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Abstract
We obtain monotonicity and convexity results for the
heat content of domains in Riemannian manifolds and
in Euclidean space subject to various initial tempera-
ture conditions. We introduce the notion of a strictly
decreasing temperature set, and show that it is a sufficient
condition to ensure monotone heat content. In addition,
in Euclidean space, we construct a domain and an initial
condition for which the heat content is notmonotone, as
well as a domain and an initial condition for which the
heat content is monotone but not convex.
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1 INTRODUCTION ANDMAIN RESULTS

In this paper, we investigate qualitative properties of heat flow problems in open sets in Euclidean
space and in Riemannian manifolds without boundary conditions.
For example, consider an open set Ω ⊂ ℝ𝑚 that is initially at temperature 1 while its comple-

ment,ℝ𝑚 ⧵ Ω, is initially at temperature 0. No boundary conditions are imposed on the boundary
𝜕Ω of Ω and the heat equation evolves on ℝ𝑚.
A version of the isoperimetric inequality for the heat semigroup corresponding to this heat flow

problem has been established in [12] by making use of the connection between the perimeter of
the set and the small-time asymptotic behaviour of the semigroup (see also [11]).
We study the interplay between the geometry ofΩ and the heat content ofΩ, that is, the amount

of heat left inside Ω at time 𝑡. The refined asymptotic behaviour of the heat content of Ω as 𝑡 ↓ 0
has been obtained in a variety of geometric settings. For example, polygons inℝ2 [6], horn-shaped
regions inℝ𝑚 [2], and smooth, compact Riemannianmanifolds contained in a larger compact Rie-
mannianmanifold [4]. Two-sided bounds for the heat content and for the heat loss were obtained
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2 VAN DEN BERG and GITTINS

in [5] for the case of an open set inℝ𝑚 with 𝑅-smooth boundary and finite Lebesguemeasure, and
in [3] for the case of an open set in a complete, smooth, non-compact, 𝑚-dimensional Rieman-
nianmanifold. More recently the heat content has been analysed in the context of metric measure
spaces and sub-Riemannian manifolds [1, 8].
The goal of this paper is to investigate the monotonicity and convexity of the heat content of

Ω as a function of 𝑡, with various initial data, in the setting where no boundary conditions are
imposed on 𝜕Ω.
Let𝑀 be a smooth, connected, complete and stochastically complete𝑚-dimensional Rieman-

nian manifold and let Δ be the Laplace–Beltrami operator acting on functions in 𝐿2(𝑀). It is well
known (see [9, 10]) that the heat equation

Δ𝑢 =
𝜕𝑢

𝜕𝑡
, 𝑥 ∈ 𝑀, 𝑡 > 0, (1)

has a unique, minimal, positive fundamental solution 𝑝𝑀(𝑥, 𝑦; 𝑡) where 𝑥 ∈ 𝑀, 𝑦 ∈ 𝑀, 𝑡 > 0.
This solution, called the Dirichlet heat kernel for𝑀, is symmetric in 𝑥, 𝑦, strictly positive, jointly
smooth in 𝑥, 𝑦 ∈ 𝑀 and 𝑡 > 0, and it satisfies the semigroup property

𝑝𝑀(𝑥, 𝑦; 𝑠 + 𝑡) = ∫𝑀 𝑑𝑧 𝑝𝑀(𝑥, 𝑧; 𝑠)𝑝𝑀(𝑧, 𝑦; 𝑡), (2)

for all 𝑥, 𝑦 ∈ 𝑀 and 𝑡, 𝑠 > 0, where 𝑑𝑧 is the Riemannian measure on𝑀. In addition

∫𝑀 𝑑𝑦 𝑝𝑀(𝑥, 𝑦; 𝑡) = 1 (3)

since 𝑀 is stochastically complete. Let Ω be an open subset of 𝑀. Equation (1) with the initial
condition

𝑢(𝑥; 0+) = 𝜓(𝑥), 𝑥 ∈ Ω, (4)

has a solution

𝑢Ω,𝜓(𝑥; 𝑡) = ∫Ω 𝑑𝑦 𝑝𝑀(𝑥, 𝑦; 𝑡)𝜓(𝑦), (5)

for any function 𝜓 on Ω from a variety of function spaces. For example, let 𝜓 ∈ 𝐶𝑏(Ω), 𝜓 ⩾ 0,
𝜓 ≢ 0, the set of bounded continuous functions from Ω into [0,∞). Then, initial condition (4) is
understood in the sense that 𝑢Ω,𝜓 (⋅; 𝑡) → 𝜓 (⋅) as 𝑡 ↓ 0, where the convergence is locally uniform.
Let Ω be a non-empty, open subset of𝑀, and let 𝜓 ∶ Ω → [0,∞) be bounded and measurable.

We define the heat content of Ωwith initial datum 𝜓 by

𝐻Ω,𝜓(𝑡) = ∫Ω ∫Ω 𝑑𝑥 𝑑𝑦 𝑝𝑀(𝑥, 𝑦; 𝑡)𝜓(𝑦). (6)

It was shown in [13, Proposition 1] that if Ω ⊂ ℝ𝑚 is bounded, then 𝑡 ↦ 𝐻Ω(𝑡) is decreasing
and convex. In Theorem 1, we consider the more general situation of a Riemannian manifold. A
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QUALITATIVE PROPERTIES OF THE HEAT CONTENT 3

particular case of interest is when 𝜓 ≡ 1 on Ω for which we write

𝐻Ω(𝑡) = 𝐻Ω,1(𝑡).

We introduce the following definition that will give us a sufficient condition that ensures
monotone heat content.

Definition 1. Let 𝑀 be a smooth, connected, complete and stochastically complete 𝑚-
dimensional Riemannian manifold. An open setΩ ⊂ 𝑀 is a (strictly) decreasing temperature set
if for all 𝑥 ∈ Ω, 𝑡 ↦ 𝑢Ω,1(𝑥; 𝑡) is (strictly) decreasing.

Our first main result is the following.

Theorem 1. LetΩ be a non-empty, open subset of𝑀, where𝑀 is a smooth, connected, complete and
stochastically complete𝑚-dimensional Riemannian manifold.

(i) If 𝐻Ω(𝑡) < ∞ for all 𝑡 > 0, then 𝑡 ↦ 𝐻Ω(𝑡) is decreasing and convex. Moreover, lim𝑡→∞ 𝐻Ω(𝑡)

exists.
(ii) If 𝐻Ω(𝑡) < ∞ for all 𝑡 > 0 and if lim𝑡→∞ 𝐻Ω(𝑡) = 0, then all right-hand derivatives of 𝐻Ω(𝑡)

with respect to 𝑡 are strictly negative, and 𝑡 ↦ 𝐻Ω(𝑡) is strictly decreasing.
(iii) If𝑀 is in addition closed, then 𝑡 ↦ 𝐻Ω(𝑡) is strictly decreasing and strictly convex if and only if|𝑀 ⧵Ω| > 0.
(iv) If Ω ⊂ 𝑀 is a (strictly) decreasing temperature set with finite measure, and if 𝜓 ∶ Ω → [0,∞)

is bounded and measurable, then 𝑡 ↦ 𝐻Ω,𝜓(𝑡) is (strictly) decreasing.

All remaining theorems concern results for Euclidean space ℝ𝑚, for which

𝑝ℝ𝑚(𝑥, 𝑦; 𝑡) =
e−

|𝑥−𝑦|2
4𝑡

(4𝜋𝑡)𝑚∕2
. (7)

For the case where 𝜓 ≡ 1 on Ω ⊂ ℝ𝑚, it was shown in [2, Proposition 8] that if Ω is convex,
thenΩ is a decreasing temperature set. In [2, Example 6], it was shown that the disjoint union of
a ball and a suitable concentric annulus inℝ2 is not a decreasing temperature set. Below we show
that the disjoint union of two balls with equal radii 𝛿 in ℝ𝑚 at distance 2 is a strictly decreasing
temperature set for some 𝛿 sufficiently small. So, the convexity assumption in [2, Proposition 8]
is sufficient but not necessary and sufficient.

Theorem 2. Let Ω𝛿 = 𝐵𝛿(𝑐1) ∪ 𝐵𝛿(𝑐2) ⊂ ℝ𝑚, 𝑚 ∈ ℕ, and 𝑐1 = (−1 − 𝛿, 0, … , 0), 𝑐2 = (1 +

𝛿, 0, … , 0). Let 𝜓 = 𝟏Ω𝛿 . If 𝛿 =
1

20
, thenΩ𝛿 is a strictly decreasing temperature set.

In Theorem 3, for non-empty, open, bounded sets in ℝ𝑚, we obtain a lower bound for the sec-
ond derivative of the heat content and show that this derivative is bounded away from 0 for all 𝑡
sufficiently large, and an upper bound for the first derivative of the heat content and show that
this derivative is bounded away from 0.

Theorem 3. IfΩ is a non-empty, open set in ℝ𝑚 with diam(Ω) < ∞, then
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4 VAN DEN BERG and GITTINS

(i)

𝑑2𝐻Ω(𝑡)

𝑑𝑡2
⩾
4𝑚2 + 4𝑚 − 7

16𝑡2
𝐻Ω(𝑡), 𝑡 ⩾ (diam(Ω))2, (8)

(ii)

𝑑2𝐻Ω(𝑡)

𝑑𝑡2
⩾

⎧⎪⎨⎪⎩
0, 𝑡 < (diam(Ω))2,

(4𝑚2 + 4𝑚 − 7)𝜋2𝑒−1∕4
|Ω|2

(4𝜋𝑡)(𝑚+4)∕2
, 𝑡 ⩾ (diam(Ω))2,

(9)

(iii)

𝑑𝐻Ω(𝑡)

𝑑𝑡
⩽

⎧⎪⎨⎪⎩
−4𝑚2+4𝑚−7

2(𝑚+2)
𝜋𝑒−1∕4

|Ω|2
(4𝜋(diam(Ω))2)(𝑚+2)∕2

, 0 < 𝑡 ⩽ (diam(Ω))2,

−4𝑚2+4𝑚−7

2(𝑚+2)
𝜋𝑒−1∕4

|Ω|2
(4𝜋𝑡)(𝑚+2)∕2

, 𝑡 ⩾ (diam(Ω))2,
(10)

(iv)

𝑑𝐻Ω(𝑡)

𝑑𝑡
⩽ −

4𝑚2 + 4𝑚 − 7

8(𝑚 + 2)𝑡
𝑒−1∕4𝐻Ω(𝑡), 𝑡 ⩾ (diam(Ω))2.

Theorem 3 can be generalised to the case of non-negative, measurable initial temperature 𝜓 as
follows.

Corollary 4. IfΩ is a non-empty, open set in ℝ𝑚 with diam(Ω) < ∞ and if 𝜓 ⩾ 0, 𝜓 ≢ 0, bounded
andmeasurable, then analogous results to those of Theorem 3 hold for𝐻Ω,𝜓 . Moreover, the analogues
of parts (i), (iv) hold with 𝐻Ω replaced by 𝐻Ω,𝜓 and the analogues of parts (ii), (iii) hold with |Ω|2
replaced by |Ω| ∫Ω 𝜓(𝑦) 𝑑𝑦.
Corollary 4 follows immediately from the proof of Theorem 3.
We now explore the effects of changing the initial datum 𝜓 on the monotonicity and convexity

of 𝑡 ↦ 𝐻Ω,𝜓(𝑡).
Throughout for 𝑟2 > 𝑟1 > 0, 𝑐 ∈ ℝ𝑚, we let 𝐵𝑟1(𝑐) = {𝑥 ∈ ℝ𝑚 ∶ |𝑥 − 𝑐| < 𝑟1}, 𝐴(𝑟1,𝑟2) = {𝑥 ∈

ℝ𝑚 ∶ 𝑟1 < |𝑥| < 𝑟2}, and 𝜔𝑚 = |𝐵1(0)|.
First, we construct an example which shows that if 𝜓 is not constant on Ω, then 𝑡 ↦ 𝐻Ω,𝜓(𝑡)

need not be monotone in 𝑡.

Theorem 5. Let𝑚 ∈ ℕ, 𝑐 > 2, 𝑡∗ > 𝑒9∕(2𝑚), and let

Ω𝑐 = 𝐵1(0) ∪ 𝐴(2,𝑐) ⊂ ℝ𝑚, 𝜓(𝑥) = 𝟏𝐵1(0)(𝑥).

If

𝑐 > (32𝑡∗)1∕2

(
log

(
25𝑚∕2Γ((𝑚 + 2)∕2)

2𝑚 − 1

(
𝑒−9∕4 − 𝑡∗−𝑚∕2

)−1))1∕2

, (11)

then𝐻Ω𝑐,𝜓
(0) > 𝐻Ω𝑐,𝜓

(𝑡∗) > 𝐻Ω𝑐,𝜓
(1), so that 𝑡 ↦ 𝐻Ω𝑐,𝜓

(𝑡) is not monotone.
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QUALITATIVE PROPERTIES OF THE HEAT CONTENT 5

As a consequence of Theorem 5, since 𝑡 ↦ 𝐻Ω𝑐,𝜓
(𝑡) is not monotone, we deduce by

Theorem 1(iv) that, for 𝑐 sufficiently large,Ω𝑐 is not a decreasing temperature set.
In addition, we construct an example which shows that if 𝜓 is not constant on Ω, then 𝑡 ↦

𝐻Ω,𝜓(𝑡) can be a decreasing function of 𝑡 but need not be convex.

Theorem 6. Let Ω = 𝐵1(0) ⊂ ℝ𝑚, 𝑚 ∈ ℕ, 𝜓(𝑦) = |1 − |𝑦||𝛼 with 𝛼 > 1, then 𝑡 → 𝐻𝐵1(0),𝜓
(𝑡) is

decreasing but not convex.

The proofs of Theorems 1, 2, 3, 5 and 6 are deferred to Sections 2, 3, 4, 5 and 6, respectively.

2 PROOF OF THEOREM 1

Proof.

(i) For 𝑡 > 0, by (5) we have

𝑢Ω(𝑥; 𝑡) = ∫Ω 𝑑𝑦 𝑝𝑀(𝑥, 𝑦; 𝑡). (12)

We first show that 𝑡 ↦ 𝐻Ω(𝑡) is decreasing. By (2) and (12) we have for 𝑡 > 0, 𝑠 > 0,

𝑢Ω(𝑥; 𝑡 + 𝑠) = ∫Ω 𝑑𝑦 𝑝𝑀(𝑥, 𝑦; 𝑡 + 𝑠)

= ∫Ω 𝑑𝑦 ∫𝑀 𝑑𝑧 𝑝𝑀(𝑥, 𝑧; 𝑡)𝑝𝑀(𝑧, 𝑦; 𝑠)

= ∫𝑀 𝑑𝑧 𝑝𝑀(𝑥, 𝑧; 𝑡)𝑢Ω(𝑧; 𝑠), (13)

where we have used Tonelli’s theorem in the last identity. Integrating (13) with respect to 𝑥
over Ω yields

𝐻Ω(𝑡 + 𝑠) = ∫𝑀 𝑑𝑥 𝑢Ω(𝑥; 𝑡)𝑢Ω(𝑥; 𝑠). (14)

By (14), (13), (2), (3), and symmetry of the heat kernel

𝐻Ω(𝑡 + 𝑠) = ∫𝑀 𝑑𝑥 𝑢Ω(𝑥; (𝑡 + 𝑠)∕2)
2

= ∫𝑀 𝑑𝑥 ∫𝑀 𝑑𝑦1 𝑝𝑀(𝑥, 𝑦1; 𝑠∕2)𝑢Ω(𝑦1; 𝑡∕2)∫𝑀 𝑑𝑦2 𝑝𝑀(𝑥, 𝑦2; 𝑠∕2)𝑢Ω(𝑦2; 𝑡∕2)

= ∫𝑀 𝑑𝑦1 ∫𝑀 𝑑𝑦2 𝑝𝑀(𝑦1, 𝑦2; 𝑠)𝑢Ω(𝑦1; 𝑡∕2)𝑢Ω(𝑦2; 𝑡∕2)

⩽
1

2 ∫𝑀 𝑑𝑦1 ∫𝑀 𝑑𝑦2 𝑝𝑀(𝑦1, 𝑦2; 𝑠)
(
𝑢Ω(𝑦1; 𝑡∕2)

2 + 𝑢Ω(𝑦2; 𝑡∕2)
2
)
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6 VAN DEN BERG and GITTINS

= ∫𝑀 𝑑𝑦1 ∫𝑀 𝑑𝑦2 𝑝𝑀(𝑦1, 𝑦2; 𝑠)𝑢Ω(𝑦1; 𝑡∕2)
2

= ∫𝑀 𝑑𝑦1 𝑢Ω(𝑦1; 𝑡∕2)
2

= 𝐻Ω(𝑡).

To prove convexity, we first note that since𝐻Ω(𝑡) < ∞, 𝑡 > 0, it suffices to prove that𝐻 is
midpoint convex. See [7, pp. 164–167]. Let 𝑡 > 0, 𝛿 > 0. By (14), we have

1

2
(𝐻Ω(𝑡) + 𝐻Ω(𝑡 + 2𝛿)) =

1

2 ∫𝑀 𝑑𝑧
(
𝑢Ω(𝑧; 𝑡∕2)

2 + 𝑢Ω(𝑧; (𝑡 + 2𝛿)∕2)
2
)

⩾ ∫𝑀 𝑑𝑧 𝑢Ω(𝑧; 𝑡∕2)𝑢Ω(𝑧; (𝑡 + 2𝛿)∕2)

= 𝐻Ω(𝑡 + 𝛿).

This proves the convexity of 𝐻Ω. Since the map 𝑡 ↦ 𝐻Ω(𝑡) is decreasing and bounded from
below, lim𝑡→∞ 𝐻Ω(𝑡) exists.

(ii) By convexity of 𝑡 ↦ 𝐻Ω(𝑡), we have that the right-hand derivative 𝐻
′+
Ω
(𝑡) ∶=

lim𝜀↓0 𝜀
−1(𝐻Ω(𝑡 + 𝜀) − 𝐻Ω(𝑡)) is non-decreasing in 𝑡. See [7, p. 167]. Hence, if 𝐻

′+
Ω
(𝑇) ⩾ 0

for some 𝑇 > 0, then 𝐻
′+
Ω
(𝑡) ⩾ 0, 𝑡 ⩾ 𝑇. This in turn implies 𝐻Ω(𝑡) ⩾ 𝐻Ω(𝑇) > 0, 𝑡 ⩾ 𝑇.

This contradicts lim𝑡→∞ 𝐻Ω(𝑡) = 0, and 𝐻
′+
Ω
(𝑇) < 0, 𝑇 > 0. Hence, 𝑡 ↦ 𝐻Ω(𝑡) is strictly

decreasing.
(iii) We note that if |𝑀 ⧵Ω| = 0, then

𝐻Ω(𝑡) =∫Ω ∫Ω 𝑑𝑥 𝑑𝑦 𝑝𝑀(𝑥, 𝑦; 𝑡)

= ∫𝑀 ∫𝑀 𝑑𝑥 𝑑𝑦 𝑝𝑀(𝑥, 𝑦; 𝑡)

= 𝐻𝑀(𝑡) = |𝑀|,
since smooth, closed Riemannian manifolds are stochastically complete. Hence, 𝑡 ↦ 𝐻Ω(𝑡)

is constant, and is not strictly decreasing nor is it strictly convex. Next, consider the case
0 < |Ω| < |𝑀|. Since𝑀 is smooth and closed, the spectrum of the Laplace–Beltrami operator
Δ acting in 𝐿2(𝑀) is discrete and consists of eigenvalues {𝜇1(𝑀) ⩽ 𝜇2(𝑀) ⩽ ⋯} accumulating
at ∞ only. Let {𝑢𝑗,𝑀, 𝑗 ∈ ℕ} denote a corresponding orthonormal basis of eigenfunctions.
Since𝑀 is connected, 𝜇1(𝑀) = 0 and has multiplicity 1. Furthermore, 𝑢1,𝑀 = |𝑀|−1∕2. The
minimal heat kernel for𝑀 has an 𝐿2(𝑀) eigenfunction expansion given by

𝑝𝑀(𝑥, 𝑦; 𝑡) =

∞∑
𝑗=1

e−𝑡𝜇𝑗(𝑀)𝑢𝑗,𝑀(𝑥)𝑢𝑗,𝑀(𝑦).

It follows by Fubini’s theorem that

𝐻Ω(𝑡) = ∫Ω 𝑑𝑥 ∫Ω 𝑑𝑦 𝑝𝑀(𝑥, 𝑦; 𝑡) =
∞∑
𝑗=1

e−𝑡𝜇𝑗(𝑀)
(
∫Ω 𝑢𝑗,𝑀

)2

. (15)
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QUALITATIVE PROPERTIES OF THE HEAT CONTENT 7

We have by (15) that

lim
𝑡→∞

𝐻Ω(𝑡) =

(
∫Ω 𝑢1,𝑀

)2

=
|Ω|2|𝑀| < |Ω|,

by hypothesis. Since𝐻Ω(0) = |Ω| we conclude that𝐻Ω(𝑡) is not constant. Then

𝑑

𝑑𝑡
𝐻Ω(𝑡) = −

∞∑
𝑗=1

𝜇𝑗(𝑀)e
−𝑡𝜇𝑗(𝑀)

(
∫Ω 𝑢𝑗,𝑀

)2

= −

∞∑
𝑗=2

𝜇𝑗(𝑀)e
−𝑡𝜇𝑗(𝑀)

(
∫Ω 𝑢𝑗,𝑀

)2

,

is not identically equal to the 0-function. Let

𝑗∗ = min{𝑗 ∈ ℕ ∶ 𝑗 ⩾ 2, ∫Ω 𝑢𝑗,𝑀 ≠ 0}.

Then,

𝑑

𝑑𝑡
𝐻Ω(𝑡) ⩽ −𝜇𝑗∗(𝑀)e

−𝑡𝜇∗
𝑗
(𝑀)

(
∫Ω 𝑢𝑗∗,𝑀

)2

< 0,

and 𝑡 ↦ 𝐻Ω(𝑡) is strictly decreasing. Similarly

𝑑2

𝑑𝑡2
𝐻Ω(𝑡) ⩾

(
𝜇𝑗∗(𝑀)

)2e−𝑡𝜇∗𝑗 (𝑀)(∫Ω 𝑢𝑗∗,𝑀
)2

> 0,

and 𝑡 ↦ 𝐻Ω(𝑡) is strictly convex.
(iv) By (5) and (6),

𝐻Ω,𝜓(𝑡) = ∫Ω 𝑑𝑦 𝑢Ω,1(𝑦; 𝑡)𝜓(𝑦).

Since 𝑡 ↦ 𝑢Ω,1(𝑦; 𝑡) is (strictly) decreasing, the integrand in the right-hand side is (strictly)
decreasing. □

3 PROOF OF THEOREM 2

Proof. Since the initial datum is symmetric with respect to the hyperplane 𝑥1 = 0, there is no
heat flow across this hyperplane, and the heat equation satisfies Neumann boundary conditions
at 𝑥1 = 0. The Neumann heat kernel for the half-space {𝑥 ∈ ℝ𝑚 ∶ 𝑥1 > 0} = ℝ𝑚+ is denoted and
given by

𝜋ℝ𝑚+
(𝑥, 𝑦; 𝑡) = (4𝜋𝑡)−𝑚∕2

(
e−|𝑥−𝑦|2∕(4𝑡) + e−|𝑥+𝑦|2∕(4𝑡)). (16)
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8 VAN DEN BERG and GITTINS

Hence, the solution of (1) with𝑀 = Ω𝛿 and 𝜓 = 𝟏Ω𝛿 for 𝑥1 > 0 is given by

𝑢Ω𝛿(𝑥; 𝑡) = ∫𝐵𝛿(𝑐2) 𝑑𝑦 𝜋ℝ𝑚+ (𝑥, 𝑦; 𝑡), 𝑥1 > 0. (17)

To show that Ω𝛿 is a strictly decreasing temperature set we have to show that

𝜕𝑢Ω𝛿(𝑥; 𝑡)

𝜕𝑡
< 0, 𝑡 > 0, 𝑥 ∈ 𝐵𝛿(𝑐),

where we have put 𝑐 = 𝑐2. By (16) and (17), we find that

𝜕𝑢Ω𝛿(𝑥; 𝑡)

𝜕𝑡
=

1

2𝑡(4𝜋𝑡)𝑚∕2 ∫𝐵𝛿(𝑐) 𝑑𝑦(
e−|𝑥−𝑦|2∕(4𝑡)(|𝑥 − 𝑦|2

2𝑡
− 𝑚

)
+ e−|𝑥+𝑦|2∕(4𝑡)(|𝑥 + 𝑦|2

2𝑡
− 𝑚

))
. (18)

We show that the integrand in the right-hand side of (18) is strictly negative for all

𝑥 ∈ 𝐵𝛿(𝑐), 𝑦 ∈ 𝐵𝛿(𝑐), 𝑡 ⩾ 4𝛿
2. (19)

This in turn implies that the left-hand side of (18) is strictly negative for all 𝑡 ⩾ 4𝛿2. By (19),

|𝑥 − 𝑦| ⩽ 2𝛿, 2 ⩽ |𝑥 + 𝑦| ⩽ 2(1 + 2𝛿). (20)

Hence

e−𝛿2∕𝑡 ⩽ e−|𝑥−𝑦|2∕(4𝑡) ⩽ 1, e−(1+2𝛿)2∕𝑡 ⩽ e−|𝑥+𝑦|2∕(4𝑡) ⩽ e−1∕𝑡. (21)

Hence by (19), (21), (20) and 𝛿 = 1

20
we obtain for 𝑡 ⩾ 4𝛿2,

e−|𝑥−𝑦|2∕(4𝑡)(|𝑥 − 𝑦|2
2𝑡

− 𝑚

)
+ e−|𝑥+𝑦|2∕(4𝑡)(|𝑥 + 𝑦|2

2𝑡
− 𝑚

)
⩽
2𝛿2

𝑡
− 𝑚e−𝛿2∕𝑡 + 2(1 + 2𝛿)2

𝑡
e−1∕𝑡 − 𝑚e−(1+2𝛿)2∕𝑡

⩽
2𝛿2

𝑡
− e−𝛿2∕𝑡 + 2(1 + 2𝛿)2

𝑡
e−1∕𝑡 − e−(1+2𝛿)2∕𝑡

⩽
0.005

𝑡
− e−1∕4 + 2.42

𝑡
e−1∕𝑡 − e−1.21∕𝑡. (22)

First, we consider the case 𝑡 ⩾ 4𝛿2 = 0.01. Since 𝑡 ↦ 𝑡−1e−1∕𝑡 is strictly decreasing for 𝑡 > 1

and since 𝑡 ↦ 0.005

𝑡
and 𝑡 ↦ −e−1.21∕𝑡 are strictly decreasing for all 𝑡 > 0 it remains to show that

the right-hand side of (22) is strictly less than 0 on the interval [0.01,1]. To reduce this interval
further we consider the case 0.01 ⩽ 𝑡 ⩽ 1

4
. On this interval, we have that the first term in the right-

hand side of (22) is bounded from above by 1

2
, and that the third term in the right-hand side
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QUALITATIVE PROPERTIES OF THE HEAT CONTENT 9

is bounded from above by 9.68e−4. One verifies, by for example using Wolfram Alpha [14], that
1

2
+ 9.68e−4 − e−1∕4 < −0.1. Next, we consider the interval [ 1

4
, 1]. On that interval the first term

in the right-hand side of (22) is bounded from above by 1

50
. We have that

max
1
4
⩽𝑡⩽1

(
2.42

𝑡
e−1∕𝑡 − e−1.21∕𝑡

)
⩽ max

1
4
⩽𝑡⩽1

(
2.42

𝑡
− 1

)
e−1∕𝑡 + max

1
4
⩽𝑡⩽1

(
e−1∕𝑡 − e−1.21∕𝑡

)
⩽ max

𝑡⩾0

(
2.42

𝑡
− 1

)
e−1∕𝑡 + max

0<𝑡⩽1

(
e−1∕𝑡 − e−1.21∕𝑡

)
. (23)

It is elementary to verify that the maximum in the first term of the right-hand side of (23) is
attained at 𝑡 = 121

171
. This gives

max
𝑡⩾0

(
2.42

𝑡
− 1

)
e−1∕𝑡 = 121

50
e−171∕121.

Furthermore, 𝑡 ↦ e−1∕𝑡 − e−1.21∕𝑡 is increasing on [0,1]. Hence,

max
0<𝑡⩽1

(
e−1∕𝑡 − e−1.21∕𝑡

)
= e−1 − e−1.21.

One verifies, by for example using Wolfram Alpha [14], that

1

50
+
121

50
e−171∕121 + e−1 − e−1.21 − e−1∕4 < −0.10019.

Next, we consider the case 0 < 𝑡 ⩽ 4𝛿2, 𝛿 = 1

20
. For the second term in the right-hand side of

(18) we have by (21) and (20) that

e−|𝑥+𝑦|2∕(4𝑡)(|𝑥 + 𝑦|2
2𝑡

− 𝑚

)
⩽
2(1 + 2𝛿)2

𝑡
e−1∕𝑡.

Hence,

∫𝐵𝛿(𝑐) 𝑑𝑦 e
−|𝑥+𝑦|2∕(4𝑡)(|𝑥 + 𝑦|2

2𝑡
− 𝑚

)
⩽ 𝜔𝑚𝛿

𝑚 2(1 + 2𝛿)
2

𝑡
e−1∕𝑡,

and the second term in the right-hand side of (18) is bounded from above by

𝜔𝑚𝛿
𝑚

(4𝜋𝑡)𝑚∕2
(1 + 2𝛿)2

𝑡2
e−1∕𝑡. (24)

To bound the first term in the right-hand side of (18), we rewrite this term as

1

2𝑡(4𝜋𝑡)𝑚∕2 ∫𝐵𝛿(𝑐) 𝑑𝑦
(
e−|𝑥−𝑦|2∕(4𝑡)(|𝑥 − 𝑦|2

2𝑡
− 𝑚

)
=

𝜕

𝜕𝑡 ∫𝐵𝛿(𝑐) 𝑑𝑦 𝑝ℝ𝑚(𝑥, 𝑦; 𝑡) .
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10 VAN DEN BERG and GITTINS

Estimating this term for all 𝑥 ∈ 𝐵𝛿(𝑐) is equivalent to estimating

𝜕

𝜕𝑡 ∫𝐵𝛿(0) 𝑑𝑦 𝑝ℝ𝑚(𝑥, 𝑦; 𝑡), 𝑥 ∈ 𝐵𝛿(0). (25)

Since 𝐵𝛿(0) is convex we have by [2, Proposition 8] that the expression under (25) is strictly
negative. Belowwe quantify this derivative as follows. Changing the variable 𝑦 − 𝑥 = 𝑡1∕2𝜂 yields

𝜕

𝜕𝑡 ∫𝐵𝛿(0) 𝑑𝑦 𝑝ℝ𝑚(𝑥, 𝑦; 𝑡) =
1

(4𝜋)𝑚∕2
𝜕

𝜕𝑡 ∫𝐵
𝛿𝑡−1∕2

(−𝑥)

𝑑𝜂 e−𝜂2∕4

= −
𝛿

2(4𝜋)𝑚∕2𝑡3∕2
𝜕

𝜕𝜌 ∫𝐵𝜌(−𝑥) 𝑑𝜂 e
−𝜂2∕4|||𝜌=𝛿𝑡−1∕2

= −
𝛿

2(4𝜋)𝑚∕2𝑡3∕2
𝜕

𝜕𝜌 ∫𝐵𝜌(0) 𝑑𝜂 e
−|𝜂−𝑥|2∕4|||𝜌=𝛿𝑡−1∕2

= −
𝛿

2(4𝜋)𝑚∕2𝑡3∕2 ∫𝜕𝐵𝜌(0)
𝑚−1(𝑑𝜂) e−|𝜂−𝑥|2∕4|||𝜌=𝛿𝑡−1∕2 ,

where𝑚−1(𝑑𝜂) denotes the surfacemeasure. For 𝑥 ∈ 𝐵𝛿𝑡−1∕2(0) and 𝜂 ∈ 𝜕𝐵𝛿𝑡−1∕2(0)wehave that|𝑥 − 𝜂|2 ⩽ 4𝛿2∕𝑡. This gives
𝜕

𝜕𝑡 ∫𝐵𝛿(0) 𝑑𝑦 𝑝ℝ𝑚(𝑥, 𝑦; 𝑡) ⩽ −
𝛿

2(4𝜋)𝑚∕2𝑡3∕2 ∫𝜕𝐵
𝛿𝑡−1∕2

(0)

𝑚−1(𝑑𝜂) e−𝛿2∕𝑡

= −
𝑚𝜔𝑚𝛿

𝑚

2𝑡(4𝜋𝑡)𝑚∕2
e−𝛿2∕𝑡. (26)

By (18), (24) and (26),

𝜕𝑢Ω𝛿(𝑥; 𝑡)

𝜕𝑡
⩽ −

𝑚𝜔𝑚𝛿
𝑚

2𝑡(4𝜋𝑡)𝑚∕2
e−𝛿2∕𝑡 +

𝜔𝑚𝛿
𝑚

(4𝜋𝑡)𝑚∕2
(1 + 2𝛿)2

𝑡2
e−1∕𝑡, 𝑥 ∈ 𝐵𝛿(0). (27)

For 0 < 𝑡 ⩽ 4𝛿2, 𝛿 = 1

20
, since 𝑡 ↦ 𝑡e(1−𝛿2)𝑡−1 is decreasing, we have that

𝑡e(1−𝛿2)𝑡−1 ⩾ 4𝛿2e(1−𝛿2)∕(4𝛿2) > 2(1 + 2𝛿)2 ⩾
2

𝑚
(1 + 2𝛿)2.

This implies that the right-hand side of (27) is strictly negative. □

4 PROOF OF THEOREM 3

Proof. A straightforward calculation shows by (7) that

𝜕2𝑝ℝ𝑚(𝑥, 𝑦; 𝑡)

𝜕𝑡2
=
1

𝑡2

((
𝑚 + 2

2
−
𝑏

𝑡

)2

−
𝑚 + 2

2

)
𝑝ℝ𝑚(𝑥, 𝑦; 𝑡), (28)
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QUALITATIVE PROPERTIES OF THE HEAT CONTENT 11

where

𝑏 =
1

4
|𝑥 − 𝑦|2 ⩽ 1

4
(diam(Ω))2.

For all 𝑡 ⩾ (diam(Ω))2 we have 𝑏

𝑡
⩽

1

4
. This, together with (28) gives

𝜕2𝑝ℝ𝑚(𝑥, 𝑦; 𝑡)

𝜕𝑡2
⩾
1

𝑡2

(
4𝑚2 + 4𝑚 − 7

16

)
𝑝ℝ𝑚(𝑥, 𝑦; 𝑡), 𝑡 ⩾ (diam(Ω))2.

Integrating both sides with respect to 𝑥 ∈ Ω, 𝑦 ∈ Ω gives the assertion under (i).
To prove (ii) we note that, uniformly in 𝑥 and 𝑦 in Ω,

𝑝ℝ𝑚(𝑥, 𝑦; 𝑡) ⩾
e−1∕4

(4𝜋𝑡)𝑚∕2
, 𝑡 ⩾ (diam(Ω))2.

Integrating both sides with respect to 𝑥 ∈ Ω, 𝑦 ∈ Ω gives

𝐻Ω(𝑡) ⩾ e−1∕4
|Ω|2

(4𝜋𝑡)𝑚∕2
.

This, together with (8), gives the assertion under (ii).
To prove (iii) we first consider 𝑡 ⩾ (diam(Ω))2, and integrate (9) between 𝑠 and ∞ where 𝑠 ⩾

(diam(Ω))2. This gives the second inequality in (10). Since the heat content is convex, its first
derivative is increasing and continuous. This proves the first inequality in (10).
To prove (iv), we have that

𝑝ℝ𝑚(𝑥, 𝑦; 𝑡) ⩽ (4𝜋𝑡)
−𝑚∕2

implies

𝐻Ω(𝑡) ⩽
|Ω|2

(4𝜋𝑡)𝑚∕2
.

This, together with (iii), yields (iv). □

5 PROOF OF THEOREM 5

Proof. We define the heat loss of Ω𝑐 at 𝑡 by

𝐹Ω𝑐,𝜓(𝑡) = 𝐻Ω𝑐,𝜓
(0) − 𝐻Ω𝑐,𝜓

(𝑡). (29)

It follows that

𝐹Ω𝑐,𝜓(𝑡) = ∫ℝ𝑚 𝑑𝑥 ∫Ω𝑐 𝑑𝑦 𝜓(𝑦)𝑝ℝ𝑚(𝑥, 𝑦; 𝑡) − ∫Ω𝑐 𝑑𝑥 ∫Ω𝑐 𝑑𝑦 𝜓(𝑦)𝑝ℝ𝑚(𝑥, 𝑦; 𝑡)

= ∫ℝ𝑚⧵Ω𝑐 𝑑𝑥 ∫Ω𝑐 𝑑𝑦 𝜓(𝑦)𝑝ℝ𝑚(𝑥, 𝑦; 𝑡).
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12 VAN DEN BERG and GITTINS

We will show that if 𝑐 satisfies (11) then 𝐹Ω𝑐,𝜓(1) > 𝐹Ω𝑐,𝜓(𝑡
∗) > 0. Since 𝑡∗ > 1 and 𝐹Ω𝑐,𝜓(0) = 0

we infer that the heat loss, and hence the heat content, is not monotone.
We consider ℝ𝑚 ⧵ Ω𝑐 and, for 𝑟2 > 𝑟1 > 0, define 𝐴[𝑟1,𝑟2] = {𝑥 ∈ ℝ𝑚 ∶ 𝑟1 ⩽ |𝑥| ⩽ 𝑟2} and

𝐴[𝑟1,∞) = {𝑥 ∈ ℝ𝑚 ∶ |𝑥| ⩾ 𝑟1}. For 𝑥 ∈ 𝐴[1,2] and 𝑦 ∈ 𝐵1(0), |𝑥 − 𝑦|2 < 9. This gives

𝐹Ω𝑐,𝜓(𝑡) ⩾ ∫𝐴[1,2] 𝑑𝑥 ∫𝐵1(0) 𝑑𝑦 (4𝜋𝑡)
−𝑚∕2e−9∕(4𝑡)

= (4𝜋𝑡)−𝑚∕2e−9∕(4𝑡)𝜔2𝑚(2
𝑚 − 1).

Hence

𝐹Ω𝑐,𝜓(1) ⩾ e−9∕4
𝜔2𝑚(2

𝑚 − 1)

(4𝜋)𝑚∕2
. (30)

To obtain an upper bound for 𝐹Ω𝑐,𝜓 we have

∫ℝ𝑚⧵Ω𝑐 𝑑𝑥 ∫𝐴(2,𝑐) 𝑑𝑦 𝜓(𝑦)𝑝ℝ𝑚(𝑥, 𝑦; 𝑡) = 0, (31)

and

∫𝐴[1,2] 𝑑𝑥 ∫𝐵1(0) 𝑑𝑦 𝑝ℝ𝑚(𝑥, 𝑦; 𝑡) ⩽ (4𝜋𝑡)
−𝑚∕2|𝐵1(0)||𝐴[1,2]|

= (4𝜋𝑡)−𝑚∕2𝜔2𝑚(2
𝑚 − 1). (32)

For |𝑥| ⩾ 𝑐 and 𝑦 ∈ 𝐵1(0), we have that |𝑦| < |𝑥|∕2. Hence,
∫𝐴[𝑐,∞)

𝑑𝑥 ∫𝐵1(0) 𝑑𝑦 𝑝ℝ𝑚(𝑥, 𝑦; 𝑡) ⩽ (4𝜋𝑡)
−𝑚∕2 ∫𝐴[𝑐,∞)

𝑑𝑥 ∫𝐵1(0) 𝑑𝑦 e
−|𝑥|2∕(16𝑡)

⩽ (4𝜋𝑡)−𝑚∕2e−𝑐2∕(32𝑡) ∫ℝ𝑚 𝑑𝑥 ∫𝐵1(0) 𝑑𝑦 e
−|𝑥|2∕(32𝑡)

⩽ 23𝑚∕2𝜔𝑚e−𝑐
2∕(32𝑡). (33)

Putting (32) and (33) together yields

∫ℝ𝑚⧵Ω𝑐dx ∫𝐵1(0) dy𝑝ℝ𝑚(𝑥, 𝑦; 𝑡)

⩽
𝜔2𝑚(2

𝑚 − 1)

(4𝜋𝑡)𝑚∕2
+ 23𝑚∕2𝜔𝑚𝑒

−𝑐2∕(32𝑡). (34)

Combining (31) and (34) gives

∫ℝ𝑚⧵Ω𝑐 𝑑𝑥 ∫Ω𝑐 𝑑𝑦 𝜓(𝑦)𝑝ℝ𝑚(𝑥, 𝑦; 𝑡) ⩽
𝜔2𝑚(2

𝑚 − 1)

(4𝜋𝑡)𝑚∕2
+ 23𝑚∕2𝜔𝑚e−𝑐

2∕(32𝑡). (35)
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QUALITATIVE PROPERTIES OF THE HEAT CONTENT 13

If, for 𝑡∗ > e9∕(2𝑚), (11) holds, then

23𝑚∕2e−𝑐2∕(32𝑡∗) <
𝜔𝑚(2

𝑚 − 1)

(4𝜋)𝑚∕2

(
e−9∕4 − 𝑡∗−𝑚∕2

)
,

which implies that the right-hand side of (35) is bounded from above by the right-hand side of
(30) as required. □

6 PROOF OF THEOREM 6

Proof. The set 𝐵1(0) is convex and 𝜓 ⩾ 0 andmeasurable. It follows by Theorem 1(iv) that the heat
content is strictly decreasing. Moreover, the heat content is strictly positive and decreasing to 0.
To prove non-convexity it therefore suffices to show that the right-derivative 𝐻′+

𝐵1(0),𝜓
(0) = 0. We

have the following:

−𝐻′+
𝐵1(0),𝜓

(0) = lim
𝑡↓0

𝑡−1
(
𝐻𝐵1(0),𝜓

(0) − 𝐻𝐵1(0),𝜓
(𝑡)

)
= lim

𝑡↓0
𝑡−1𝐹𝐵1(0),𝜓(𝑡)

= lim
𝑡↓0

1

𝑡 ∫{|𝑥|>1} 𝑑𝑥 ∫𝐵1(0) 𝑑𝑦 (4𝜋𝑡)
−𝑚∕2e−

|𝑥−𝑦|2
4𝑡 (1 − |𝑦|)𝛼,

where we have used (29). By the radial symmetry of 𝜓, the map

𝑥 ↦ ∫𝐵1(0) 𝑑𝑦 (4𝜋𝑡)
−𝑚∕2e−

|𝑥−𝑦|2
4𝑡 (1 − |𝑦|)𝛼

is radially symmetric, and depends only on |𝑥|. Without loss of generality we put 𝑥 = 𝑣𝑟, where
𝑣 = (1, 0, … , 0). Changing variable 𝑦 = 𝑣 − 𝜂 yields

−𝐻′+
𝐵1(0),𝜓

(0)

= lim
𝑡↓0

𝑚𝜔𝑚
𝑡 ∫(1,∞)

𝑑𝑟 𝑟𝑚−1 ∫{|𝑣−𝜂|<1} 𝑑𝜂 (4𝜋𝑡)−𝑚∕2e−
|𝑣(𝑟−1)+𝜂|2

4𝑡 (1 − |𝑣 − 𝜂|)𝛼. (36)

Note that 𝜂 is a vector with |𝑣 ⋅ 𝜂| > 0. Hence, e−
|𝑣(𝑟−1)+𝜂|2

4𝑡 ⩽ e−
(𝑟−1)2+|𝜂|2

4𝑡 . Furthermore, |𝑣 − 𝜂| ⩽|𝑣| + |𝜂| = 1 + |𝜂|. So 1 − |𝑣 − 𝜂| ⩾ −|𝜂|. Also, |𝑣 − 𝜂| ⩾ |𝑣| − |𝜂| = 1 − |𝜂|. Hence, 1 − |𝑣 − 𝜂| ⩽|𝜂|. Therefore, the right-hand side of (36) is bounded from above by

lim
𝑡↓0

𝑚𝜔𝑚
𝑡 ∫(1,∞)

𝑑𝑟 𝑟𝑚−1 ∫{|𝑣−𝜂|<1} 𝑑𝜂 (4𝜋𝑡)−𝑚∕2e−
(𝑟−1)2+|𝜂|2

4𝑡 |𝜂|𝛼
⩽ lim

𝑡↓0

𝑚𝜔𝑚
𝑡 ∫(1,∞)

𝑑𝑟 𝑟𝑚−1(4𝜋𝑡)−𝑚∕2e−
(𝑟−1)2

4𝑡 ∫ℝ𝑚 𝑑𝜂 |𝜂|𝛼e−|𝜂|2∕(4𝑡)
= lim

𝑡↓0

(𝑚𝜔𝑚)
2

2𝑡
(4𝑡)(𝑚+𝛼)∕2Γ((𝑚 + 𝛼)∕2)(4𝜋𝑡)−𝑚∕2 ∫(0,∞)

𝑑𝑟 (1 + 𝑟)𝑚−1e−
𝑟2

4𝑡
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14 VAN DEN BERG and GITTINS

⩽ lim
𝑡↓0

(𝑚𝜔𝑚)
2

2𝑡
(4𝑡)(𝑚+𝛼)∕2Γ((𝑚 + 𝛼)∕2)(4𝜋𝑡)−𝑚∕2

× ∫(0,∞)

𝑑𝑟 2𝑚−1(1 + 𝑟𝑚−1)e−
𝑟2

4𝑡

= lim
𝑡↓0

(
𝐶𝑚,𝛼,1𝑡

(𝛼−1)∕2 + 𝐶𝑚,𝛼,2𝑡
(𝛼−2+𝑚)∕2

)
= 0,

since 𝛼 > 1, and 𝐶𝑚,𝛼,1 < ∞ and 𝐶𝑚,𝛼,2 < ∞ are finite constants depending on 𝑚 and on 𝛼

only. □
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