among the metrics which are compatible with this topology, we will make use of the 
Wasserstein distance.

Given μ, ν ∈ M(X), recall that ι ∈ M(X2) is a coupling of μ with ν, if the push-
forwards of the projections π1 and π2 to the first and second coordinate, respectively, 
satisfy π∗

1ι = μ and π∗
2ι = ν. The Wasserstein distance W : M(X)2 → [0,∞) is defined 

through

W (μ, ν) = inf
ι 
ι(d),

where the infimum is taken over all couplings ι of μ with ν, and d is some compatible 
metric on X. It is well known that W is a metric on M(X) which induces the weak*-
topology, see [26, Chapter 7].

In fact, we will frequently utilize an alternative way of computing W via

W (μ, ν) = sup
f

∣∣∣∣∣∣
∫
X

fdμ−
∫
X

fdν

∣∣∣∣∣∣ ,

where the supremum is taken over all Lipschitz functions f on X with ‖f‖Lip ≤ 1
[26, Remark 7.5]. Here, ‖f‖Lip denotes the infimum of all possible Lipschitz constants 
for f .
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2.2. Følner sequences

In order to study statistical properties along the orbits of a system (X,G), one often 
averages along Følner sequences.

Besides the standard Følner sequences—which we may refer to as thick Følner se-
quences in the following—we also deal with so-called thin Følner sequences, which allow 
to deal with amenable groups which are not locally compact [24]. Note that whenever 
we speak of Følner sequences (thin or thick), we actually refer to left Følner sequences. 
At times, we will also deal with right Følner sequences but whenever we do, we explicitly 
mention the attribute right. The definition of right Følner sequences is the same as for 
the left ones only that below—in (2.1) and (2.2)—one has to multiply from the right 
by K and g, respectively. Further, in (2.1), the Haar measure θ has to be replaced by 
a right Haar measure θr while in (2.2), the definition of mV has to be adjusted in the 
obvious way.

2.2.1. (Thick) Følner sequences
Let G be a locally compact group with a (left) Haar measure θ. A sequence (Fn)n∈N

of non-empty compact subsets in G with positive Haar measure is called a (thick) Følner 
sequence if

lim 
n→∞

θ(FnΔKFn)
θ(Fn) = 0, (2.1)

for all compact K ⊆ G.
It is well-known that a locally compact group is σ-compact and amenable if and only 

if it contains a (thick) Følner sequence [8, Theorem 3.2.1].

Proposition 2.1. If (F (m))m∈N is a countable family of thick Følner sequences in a locally 
compact topological group G, then there exists a thick Følner sequence F such that F and 
F (m) have a common subsequence for any m ∈ N.

Proof. As G allows for a (thick) Følner sequence, it is σ-compact. That is, there is a 
sequence (Kn)n∈N of compact sets with 

⋃
n∈N Kn = G and Kn ⊆ Kn+1. Let (mn)n∈N

be a sequence in N such that for each m ∈ N, we have mn = m infinitely often. We pick 
Fn from F (mn) with θ(KnFnΔFn)/θ(Fn) ≤ 1/n. �
2.2.2. Thin Følner sequences

Let G be a topological group. Consider finite subsets F,E ⊆ G and a neighbourhood 
V of the neutral element eG ∈ G. The V -matching number mV (F,E) of F and E is the 
maximal cardinality of a subset M of F with an injection φ : M → E such that for every 
f ∈ M , we have φ(f) ∈ V f .



G. Fuhrmann et al. / Journal of Functional Analysis 289 (2025) 111039 7

The following concept was introduced in [24]. A sequence (Fn)n∈N of finite non-empty 
subsets of G is said to be a thin Følner sequence in G if for every g ∈ G and every open 
neighbourhood V of eG, we have

lim 
n→∞

mV (Fn, gFn)
|Fn| 

= 1. (2.2)

Remark 2.2. If G is a countable discrete group, then the concepts of thin and thick Følner 
sequences coincide.

Remark 2.3. Note that a topological group that allows for a thin Følner sequence is 
separable. Indeed, if (Fn)n∈N is such a sequence, the countable set 

⋃
n∈N FnF

−1
n is 

dense.

Remark 2.4. As much as it is straightforward, it is important to observe that given 
a thin Følner sequence (Fn) and some sequence (gn) in G, we have mV (Fn, gFn) =
mV (Fngn, gFngn) for each g ∈ G and each neighbourhood V of the neutral element. In 
particular, with (Fn) also (Fngn) is Følner.

A second countable topological group G is amenable if and only if it allows for a 
thin Følner sequence. Indeed, in [24, Remark 4.6], it is shown that whenever there is a 
thin Følner sequence, then G is amenable—see also Corollary A.2 below. To observe the 
converse, let {gn ∈ G : n ∈ N} be a countable dense subset of G and let Vn be the open 
ball of radius 1/n centred at the neutral element eG. With [24, Theorem 4.5], we get that 
for each n ∈ N, there exists a finite set Fn ⊆ G such that mVn

(Fn, gkFn)/|Fn| ≥ 1− 1/n
for k = 1, . . . , n. It is straightforward to see that (Fn)n∈N is a thin Følner sequence in G.

Example 2.5. Examples of amenable not locally compact groups are given by ex-
tremely amenable groups [12]. These include the orientation-preserving homeomorphisms 
Hom+(I) (equipped with the topology of uniform convergence) on the closed unit interval 
I [21]. By the above, there is hence a thin Følner sequence (Fn) in Hom+(I).

Similarly to Proposition 2.1, we have

Proposition 2.6. If (F (m))m∈N is a countable family of thin Følner sequences in a second 
countable topological group G, then there exists a thin Følner sequence F such that F
and F (m) have a common subsequence for any m ∈ N.

Remark 2.7. Note that a topological group is second countable if and only if it is metriz-
able and separable. First, due to the Birkhoff-Kakutani Theorem, a topological group is 
metrizable if and only if it is first countable [19, Section 1.22]. Second, a metric space is 
separable if and only if it is second countable.
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Proof of Proposition 2.6. Let {gn ∈ G : n ∈ N} be dense in G and let (mn)n∈N be 
a sequence in N such that for each m ∈ N, we have mn = m infinitely often. De-
note by Vn the open ball of radius 1/n centred at eG. We pick Fn from F (mn) with 
mVn

(Fn, gkFn)/|Fn| ≥ 1 − 1/n for all k = 1, . . . , n. �
Standing assumptions Throughout this work and without further mentioning, G is 
assumed to be a σ-compact locally compact amenable group or a second countable 
amenable group. When speaking of a Følner sequence in G (without mentioning thin or 
thick), we refer to whatever concept of Følner sequence (thin or thick) is available in 
G. In fact, for the sake of a concise presentation, we formulate most statements without 
specifying the kind of the involved Følner sequences and readers may interpret each such 
statement as two statements—one in which all the occurring Følner sequences are thin 
and another one in which all are thick. In a similar vein, given a (thin or thick) Følner 
sequence F = (Fn)n∈N in G and some map f from G into R, we may write the average 
of f over Fn as 1/θ(Fn) ·

∫
Fn

f(g) dθ(g) where θ denotes the counting measure in case 
(Fn) is a thin Følner sequence while it denotes a Haar measure if (Fn) is thick.

A background on ergodic theory with (thin) Følner sequences is given in Appendix A.

3. Weak mean equicontinuity

Given a dynamical system (X,G) and a Følner sequence F = (Fn)n∈N in G, for each 
n ∈ N, we define a positive bounded operator Sn = SF

n : C(X) → C(X) through

Sn : f �→
(
x �→ 1/θ(Fn)

∫
Fn

f(gx) dθ(g)
)
.

Following [27], based on the dual S∗
n and the Wasserstein distance W , we introduce the 

pseudometrics

WF (x, y) = lim
n→∞

W (S∗
nδx, S

∗
nδy)

and W(x, y) = supF WF (x, y), where the supremum is taken over all Følner sequences. 
While most of the time, we are interested in left Følner sequences in this work, we may 
also consider the above objects (in particular, Sn and WF ) to be defined for right Følner 
sequences. Formally, the respective definitions remain the same after replacing the (left) 
Haar measure θ by a right Haar measure θr.

Remark 3.1. As in [27, Appendix], one can see that if F is a thin Følner sequence in G, 
then

WF (x, y) = lim
n→∞

inf
σ

1 
|Fn|

∑
g∈Fn

d(gx, σ(g)y), (3.1)
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where the infimum is taken over all permutations σ of Fn. Indeed, for G = Z and F the 
standard Følner sequence in Z, (3.1) was the original definition for the pseudometric WF
as introduced in [28] (motivated by the idea that statistical properties of the long time 
behaviour should not depend on the dynamical order on orbits). Shortly after, the above 
equation was established in [2] for countable abelian groups and in [27] for countable 
discrete amenable groups.

In the present work, we study the relationship between the continuity of the above 
pseudometrics and the continuity of Følner averages.

Definition 3.2. We say (X,G) is F-weakly mean equicontinuous if WF ∈ C(X2). We call 
(X,G) weakly mean equicontinuous if W ∈ C(X2).

The next statement shows that this terminology is in line with [27].

Proposition 3.3. A system (X,G) is weakly mean equicontinuous if and only if WF ∈
C(X2) for every Følner sequence F .

Proof. Since W(x, y) ≥ WF (x, y), one implication is obvious. For the converse, suppose 
WF is continuous for all Følner sequences F . Let (xn)n∈N be a sequence in X with 
xn → x ∈ X. Since W is a pseudometric, it suffices to show that W(xn, x) → 0. For 
n ∈ N, there exists a Følner sequence F (n) such that WF(n)(xn, x) + 1/n ≥ W(xn, x)
and such that WF(n)(xn, x) is a limit. By Propositions 2.1 and 2.6 (in the thick and 
thin case, respectively), there exists a Følner sequence F such that F and F (n) have 
a common subsequence F̃ (n) for all n ∈ N. Thus W(xn, x) ≤ WF(n)(xn, x) + 1/n =
WF̃(n)(xn, x) + 1/n ≤ WF (xn, x) + 1/n → 0. �
Theorem 3.4. Let (X,G) be a topological dynamical system. Suppose there is a left or 
right Følner sequence F such that

(i) (X,G) is F-weakly mean equicontinuous.

Then there is a subsequence F ′ of F such that

(ii) Every x ∈ X is μx-generic along F ′ for some measure μx ∈ M(X) and the map 
X � x �→ μx ∈ M(X) is continuous.

(iii) There is a bounded linear operator S : C(X) → C(X) such that SF ′
n f(x) converges 

to Sf(x) for each f ∈ C(X) and x ∈ X.

Moreover, (ii) holds (for some F ′) if and only if (iii) holds (for the same sequence F ′) 
and further, (ii) and (iii) imply (i) with F = F ′.
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Remark 3.5. Recall that x ∈ X is μ-generic along F if for each f ∈ C(X), the sequence 
Sn(f)(x) converges to μ(f). Clearly, if x is μ-generic along some Følner sequence, then 
supp(μ) ⊆ Gx.

Proof. For (i) ⇒ (ii), given n ∈ N, let Xn ⊆ X be some finite set which is 1/n-dense in 
X. Due to compactness of M(X), we can recursively define for each n ∈ N a subsequence 
F (n) of F (n−1) (starting with F (0) = F) such that each x ∈ Xn is μx-generic along F (n)

for some μx ∈ M(X). A diagonal argument then gives a subsequence F ′ of F such that 
each x in the dense set X̃ =

⋃
n∈N Xn is μx-generic along F ′ for some μx ∈ M(X).

Now, as WF ′ is continuous (since we assume WF to be continuous), we have

lim
n→∞

|SF ′

n f(x) − SF ′

n f(y)| ≤ lim
n→∞

W (SF ′

n

∗
δx, S

F ′

n

∗
δy) = WF ′(x, y) (3.2)

for each Lipschitz function f with ‖f‖Lip ≤ 1 and all x, y ∈ X.
As a consequence, given such Lipschitz function f , some y ∈ X and ε > 0, we can 

pick x ∈ X̃ with WF ′(x, y) < ε to obtain that for all n,m > N (with N such that for 
n,m > N we have |SF ′

n f(x) − SF ′
m f(x)| < ε and |SF ′

n f(x) − SF ′
n f(y)| ≤ WF ′(x, y) + ε)

|SF ′

n f(y) − SF ′

m f(y)|

≤ |SF ′

n f(y) − SF ′

n f(x)| + |SF ′

n f(x) − SF ′

m f(x)| + |SF ′

m f(x) − SF ′

m f(y)| ≤ 5ε.

In other words, SF ′
n f(y) converges for all y ∈ X. It follows that for any function g

in the span of the Lipschitz functions f with ‖f‖Lip ≤ 1, SF ′
n g(y) converges for each 

y ∈ X. The collection of all such g is dense in C(X) (see [3, Chapter 12]) and it is not 
hard to see that hence, SF ′

n f(x) converges for each f ∈ C(X) and x ∈ X. We write 
μx(f) = limn→∞ SF ′

n f(x). Clearly, μx : C(X) � f �→ μx(f) lies in M(X). Further, the 
map x �→ μx is continuous since (X,G) is F ′-weakly mean equicontinuous.

For (ii) ⇒ (i), let F ′ be a Følner sequence such that (ii) holds. Then, for x, y ∈ X, 
we have S∗

nδx → μx and S∗
nδy → μy. Thus, WF ′(x, y) = limn→∞ W (S∗

nδx, S
∗
nδy) =

W (μx, μy), which is continuous in (x, y) ∈ X2.
We next show that (ii) (for a given Følner sequence F ′) implies (iii) (with the same 

Følner sequence). To that end, set S : C(X) → C(X), f �→ μ(·)(f) with μ(·) given by (ii). 
Due to (ii), S is well defined. It is straightforward to see that S is bounded and linear. 
Moreover, due to (ii), for every f ∈ C(X), SF ′

n f converges pointwise to Sf .
Finally, for (iii) ⇒ (ii), we define μx = S∗δx for x ∈ X. Clearly, the mapping x �→ μx

is continuous. Further,

SF ′

n f(x) → Sf(x) = (S∗δx)(f) = μx(f).

We hence conclude that x is μx-generic along F ′. �
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Remark 3.6. In the above statement, if F ′ is a left Følner sequence, then μx ∈ M(X,G)
by a standard Krylov-Bogolyubov argument. We will see later (last part of Theorem 3.12) 
that the same holds true if F ′ is a right Følner sequence.

Corollary 3.7. Suppose (X,G) is F-weakly mean equicontinuous for some Følner sequence 
F . Then the operator S : C(X) → C(X) from Theorem 3.4 is a positive contractive 
projection, that is, Sf ≥ 0 if f ≥ 0, S1 ≤ 1 and S2 = S.

Proof. Recall that S is the limit of a subsequence of (SF
n )n∈N . For notational conve-

nience, we denote this subsequence simply by (Sn). The positivity and S1 ≤ 1 are 
straightforwardly inherited from the elements of (Sn).

To see that S is a projection, first observe

(S∗
nμ)f = μ(Snf) n→∞ −−−−→ μ(Sf) = (S∗μ)f for all μ ∈ M(X), f ∈ C(X),

using limn→∞ Snf(x) = Sf(x) for all x ∈ X and dominated convergence. Accordingly, by 
a standard Krylov-Bogolyubov argument, S∗μ ∈ M(X,G). Now, due to the invariance 
of S∗μ, we have S∗

n(S∗μ) = S∗μ for each n ∈ N. This in turn gives for μ ∈ M(X) and 
f ∈ C(X)

(S∗(S∗μ))f = lim 
n→∞

(S∗
n(S∗μ))f = (S∗μ)f,

that is, S∗ is a projection. Finally, due to the Hahn-Banach Theorem, M(X) separates 
points in C(X) so that the above implies S2 = S. �
Example 3.8. We next describe a Følner sequence F̂ with respect to which (I, G)—where 
G = Hom+(I) acts on I in the obvious way—is F̂-weakly mean equicontinuous.

To that end, recall from Example 2.5 that there actually is some thin Følner se-
quence (Fn) in G. Let (hn) be a dense sequence in G. In the following, we may 
assume without loss of generality (by possibly going over to a subsequence) that 
mB1/n(Id)(FN , hnFN )/|FN | ≥ 1 − 1/N whenever N ≥ n, where B1/n(Id) is the 1/n-ball 
centred at the identity Id.

Now, given x ∈ I and ε > 0, let us refer to g ∈ G as (x, ε)-repelling if gy < ε whenever 
y < x− ε and gy > 1− ε whenever y > x+ ε. Note that for each x ∈ I and each n ∈ N, 
there is gxn ∈ G such that each element in Fng

x
n is (x, 1/n2)-repelling. Indeed, with δ > 0

such that gδ < 1/n2 and g(1− δ) > 1− 1/n2 for all g ∈ Fn, we may choose gxn to be any 
(x,min{δ, 1/n2})-repelling element in G.

Define F̂ = (F̂n) by F̂n =
⋃

x=0, 1 
n ,...,1 Fng

x
n. Then mB1/n(Id)(F̂N , hnF̂N )/|F̂N | ≥ 1 −

1/N if N ≥ n and it is easy to see that F̂ is hence Følner. Further, for each y ∈ I, we 
have

{g ∈ F̂n : gy ≤ 1/n2}
|F̂n| 

→ 1 − y and {g ∈ F̂n : gy ≥ 1 − 1/n2}
|F̂n| 

→ y.
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In other words, for each f ∈ C(I) and each y ∈ I, we have SF̂f(y) = (1−y)f(0)+yf(1), 
that is, y is μy-generic along F̂ , with μy = (1 − y)δ0 + yδ1.

Lemma 3.9. Let (X,G) be a system and let F be a Følner sequence in G. If (X,G)
is F-weakly mean equicontinuous, then the support of each ergodic measure is uniquely 
ergodic.

Proof. Consider two ergodic measures μ, ν ∈ M(X,G) and assume without loss of 
generality that supp(ν) ⊆ supp(μ). By Corollary A.7, there exists a subsequence F ′

of F such that μ-almost every point is μ-generic along F ′ and ν-almost every point 
is ν-generic along F ′. In particular, there is y ∈ X which is ν-generic along F ′

and a sequence (xn)n∈N where each xn is μ-generic along F ′ and xn → y. Hence, 
WF (xn, y) ≥ WF ′(xn, y) = W (μ, ν) and the continuity of WF implies μ = ν. �

For the convenience of the reader, we include a proof of the next statement; for Z-
actions, see also [11, Proposition 3.9].

Lemma 3.10. Let (X,G) be a system. For every ergodic measure μ and every transitive 
point x ∈ X, there is a Følner sequence F such that x is μ-generic along F .

Remark 3.11. Recall that x ∈ X is transitive if Gx = X.

Proof. Let (fn)n∈N be dense in C(X). By Corollary A.7, there is a Følner se-
quence (Fn)n∈N and a point y ∈ X such that y is μ-generic along (Fn)n∈N . By 
possibly restricting to a subsequence, we may assume without loss of generality 
that 

∣∣∣1/θ(Fn)
∫
Fn

fj(gy) dθ(g) − μ(fj)
∣∣∣ ≤ 1/(2n) for all j = 1, . . . , n. For n ∈ N, 

there exists εn > 0 such that for all z ∈ Bεn(y) and j ∈ {1, . . . , n}, we have ∣∣∣1/θ(Fn)
∫
Fn

fj(gz) dθ(g) − μ(fj)
∣∣∣ ≤ 1/n. By transitivity of x, there exists gn ∈ G such 

that gnx ∈ Bεn(y). Therefore,

∣∣∣∣∣∣
1 

θ(Fngn)

∫
Fngn

fj(gx) dθ(g) − μ(fj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 

θ(Fn)

∫
Fn

fj(ggnx) dθ(g) − μ(fj)

∣∣∣∣∣∣ ≤
1 
n
.

This shows that x is μ-generic along the Følner sequence (Fngn)n∈N . �
The next assertion generalizes Theorems 3.5 and 4.3 in [27] beyond the setting of 

countable discrete amenable groups.

Theorem 3.12. Let (X,G) be a system. The following statements are equivalent.

(i) (X,G) is weakly mean equicontinuous.
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(ii) For all x ∈ X, the orbit closure Gx is uniquely ergodic with an ergodic measure μx

and the map x �→ μx is continuous.
(iii) For every Følner sequence F in G, SF

n converges in the strong operator topology.

Moreover, if (X,G) is F-weakly mean equicontinuous for some Følner sequence F and 
there is an invariant measure μ with full support, that is, supp(μ) = X, then (i)–(iii) 
are satisfied.

Finally, if WF is continuous for some right Følner sequence F in G, then (i)–(iii) 
are satisfied.

Proof. Note that (iii) ⇒ (i) follows from Theorem 3.4 (in combination with Proposi-
tion 3.3).

We first discuss (i) ⇒ (ii). Due to Theorem 3.4 and Remark 3.6, it suffices to show 
that for every x ∈ X, the orbit closure Gx is uniquely ergodic. To that end, consider 
μ, ν ∈ M(Gx,G). Let ε > 0, y ∈ supp(μ) and pick z ∈ Gx such that W(y, z) < ε. 
By Lemma 3.10, there exists a Følner sequence F such that z is ν-generic along F . By 
Corollary A.7, there exists a subsequence F ′ of F such that μ-almost every point is 
μ-generic along F ′. Accordingly, there is y′ ∈ supp(μ) such that y′ is μ-generic along F ′

and W(y, y′) < ε. Now,

2ε ≥ W(y′, y) + W(y, z) ≥ W(y′, z) ≥ WF ′(y′, z) = W (μ, ν),

where we used that W is compatible with the weak*-topology in the last step. As ε > 0
was arbitrary, we conclude μ = ν.

For (ii) ⇒ (iii), we proceed in a similar spirit as in the proof of [2, Theorem 4.4]. First, 
note that for each f ∈ C(X), and each Følner sequence F , Theorem A.3 and point (ii) 
give that x �→ SF

n f(x) = Snf(x) converges pointwise to the continuous function x �→
μx(f). Note that strong convergence of Sn is equivalent to uniformity of this convergence 
(for each f). Hence, we assume for a contradiction that there is f ∈ C(X) and ε > 0
such that for all N ∈ N, there is n ≥ N and xn ∈ X with |Snf(xn) − μxn

(f)| > ε. 
By possibly going over to a subsequence, we may assume without loss of generality that 
S∗
nδxn

converges to some ν ∈ M(X,G) (using Krylov-Bogolyubov) and that xn converges 
to some x ∈ X. Note that |ν(f) − μx(f)| ≥ ε.

The ergodic decomposition of ν reads ν =
∫
M(X,G)μ dλ(μ) (see e.g. [22, page 77]) 

where λ-almost every measure μ is ergodic and necessarily satisfies supp(μ) ⊆ supp(ν). 
Among those measures, there must be some μ0 with |μ0(f) − μx(f)| ≥ ε. Pick some 
y ∈ supp(μ0) and observe that by (ii), μ0 = μy.

Finally, by the Portmanteau Theorem (and since y ∈ supp(ν) ⊇ supp(μy)), for every 
open neighbourhood U of y, we have

lim
n→∞

S∗
nδxn

(U) = lim
n→∞

1/θ(Fn) · θ({gxn ∈ U : g ∈ Fn}) ≥ ν(U) > 0.
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As a consequence, there is a sequence gn in G with gnxn → y so that, due to the continuity 
of x �→ μx, we have μgnxn

→ μy. At the same time, due to the unique ergodicity of orbit 
closures, μgnxn

= μxn
→ μx. It follows that μx = μy in contradiction to the assumptions 

on μy = μ0.
To see the “moreover”-part, given x ∈ X, observe that due to [9, Lemma 6] (or, 

alternatively, the ergodic decomposition of μ), there is a sequence (μn) of ergodic mea-
sures in M(X,G) and a sequence (xn) in X with xn ∈ supp(μn) such that xn → x. By 
Lemma 3.9, WF (xn, gxn) = 0 for each g ∈ G so that continuity of WF gives

WF (x, gx) = lim 
n→∞

WF (xn, gxn) = 0. (3.3)

Due to Theorem 3.4, we may assume without loss of generality that for each f ∈ C(X), 
y �→ SFf(y) = limn→∞ SF

n f(y) = μy(f) is well-defined and continuous. With (3.3), this 
gives that y �→ SFf(y) is actually constant on Gx. Now, Theorem A.3 and Tietze’s 
Extension Theorem give that Gx is uniquely ergodic. As x was arbitrary, this shows (ii).

To see the last part, recall from Theorem 3.4 that there is a bounded linear operator 
SF ′ : C(X) → C(X) and a subsequence F ′ of F such that SF ′

n f(x) converges to SF ′
f(x)

for each f ∈ C(X) and x ∈ X. Observe that since F ′ is right Følner, we have for 
each f ∈ C(X) and all g ∈ G that SF ′

f(x) = SF ′
f(gx). As SF ′

f is continuous, we 
therefore have that SF ′

f is constant on orbit closures. With Proposition A.4 and Tietze’s 
Extension Theorem, this implies (ii) (and SF ′

f(x) = μx(f) for each x ∈ X). �
Example 3.13. As a consequence of the above, a transitive system is weakly mean 
equicontinuous if and only if it is uniquely ergodic. In particular, the system (I, G)
from Example 3.8 is not weakly mean equicontinuous. However, the canonical action 
of G = Hom+(I) on R/Z—obtained by identifying 0 and 1—clearly is weakly mean 
equicontinuous.

We end this section by combining the above results with some aspects of the general 
theory of positive contractive projections and averaging operators, see [23, Section 11.3] 
as well as [13,15,25] (and references therein).

Theorem 3.14. Let F be a left or right Følner sequence and suppose that (X,G) is F-
weakly mean equicontinuous. Then there exists a subsequence (Fn) of F and a bounded 
linear operator S : C(X) → C(X) such that for all f ∈ C(X) and x ∈ X

lim 
n→∞

1/θ(Fn) ·
∫
Fn

f(gx) dθ(g) = Sf(x). (3.4)

Vice versa, if there is a Følner sequence (Fn) and a bounded linear operator S : C(X) →
C(X) satisfying (3.4), then (X,G) is (Fn)-weakly mean equicontinuous. Moreover, S is 
a positive contractive projection and the following statements hold.
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(a) S(fSh) = S(SfSh) for all f, h ∈ C(X) (Seever’s identity).
(b) S(fSh) = SfSh for all f, h ∈ C(X) (S is an averaging operator) if and only if μx

is ergodic for all x ∈ X.
(c) TgS = S for all g ∈ G (where Tgf = g.f for g ∈ G and f ∈ C(X)) if and only if 

each orbit closure is uniquely ergodic.

Proof. The first part is Theorem 3.4. Further, if F is left Følner, then Corollary 3.7 gives 
that S is a positive contractive projection. If, alternatively, F is right Følner, then it is 
again obvious that S is positive and contractive (as the expression on the left in (3.4) is 
positive and contractive for each n). Furthermore, as shown in the last part of the proof 
of Theorem 3.12, Sf(x) = μx(f) for all x ∈ X and f ∈ C(X) with μx ∈ M(X,G) and 
x �→ μx constant on orbit closures. This immediately implies S2 = S, that is, S is also a 
positive contractive projection for right Følner sequences.

Now, positive contractive projections on C(X) always fulfil Seever’s identity, see [25, 
Theorem 1]. This gives item (a).

For item (c), we make use of the fact that Sf(x) = μx(f) for some μx ∈ M(X,G)
(see Theorem 3.4 and Remark 3.6 for left Følner sequences or again, the last part of 
the proof of Theorem 3.12 for right Følner sequences). Let us first assume that each 
orbit closure is uniquely ergodic. Then, for all f ∈ C(X) and x ∈ X we get that 
TgSf(x) = μgx(f) = μx(f) = Sf(x). Note that in the other direction, we only have 
to consider left Følner sequences due to the last part of Theorem 3.12. Now, if S is 
invariant under all Tg’s, we have that μgx(f) = TgSf(x) = Sf(x) = μx(f) for all 
f ∈ C(X), x ∈ X and g ∈ G. That is, x �→ μx is constant along orbits. As furthermore, 
x �→ μx is continuous (Theorem 3.4), we have that x �→ μx is constant on orbit closures 
and we obtain unique ergodicity as in the proof of Theorem 3.12 (using Corollary A.7).

Finally, to prove (b), we make use of the following characterization, see [15, Theo-
rem 2.2]: the operator S is averaging if and only if for each x ∈ X the support of μx is 
contained in the set

Dx = {y ∈ X : Sf(y) = Sf(x) for all f ∈ C(X)} = {y ∈ X : μy = μx}.

First, observe that if each orbit closure is uniquely ergodic, then (b) is trivial since in 
this case, μx is obviously ergodic and supp(μx) ⊆ Gx ⊆ Dx. Due to the last part of 
Theorem 3.12, we are hence left to show (b) only for left Følner sequences.

Now, according to Lemma 3.9, we have supp(μx) ⊆ Dx in case that μx is ergodic. 
Accordingly, S is averaging if all μx are ergodic. For the other direction, assume that 
supp(μx) is contained in Dx. Since supp(μx) is closed and invariant, there is an ergodic 
measure μ with supp(μ) ⊆ supp(μx). By Corollary A.7, there exists a subsequence (F ′

n)
of (Fn) such that μ-almost every point is μ-generic along (F ′

n). In particular, there exists 
y ∈ supp(μ) with

μ(f) = lim 
n→∞

S
(F ′

n)
n f(y) = lim 

n→∞
S(Fn)
n f(y) = μy(f) = μx(f),
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for all f ∈ C(X). Accordingly, all μx are ergodic. �
Remark 3.15. Note that the relation TgS = S (for g ∈ G) in Theorem 3.14 (c) is 
equivalent to TgS = STg (for g ∈ G) since μx ∈ M(X,G) (for x ∈ X) is equivalent to 
STg = S (for g ∈ G).

Recall that M(X,G) is a simplex and that a simplex whose extreme points form a 
closed set is called a Bauer simplex, see [22]. We can conclude from Theorem 3.14 together 
with [18, Theorem 3] the following rigidity result which is also indirectly contained in 
[2,27] for countable discrete abelian/amenable groups and F a two-sided Følner sequence.

Corollary 3.16. Let (X,G) be a topological dynamical system which is F-weakly mean 
equicontinuous for some left or right Følner sequence F . Then M(X,G) is a Bauer 
simplex.

4. F -weak mean equicontinuity versus weak mean equicontinuity

In Example 3.8, we already saw that in general, F-weak mean equicontinuity for 
some Følner sequence F does not imply weak mean equicontinuity. As much as this 
phenomenon somehow appears to be related to the size of the acting group, it is not 
merely a consequence of the lack of local compactness. In fact, in this section, we give 
a complete description of the Følner averages of an action of the Lamplighter group—
which, in contrast to Hom+(I), is locally compact. Among others, we will see that even 
if a system is F-weakly mean equicontinuous and every point is generic for an ergodic 
measure along F , the system does not need to be weakly mean equicontinuous.

Consider X̂ = (Z ∪ {∞}) × {1} and X̌ = (Z ∪ {∞}) × {0} and write ŝ = (s, 1) and 
š = (s, 0) for s ∈ Z∪{∞}. We equip X̂ with some metric d̂ which induces the topology of 
the one-point compactification (of Z) on X̂ and metrize X̌ similarly (by ď). Finally, we 
equip X = X̌ ∪ X̂ with the metric d that restricts to ď and d̂ on X̌ and X̂, respectively, 
and which satisfies d(x, y) = 1 for x ∈ X̂ and y ∈ X̌.

Let f : X → X be the transposition f = (0̂, 0̌), that is, f is the identity on X \ {0̌, 0̂}
and satisfies f(0̂) = 0̌, f(0̌) = 0̂. Let σ : X → X be the shift map with σ(š) = ­(s− 1)
and σ(ŝ) = ˆ︂(s− 1), where ∞ − 1 = ∞. Then the countable discrete group G = 〈f, σ〉
is (isomorphic to) the Lamplighter group and acts on X by homeomorphisms. Defining 
fn = (n̂, ň), observe that fn = σ−n◦f ◦σn and fb◦σa = σa◦σ−b−a ◦f ◦σa+b = σa◦fa+b. 
Further, f2

n = Id and

fn ◦ fm = fm ◦ fn for all n,m ∈ Z. (4.1)

We denote by [Z]<ω the collection of all finite subsets of Z; elements of [Z]<ω are 
denoted by bold face lower case letters. Given b = {b1, . . . , bk} ∈ [Z]<ω, we write fb =
fbk ◦ · · · ◦ fb1 . Note that due to (4.1), fb is well-defined. For the convenience of the 
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reader, we recall the following basic fact about G. For more information regarding the 
Lamplighter group, see for instance [1, Section 4].

Lemma 4.1. The mapping Z× [Z]<ω → G defined by (a,b) �→ σa ◦ fb is bijective.

Proof. From f2 = Id we observe that every element g ∈ G is of the form

g = σak ◦ f ◦ σak−1 ◦ f ◦ · · · ◦ f ◦ σa0 ,

where a0, . . . , ak ∈ Z. We write bi =
∑i−1

j=0 aj for i = 1, . . . , k + 1. With a = bk+1 and 
b = {bi : i = 1, . . . , k}, a straightforward computation shows g = σa ◦ fb. This yields 
surjectivity of the mapping under consideration.

To show injectivity, consider distinct (a,b), (a′,b′) ∈ Z× [Z]<ω. Write g = σa◦fb and 
g′ = σa′◦fb′ . If a �= a′, clearly g �= g′. If a = a′, then b �= b′. From b = {b ∈ Z : g(b̂) ∈ X̌}
and a similar statement about b′ and g′, we obtain g �= g′ from b �= b′. �
4.1. Left Følner sequences

We next discuss certain left Følner sequences (Fn) in G, where for each n ∈ N, we 
will obtain Fn as a product of elements of a Følner sequence in Z and subsets of

In = P([−2n, 2n]),

that is, subsets of the power set of [−2n, 2n]. Here and in the following, unless stated 
otherwise, given m,n ∈ Z≥0, we denote by [−m,n] the respective interval in Z, that is, 
[−m,n] = {−m,−m + 1, . . . , n}. We will make use of the following auxiliary statement 
whose proof we include for the convenience of the reader.

Lemma 4.2. Let (r�)�∈Z be a real-valued sequence with 0 ≤ r� ≤ 1. Then for each n ∈ N, 
there is a collection Vn ⊆ P([−n, n]) such that

∣∣∣∣ |{v ∈ Vn : � ∈ v}|
|Vn| 

− r�

∣∣∣∣ ≤ 1/n (� = −n, . . . , n). (4.2)

Proof. We construct (Vn)n∈N recursively in a way which ensures |Vn+1| > |Vn| ≥ n and 
|r(n)

� − r�| ≤ 1/|Vn| for � = −n, . . . , n, where r(n)
� = |{v ∈ Vn : � ∈ v}|/|Vn|.

The case n = 1 is trivial. Assuming we have already constructed Vn, we define w =
{� ∈ [−n, n] : r(n)

� < r�}.
We now enlarge some elements of Vn ∪ {w} by adding −(n+ 1). Specifically, we pick 

U ⊆ Vn such that w / ∈ U and r−(n+1) − 1/|Vn| ≤ |U |/|Vn| ≤ r−(n+1). We set

V ′
n = {u ∪ {−n− 1} : u ∈ U ∪ {w}} ∪ Vn \ U.
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Similarly, we enlarge some sets of V ′
n by adding n+1 to obtain Vn+1 ∈ P([−n−1, n+1])

such that |Vn+1| > |Vn| and |r(n+1)
� − r�| ≤ 1/|Vn+1| holds for � = −(n + 1), . . . , n + 1. 

The statement follows. �
Given a real-valued sequence r = (r�)�∈Z with 0 ≤ r� ≤ 1, we choose Vn as in 

Lemma 4.2 and set Bn = Br
n =

{
b ∈ In : b ∩ [−n, n] ∈ Vn

}
as well as

Fn = F r
n = {σa ◦ fb ∈ G : a ∈ [−2n, 2n], b ∈ Bn}. (4.3)

Note that due to (4.2), for � = −n, . . . , n, we have
∣∣∣∣ |{b ∈ Bn : � ∈ b}|

|Bn| 
− r�

∣∣∣∣ ≤ 1/n. (4.4)

Lemma 4.3. We have that (Fn)n∈N with Fn as in (4.3) is left Følner in G.

Proof. Consider g = σc ◦ fd ∈ G so that g ◦ σa ◦ fb = σc+a ◦ fd+a ◦ fb, where we write 
d + a = {d + a : d ∈ d}. Further, observe that

(g ◦ Fn) \ Fn ⊆ g ◦
⋃
t∈d

{σa ◦ fb ∈ Fn : t + a / ∈ [−2n, 2n] \ [−n, n]}

∪ g ◦ {σa ◦ fb ∈ Fn : c + a / ∈ [−2n, 2n]}

⊆ g ◦
⋃

k∈d∪{c}
{σa ◦ fb ∈ Fn : a / ∈ ([−2n, 2n] \ [−n, n]) − k}.

Therefore,

|(g ◦ Fn) \ Fn|
|Fn| 

≤
∑

k∈d∪{c}

|Bn| · |[−2n, 2n] \ ([−2n, 2n] \ [−n, n]) − k|
|Bn| · |[−2n, 2n]| 

=
∑

k∈d∪{c}

|[−2n, 2n] \ [−2n, 2n] − k|
|[−2n, 2n]| + |[−2n, 2n] ∩ [−n, n] − k|

|[−2n, 2n]| 

which tends to 0 as n → ∞ since [−2n, 2n] defines a Følner sequence in Z. �
Remark 4.4. For future reference, observe that a straightforward adaption of the above 
proof shows that for any sequence 

(
r(n))

n∈N of sequences r(n) with values in the real 
interval [0, 1], we have that Fn = F r(n)

n defines a (left) Følner sequence (Fn)n∈N .

Remark 4.5. Some authors prefer to understand Følner sequences to be monotone and 
exhausting. Clearly, one can always obtain a monotone and exhausting Følner sequence 
(F ′

n) from (F r
n) with the same asymptotics. Indeed, given a strictly increasing and 

sufficiently sparse sequence (nk) in N, we may just set F ′
k = F r

nk+1
∪ {σa ◦ fb : a ∈

[−2nk , 2nk ], b ∈ Ink
}.
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Lemma 4.6. Let r = (r�)�∈Z be a real-valued sequence with 0 ≤ r� ≤ 1. Consider a (left) 
Følner sequence (Fn) given by (4.3). Then for x = (b, i) ∈ X, we have the following 
convergence (with respect to the weak*-topology) as n → ∞

1 
|Fn|

·
∑
g∈Fn

δgx →
{

(1 − rb) · δ∞̂ + rb · δ∞̌ if x ∈ X̂,

rb · δ∞̂ + (1 − rb) · δ∞̌ if x ∈ X̌.
(4.5)

Proof. W.l.o.g. we assume x ∈ X̂, i.e. that x = b̂. With An = [−2n, 2n], we have

1 
|Fn|

∑
g∈Fn

δgx = 1 
|An| · |Bn|

∑
b∈Bn

∑
a∈An

δσa◦fbx

= 1 
|An| · |Bn|

∑
a∈An

b∈Bn, b/ ∈b

δσab̂ + 1 
|An| · |Bn|

∑
a∈An

b∈Bn, b∈b

δσab̌,

for each n ∈ N. Observe that (X̂, 〈σ〉) and (X̌, 〈σ〉), respectively, are uniquely ergodic 
so that b̂ (b̌) is δ∞̂-generic (δ∞̌-generic) along (An)n∈N . Hence, 1 

|An|
∑

a∈An
δσab̂ → δ∞̂

and 1 
|An|

∑
a∈An

δσab̌ → δ∞̌. Now, (4.5) follows from |{b ∈ Bn : b ∈ b}|/|Bn| → rb, see 
(4.4). �
Remark 4.7. Note that by considering Følner sequences (Fn)n∈N as in Remark 4.4, we can 
enforce essentially any kind of convergence or divergence of the measures 1 

|Fn|
∑

g∈Fn
δgx. 

This shows the first half of Theorem 1.3. However, there is one inherent and unavoidable 
symmetry. As the computation in the above proof shows, along each Følner sequence in 
G, 1 

|Fn|
∑

g∈Fn
δg(b,1) accumulates at λδ∞̂ + (1 − λ)δ∞̌ if and only if 1 

|Fn|
∑

g∈Fn
δg(b,0)

accumulates at (1 − λ)δ∞̂ + λδ∞̌.

4.2. Right Følner sequences

Observe that unless r� = 1/2 for all � ∈ Z, (F r
n) as defined in (4.3) is not right Følner. 

Indeed, given b ∈ Z, we have

lim
n→∞

|(F r
n ◦ fb)�F r

n |/|F r
n | ≥ |2rb − 1|.

Note that, a priori, for a right Følner sequence (Fn), the average 1/|Fn| ·
∑

g∈Fn
δgx

does not need to converge to an invariant measure. Yet, in our example, we obtain the 
following.

Lemma 4.8. Assume (Fn) is a right Følner sequence. Then
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(i) For each b ∈ Z,

lim 
n→∞

|{σa ◦ fb ∈ Fn : b ∈ b}|
|Fn| 

= lim 
n→∞

|{σa ◦ fb ∈ Fn : b / ∈ b}|
|Fn| 

= 1
2 .

(ii) For each x ∈ X \ {∞̂, ∞̌}, we have 1/|Fn| ·
∑

g∈Fn
δgx → 1/2 · δ∞̂ + 1/2 · δ∞̌.

Proof. Given any sequence (Fn) of subsets in G, for each b ∈ Z and n ∈ N, we have

|Fn ◦ fb \ Fn| ≥
∣∣|{σa ◦ fb ∈ Fn : b ∈ b}| − |{σa ◦ fb ∈ Fn : b / ∈ b}|

∣∣
=

∣∣|Fn| − 2|{σa ◦ fb ∈ Fn : b ∈ b}|
∣∣.

Hence, if (Fn) is right Følner, i.e. |Fn ◦ fb \ Fn|/|Fn| → 0, we obtain (i).
Towards (ii), assume w.l.o.g. that x ∈ X̂, i.e. that x = b̂ for some b ∈ Z. We have

1 
|Fn|

·
∑
g∈Fn

δgx = 1 
|Fn|

∑
σa◦fb∈Fn

b/ ∈b

δσab̂ + 1 
|Fn|

∑
σa◦fb∈Fn

b∈b

δσab̌, (4.6)

for each n ∈ N. Observe that since (Fn) is (right) Følner, we have that for each ε > 0
and k0 ∈ N, there is n0 such that for all n ≥ n0,

|{σa ◦ fb ∈ Fn : |a| < k0}|/|Fn| < ε. (4.7)

Now, given some continuous function h on X and ε > 0 (we may assume ε < 1/4), 
choose k0 ∈ N such that |h(∞̂) − h(ˆ︁b− a)| < ε and |h(∞̌) − h(~b− a)| < ε for all a ∈ Z

with |a| ≥ k0 and let n0 be such that (4.7) holds for all n ≥ n0. Due to (i), we may 
also assume without loss of generality that 

∣∣1/2− |{σa ◦ fb ∈ Fn : b ∈ b}|/|Fn|
∣∣ < ε and ∣∣1/2 − |{σa ◦ fb ∈ Fn : b / ∈ b}|/|Fn|

∣∣ < ε for all n ≥ n0. With (4.6), we obtain for all 
n ≥ n0,

|1/2 · δ∞̂(h) + 1/2 · δ∞̌(h) − 1/|Fn| ·
∑
g∈Fn

δgx(h)|

=
∣∣∣∣1/2 · h(∞̂) + 1/2 · h(∞̌) − 1 

|Fn|
∑

σa◦fb∈Fn

b/ ∈b

h(ˆ︁b− a) − 1 
|Fn|

∑
σa◦fb∈Fn

b∈b

h( ~b− a)
∣∣∣∣

≤
∣∣∣∣1/2 · h(∞̂) − 1 

|Fn|
∑

σa◦fb∈Fn

b/ ∈b

h(ˆ︁b− a)
∣∣∣∣ +

∣∣∣∣1/2 · h(∞̌) − 1 
|Fn|

∑
σa◦fb∈Fn

b∈b

h( ~b− a)
∣∣∣∣

≤
∣∣∣∣1/2 · h(∞̂) − 1 

|Fn|
∑

σa◦fb∈Fn

b/ ∈b

h(∞̂)
∣∣∣∣ +

∣∣∣∣ 1 
|Fn|

∑
σa◦fb∈Fn

b/ ∈b

h(∞̂) − h(ˆ︁b− a)
∣∣∣∣ +

∣∣∣∣ . . .
∣∣∣∣

≤ ε · (h(∞̂) + h(∞̌) + 2).
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As ε and h were arbitrary, this finishes the proof. �
Remark 4.9. For the example under consideration, Lemma 4.8 rules out continuity of 
the map x �→ μx if μx is obtained through averaging along a right Følner sequence. This 
shows the second half of Theorem 1.3.

Appendix A. Ergodic theory with thin Følner sequences

The goal of this appendix is to convince the reader that some relevant parts of the 
basic machinery from ergodic theory are also available when working with thin Føl-
ner sequences. The discussed statements are well-known for σ-compact locally compact 
topological groups and (thick) Følner sequences, see for example [6]. While most parts 
of their proofs immediately carry over to the case of thin Følner sequences, we provide 
some discussion of the slight deviations from the standard situation (and whenever there 
is no such discussion, the proofs are literally the same in both cases).

In all of the following, we adopt the notation and the standing assumptions from the 
main body of this article.

Lemma A.1. Given a system (X,G), for f ∈ C(X) and g ∈ G, we have ‖Sn(g.f−f)‖∞ →
0.

Proof. Let ε > 0. By continuity, there exists an open neighbourhood V of eG such that 
for all g′ ∈ V , we have ‖g′.f − f‖∞ < ε/2. By definition of the V -matching numbers, for 
n ∈ N, there exists En ⊆ Fn with |En| = mV (Fn, gFn) and a bijection φn : Fn → gFn

such that for all g′ ∈ En, we have φn(g′)g′−1 ∈ V and hence,

‖φn(g′).f − g′.f‖∞ = ‖g′−1
.(φn(g′).f) − f‖∞ = ‖φn(g′)g′−1

.f − f‖∞ ≤ ε/2.

Further, for large enough n ∈ N, we have mV (gFn, Fn)/|Fn| ≥ 1 − ε/(4‖f‖∞) and 
hence,

|Fn \ En|
|Fn| 

= 1 − |En|
|Fn| 

<
ε 

4‖f‖∞
.

For such n, we compute

‖Sn(g.f − f)‖∞ = 1 
|Fn|

∥∥∥ ∑
g′∈Fn

g′.(g.f) − g′.f
∥∥∥
∞

= 1 
|Fn|

∥∥∥ ∑
g′∈Fn

gg′.f − g′.f
∥∥∥
∞

≤ 1 
|Fn|

∑
g′∈En

‖φn(g′).f − g′.f‖∞ + 1 
|Fn|

∑
g′∈Fn\En

2‖f‖∞

≤ |En|
|Fn| 

ε 
2 + |Fn \ En|

|Fn| 
2‖f‖∞ ≤ ε.
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As ε > 0 was arbitrary, the statement follows. �
Corollary A.2 (Krylov-Bogolyubov). Given a dynamical system (X,G) and x ∈ X, then 
every limit point of (S∗

nδx) is contained in M(X,G).

Proof. Let μ be a limit point and f ∈ C(X). We have

|g∗μ(f) − μ(f)| ≤ |g∗μ(f) − g∗S∗
nδx(f)| + |g∗S∗

nδx(f) − S∗
nδx(f)| + |S∗

nδx(f) − μ(f)|

≤ |μ(g.f) − S∗
nδx(g.f)| + ‖Sn(g.f − f)‖∞ + |S∗

nδx(f) − μ(f)| → 0.

Thus, g∗μ = μ as claimed. �
Based on the above, one obtains

Theorem A.3. Let (X,G) be a dynamical system. The following are equivalent.

(i) The system (X,G) is uniquely ergodic.
(ii) For every f ∈ C(X), there is a constant c such that for some Følner sequence 

(Fn)n∈N and every x ∈ X, we have (Snf)(x) → c.

Further, if one of the above conditions holds, then the convergence in (ii) is uniform 
in x ∈ X, independent of the specific Følner sequence (Fn)n∈N , and we have c = μ(f).

Proposition A.4 (cf. [10, Proposition   2.3]). Let (X,G) be a dynamical system. Suppose 
for each f ∈ C(X) there is a right Følner sequence (Fn)n∈N and a constant c with

lim 
n→∞

1 
θr(Fn)

∫
Fn

f(gx) dθr(g) = c,

for all x ∈ X. Then (X,G) has a unique G-invariant measure μ and μ(f) = c.

In the following, we denote by C(μ) the image of C(X) under the canonical mapping 
into L2(μ).1 For p = 1, 2, denote by Ip(μ) the set of all f ∈ Lp(μ) with g.f = f for all 
g ∈ G. Denote by Pμ the projection onto the subspace I2(μ) in L2(μ).

For the convenience of the reader, we briefly discuss the part of the proof of the next 
statement where the case of thin Følner sequences slightly deviates from the standard 
case.

Theorem A.5 (Mean Ergodic Theorem). Let (X,G) be a dynamical system and μ ∈
M(X,G). For f ∈ L2(μ), we have Snf → Pμf in L2(μ).

1 Note that this mapping is not necessarily injective and hence, not necessarily an embedding.
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Proof. Define A = {g.f − f : f ∈ C(μ), g ∈ G}. Since C(μ) is dense in L2(μ), one 
can show that L2(μ) = I2(μ) ⊕ A, where A denotes the closure of A. Now, recall that 
‖f‖2 ≤ ‖f‖∞ for all f ∈ C(μ). Thus, with Lemma A.1, one can show that for f ∈ A, 
we have ‖Snf‖2 → 0. Since Snf = f for all f ∈ I2(μ), we have Snf → Pμf for each 
f ∈ L2(μ). �
Corollary A.6 (L1-Mean Ergodic Theorem). Let (X,G) be a dynamical system and μ ∈
M(X,G). For f ∈ L1(μ), we have that Snf converges in L1(μ) to an element in I1(μ). 
In particular, if μ is ergodic, then Snf → μ(f).

Corollary A.7 ([10, Theorem 2.4]). Let (X,G) be a dynamical system with an ergodic 
measure μ. Then every Følner sequence F allows for a subsequence F ′ such that μ-
almost every point is μ-generic along F ′.
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