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Abstract—Long-term Action Quality Assessment (AQA) aims1

to evaluate the quantitative performance of actions in long videos.2

However, existing methods face challenges due to domain shifts3

between the pre-trained large-scale action recognition backbones4

and the specific AQA task, hindering performance. This arises5

since fine-tuning intensive backbones on small AQA datasets is6

impractical. We address this by distinguishing domain shifts7

into task-level, regarding differences in task objectives, and8

feature-level, regarding differences in important features. For9

feature-level shifts, which are more detrimental, we propose10

Progressive Hierarchical Instruction (PHI) with two strategies.11

First, Gap Minimization Flow (GMF) leverages flow matching12

to progressively learn a fast flow path that reduces the domain13

gap between initial and desired features across shallow to deep14

layers. Additionally, a temporally-enhanced attention module15

captures long-range dependencies essential for AQA. Second,16

List-wise Contrastive Regularization (LCR) facilitates coarse-17

to-fine alignment by comprehensively comparing batch pairs to18

learn fine-grained cues while mitigating shift. Integrating these,19

PHI offers an effective solution. Experiments demonstrate that20

PHI achieves state-of-the-art performance on three representative21

long-term AQA datasets, proving its superiority in addressing the22

domain shift issue for long-term AQA. 1
23

Index Terms—Action Quality Assessment, Long-Term Action24

Quality Assessment, Domain Shift, Flow Matching25

I. INTRODUCTION26

Action Quality Assessment (AQA) [1], [2], [3], [4], [5] aims27

to evaluate the quantitative performance of actions performed28

in videos or image sequences. Unlike traditional action recog-29

nition, which focuses solely on identifying specific actions,30

AQA provides a more detailed understanding of how well31

those actions are executed [6]. This fine-grained evaluation32

has broad applications across domains such as sports analysis33
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Fig. 1: Illustrations of our main idea: (a) The pre-trained I3D
backbone emphasizes coarse features like guardrails (highlighted in
yellow boxes), potentially unrelated to scoring for AQA, while it can
accurately recognize cartwheeling in the action recognition domain.
This discrepancy is primarily due to the pre-trained task’s broader
focus on coarse-level features, whereas fine-grained features essential
for AQA may not be adequately exploited. (b) We identify two
distinct domain shift types: task-level discrepancies and feature-level
discrepancies. (c) Based on two hypotheses, our approach innovates
a shallow-to-deep adaptation using Gap Minimization Flow (GMF),
enabling a fast and controllable path to thoroughly minimize the
domain gap. Additionally, we introduce a coarse-to-fine alignment
mechanism using List-wise Contrastive Regularization (LCR) to
enable the model to focus on fine-grained features, essential for AQA,
while mitigating domain shift by refining coarse features from the
broader pre-trained task.

[7], [8], [6], [9], medical rehabilitation [10], [11], and skill 34

assessment [12], [13], [14]. Long-term AQA [15], [16] extends 35

AQA beyond individual snapshots or short clips to encompass 36

extended durations. This broader evaluation is more challeng- 37

ing and practical, as it provides a comprehensive assessment 38

of actions in real-world scenarios. 39

One of the most significant challenges in long-term AQA is 40

the domain shift issue [17], where the pre-trained backbone is 41

suboptimal for AQA tasks. This challenge arises due to label 42

scarcity and the nature of long video sequences. Firstly, label 43

scarcity contributes to relatively small AQA datasets (e.g., one 44

large-scale long-term AQA dataset for rhythmic gymnastics 45

(balls) with approximately 250 samples). To address this, 46

most AQA methods [18], [8], [19] often leverage backbones 47

pre-trained on large-scale action recognition datasets (e.g., 48
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Kinetics 400 [20] with over 300,000 samples). While this strat-1

egy enhances performance on small-scale AQA datasets, its2

performance is restricted by the shift from action recognition3

to AQA tasks (see Figure 1(a)). Secondly, the computational4

demands of processing these long sequences within long-term5

AQA, combined with the complexity of intensive backbones6

[20], [21], make fine-tuning the backbone impractical with7

limited computation resources. As a result, existing long-term8

AQA methods [16], [15] choose to fix the backbone and do9

not explicitly address the domain shift issue, thereby severely10

limiting overall performance. Indeed, some methods [16],11

[6] employing feature aggregation or representation layers,12

such as Transformers [22], can implicitly mitigate domain13

shift by leveraging score supervision to encourage the model14

to capture high-level task-relevant patterns. However, these15

methods remain ineffective for accurate assessment (refer to16

results in Figures 7 and 8), as they lack explicit adaptation17

mechanisms to align domain-specific feature distributions.18

Long-term AQA aims to evaluate performance based on19

important discriminative features, capturing subtle dynamics20

over extended periods where domain shift significantly hinders21

AQA performance. As illustrated in Figure 1(b), domain shift22

arises from both differences in task objectives and variations in23

data distribution. Accordingly, we categorize domain shift into24

task-level discrepancies and feature-level discrepancies. Task-25

level discrepancies arise from transitioning from classification-26

based pre-training, where class boundaries are discrete, to27

regression-based scoring for AQA, where scores vary con-28

tinuously. Feature-level discrepancies occur due to variations29

in video capture conditions and application domains, leading30

pre-trained models to focus on coarse, irrelevant patterns31

rather than the fine-grained scoring cues necessary for precise32

AQA. The previous work [23] addressed task-level discrep-33

ancies by formulating AQA as a coarse-to-fine classification34

problem (see the alignment arrow “←” in the bottom of35

Figure 1(b)), but this resulted in precision loss. Our work36

instead directly tackles feature-level discrepancies by refining37

pre-trained coarse features to focus on fine-grained cues (see38

“→” in the top of Figure 1(b)). This refines pre-trained coarse39

features to emphasize the fine-grained cues essential for ac-40

curate assessment without sacrificing precision. Experimental41

results in Tables I to III demonstrate the superior performance42

of our approach over addressing only task-level discrepancies,43

showing the increased importance of minimizing feature-level44

domain shifts for accurate long-term action assessment.45

To this end, we introduce the Progressive Hierarchical46

Instruction (PHI) framework (see Figure 1(c)) to tackle the47

aforementioned challenges. Built on two major hypotheses48

regarding shallow-to-deep adaptation and coarse-to-fine align-49

ment, we propose solutions to validate these hypotheses,50

constituting the core components of PHI. These approaches51

collectively reduce the domain gap while prioritizing fine-52

grained features essential for accurate assessment.53

Hypothesis 1: A shallow-to-deep adaptation approach54

through multiple-step control can thoroughly reduce the do-55

main gap between a pre-trained backbone and the AQA task.56

The rationale behind this lies in the complexity of refining57

initial features in a single step, whereas the multi-step control58

facilitates a more progressive and precise gap reduction across 59

shallow to deep layers (see Figure 6). 60

To validate Hypothesis 1, we introduce Gap Minimization 61

Flow (GMF) to progressively reduce the domain gap, which 62

is motivated by the recent advances in flow models [24], 63

[25]. However, these methods face challenges in constructing 64

training pairs due to the inaccessibility of desired features. To 65

address this, we first integrate temporally-enhanced attention 66

to efficiently estimate desired features, capturing crucial long- 67

range dependencies essential for long-term AQA. This enables 68

GMF to directly and efficiently control the gap reduction, 69

thereby enhancing the model’s adaptability. 70

Hypothesis 2: A coarse-to-fine alignment approach that pri- 71

oritizes learning representations focusing on fine-grained cues 72

can effectively mitigate domain shift. The rationale behind this 73

is that the pre-trained backbones on large-scale datasets often 74

capture coarse features irrelevant to AQA scoring, whereas 75

AQA depends on fine-grained cues (see Figure 1(a)). 76

To validate Hypothesis 2, we present List-wise Contrastive 77

Regularization (LCR) to learn the fine-grained cues essential 78

for AQA, which is motivated by the recent advances in 79

contrastive regression [8], [9]. However, these methods are 80

reliant on manual exemplar selection and known exemplar 81

score during inference, restricting the application scope. To 82

address this, LCR comprehensively compares all pairs of batch 83

data, eliminating the need for manual intervention. In addition, 84

this approach ensures a robust evaluation of action quality, 85

especially in scenarios with limited labeled data. 86

Experimental results demonstrate the significant improve- 87

ments achieved by PHI compared to state-of-the-art methods 88

that do not specifically address domain shift issues. Notably, 89

PHI achieves gains of 5.88%, 5.65%, and, 24.4% in correlation 90

on three representative long-term AQA datasets, Rhythmic 91

Gymnastics [15], Fis-V [26], and LOGO [3], respectively, 92

compared to shift-unaware methods. Compared to the task- 93

level solution [23], PHI showcases additional correlation gains 94

and significant precision improvements, demonstrating the im- 95

portance of addressing feature-level discrepancies for accurate 96

long-term AQA. Our main contributions are as follows: 97

• We define domain shifts from both task and feature levels. 98

Our work achieves additional performance gains in long- 99

term AQA by addressing feature-level discrepancies. 100

• We propose a novel gap minimization flow module 101

(GMF) to address the domain gap in a shallow-to-deep 102

manner, facilitating efficient gap-reducing control with a 103

fast and straight path. 104

• We design a novel contrastive regularization module 105

(LCR) to mitigate the domain shift in a coarse-to-fine 106

manner, enabling robust representation learning for per- 107

formance improvement. 108

The remainder of this paper is organized as follows: Sec- 109

tion II reviews the related work in AQA and flow matching 110

methods; Section III briefly describes the preliminaries in 111

rectified flow; Section IV details the core components of our 112

proposed framework; Section V validates and analyzes the 113

effectiveness of our proposed method; Section VI concludes 114

the whole paper and outlooks the future work. 115
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II. RELATED WORK1

In this section, we provide a concise overview of AQA and2

flow matching, outlining their relevance to our work.3

A. Action Quality Assessment (AQA)4

AQA focuses on the quantitative performance of performed5

actions in various application areas such as sports analy-6

sis [1], [7], [8], [6], [9], [23], medical rehabilitation [10],7

[11], and skill assessment [12], [13], [14]. Earlier methods8

depended heavily on hand-crafted features and heuristics,9

revealing certain limitations. For example, Pirsiavash et al. [27]10

leveraged pose features to train a linear SVR model, which11

was constrained due to the poor pose estimation outcomes12

[28]. By integrating deep learning, various models have shown13

improved performance, such as CNNs [10], [6], RNNs [29],14

[30], and Transformers [19], [23], [31].15

Existing AQA datasets [32] are relatively small, risking16

over-fitting. To mitigate this, pre-trained backbones are com-17

monly employed. Parmar et al. [33] utilized C3D [34] to18

improve AQA performance. Pan et al. [35] integrated a more19

robust I3D backbone [20] to further optimize the performance.20

Xu et al. [16] attempted to incorporate VST [21], aiming to21

derive more powerful features. However, the computational22

intensity of such 3D backbones presents a notable issue. As23

every frame may contain essential AQA cues [26], videos24

are often segmented into clips for separate processing, which25

hinders a complete understanding of the action. To this end,26

Zhou et al. [6] introduced a GCN method to eliminate semantic27

ambiguities. Features extracted are typically aggregated either28

by LSTM [29], or more popular average pooling before the29

score regression. Instead of methods focusing on single-person30

AQA datasets, Zhang et al. [3] proposed a group-aware diving31

dataset. Furthermore, by leveraging the unique strengths of32

different data types, such as video, audio, and skeleton data,33

multi-modal AQA methods [36], [2], [37], [31] create a more34

holistic, accurate, and robust assessment system. In this work,35

we primarily focus on RGB-based single-person AQA.36

In the context of long-term AQA, the computational inten-37

sity of these backbones, combined with the long sequences,38

poses significant challenges. Since fine-tuning the backbone39

to minimize the domain shift between the pre-trained broader40

task and the AQA task is difficult, existing long-term AQA41

methods [16], [15] often choose to fix the backbone and over-42

look the domain shift problem, thereby limiting performance.43

CoFInAl [23] addressed domain shifts by reformulating AQA44

into coarse and fine classification tasks, potentially leading to45

a loss in assessment precision. In contrast, our work identifies46

and tackles the key challenge of domain shift through the lens47

of feature-level discrepancies. Our method efficiently resolves48

this issue without the need for fine-tuning the computational49

backbone and preserving assessment precision.50

B. Flow Matching51

Flow Matching (FM) models represent a recent advance-52

ment in generative modeling. The term ‘flow’ refers to a map-53

ping between samples of two distributions, leveraging neural54

Ordinary Differential Equations (ODEs) to implicitly model 55

the transport plan between simpler and target distributions 56

[38]. These models, such as normalizing flows [39] and con- 57

tinuous normalizing flows [40], have demonstrated impressive 58

capabilities in generating high-quality samples without the 59

need for complex approximate inference techniques [41]. 60

Unlike traditional flow-based models, recent approaches 61

propose training algorithms that require solving the ODE 62

explicitly only during inference, overcoming challenges as- 63

sociated with backpropagating through ODEs during training 64

[38], [25], [39], [24], [42]. FM offers a promising and little- 65

explored avenue for generative modeling, providing a more 66

efficient and effective approach to learning complex distribu- 67

tions. Different from diffusion models [43], [44] that utilize 68

Stochastic Differential Equations (SDEs) and are restricted to 69

Gaussian base distributions [45], FM offers greater flexibility 70

by allowing the choice of base distribution and training with 71

ODEs instead of SDEs, leading to smoother trajectories and 72

improved performance [46]. 73

Our work is inspired by the rectified flow [24] that generates 74

a fast and direct flow path but relies on known target samples, 75

which poses significant challenges in addressing domain shift. 76

To overcome this limitation, we introduce a novel approach 77

that does not depend on any known target distributions. 78

We emphasize that our proposed PHI method is not merely 79

an adjustment to rectified flow but a fundamental extension 80

that introduces a novel hierarchical adaptation framework. 81

By leveraging shallow-to-deep adaptation and coarse-to-fine 82

alignment, PHI achieves self-supervised domain adaptation 83

without explicit target distribution samples, making it highly 84

generalizable to a wide range of real-world applications be- 85

yond AQA. Notably, PHI is the first attempt at integrating the 86

concept of flow matching in the realm of AQA. 87

III. PRELIMINARY: RECTIFIED FLOW 88

Rectified Flow (RF) [24] offers a straightforward solution 89

for finding a transport map between two observed distribu- 90

tions. It involves learning an Ordinary Differential Equation 91

(ODE), also known as the flow model, aiming to traverse 92

straight paths as much as possible. Given empirical observa- 93

tions x0 ∼ π0,x1 ∼ π1, RF finds the transport map implicitly 94

by solving the following ODE problem: 95

dzt = v(zt, t)dt, t ∈ [0, 1], (1)

where v : Rd → Rd represents the drift force that converts z0 96

from distribution π0 to z1 following distribution π1. 97

RF operates by aligning the ODE with the linear inter- 98

polation of points from π0 and π1. Given x0 and x1, the 99

linear interpolation of x0 and x1 is xt = tx1 + (1 − t)x0. 100

Observe xt follows a trivial ODE that already transfers π0 101

to π1, i.e., dxt = (x1 − x0)dt, where xt moves following 102

the line direction (x1 − x0) with a constant speed. However, 103

this ODE does not solve the problem: it can’t be simulated 104

causally, because the update xt depends on the final state x1, 105

which is not supposed to be known at time t > 1. 106

RF casualizes the interpolation process by projecting it to 107

the space of causally simulatable ODEs in Equation (1). The 108
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Fig. 2: Framework of PHI: Our PHI framework addresses the domain shift issue through two crucial processes. Firstly, Gap Minimization
Flow (GMF) progressively transforms the initial feature into the desired one, minimizing the domain gap. Secondly, List-wise Contrastive
Regularization (LCR) guides the model towards subtle variations in actions, facilitating the transition from coarse to fine-grained features
crucial for AQA. Finally, the refined feature is used to predict the quality score through an MLP.

drift force v is set to drive the flow to follow the direction1

(x1 − x0) as much as possible. A natural way to the ℓ22

projection on the velocity field is finding v by solving a simple3

least squares regression problem:4

min
v

∫ 1

0

E
[
∥(x1 − x0)− v(xt, t)∥2

]
dt. (2)

By fitting v with the direction (x1 − x0), RF casualizes the5

paths of linear interpolation xt, yielding an ODE flow that can6

be simulated without seeing the future. We can parameterize7

v with a neural network and solve Equation (2) with any8

stochastic optimizer.9

While RF aims to find a transport map between two ob-10

served distributions by projecting the interpolation path onto11

a space of causally simulatable ODEs, our proposed Gap Min-12

imization Flow module extends this concept to progressively13

minimize the domain gap between the pre-trained backbone14

and the target AQA task. Unlike the ODE-based formulation15

in RF, our approach leverages temporally-enhanced attention16

to efficiently estimate the desired features, allowing for a more17

targeted and effective domain gap reduction.18

IV. METHODOLOGY: PHI19

This section first introduces the PHI framework, followed20

by a detailed explanation of its core components.21

a) Problem Definition: Long-term AQA involves assess-22

ing the quality or proficiency of actions and activities through23

extended video recordings, considering temporal factors such24

as consistency, progression, and the detailed evolution of25

the full performance over time, rather than just snapshots.26

This presents significant challenges in addressing the domain27

shift issue, modeling long-range temporal dependencies, and28

capturing fine-grained dynamics.29

b) Framework Overview: Our PHI method (see Figure 2)30

addresses the aforementioned challenges through a holistic31

two-stage methodology involving shallow-to-deep adaptation32

and coarse-to-fine alignment. Given an action video Xi ∈33

RT×W×H×3, representing T frames of resolution W ×H and34

3 color channels, the initial feature H0
i ∈ RM×D is extracted35

using a pre-trained backbone, where M denotes the number 36

of clips. In the shallow-to-deep adaptation stage (see Sec- 37

tion IV-A), Gap Minimization Flow (GMF) with temporally- 38

enhanced attention transforms the initial feature H0
i into the 39

desired feature representation H1
i ∈ RM×D. The loss function 40

LM (see Equation (11)) facilitates efficient adjustment of the 41

initial feature to achieve the desired representation that better 42

aligns with AQA. In the coarse-to-fine alignment stage (see 43

Section IV-B), List-wise Contrastive Regularization (LCR) 44

regularizes the feature space. The regularization loss LR (see 45

Equation (15)) encourages the adaptation process to prioritize 46

fine-grained features essential for AQA. Ultimately, the desired 47

feature representation H1
i is fed into an MLP head network to 48

predict the quality score ŝi, which is supervised by the MSE 49

loss LS = 1
2

∑
i(si − ŝi)

2. Overall, the total loss is: 50

L = LS + λMLM + λRLR, (3)

where λM and λR are loss weights. During testing, the initial 51

feature only undergoes the flow path to regress the score. 52

A. GMF: Shallow-to-Deep Adaptation 53

1) Design Idea: 54

Hypothesis 1: A shallow-to-deep adaptation approach 55

through multiple-step control can thoroughly reduce the do- 56

main gap between a pre-trained backbone and the AQA task. 57

a) Justification: The challenge of mitigating the domain 58

shift arises from the complexity of transferring complex data 59

between initial and desired features in a single step, often 60

compromising reliability and precision. A multi-step control 61

mechanism involves breaking down the distribution gap into 62

multiple sub-parts and sequentially matching these distribu- 63

tions. This approach enables gradual and accurate feature 64

transformation, facilitating a thorough reduction of the domain 65

gap across shallow to deep layers. 66

b) Implementation: The core idea of GMF is to utilize 67

the concept of RF [24] to gradually reduce the domain gap, 68

which relies on coupling pairs to train the flow path. However, 69

in our context, we lack the corresponding desired feature for 70
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complexity from O(M2D) to O(MdtD), ensuring efficient mod-
eling of long-term dependencies.

the initial feature, posing a significant challenge in minimizing1

the domain gap. To address this, we first propose to estimate2

the desired feature and then progressively minimize the gap.3

Fortunately, the semantics of the desired feature are known,4

and represented by the score. Thus, leveraging score loss5

LS allows for the coarse estimation of the desired feature.6

Our shallow-to-deep adaptation consists of two steps: desired7

feature estimation and domain gap minimization.8

2) Desired Feature Estimation: In long-term AQA, ef-9

fectively modeling long-range dependencies in sequences is10

crucial. The previous work [23] employs a simple transforma-11

tion matrix to aggregate temporal dependencies, which, while12

effective, cannot capture long-range temporal relationships.13

While self-attention can model the long-range dependencies, it14

entails substantial computational overhead. To address this, we15

propose Temporally-Enhanced Transformer Encoder (TETE,16

see Figure 3) using low-rank decomposition to optimize com-17

putation within attention. TETE can efficiently model long-18

range dependencies in long-term AQA by reducing com-19

putational complexity in attention mechanisms and enabling20

accurate estimation of desired features.21

a) Vanilla Self-Attention: Considering the initial feature22

H0
i ∈ RM×D of i-th action video, the vanilla self-attention23

[22] can be represented as:24

Attention(Q,K,V) = Softmax

(
QK⊤
√
dk

)
V, (4)

where Q ∈ RM×dk ,K ∈ RM×dk ,V ∈ RM×D are the linear25

embeddings of the input H0
i . The computation complexity of26

Equation (4) is O(M2D), where the clip number M is typ-27

ically large for long-term AQA. Thus, computation increases28

sharply with longer sequences in real-world scenarios.29

b) Temporally-Enhanced Self-Attention (TESA): Our30

proposed TESA module addresses the computational chal-31

lenges of long sequences by learning a low-rank matrix32

T ∈ Rdt×dk , where dt is significantly smaller than the33

feature dimension D, ensuring computational efficiency while34

preserving temporal dependencies. First, TESA applies T only35

to the query Q and the key K, as they directly determine36

the attention weights. This enhances the ability of the model37

to capture long-term dependencies while avoiding redundant38

transformations on the value V, which does not influence 39

attention weight computation. The transformed queries and 40

keys are computed as: 41

Tq = Softmax
(
QT⊤) ∈ RM×dt , (5)

Tk = Softmax(KT⊤) ∈ RM×dt . (6)

Next, we use Tk to query the value V, yielding: 42

Tv = Softmax(TkV) ∈ Rdt×D. (7)

Finally, our attention mechanism can be represented as: 43

Attention (Q,K,V,T) = TqTv ∈ RM×D. (8)

This results in a decent complexity reduction to O(MdtD), 44

effectively improving the training efficiency and mitigating 45

overfitting, thus leading to performance improvement (refer 46

to results in Table V). 47

Finally, the desired feature can be estimated as: 48

H1
i = T

(
H0

i

)
, (9)

where T (·) represents the TETE module. 49

3) Domain Gap Minimization: Inspired by the concept of 50

RF [24], our work aims to learn a fast and controllable path 51

to efficiently mitigate domain shift by progressively reducing 52

the domain gap between initial and desired features. 53

Suppose the initial feature H0
i and the desired feature H1

i 54

follow two different empirical distributions, and we sample 55

P intermediate steps. The target representation of the j- 56

th step can be defined as the linear interpolation H
j/P
i = 57

j
P H0

i +(1− j
P )H1

i . During training, our objective is to predict 58

the next step using the previous representation and the step 59

size through a neural network ϕ(·, ·), indicating the domain 60

gap of the corresponding step. In practice, our experiments 61

demonstrate that a simple MLP is sufficient for this task. The 62

gap at the j-th step can be represented as: 63

gj = ϕ

(
Ĥ

(j−1)/P
i ,

1

P

)
, j ≥ 1, (10)

where Ĥ
(j−1)/P
i denotes the predicted feature of the previous 64

step, calculated as gj−1 + Ĥ
(j−2)/P
i if j ≥ 2, otherwise H0

i . 65

The network ϕ generates a driving force that guides the flow 66

in the direction of the overall flow, and we optimize ϕ by: 67

LM =
1

B

B−1∑
i=0

(LM−global + LM−local) , (11)

LM−global =

∥∥∥∥∥∥(H1
i −H0

i

)
−

P∑
j=1

gj

∥∥∥∥∥∥
2

, (12)

LM−local =
1

P

P∑
j=1

∥∥∥Hj/P
i − Ĥ

j/P
i

∥∥∥2 , (13)

where B denotes the batch size, and
(
H1

i −H0
i

)
represents the 68

overall flow direction. The first term LM−global represents the 69

global flow constraint, while the second term LM−local denotes 70

the local flow constraint. These two terms are collectively 71

effective in addressing different aspects of the flow constraints. 72
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4) Benefits of GMF: GMF introduces a fundamentally new1

perspective on feature transformation in flow-based adaptation,2

offering several key advantages over existing methods. Unlike3

traditional flow methods [25], [24], which require explicit4

access to the target distribution, GMF eliminates this depen-5

dency by leveraging an adaptive hierarchical transformation6

strategy. This enables GMF to handle domain-shifted tasks7

where the target distribution is either unknown or difficult8

to obtain, significantly extending the applicability of flow-9

based learning. Instead of directly aligning source and target10

distributions, GMF sequentially matches intermediate rep-11

resentations through a multi-stage adaptation process. This12

hierarchical alignment ensures a smooth and stable transi-13

tion while preventing abrupt transformations. Unlike stacked14

or recurrent architectures, GMF dynamically regulates the15

adaptation trajectory, reducing computational overhead and16

improving convergence efficiency. Additionally, its implicit17

knowledge distillation mechanism allows for lightweight infer-18

ence without compromising performance. These innovations19

make GMF a scalable and efficient solution for domain-20

adaptive learning in video-based tasks, surpassing conventional21

flow-based approaches.22

B. LCR: Coarse-to-Fine Alignment23

1) Design Idea:24

Hypothesis 2: A coarse-to-fine alignment approach that25

prioritizes learning representations focusing on fine-grained26

cues can effectively mitigate the domain shift issue in long-27

term AQA.28

a) Justification: As shown in Figure 1(a), the pre-trained29

broader task often emphasizes coarse-level features that may30

not directly align with the requirements of AQA. Conversely,31

AQA tasks rely heavily on fine-grained cues [47], [48] for32

accurate assessment. Therefore, a method that prioritizes learn-33

ing these fine-grained representations is likely to be more34

effective in addressing the domain shift issue.35

b) Implementation: Notably, the interpretation of coarse-36

to-fine alignment differs from CoFInAl [23]. In CoFInAl,37

coarse-to-fine alignment refers to structuring AQA as a two-38

stage classification task, which helps address task-level differ-39

ences but may introduce precision loss. In contrast, PHI adopts40

a feature refinement approach that progressively enhances pre-41

trained coarse features to focus on fine-grained scoring cues,42

ensuring improved AQA performance. In response, our novel43

LCR module (see Figure 4) employs a coarse-to-fine alignment44

strategy to further address the domain shift, enhancing the45

model’s ability to capture fine-grained features essential for46

AQA. By comparing the differences between actions, com-47

parative regression aids in identifying subtle variations or48

abnormalities that may not be apparent when assessing actions49

in isolation. Given a batch of data, LCR involves computing50

a distance matrix where each row encodes the relationships51

of an action with all other actions in the batch. By aligning52

the distribution of each row with its ground truth quality score53

distribution, the model can effectively learn subtle variations.54

2) Action Distance Computation: For each action in the55

batch, we need to calculate its pairwise distance with all other56
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(1) Different from direct alignment using MSE, KL divergence provides an efficient method for 
alignment, enabling the process to be performed quickly and effectively. (2) Different from 
previous pair-wise contrastive regression methods, our method explicitly takes into account all 
pair-wise differences within the batch.

Our list-wise contrastive regression method aligns the feature distance distribution with the quality 
difference distribution.

Feature space Score space

Fig. 4: Illustration of List-wise Contrastive Regularization (LCR):
LCR aligns the distance distribution in the feature space with that
of the quality score space in a list-wise manner. This ensures
comprehensive comparison and alignment across the entire batch of
data, leading to robust performance.

actions. However, directly measuring the distance between 57

two actions is inappropriate because their clips may not be 58

temporally or semantically aligned. For instance, clips with 59

similar semantics might appear at different indices in each 60

action sequence. Hence, we need to establish correspondence 61

between clips before computing the action-level distance. (1) 62

To align clips in two actions, For each clip in the first action, 63

we compute its distance to all clips in the second action and 64

select the closest one as its paired clip. Specifically, the pairing 65

is determined based on the minimum ℓ2 distance. (2) Then, 66

we sum all the clip pair distances to obtain the final distance 67

between the two actions. This process can be represented as: 68

Dij =
M−1∑
m=0

(
min

n∈[0,M−1]
(dmn

ij )

)
, dmn

ij = ∥hm
i − hn

j ∥2, (14)

where dmn
ij denotes the distance between the m-th clip of the 69

i-th action video and the n-th clip of the j-th action video 70

using the ℓ2 distance. 71

It is interesting to note the implicit temporal order relation- 72

ship between the paired clip distance calculation. In practice, 73

when considering two clips hm1
i and hm2

i (m1 ≤ m2) from 74

the same video, where m1 and m2 represent different time 75

steps, and their paired clips hn1
j and hn2

j , it is observed that 76

upon convergence, n1 tends to be less than or equal to n2. 77

This observation aligns with the inherent temporal ordering 78

within action sequences, where paired clips that are closer 79

in time tend to have smaller indices than those further apart. 80

Therefore, when we added a loss item to constrain n1 ≤ n2, 81

the performance did not change. 82

3) Distance Matrix Alignment: Aligning the distribution of 83

each row in the distance matrix with the ground truth quality 84

score distribution involves two main steps. (1) We calculate 85

the ground truth quality score distance using S = |s − s⊤|, 86

where s ∈ RB×1 denotes the quality score of the batch data 87

(B is the batch size). (2) Optimizing the alignment process 88

can be challenging, as traditional metrics like MSE may not 89

accurately capture the underlying structure of the data (see 90

results in Table V). To address this issue, we propose incor- 91

porating Kullback-Leibler (KL) divergence [49] to enhance the 92

alignment process and better capture the complex relationships 93
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within the data distributions. This process can be optimized by:1

LR =
B−1∑
i=0

(KL(Si∥Di) + KL(Di∥Si))) . (15)

Here, the adoption of a symmetrized and smoothed version2

of the KL divergence enhances the robustness and stability3

of the alignment process, leading to accurate assessment. The4

estimated target features generated by TETE (supervised by5

LS) may not fully eliminate the domain shift. Therefore, GMF6

aligns initial features with the estimated ones and then re-7

aligns these estimated features with the ideal ones essential for8

AQA. LCR (with LR) regularizes this re-alignment, enhancing9

overall performance.10

4) Benefits of LCR: LCR introduces a novel hierarchi-11

cal alignment strategy that significantly enhances AQA per-12

formance by capturing subtle relationships between actions13

within a batch. Unlike traditional pair-wise contrastive meth-14

ods [50], [8], [47], LCR employs batch-wise contrastive learn-15

ing to explicitly consider all pair-wise differences, enabling16

a more effective capture of fine-grained variations. The loss17

function LR leverages KL divergence for efficient alignment18

between distributions Di and Si, ensuring faster convergence19

and better generalization compared to direct alignment meth-20

ods like MSE. Additionally, low-rank regularization enforces21

temporal coherence and robustness, preventing overfitting to22

spurious correlations. The batch-wise learning and low-rank23

constraints collectively establish LCR as a theoretically unique24

and generalizable framework for domain adaptation, applicable25

not only to AQA but also to tasks like rehabilitation analysis,26

sports motion scoring, and action recognition. By addressing27

the limitations of prior methods, LCR represents a significant28

advancement in feature alignment for temporal and domain-29

shifted tasks.30

V. EXPERIMENTS31

In this section, we first describe the experimental setup, and32

then present and analyze the experimental results.33

A. Experimental Setups34

a) Datasets: In our study, we assess all models using35

three extensive long-term AQA datasets. The first dataset,36

named the Rhythmic Gymnastics (RG) dataset [15], com-37

prises a collection of 1,000 videos showcasing various rhyth-38

mic gymnastics actions performed with different apparatuses,39

including Ball, Clubs, Hoop, and Ribbon. Each video has an40

approximate duration of 1.6 minutes, and the frame rate is41

set at 25 frames per second. The dataset is split into training42

and evaluation sets, with 200 videos allocated for training43

and 50 for evaluation in each action category. The second44

dataset, referred to as the Figure Skating Video (Fis-V)45

dataset [27], [26], contains 500 videos capturing ladies’ singles46

short programs in figure skating. Each video has a duration47

of approximately 2.9 minutes, with a frame rate set at 2548

frames per second. Following the official split, the dataset is49

divided into 400 training videos and 100 testing videos. Each50

video in this dataset comes with annotations for two scores:51

Total Element Score (TES) and Total Program Component 52

Score (PCS). To align with the previous method [29], we 53

develop separate models for different score/action types. The 54

third dataset, i.e., the LOng-form GrOup (LOGO) dataset 55

[3], consists of 150 samples for training and 50 for testing. 56

It captures videos showcasing synchronized swimming group 57

actions, where each video sequence is approximately 3 and a 58

half minutes in length. Currently, LOGO has the longest video 59

duration among all AQA datasets, making it a challenging 60

benchmark for long-term AQA tasks. 61

b) Evaluation Metrics: We use two evaluation metrics to 62

validate the performance of all the AQA methods. 63

Consistent with previous long-term AQA methods [16], 64

[15], we utilize Spearman’s Rank Correlation Coefficient 65

(SRCC) as the evaluation metric, denoted as ρ. The SRCC 66

is defined as the Pearson correlation coefficient between their 67

ranks, r(si) and r(ŝi), to predicted and ground-truth scores, 68

which can be formulated as follows: 69

ρ =

∑N
i=1 (r (si)− r̄) (r (ŝi)− r̄)√∑N

i=1 (r (si)− r̄)
2
√∑N

i=1 (r (ŝi)− r̄)
2
, (16)

where r̄ is the average rank. A higher SRCC indicates a 70

stronger rank correlation between predicted and ground-truth 71

scores. Following the previous work [35], we compute the 72

average SRCC across different action types for the RG dataset 73

and score types for the Fis-V dataset by aggregating individual 74

SRCCs using Fisher’s z-value. 75

Compared with the previous work [23], we have added a 76

new stricter metric, the relative ℓ2 distance (R-ℓ2) [8], [6]. The 77

purpose of introducing R-ℓ2 is to measure the relative error 78

of AQA models more precisely without being affected by the 79

score scale. Given the highest and lowest scores for an action 80

smax and smin, the relative ℓ2 distance R-ℓ2 is defined as: 81

R-ℓ2 =
1

N

N∑
n

(
|sn − ŝn|

smax − smin

)2

× 100, (17)

where sn and ŝn represent the ground-truth score and predic- 82

tion for the n-th sample, respectively. Fisher’s z-value is used 83

to measure the average performance across actions. 84

c) Implementation Details: We implemented PHI using 85

PyTorch on an RTX 3090 GPU. We employ VST pre-trained 86

on Kinetics 600 [16] and I3D on Kinetics 400 [20] as the 87

backbone to conduct experiments, respectively. The feature 88

dimensions D, dk, dt are set to 1024, 128, and 32, respectively. 89

Following the previous work [16], [3], we initially partition 90

the video into non-overlapping 32-frame segments. During 91

training, we randomly determine the start segment, specifically 92

M = 68 for RG, M = 124 for Fis-V, and 48 for LOGO, 93

respectively. During testing, all segments are utilized. We 94

optimize all models using SGD with a momentum of 0.9. 95

The batch size B is 32, and the learning rate starts at 0.01, 96

gradually decreasing to 0.0001 through a cosine annealing 97

strategy. For convergence, all the models are trained for 200 98

epochs. The loss weights λM, λR are set to 0.5 and 0.01, 99

respectively. To further optimize the networks, we apply a 100

dropout of 0.3 and a weight decay of 0.01. 101
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TABLE I
RESULTS OF SRCC (↑) AND R-ℓ2 (↓) ON THE RG DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD, WHILE THE SECOND-BEST RESULTS ARE
UNDERLINED. THE SYMBOL “⋆” INDICATES OUR REIMPLEMENTATION BASED ON THE OFFICIAL CODE. THE AVERAGE SRCC IS COMPUTED USING THE

FISHER-Z VALUE. “–” DENOTES THAT THE METHOD DOES NOT REPORT THIS METRIC. “+” INDICATES THE USE OF ADDITIONAL FEATURES/MODALITIES.

Method Publisher Backbone Shift
Aware Modality

Ball Clubs Hoop Ribbon Average

SRCC R-ℓ2 SRCC R-ℓ2 SRCC R-ℓ2 SRCC R-ℓ2 SRCC R-ℓ2

C3D+SVR [26] TPAMI’17 C3D ✕ RGB 0.357 – 0.551 – 0.495 – 0.516 – 0.483 –
MS-LSTM [29] TCSVT’19 I3D ✕ RGB 0.515 – 0.621 – 0.540 – 0.522 – 0.551 –

ACTION-NET [15] ACM MM’20 I3D+ ✕ RGB 0.528 – 0.652 – 0.708 – 0.578 – 0.623 –
GDLT [16] CVPR’22 I3D ✕ RGB 0.526 2.943 0.710 2.557 0.729 8.149 0.704 3.485 0.674 4.284

HGCN⋆ [6] TCSVT’23 I3D ✕ RGB 0.534 6.748 0.609 16.142 0.706 9.270 0.621 9.934 0.621 10.524
VATP-Net [51] TCSVT’24 I3D ✕ RGB+ 0.580 – 0.720 – 0.739 – 0.724 – 0.709 –

CoFInAl [23] IJCAI’24 I3D ✓ RGB 0.625 2.647 0.719 3.093 0.734 3.892 0.757 2.607 0.712 3.060
PHI (Ours) – I3D ✓ RGB 0.598 3.471 0.732 3.139 0.731 5.376 0.754 5.674 0.708 4.415

MS-LSTM [29] TCSVT’19 VST ✕ RGB 0.621 – 0.661 – 0.670 – 0.695 – 0.663 –
ACTION-NET [15] ACM MM’20 VST+ ✕ RGB 0.684 – 0.737 – 0.733 – 0.754 – 0.728 –

GDLT [16] CVPR’22 VST ✕ RGB 0.746 2.833 0.802 2.179 0.765 2.012 0.741 2.579 0.765 2.401
HGCN⋆ [6] TCSVT’23 VST ✕ RGB 0.711 3.030 0.789 3.444 0.728 5.312 0.703 5.576 0.735 4.341

PAMFN [31] TIP’24 VST ✕ RGB 0.636 – 0.720 – 0.769 – 0.708 – 0.711 –
VATP-Net [51] TCSVT’24 VST ✕ RGB+ 0.800 – 0.810 – 0.780 – 0.769 – 0.800 –

CoFInAl [23] IJCAI’24 VST ✓ RGB 0.809 1.356 0.806 2.453 0.804 9.918 0.810 2.383 0.807 4.028
PHI (Ours) – VST ✓ RGB 0.818 2.187 0.803 2.149 0.812 2.119 0.805 2.744 0.810 2.300

TABLE II
RESULTS OF SRCC (↑) AND R-ℓ2 (↓) ON THE FIS-V DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD, WHILE THE SECOND-BEST RESULTS ARE

UNDERLINED. THE SYMBOL “⋆” INDICATES OUR REIMPLEMENTATION BASED ON THE OFFICIAL CODE. THE AVERAGE SRCC IS COMPUTED USING THE
FISHER-Z VALUE. “–” DENOTES THAT THE METHOD DOES NOT REPORT THIS METRIC. “+” INDICATES THE USE OF ADDITIONAL FEATURES/MODALITIES.

Method Publisher Backbone Shift
Aware Modality

TES PCS Average

SRCC R-ℓ2 SRCC R-ℓ2 SRCC R-ℓ2

C3D+SVR [26] TPAMI’17 C3D ✕ RGB 0.400 – 0.590 – 0.501 –
MS-LSTM [29] TCSVT’19 C3D ✕ RGB 0.650 – 0.780 – 0.721 –

GDLT [16] CVPR’22 I3D ✕ RGB 0.260 5.582 0.395 5.039 0.329 5.311
HGCN⋆ [6] TCSVT’23 I3D ✕ RGB 0.311 4.317 0.407 4.608 0.360 4.463

CoFInAl [23] IJCAI’24 I3D ✓ RGB 0.589 3.470 0.788 2.843 0.702 3.157
PHI (Ours) – I3D ✓ RGB 0.659 2.572 0.798 3.073 0.736 2.823

MS-LSTM [29] TCSVT’19 VST ✕ RGB 0.660 – 0.809 – 0.744 –
ACTION-NET [15] ACM MM’20 VST+ ✕ RGB 0.694 – 0.809 – 0.757 –

GDLT [16] CVPR’22 VST ✕ RGB 0.685 3.717 0.820 2.072 0.761 2.895
HGCN⋆ [6] TCSVT’23 VST ✕ RGB 0.246 12.628 0.221 20.531 0.234 16.580

MLP-Mixer [37] AAAI’23 VST ✕ RGB 0.680 – 0.820 – 0.750 –
SGN [36] TMM’24 VST ✕ RGB 0.700 – 0.830 – 0.765 –

PAMFN [31] TIP’24 VST ✕ RGB 0.665 – 0.823 – 0.755 –
VATP-Net [31] TCSVT’24 VST ✕ RGB+ 0.702 – 0.863 – 0.796 –

CoFInAl [23] IJCAI’24 VST ✓ RGB 0.716 2.875 0.843 1.752 0.788 2.314
PHI (Ours) – VST ✓ RGB 0.726 2.543 0.867 1.656 0.804 2.178

B. Results and Analysis1

We begin with a thorough comparison to state-of-the-art2

methods, followed by an ablation study that includes parameter3

sensitivity analysis, and conclude with visualizations.4

1) Comparison with the State-of-the-Art: In our compar-5

ative analysis, we benchmarked several state-of-the-art meth-6

ods, consisting of C3D+SVR [26], MS-LSTM [29], ACTION-7

NET [15], GDLT [16], HGCN [6], and CoFInAl [23]. The8

comprehensive results are reported in Tables I to III, and the9

computational performance is listed in Table IV.10

a) Comparison with Different Backbones: We employed11

backbone various architectures, namely C3D [34], I3D [20],12

ResNet [52], and VST [21], to discern their impact on AQA13

performance. Among them, I3D consistently outperformed14

C3D across all categories on the RG dataset, highlighting15

its proficiency in capturing spatial-temporal dynamics for16

AQA. Particularly noteworthy was the superior performance17

of the VST backbone, achieving the highest average SRCC18

on all the three datasets, as can be seen in Tables I to III. 19

In the RG dataset, ACTION-NET, when coupled with the 20

VST backbone, displayed a remarkable correlation gain of 21

over 16.85% compared to its I3D-based counterpart. This 22

highlights the VST backbone’s capability to capture detailed 23

temporal dynamics crucial for AQA. Our proposed method, 24

PHI, leveraging both I3D and VST backbones, showcased 25

outstanding results across all categories, with the VST variant 26

emerging as the top performer. These findings validate the 27

significance of advanced 3D convolutional architectures, such 28

as the I3D and VST backbones, in capturing subtle action 29

details for improved AQA performance, further enhanced by 30

the incorporation of our PHI method. 31

b) Comparison with Shift-Unaware Methods: Traditional 32

shift-unaware AQA methods [16], [6], [29], [15] employ 33

representation layers that may implicitly mitigate the domain 34

shift issue. However, the persistence of domain shift often 35

leads to suboptimal performance in Tables I to III. PHI 36

with VST consistently outperforms others across all actions 37
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TABLE III
RESULTS OF SRCC (↑) AND R-ℓ2 (↓) ON THE LOGO DATASET. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD, WHILE THE SECOND-BEST RESULTS

ARE UNDERLINED.

Method Publisher Backbone Shift
Aware SRCC R-ℓ2

USDL [53] CVPR’20 I3D ✕ 0.426 5.736
CoRe [8] ICCV’21 I3D ✕ 0.471 5.402
TSA [48] CVPR’22 I3D ✕ 0.452 5.533

CoRe-GOAT [3] CVPR’23 I3D ✕ 0.494 5.072
HGCN [6] TCSVT’23 I3D ✕ 0.471 4.954

CoFInAl [23] IJCAI’24 I3D ✓ 0.552 4.586
PHI (Ours) – I3D ✓ 0.713 3.608
USDL [53] CVPR’20 VST ✕ 0.473 5.076

CoRe [8] ICCV’21 VST ✕ 0.500 5.960
TSA [48] CVPR’22 VST ✕ 0.475 4.778

CoRe-GOAT [3] CVPR’23 VST ✕ 0.560 4.763
HGCN [6] TCSVT’23 VST ✕ 0.671 6.564

CoFInAl [23] IJCAI’24 VST ✓ 0.698 4.019
PHI (Ours) – VST ✓ 0.835 2.752

and score types in all the three datasets, demonstrating its1

effectiveness in addressing the domain shift issue in long-term2

AQA. Specifically, it excels in categories like Ball, Hoop, and3

Ribbon on RG and across TES and PCS on Fis-V by a large4

margin. For instance, PHI demonstrates notable performance5

improvements, achieving a remarkable 9.65% and 6.14% cor-6

relation gain in the Ball and Hoop categories, respectively, on7

the RG dataset compared to GDLT [16]. Overall, PHI delivers8

significant average correlation gains of 5.88%, 5.65%, and9

24.44% on RG, Fis-V, and LOGO, respectively. These results10

validate the benefit of employing the two-stage instruction to11

address the domain shift issue.12

The above statistics focus on unimodal comparisons and13

exclude multi-modal methods. Below, we compare PHI with14

recent multi-modal approaches. Notably, PAMFN [31] uses15

only RGB data, while VATP-Net [51] leverages multi-modal16

inputs. Despite being a unimodal method, PHI outperforms17

PAMFN (0.711) by 13.9% and slightly surpasses the multi-18

modal method [47] on RG, as shown in Table I. On Fis-V, PHI19

achieves an average SRCC 6.5% higher than PAMFN (0.755)20

and 1.0% higher than VATP-Net (0.796), as shown in Table II.21

These results highlight PHI’s ability to handle domain shifts22

without additional modalities, demonstrating that multi-modal23

methods do not necessarily outperform unimodal methods24

when domain shifts are effectively addressed. Future work25

will explore extending PHI to multi-modal settings to further26

enhance performance and generalization. The comparison with27

various state-of-the-art methods positions PHI as a promising28

solution for advancing AQA capabilities.29

c) Comparison with Task-Level Discrepancies Solution:30

This work categorizes domain shifts into two perspectives:31

task-level discrepancies and feature-level discrepancies (see32

Figure 1(b)). CoFInAl [23] primarily addressed task-level33

discrepancies, whereas our work focuses on feature-level34

discrepancies. Both approaches have demonstrated substan-35

tial performance improvements compared to shift-unaware36

methods, as validated in Tables I to III, demonstrating the37

effectivenes and necessity of explicit methods in mitigating38

domain shifts in long-term AQA. In our experiments, we used39

the optimal parameters for I3D from the well-tuned parameters40

TABLE IV
COMPUTATIONAL COMPARISON WITH EXISTING OPEN-SOURCE METHODS.

“–” DENOTES METHODS WITHOUT OFFLINE MODULES.

Method Shift
Aware

FLOPs
(G)

Parameter (M) Inference
Time (ms)Online Offline

ACTION-NET [15] ✕ 34.7500 28.08 – 305.2474
GDLT [16] ✕ 0.1164 3.20 – 3.2249
HGCN [6] ✕ 1.1201 0.50 – 6.7830

CoFInAl [23] ✓ 0.1178 3.70 – 3.8834
PHI-half (Ours) ✓ 0.2637 2.80 4.60 5.6870

PHI (Ours) ✓ 0.2637 3.00 4.60 5.6870

of VST to better validate the generalizability of the proposed 41

method on different backbones. This means that we did not 42

fine-tune the parameters of the I3D backbone. As shown in 43

Tables I and II, PHI is still superior to CoFInAI that has 44

been well-tuned on the I3D backbone. As a result, it still has 45

significant room for improvement through further fine-tuning, 46

which could potentially lead to even better performance. This 47

explains why the VST backbone shows greater improvement 48

over I3D when compared to CoFInAI. 49

Although PHI is weaker than CoFInAl in some categories, 50

PHI exhibits a 2.03% performance gain on the challenging 51

Fis-V dataset, while achieving a modest 0.37% gain on the 52

simpler RG dataset. The smaller improvement observed on 53

the RG dataset can be attributed to two key factors: its limited 54

sample size and the relatively mild domain shift between 55

the pre-training task and AQA. Specifically, RG comprises 56

a smaller dataset compared to Fis-V (refer to the dataset 57

details in Section V-A), which restricts the model’s capacity 58

to learn complex domain adaptation patterns. Furthermore, 59

as illustrated in Figure 7(a), RG exhibits less pronounced 60

feature misalignment, reducing the upper limit of performance 61

improvement for extensive domain adaptation. In contrast, as 62

can be seen in Figure 8(a), Fis-V demonstrates significant 63

domain discrepancies, where PHI’s domain shift mitigation 64

mechanisms prove more impactful, resulting in a more sub- 65

stantial performance gain. Notably, PHI achieves a signifi- 66

cant 42.9% reduction in R-ℓ2 error on RG, indicating PHI’s 67

robustness in effectively managing subtle feature discrepan- 68

cies. Furthermore, the performance gap in CoFInAl can be 69

attributed to the discretization of the continuous score space 70

for classification. Our novel contribution focuses on addressing 71

feature-level discrepancies in AQA, which we have identified 72

as crucial for achieving additional performance improvements, 73

compared to the task-level one. By innovatively tackling these 74

discrepancies, we have effectively enhanced the robustness and 75

accuracy of AQA systems. 76

We further compare and analyze both solutions. While 77

CoFInAl and PHI addresses the domain shift in comple- 78

mentary ways, they are fundamentally incompatible due to 79

their opposing alignment directions. As can be seen from 80

the different arrows in Figure 1(b), these two approaches 81

operate the alignment process in opposite directions, making 82

their direct combination infeasible. If pre-trained features are 83

already well-optimized and generalizable, task-level alignment 84

(CoFInAI) may be sufficient. However, our experimental re- 85

sults in Tables I to III demonstrate that additional performance 86
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TABLE V
ABLATION RESULTS ON THE RG DATASET.

Setting
Ball Clubs Hoop Ribbon Average

SRCC R-ℓ2 SRCC R-ℓ2 SRCC R-ℓ2 SRCC R-ℓ2 SRCC R-ℓ2

PHI 0.818 2.187 0.803 2.149 0.812 2.199 0.805 2.744 0.810 2.300
PHI-half 0.808 ↓1.22% 2.027 ↓7.32% 0.790 ↓1.62% 2.460 ↑14.47% 0.788 ↓2.96% 5.776 ↑162.80% 0.752 ↓6.58% 2.900 ↑5.68% 0.785 ↓3.09% 3.291 ↑43.00%

w/o GMF 0.802 ↓1.96% 1.942 ↓11.20% 0.784 ↓2.36% 2.316 ↑7.77% 0.789 ↓2.83% 6.733 ↑206.27% 0.756 ↓6.09% 3.217 ↑17.24% 0.783 ↓3.33% 3.552 ↑54.43%

w/o TESA 0.661 ↓19.20% 3.347 ↑53.09% 0.637 ↓20.66% 3.904 ↑81.63% 0.371 ↓54.32% 6.490 ↑195.13% 0.550 ↓31.68% 5.016 ↑82.91% 0.564 ↓30.37% 4.689 ↑103.87%

w/o LCR 0.775 ↓5.26% 3.105 ↑42.00% 0.773 ↓3.74% 2.588 ↑20.40% 0.789 ↓2.83% 7.367 ↑235.09% 0.719 ↓10.68% 3.671 ↑33.81% 0.765 ↓5.56% 4.183 ↑81.87%

w/o KL 0.806 ↓1.47% 1.991 ↓8.96% 0.799 ↓0.50% 2.231 ↑3.81% 0.777 ↓4.31% 7.005 ↑218.56% 0.778 ↓3.35% 3.174 ↑15.68% 0.790 ↓2.47% 3.600 ↑56.52%

TABLE VI
ABLATION RESULTS ON THE FIS-V DATASET.

Setting
TES PCS Average

SRCC R-ℓ2 SRCC R-ℓ2 SRCC R-ℓ2

PHI 0.726 2.543 0.867 1.656 0.804 2.178
PHI-half 0.661 ↓9.07% 3.050 ↑19.88% 0.861 ↓1.15% 1.183 ↑28.58% 0.780 ↓3.48% 2.117 ↑2.79%

w/o GMF 0.668 ↓8.06% 3.413 ↑34.33% 0.857 ↓0.58% 1.769 ↑6.72% 0.780 ↓3.48% 2.591 ↑18.97%

w/o TESA 0.627 ↓13.87% 4.360 ↑166.33% 0.776 ↓10.97% 3.714 ↑123.67% 0.709 ↓11.84% 4.037 ↑84.81%

w/o LCR 0.280 ↓61.40% 5.576 ↑238.17% 0.294 ↓66.16% 4.984 ↑200.91% 0.282 ↓65.00% 5.280 ↑142.05%

w/o KL 0.576 ↓20.93% 2.437 ↓3.88% 0.841 ↓2.56% 2.564 ↑54.94% 0.780 ↓3.48% 2.501 ↑14.74%

gains are achievable through PHI, indicating that pre-trained1

features still require adaptation to better suit AQA. In the2

future, we aim to explore the potential of combining both3

approaches to fully leverage their respective strengths and4

achieve even higher performance. Moreover, PHI is designed5

as a modular enhancement and can be integrated into other6

baseline methods that do not explicitly consider domain shift.7

By refining feature alignment, PHI enhances model robustness8

and generalization, making it a versatile tool for improving9

AQA performance across various architectures.10

d) Computational Efficiency and Model Complexity: To11

provide a more comprehensive comparison, we evaluated PHI12

and existing long-term AQA methods under identical condi-13

tions, with a focus on computational efficiency. The results are14

summarized in Table IV. PHI consists of online and offline15

components, strategically designed to balance computational16

efficiency with assessment accuracy. The online module (flow17

path) handles real-time inference with minimal latency, while18

the offline module (TETE) refines feature representations, thus19

reducing the computational burden during online inference.20

Combining the results from Tables I to III, the distillation21

design enables it to achieve a competitive balance between22

performance and efficiency compared to state-of-the-art mod-23

els.24

Notably, CoFInAl achieves the lowest FLOPs (0.1178G)25

and inference time (3.8834ms) among shift-aware methods,26

underscoring its computational efficiency. However, PHI com-27

pensates for a slightly higher computational cost by leveraging28

a progressive instruction strategy. This approach improves29

assessment accuracy with only a 0.1470G increase in FLOPs30

and a 2.4621ms additional inference delay compared to GDLT.31

Despite this, PHI outperforms in terms of online parame-32

ters and quality assessment performance, while maintaining33

a reasonable computational footprint. PHI introduces only34

a slight increase in FLOPs and parameters, while signifi-35

cantly improving the assessment accuracy. PHI reduces FLOPs36

(by 99.2%), parameters (by 89.3%), and inference time (by37

98.1%) compared to ACTION-NET, and also achieves lower 38

FLOPs and competitive inference time relative to HGCN. 39

Additionally, PHI benefits from an offline distillation mech- 40

anism, allowing the TETE module to transfer knowledge to 41

a lightweight flow model, further reducing online parameters 42

and computational cost. In summary, while CoFInAl excels 43

in computational efficiency, PHI strikes an optimal balance 44

between computational cost and assessment accuracy, making 45

it a practical solution for practical AQA applications. 46

2) Ablation Studies: This study aims to investigate the 47

individual contributions of the core components of PHI, par- 48

ticularly focusing on GMF (see Hypothesis 1), TESA (see 49

Section IV-A2), LCR (see Hypothesis 2), and the use of 50

KL divergence loss (see Equation (15)). Tables V and VI 51

and Figure 5 present the results on RG and Fis-V. 52

a) Validation of Hypothesis 1: To validate the effective- 53

ness of Hypothesis 1, we compare removing GMF (w/o GMF) 54

and TETE (w/o TETE), respectively. On the one hand, when 55

removing GMF while retaining only TETE (w/o GMF), we 56

observe a decrease in performance across all categories, with 57

an average SRCC decrease of 3.33% and an average R-ℓ2 58

increase of 54.43% on the RG dataset (see Table V) and 59

an average SRCC decrease of 3.48% and an average R-ℓ2 60

increase of 18.97% on the Fis-V dataset (see Table VI). These 61

results indicate that the desired features estimated by TETE 62

alone contain inaccuracies due to the inherent domain gap. The 63

GMF module plays a crucial role in refining these estimations 64

by progressively reducing the domain shift, thereby enhancing 65

the reliability of feature representations and improving action 66

assessment performance. On the one hand, by replacing TESA 67

with vanilla attention (w/o TESA), we observe a more substan- 68

tial decrease in performance, with an average SRCC decrease 69

of 30.37% on the RG dataset (see Table V) and an average 70

SRCC decrease of 11.84% on the Fis-V dataset (see Table VI). 71

This emphasizes the critical role of TESA in capturing long- 72

range dependencies efficiently, which is essential for accurate 73

AQA. These results collectively validate the effectiveness of 74
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Hypothesis 11

b) Validation of Hypothesis 2: To validate the effective-2

ness of Hypothesis 2, we compare removing LCR (w/o LCR)3

and KL (w/o KL), respectively. On the one hand, removing4

LCR (w/o LCR) results in a notable decrease in performance,5

with an average SRCC decrease of 5.56% and an average6

R-ℓ2 increase of 81.87% on the RG dataset (see Table V)7

and an average SRCC decrease of 65.00% and an average R-8

ℓ2 increase of 142.15% on the Fis-V dataset (see Table VI).9

This demonstrates that LCR plays a crucial role in learning10

representations focusing on fine-grained cues, which are vital11

for mitigating domain shift and improving AQA performance.12

On the one hand, replacing the KL divergence loss with MSE13

(w/o KL) leads to a significant decrease in performance, with14

an average R-ℓ2 increase of 56.52% on the RG dataset (see15

Table V) and an average R-ℓ2 increase of 14.74% on the Fis-V16

dataset (see Table VI). This highlights the effectiveness of the17

KL divergence loss in guiding the model to learn more robust18

representations aligned with AQA. These results collectively19

validate the effectiveness of Hypothesis 2.20

c) Impact of the Model Size: As shown in Tables V21

and VI, reducing the parameter size of the flow network ϕ by22

half (PHI-half) results in a noticeable decrease in performance23

across all categories. Specifically, we observe an average24

decrease of 3.09% in SRCC and an average increase of 43.00%25

in R-ℓ2 on the RG dataset and an average decrease of 3.48%26

in SRCC and an average increase of 2.79% in R-ℓ2 on the27

RG dataset. Combined with the reported results in Tables I28

and II, we observe that PHI-half still outperforms some strong29

baselines [16], [6]. This finding shows the importance of30

model size in maintaining performance levels, suggesting that31

a larger parameter space with simple MLPs contributes to32

better overall performance, indicating the effectiveness of33

PHI’s network design.34

d) Impact of Different Steps: The number of flow steps35

plays a crucial role in refining pre-trained features for AQA.36

Adjusting this parameter influences the model’s ability to37

reduce the domain gap between pre-trained features and AQA38

tasks (see Figure 5). Firstly, while increasing the number of39

steps yields slight improvements, the gains are not always sub-40

stantial. To provide an intuitive understanding, Figure 6 illus-41

trates the conceptual differences between one-step and multi-42

step flows. The one-step approach (see Figure 6(a)) achieves43

competitive performance due to its direct alignment but is44

more susceptible to deviations. In contrast, the multi-step flow45

(see Figure 6(b)) provides more controlled and gradual refine-46

Initial state

Final state  

Desired state
Initial state

Desired state

Intermediate state  

� �Error Error

Final state  

(a) (b) Desired state

Intermediate state  

� Error

Final 
state  

(c)

Fig. 6: Conceptual illustrations of (a) one-step and (b,c) multi-step
flows. In (a), the one-step flow allows for a fast and direct reduction
of domain gaps, making it computationally efficient. However, it
may lead to larger errors. Suppose the second state deviates from
the desired direction with the same degree θ. In contrast, the multi-
step flow (b) provides a more robust alignment through gradual
refinements, reducing the risk of large errors. However, in certain
cases (c), multi-step alignment can accumulate errors, potentially
leading to worse performance than the one-step approach.

TABLE VII
RESULTS OF DIFFERENT TRAINING STRATEGIES.

Strategy RG Fis-V

Two-stage 0.810 0.804
One-stage 0.807 ↓0.37% 0.800 ↓0.50%

ment, potentially reducing large alignment errors. However, 47

multi-step alignment can also introduce accumulative errors 48

(see Figure 6(c)), especially when the initial step already aligns 49

features effectively. This explains why, in some cases, multi- 50

step flows offer only marginal improvements or even perform 51

worse than the one-step approach (in Figure 5). Nonethe- 52

less, multi-step alignment enhances stability and robustness, 53

particularly in scenarios where direct alignment might lead 54

to suboptimal feature adaptation. Additionally, increasing the 55

number of steps allows for a more gradual transformation of 56

initial features into task-specific representations, potentially 57

improving accuracy and reliability. However, this comes at the 58

cost of higher computational complexity and longer training 59

time. Conversely, reducing the number of steps accelerates 60

training but may limit the model’s ability to effectively align 61

with AQA tasks. Importantly, our method is designed to 62

support both one-step and multi-step alignment, offering flexi- 63

bility depending on the computational constraints and accuracy 64

requirements. The absence of a clear performance trend across 65

different step settings further highlights the robustness and 66

adaptability of our approach. 67

e) Impact of Different Training Strategies: We adopt a 68

two-stage training process in our approach. Initially, we train 69

the TETE to refine the estimation of desired features, focusing 70

on obtaining accurate representations essential for the flow 71

model. Subsequently, we integrate these refined features into 72

our overall framework, enabling joint training with compo- 73

nents like GMF. To demonstrate the efficacy of the two-stage 74

training approach, we conducted experiments comparing it 75

to a one-stage joint training process. The results, shown in 76

Table VII, reveal that the two-stage process outperforms the 77

one-stage process, with improvements of 0.37% on the RG 78

dataset and 0.50% on the Fis-V dataset. This highlights the 79

clear advantages of the two-stage training strategy. 80

3) Qualitative and Quantitative Results: We present a 81

diverse range of visualizations to demonstrate both the quali- 82

tative and quantitative performance of our method. 83
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a) Visualization of the Domain Shift: We visually1

demonstrate the effectiveness of our PHI method in mitigating2

domain shifts through feature distribution visualizations in3

the latent space and correlation analyses between predicted4

and ground truth scores. Specifically, we employ the t-SNE5

toolbox [54] to generate feature distribution plots, which are6

presented in the first rows of Figures 7 and 8. Additionally,7

we illustrate the correlation between predicted and actual8

scores through scatter plots, as shown in the second rows9

of Figures 7 and 8. To assess the model’s generalization10

capability, we visualize two action categories, Hoop and PCS,11

selected from the RG and PCS datasets, respectively. In the12

feature distribution plots, different score ranges (or grades)13

are delineated using an SVC classifier. Due to variations in14

dataset scales, we categorize the test samples into four score15

ranges for Hoop (RG), assigning labels from 0 to 3, and16

six score ranges for PCS (Fis-V), assigning labels from 0 to17

5. Improved feature clustering, where samples of the same18

grade (represented by similar color shading) occupy the same19

region, indicates a more structured feature space for action20

assessment. Furthermore, we provide comparisons with GDLT21

[16] and CoFInAl [23] to highlight the advantages of our22

approach. Since the Fis-V dataset contains a larger number of23

test samples compared to RG, it provides a more robust and24

reliable evaluation of model performance and generalizability.25

Therefore, we primarily focus on comparisons conducted on26

the PCS (Fis-V) dataset for a more comprehensive assessment27

of our method in the following.28

Specifically, the features extracted by the VST backbone, as29

shown in Figure 8(a), exhibit a mixed distribution, indicating30

difficulties in distinguishing between different score ranges.31

This suggests that the pre-trained backbone may not be well-32

suited for the AQA task, leading to significant domain shift33

issues. In Figure 8(b), the feature distribution of GDLT appears34

confused, reflecting ineffective feature learning. In contrast,35

Figures 8(c) and 8(d) illustrate the feature distributions of36

CoFInAl and PHI, respectively, which display more distinct37

clustering. This clearer separation facilitates the identification38

of samples within each score range, indicating that both39

CoFInAl and PHI effectively mitigate domain shift. While the40

advantage of PHI can be observed by comparing the feature41

plots in Figures 7(c) and 7(d), the t-SNE visualizations in42

Figures 8(c) and 8(d) do not provide a definitive comparison43

between the domain shift mitigation capabilities of PHI and44

CoFInAl. Notably, CoFInAl suffers from a loss of precision45

in score prediction, which affects its fine-grained assessment46

capability. In contrast, PHI maintains higher precision, leading47

to improved reliability in action assessment. To further clarify48

this, we demonstrate that PHI outperforms CoFInAl in the49

following analysis.50

Figures 8(e), 8(f) and 8(h) compare correlation plots be-51

tween GDLT, CoFInAl, and PHI. In Figure 8(e), the correlation52

line (ŝi = 0.28si+18.72) of GDLT shows a deviation from the53

ideal correlation line (ŝi = si), indicating a weak correlation54

with ground truth scores. In Figure 8(f), the correlation line55

(ŝi = 0.34si + 16.95) of CoFInAl shows a smaller deviation56

from the ideal line, suggesting a stronger correlation with57

ground truth scores compared to GDLT. Notably, Figure 8(h)58
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ŝ
i

k=0:62

b=5:98

GDLT (Hoop)

(e)

0.0 0.5 1.0
Dimension 1

0.0

0.2

0.4

0.6

0.8

1.0

D
im

en
si

on
 2

CoFInAl (Hoop)

(c)

10 15 20 25
Ground Truth si

-10

0

10

20

30

Pr
ed

ic
te

d 
Sc

or
e 
ŝ
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Fig. 7: Visualization depicting the mitigation of domain shift on the
Hoop (RG) dataset: t-SNE feature distribution plots (a, b, c, d) and
correlation comparison plots (e, f, g) of GDLT [16], CoFInAl [23],
and our PHI method. The dataset is split into four grades.
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Fig. 8: Visualization depicting the mitigation of domain shift on the
PCS (Fis-V) dataset: t-SNE feature distribution plots (a, b, c, d) and
correlation comparison plots (e, f, g) of GDLT [16], CoFInAl [23],
and our PHI method. The dataset is split into six grades.

shows that the correlation line of PHI (ŝi = 0.46si + 12.80) 59

is the closest to the ideal line, demonstrating the highest 60

correlation with ground truth scores among the three methods. 61

This suggests that PHI achieves a higher correlation with 62

ground truth scores compared to GDLT and CoFInAl, further 63

highlighting its superiority in mitigating domain shift and 64

improving AQA performance. Overall, the visualizations in 65

Figure 8 provide compelling evidence of PHI’s effectiveness 66

in mitigating domain shift and improving long-range AQA 67

performance compared to existing methods. 68

b) Visualization of Attention Weights: To gain deeper 69

insights into the attention mechanism within the TETE mod- 70

ule, we visualize the attention weights and the highlighted 71

clips for two representative samples from the RG and Fis-V 72

datasets. Figures 9(a) and 9(b) illustrate the attention weight 73

distributions for each clip in the Club (RG) and PCS (Fis-V) 74

models, respectively. The first row in each subfigure presents 75

the normalized attention weights assigned to all action clips, 76

revealing the varying levels of importance attributed to differ- 77

ent segments of the action. The following rows highlight the 78

top three clips that received the highest attention scores, which 79

are crucial for the model’s decision-making. In Figure 9(a), the 80

model predicts a score of 14.30, while the ground-truth score 81

is 14.52, resulting in a minimal error of 0.22. Similarly, in 82

Figure 9(b), the model predicts a score of 27.78, compared to 83

the ground-truth score of 26.68, yielding an error of 1.10. For 84

example, in Figure 9(b), the three most attended clips are 39, 85
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Fig. 9: Visualization of attention weights and highlighted clips for samples on (a) the RG (Club) dataset and (b) the Fis-V (PCS) dataset.

0 20
(a) Distance Matrix (Batch)

0

10

20

30

(12, 27)

0 50 100
(b) Ball #012

0

25

50

75

100
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Fig. 10: Visualization of the distance matrix on the Ball (RG) dataset.

52, and 53, corresponding to key subactions where the player1

executes precise hand-leg coordination. These visualizations2

provide valuable insights into how the AQA model prioritizes3

different temporal segments within an action sequence. By4

identifying the most critical moments, we enhance our un-5

derstanding of the model’s interpretability and its evaluation6

process for action quality assessment.7

c) Visualization of the Distance Matrix: In Figure 10,8

the heatmap of the distance matrix is depicted. The highest9

value in the matrix, such as (12, 27), signifies the greatest10

distance between the 12-th and 27-th actions. To further assess11

the efficacy, the two actions and their respective heatmaps are12

visualized. These heatmaps in Figures 10(c) and 10(d) provide13

insights into the domain shift issue. The minimal difference14

between the predicted and ground-truth scores indicates the15

effectiveness of our method. For instance, with a ground-truth16

score of s12 = 8.40 and the predicted score is ŝ12 = 8.64.17

Additionally, observing the score distance between the two18

videos reveals a wide range, consistent with their feature19

distance, demonstrating the effectiveness of our PHI method.20

VI. CONCLUSIONS AND DISCUSSIONS21

In this work, we identify and analyze task-level and feature-22

level domain shifts in long-term AQA and propose PHI as a23

hierarchical adaptation framework to address feature-level dis- 24

crepancies. Rather than a mere extension of existing methods, 25

PHI introduces a novel integration of shallow-to-deep adapta- 26

tion and coarse-to-fine alignment strategies to enhance AQA 27

performance. The shallow-to-deep adaptation strategy, enabled 28

by GMF, effectively reduces domain gaps while maintain- 29

ing computational efficiency. Simultaneously, the coarse-to- 30

fine alignment mechanism, facilitated by LCR, refines coarse 31

features extracted from pre-trained models, aligning them with 32

fine-grained representations crucial for AQA. Experimental 33

results on three representative long-term AQA datasets demon- 34

strate the significant effectiveness of PHI, underscoring the im- 35

portance of mitigating feature-level discrepancies in improving 36

AQA performance. Notably, compared to the task-level adap- 37

tation method CoFInAI, PHI exhibits superior performance 38

in mitigating domain shifts and enhancing AQA accuracy, 39

emphasizing the critical role of feature-level alignment in 40

long-term AQA tasks. Furthermore, the hierarchical adaptation 41

framework of PHI is highly generalizable beyond AQA, with 42

potential applications in rehabilitation analysis, sports motion 43

scoring, and movement disorder diagnosis. The principles of 44

shallow-to-deep adaptation and coarse-to-fine alignment also 45

extend to domains such as multi-modal alignment. By address- 46

ing domain shifts through hierarchical feature refinement, PHI 47

provides a theoretically grounded and versatile framework, 48
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paving the way for future research across multiple fields.1

Despite its strong performance, PHI has several limitations,2

each suggesting directions for future work. First, the auto-3

regressive nature of GMF introduces cumulative errors, which4

may progressively degrade prediction accuracy over multiple5

steps. Future research will focus on advanced optimization6

strategies and novel regularization techniques to mitigate these7

challenges. Second, while our clip alignment method effec-8

tively minimizes discrepancies between actions, it may lead9

to information loss in cases of significant temporal variation.10

Future work will explore adaptive alignment strategies to11

enhance temporal correlation capture while maintaining com-12

putational efficiency. Third, although PHI and CoFInAI ad-13

dress domain shifts from complementary perspectives, feature-14

level and task-level alignment, respectively, their integration15

into a unified framework remains an open challenge. Future16

research will investigate synergistic strategies to combine17

these approaches for a more comprehensive domain adaptation18

solution. Additionally, PHI is currently designed for unimodal19

inputs, limiting its applicability in multi-modal scenarios. Ex-20

tending the framework to support multi-modal integration will21

be a key avenue for future work, broadening its utility across22

diverse applications. Finally, PHI is tailored for mitigating the23

domain shift issue in long-term AQA tasks, which may not24

be directly applicable to short-term AQA scenarios. Future25

research will explore adaptations to extend its applicability to26

short-term AQA, further increasing its versatility. Addressing27

these limitations will enhance the robustness, generalizability,28

and applicability of PHI, advancing the field of action quality29

assessment and its related domains.30
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