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2.1 Birth of Antarctica and the Southern Ocean

2.1.1 Tectonic Evolution

The Antarctic continent has been located at or very close to the South Pole since 
around 300 million years ago (Ma; Müller et al., 2019). Prior to ~180 Ma, Antarctica 
was part of the supercontinent Gondwana, merged together with the other Southern 
Hemisphere landmasses of South America, Africa, India, Australia and Zealandia. 
The Pacific portion of West Antarctica was the only sector of Antarctica that was 
not landlocked, remaining adjacent to an ocean basin. The break‑up of Gondwana, 
and the gradual isolation of Antarctica, led to the evolution of the Southern Ocean 
(SO) and establishment of the Antarctic Circumpolar Current (ACC). At ~180 
Ma, West Gondwana (South America and Africa) separated from East Gondwana  
(Antarctica, India, Australia and Zealandia), opening the first ocean basin. From 
~136 Ma, South America, Africa and India continued to move roughly northwards 
away from Antarctica. Finally, separation between Australia, Lord Howe Rise, New 
Zealand and Antarctica occurred from ~90 Ma. The tectonic isolation of Antarctica 
continued as all these plates separated further, widening all sectors of the SO.

2.1.2 The Antarctica‑SO System: From Eocene to Oligocene

Coeval with the progressive tectonic isolation of Antarctica, the global climate 
transitioned from hot ‘greenhouse’ conditions during the Late Cretaceous period 
(~65 Ma) to warm climates of the Paleogene and early Eocene (~65–45 Ma). 
This tectonic and climate transition was associated with cooler conditions and 
the first occurrences of small ephemeral Antarctic glaciers during the middle-late 
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Eocene (~40 Ma; Carter et al., 2017; Gulick et al., 2017) and large-scale Antarctic 
 glaciation at the Eocene/Oligocene boundary (~34 Ma; Bohaty et al., 2012; Zachos 
et al., 1994). The Early Eocene Climate Optimum (~53–51 Ma) atmospheric CO2 
concentrations were the highest over the past 66 Ma at ~1600 ppm (CenCO2PIP 
Consortium et al., 2023).

The last land bridges connecting Antarctica with Gondwanan continents finally 
separated during the Eocene, allowing shallow water exchange through both the 
Drake Passage and Tasman Gateway (Figure 0.1) by around 50 Ma (Bijl et al., 
2013; van de Lagemaat et al., 2021). Further deepening of the Tasman Gateway 
occurred between ~33.5 Ma and 30 Ma, but the Drake Passage remained con-
stricted until <26 Ma (van de Lagemaat et al., 2021). These tectonic events pre- 
conditioned the SO for the inception of the ACC but were insufficient to initiate a 
deep-reaching, modern-style ACC until the Miocene (Sangiorgi et al., 2018; Evan-
gelinos et al., 2024). Nevertheless, these tectonic events left Antarctica entirely iso-
lated and meant that there was a clear circumpolar ocean pathway, which enabled a 
major reorganisation of SO currents. As the gateways deepened, the subpolar gyres 
shrank and could no longer transport warm water to the Antarctic coast, resulting 
in 2–4°C cooling of Antarctic surface waters (Sauermilch et al., 2021). The open-
ing of the Drake Passage and Tasman Gateway, combined with decreasing atmos-
pheric greenhouse gas concentrations, likely both contributed to the glaciation of 
Antarctica.

2.2  Gradual Cooling of the Antarctica–SO System: From EOT  
to Late Miocene

2.2.1  From EOT to Late Oligocene (34–23 Ma): Gradual  
Global Cooling

In Antarctica, ice likely first nucleated on elevated coastal regions and on high 
topography in the late Eocene (Baatsen et al., 2024). A rapid step-increase in Ant-
arctic ice extent and volume occurred at the Eocene–Oligocene transition (EOT; 
34.0–33.5 Ma). Hypotheses for the cause of this expansion include: (1) a large drop 
in atmospheric CO2 levels; (2) the development of a modern-like ACC (Kennett, 
1977); and (3) internal carbon-cycle feedbacks (Coxall et al., 2005). Numerical 
oceanic and ice-sheet simulations suggest that the tectonic changes in the main 
SO gateways alone cannot result in sufficient cooling to explain the ice expansion 
in Antarctica (e.g., Sauermilch et al., 2021; DeConto and Pollard, 2003). Those 
simulations show that a substantial drop in CO2 was necessary to trigger large gla-
ciations and that the opening of the ocean gateways strengthened the regional cool-
ing over Antarctica. The atmospheric CO2 threshold required to trigger large-scale 
glaciations over Antarctica remains undetermined. Numerical climate and ice sheet 
simulations suggest a range of atmospheric CO2 thresholds from 500 to 900 ppm 
(Ladant et al., 2014) to glaciate East Antarctica.
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FIGURE 2.1  (A) Atmospheric CO2 multi‑proxy compilation showing a 500‑kyr mean 
statistical reconstruction (median and 50% (dark blue) and 95% (light‑blue) 
(CenCO2PIP Consortium et al., 2023) and the climate events mentioned 
in this chapter: EECO, Early Eocene Climatic Optimum; MECO, Mid‑
dle Eocene Climatic Optimum; EOT, Eocene/Oligocene Transition; MCO, 
Miocene Climatic Optimum; NHG, onset of Northern Hemisphere Glacia‑
tion; and MPT, Mid‑Pleistocene Transition. (B) Global mean sea‑surface 
temperature estimated from benthic δ18O data (Westerhold et al., 2020); 
individual proxy estimates as symbols, and statistically reconstructed 
500‑kyr mean values shown as the continuous curve, with 50 and 95% 
credible intervals. Grey boxes show surface temperature estimates from 
Ring et al. (2022). (C) Sea level reconstruction (Miller et al., 2020); grey 
dots are raw data; the solid black line reflects median sea level in a 1‑Myr 
running window. Paleogeographic reconstructions and the growing pres‑
ence of ice sheets in polar latitudes are shown on the globes (Scotese, 
2021). Figure modified from CenCO2PIP Consortium et al. (2023).
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Paleo sea‑level records and benthic oxygen isotope records both suggest that 
Antarctic ice volume fluctuated significantly throughout the Oligocene (34–23 Ma) 
(Zachos et al., 2008; Rohling et al., 2022). The Cape Roberts sediment records (west‑
ern Ross Sea) revealed numerous orbitally‑paced cycles attributed to oscillations 
in East Antarctic Ice Sheet (EAIS) extent and volume between 34 Ma and 17 Ma 
(Naish et al., 2001; Barrett, 2008; Galeotti et al., 2016). Although the magnitude is 
still debated, estimates of eustatic sea level fluctuations over this period suggest that 
Antarctic ice volume varied between 15% and 60% of that of the modern ice sheet 
(Pekar et al., 2006). Coastal temperatures cooled progressively through the Oligo‑
cene (Barrett, 2008), although the cooling was subdued compared to elsewhere in 
the SO (Duncan et al., 2022), and plant species diversity and abundance remained 
relatively high (Prebble et al., 2006), suggesting that ice coverage remained limited.

The ice sheets of the Oligocene waxed and waned at orbitally‑paced timescales 
and were characterised by a predominantly warm‑based glacial regime, in contrast 
to the modern AIS, which lacks comparable meltwater (Hambrey et al., 1991). This 
led to selective erosion of the bed (Thomson et al., 2013), as evidenced by the large 
volumes of glaciogenic sediment deposited on the East Antarctic continental shelf 
and upper slope at this time (Hochmuth et al., 2020). Sedimentological evidence from 
marine sediments indicates that the EAIS reached the coast during the early Oligocene 
(Passchier et al., 2017). The extent of the West Antarctic Ice Sheet (WAIS) during 
the Oligocene is more uncertain and evidence is contradictory. Sedimentation rate 
records from the Weddell Sea and Ross Sea suggest increased erosion in West Antarc‑
tica following the EOT, implying the expansion of an ice sheet over West Antarctica, 
fostered by a paleotopography with a land area ~20% larger than today (Wilson et al., 
2013; Paxman et al., 2019). By comparison, present‑day West Antarctic bed topogra‑
phy is mostly below sea level (Morlighem et al., 2020; Figure 2.2). Other geological 
evidence contradicts this analysis and suggests the existence of shallow bathymetric 
troughs and inland seaways in West Antarctica that may have facilitated warm water 
intrusions, thus inhibiting the expansion of an ice sheet over West Antarctica during 
the early Oligocene (Coenen et al., 2020; Uenzelmann‑Neben et al., 2022).

While the AIS extent remained limited, water‑mass signatures retrieved from SO 
sediment records spanning the last 31 Myr clearly suggest that the ACC remained 
shallow during the Oligocene until the mid‑Miocene (Evangelinos et al., 2024). 
These data also suggest that a water mass resembling Circumpolar Deep Water 
(CDW), as part of the deep layer of the ACC, already formed at that time, fostered 
by efficient deep water exchange between the Atlantic and Indian Ocean, but not 
between the Indian and Pacific Ocean.

2.2.2  Gradual Cooling toward Polar Conditions: The Miocene  
Period (23–5.3 Ma)

The early to mid‑Miocene (23–14 Ma) provides insight into the behaviour of the AIS 
during a period when Antarctic paleotopography continued to evolve towards the  
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modern configuration and atmospheric CO2 fluctuated between 200 and 400 ppm, 
with potential peaks at ~800 ppm during interglacial periods of the mid‑ Miocene 
Climatic Optimum (MCO; 17.0–14.8 Ma) (CenCO2PIP Consortium et al., 2023). 
During MCO warm intervals, mean summer temperatures in the McMurdo Dry 
Valleys were 5–7°C, up to 20°C warmer than the present‑day (Lewis et al., 2008; 

FIGURE 2.2  Reconstructed evolution of the paleogeography, paleotopography and 
paleobathymetry of Antarctica and the Southern Ocean from (a) the  
Eocene–Oligocene transition (~34 Ma) through (b) the Oligocene–Miocene  
boundary (~23 Ma) and (c) the mid‑Miocene Climate Transition  
(~14 Ma) to (d) the Miocene–Pliocene boundary (~5 Ma) (Paxman et al., 
2019; Hochmuth et al., 2020).
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Lewis and Ashworth, 2016). Sea‑surface temperatures during the MCO peaked 
at around 11–17°C off the Adelie Coast (Sangiorgi et al., 2018) and 6–10°C in 
the Ross Sea (Levy et al., 2016). Warm interglacials of the MCO were character‑
ised by the presence of temperate tundra vegetation (Nothofagus, shrubs, grasses 
and mosses) in coastal lowlands and warm oligotrophic waters in the SO (Warny 
et al., 2009; Sangiorgi et al., 2018). Neodymium isotope signatures suggest that the 
strengthening of Atlantic Meridional Overturning Circulation (AMOC) (Via and 
Thomas, 2006) fostered the inflow of Atlantic deep water masses into the CDW 
during the early Miocene (Evangelinos et al., 2024).

Far‑field eustatic sea‑level reconstructions and benthic oxygen isotope records 
suggest sea‑level oscillations of 40–60 m (Lear et al., 2008; Miller et al., 2020), 
implying periods of near‑complete loss of Antarctic land ice. Marine‑based por‑
tions of the ice sheet repeatedly retreated inland, leaving open‑water conditions 
in most of the marine‑based sectors of Antarctica during warm intervals of the 
MCO (Naish et al., 2001, Sugden and Denton, 2004; Pierce et al., 2017). Geo‑
chemical and petrographic analysis of Ross Sea sediment records indicates that a 
larger‑than‑present WAIS expanded to cover most of the shallow continental shelf 
at around 17.8–17.4 Ma (up to 15 metres sea level equivalent compared to 4.5 m 
today; Marschalek et al., 2021). Terrestrial portions of the EAIS persisted during 
retreat phases, with the ice margins receded from the coastline and surrounded by 
tundra (Levy et al., 2016; Sangiorgi et al., 2018; Chorley et al., 2022). The AIS vol‑
ume during the MCO is simulated to have been 85–90% of the modern‑day EAIS 
(Halberstadt et al., 2021), with an associated sea‑level contribution estimated at 
30–36 m (Gasson et al., 2016). Total melting of the WAIS during peak warm inter‑
vals of the MCO combined with partial loss of the EAIS can explain the inferred 
magnitude of MCO sea‑level oscillations.

The mid‑ to late‑Miocene was characterised by the gradual establishment of an 
arid polar climate and a persistent continental‑scale AIS. During the mid‑Miocene 
Climate Transition (MCT; ~14.8–13.8 Ma), terrestrial evidence from the Transan‑
tarctic Mountains indicates cooling of 8°C (Lewis et al., 2008; Lewis and Ash‑
worth, 2016). Although plant and animal fossil records indicate that coastal areas 
of Antarctica were still ice‑free during MCT interglacials (Lewis and Ashworth, 
2015; Sangiorgi et al., 2018), glacial intervals progressively intensified, causing the 
AIS to expand across the marine‑based sectors (Shevenell et al., 2008; Holbourn 
et al., 2018). This cooling was accompanied by the establishment of widespread 
pan‑Antarctic perennial sea‑ice cover for the first time since the early Oligocene 
(Levy et al., 2016; Bijl et al., 2018; Sangiorgi et al., 2018; Halberstadt et al., 2021). 
By the end of the MCT, a modern‑like CDW was established, as a result of the 
potential inflow of Pacific deep waters, as well as the strengthening of Atlantic and 
Indian inflows, into CDW via the Drake Passage (Evangelinos et al., 2024). Geo‑
logical and geochemical evidence suggests major tectonic changes in the Drake 
Passage, such as the development and deepening of an oceanic gateway along the 
southern Scotia Ridge until after 12 Ma that would have fostered such an inflow 
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of Pacific deep waters (Dalziel et al., 2013). Based on the neodymium isotope 
records, the emergence of a well‑mixed CDW – as part of the ACC – connecting all 
three ocean basins was established at the end of the MCT ~12 Ma, but granulom‑
etry of the SO sediment records indicates that the ACC speed remained low until at 
least the late Miocene (~10 Ma; Evangelinos et al., 2024).

After the MCT and throughout the late Miocene, the terrestrial sectors of the ice 
sheet became increasingly cold‑based and less‑erosive (Sugden et al., 1999). The 
AIS is inferred to have stabilised during the late Miocene, with cosmogenic nuclide 
evidence suggesting that the EAIS draining into the Ross Sea has not retreated 
significantly onto land since ~8 Ma (Shakun et al., 2018). SO sediment records 
indicate that ACC depth and speed resembled the present‑day by ~10 Ma suggest‑
ing that the establishment of polar conditions in the Antarctic since the MCT led 
to the steepening of equator‑to‑pole air and sea temperature and density gradients 
and, hence, to the strengthening of the westerly winds driving the ACC (Evange‑
linos et al., 2024).

2.3  The Emergence of a Bi‑Polar World: The Plio‑Pleistocene 
Period

2.3.1  The Pliocene (5.3–2.6 Ma): A Future Analogue  
of the SO–Antarctic System?

During the Pliocene, and especially the mid‑Pliocene Warm Period (3.3–3.0 Ma), 
reconstructions suggest that atmospheric CO2 concentrations were substantially 
higher ~370 ppm than pre‑industrial value of 280ppm (de la Vega et al., 2020), lead‑
ing to average global temperatures that were 2–3°C warmer. This is comparable to 
low‑end emission scenarios for the end of the 21st century (shared socioeconomic 
pathways SSP2–2.6 to SSP2–4.5; Meinshausen et al., 2020). Furthermore, the tec‑
tonic boundary conditions were similar to present (Haywood et al., 2013), but with 
smaller Antarctic and Greenland Ice Sheets (Dutton et al., 2015), so this interval 
provides a useful geological analogue for ongoing anthropogenic climate warming.

The mid‑Pliocene was characterised by globally weak meridional temperature 
gradients and reduced sea‑ice concentrations relative to modern in both hemi‑
spheres (Whitehead et al., 2005; Knies et al., 2014). Warmer SO sea‑surface tem‑
peratures, reduced sea ice (Escutia et al., 2009) and more southerly westerly winds 
relative to pre‑industrial conditions (Li et al., 2015; Abell et al., 2021) would have 
facilitated access of warm CDW onto the continental shelves, likely also con‑
tributing to a more retreated AIS (Naish et al., 2009; Cook et al., 2013). Marine 
sedimentary and geochemical records indicate that there may have been epi‑
sodic retreat and/or collapse of the marine‑based portions in both West Antarctica  
(e.g., Ross Sea, Naish et al., 2009) and East Antarctica (Adelie/George V Land, 
Cook et al., 2013; Patterson et al., 2014. Wilkes Land, Williams et al., 2010). 
Data‑model comparisons based on benthic carbon isotopes and simulated ocean 
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ventilation ages are consistent with enhanced Antarctic Bottom Water (AABW) 
formation and increased ventilation of the SO, in agreement with mid‑Pliocene 
proxy reconstructions showing weak SO stratification (Zhang et al., 2013).

Reconstructed sea‑level estimates for the warm intervals of the mid‑Pliocene 
(3.3–3.0 Ma) range from 5 to 25 m above present (Dumitru et al., 2019; Grant 
et al., 2019). Numerical simulations show a similarly wide range of Antarctic 
sea‑level contributions, such as 6–21 m (Golledge et al., 2017a, DeConto et al., 
2021). It is difficult to disentangle the magnitude of the AIS contribution to global 
mean sea‑level rise at that time, due to proxy uncertainties and challenges related 
to glacio‑isostatic adjustment and dynamic topography. The current WAIS hosts 
an ice volume of about 5.3 m sea level equivalent and the EAIS holds a volume of 
52.2 m sea level equivalent (Morlighem et al., 2020), with a further 7.42 m sea level 
equivalent in Greenland (Morlighem et al., 2017). Even if the entire Greenland Ice 
Sheet was absent in the mid‑Pliocene, significant ice loss from the marine‑based 
margins of East Antarctica as well as loss of the entire WAIS would be required to 
explain the upper sea‑level estimates (Miller et al., 2012; Grant et al., 2019).

2.3.2  Establishment of the Bi‑Polar World (2.7 Ma–Present):  
A Two‑Step Process

During the Pliocene‑Pleistocene Transition, global climate abruptly cooled, which 
enabled the progressive expansion of the Northern Hemisphere ice sheets at ~2.7 
Ma (Ravelo et al., 2004) and the establishment of the Pleistocene bi‑polar world 
(Zachos et al., 2001). Numerous factors have been hypothesised to have contrib‑
uted to the onset of cooling and Northern Hemisphere glaciation, including insola‑
tion changes (Maslin et al., 1998) and a decline in atmospheric CO2 concentrations 
to a threshold of ~300 ppm between 2.8 and 2.5 Ma (DeConto et al., 2008; Lunt 
et al., 2008; Hönisch et al., 2009). Ice volume and sea‑level fluctuations, which 
were previously dominated by advance and retreat of the AIS, became largely 
influenced by the periodic growth and decay of the Laurentide and Eurasian ice 
sheets (Rohling et al., 2022).

Gradual increases in the severity of glacial conditions (colder with larger ice 
sheets) occurred across the Mid‑Pleistocene Transition (MPT) from 1.2 Ma to 
800,000 years ago, when the periodicity of cold glacial to warm interglacial cli‑
mate states switched from 41,000 years to 100,000 years (Ruddiman et al., 1989). 
Major changes in ocean circulation and carbon cycling in the SO likely contributed 
to cooling across the MPT via increased seasonal sea‑ice extent (McKay et al., 
2012a), increased water‑column stratification south of the Polar Front (Sigman 
et al., 2004, Hasenfratz et al., 2019) and increased biological productivity north 
of the Polar Front associated with enhanced iron fertilisation (Cortese et al., 2004; 
Martínez‑Garcia et al., 2011). For a review of the mechanisms associated with 
the aforementioned climate feedbacks, see Berends et al. (2021). New continuous  
million‑year‑old ice core records are anticipated in the coming years and will 
improve our understanding of the processes that occurred across the MPT.



Geological and Paleoclimatic Evolution 27

2.3.3 Antarctic Ice Sheet Dynamics in the Late Pleistocene

The Pleistocene epoch has the best documented global and regional climate records, 
including high‑resolution Antarctic ice core records going back 800 kyr, so climate 
forcing and changes in the ice sheet can be resolved on orbital (tens of thousands of 
years) to centennial timescales. Furthermore, global boundary conditions were simi‑
lar to the modern‑day, including AIS subglacial topography, continental configura‑
tions and global ocean circulation patterns, such that an understanding of the climate 
system behaviour during this period is useful for informing future climate states.

The marine‑based portions of the AIS are susceptible to retreat due to atmos‑
phere and ocean warming through a combination of ice‑shelf thinning or collapse, 
and marine ice sheet instability (Jamieson et al., 2012). Pleistocene intergla‑
cials provide a good target to understanding climate thresholds because certain 
‘super‑interglacials’, such as Marine Isotope Stage (MIS) 5e (129–116 ka) and 
MIS 11 (424–395 ka), were warmer than the pre‑industrial Holocene by ~0.5–2°C 
globally, and by up to 2–4°C for a few thousand years in Antarctica (Jouzel et al., 
2007; Yin and Berger, 2015). Global mean sea‑level reconstructions require ice 
loss from the AIS during peak warm conditions for MIS 5e (<5m, Dumitru et al., 
2023; 6–9m, Dutton et al., 2015), beyond partial ice loss from Greenland alone. 
Asynchronous meltwater contributions from Greenland and the AIS have been 
proposed, including a dominant Antarctic sea‑level contribution to the early MIS 
5e sea‑level peak at ~129 ka in response to ocean warming (Rohling et al., 2019; 
Barnett et al., 2023). These past changes are not direct analogues for present‑day 
or near‑future anthropogenic climate change but are invaluable for assessing 
 millennial‑scale ice‑sheet behaviour and the processes and feedbacks involved. 
Notably, such behaviour cannot be determined from the relatively short record of 
satellite observations, since the ice sheet and ocean remain out of equilibrium with 
the climate due to their long response timescales.

Given the sensitivity of West Antarctic catchments, such as the Pine Island/
Thwaites Glacier system (Amundsen Sea Embayment) and the Siple Coast (Ross 
Sea) to ocean warming in numerical models (Golledge et al., 2017b; Clark et al., 
2020), a partial or full collapse of the WAIS has been suspected for recent warm 
interglacials such as MIS 5e and/or MIS 11. Collapse of the WAIS during MIS 11 
has also been simulated in models, which suggest an overall Antarctic sea‑level 
contribution during this interval of ~4–8 m (Mas e Braga et al., 2021). However, 
geological evidence supporting or refuting WAIS collapse remains equivocal. The 
presence of a trans‑Antarctic seaway between the Weddell and Ross seas during 
at least one late Pleistocene interglacial has been suggested (Scherer et al., 1998; 
Barnes and Hillenbrand, 2010; Lau et al., 2023), while sediment cores from the 
Ross Sea shelf imply loss of the Ross Ice Shelf during MIS 5e or MIS 7, providing 
indirect evidence for WAIS deglaciation (McKay et al., 2012b). West Antarctic 
blue‑ice records also provide evidence for regional climate changes expected from 
WAIS collapse (Steig et al., 2015), and for ice sheet changes in the Weddell Sea 
Embayment (Turney et al., 2020; Figure 2.3b).
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FIGURE 2.3  Late Pleistocene Antarctic Ice Sheet evolution. (a) Antarctic tem‑
perature change (ΔT) from δD in EDC ice core (Jouzel et al., 2007).  
(b) Timings of a hiatus at Patriot Hills, indicating grounding line 
 retreat in the Weddell Sea sector of the WAIS (Turney et al., 2020), 
and the last major retreat in the Wilkes Subglacial Basin of the EAIS 
(95% confidence interval; Blackburn et al., 2020). (c) Southern Ocean 
bottom‑water temperature (BWT) from benthic foraminiferal Mg/Ca 
at ODP Site 1123 (Elderfield et al., 2012). (d) Detrital sediment Nd 
isotopes at IODP Site U1361 (Wilson et al., 2018), indicating ice sheet 
retreat (grey bars) in the Wilkes Subglacial Basin. (e) Global sea‑level 
proxy from benthic δ18O (Waelbroeck et al., 2002), with marine isotope 
stages (MIS) and selected sea‑level estimates (Dutton et al., 2015). 
Shading in (a, c, e) and red dashed line in (d) enable comparison to late 
Holocene values.
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Much of the EAIS is terrestrial‑based and these portions appear to have remained 
intact since the late Miocene (Shakun et al., 2018). However, nearly one‑third of 
the ice in East Antarctica is located in marine‑based catchments within the Wilkes, 
Aurora and Recovery Subglacial Basins (Figure 0.1), which may have experienced 
variability during the Pleistocene. There are only limited sedimentary records from 
these remote regions, of which the Wilkes Subglacial Basin is the best investigated 
due to the Integrated Ocean Drilling Program Expedition 318 (Escutia et al., 2011). 
Sediment provenance records from offshore of the Wilkes Subglacial Basin indicate 
ice‑margin retreat during MIS 5e, MIS 9 and MIS 11 (Wilson et al., 2018; Iizuka 
et al., 2023) (Figure 2.3). Furthermore, differing responses to these warm intergla‑
cials compared to the Holocene and MIS 7 indicate that retreat may have occurred 
when Antarctic air temperatures were at least 2°C warmer than pre‑industrial  
for ~2,500 years or more (Figure 2.3). Despite suggesting a contribution to late 
Pleistocene interglacial sea levels from the EAIS, those data are not able to quan‑
tify the extent of retreat or the sea‑level contribution. Independent evidence from 
the geochemistry of subglacial opal and calcite precipitates in the Wilkes Subgla‑
cial Basin suggests a major ice‑margin retreat during MIS 11 (Figure 2.3b), with a 
potential sea‑level contribution of up to 3–4 metres, but only minor changes during 
subsequent interglacials (Blackburn et al., 2020). In addition, ice‑core evidence for 
ice‑sheet elevation at Talos Dome during recent interglacials also supports only 
modest retreat (rather than collapse) during MIS 5e and MIS 9, restricting sea‑level 
contributions from the Wilkes Subglacial Basin to a maximum of ~0.5–1 metres 
at those times (Sutter et al., 2020; Crotti et al., 2022). MIS5e ice sheet model‑
ling further suggests localised glacier acceleration and thinning enhanced inland 
erosion, coeval with sedimentary records (Wilson et al., 2018), with insufficient 
atmospheric warming given the known topography boundary conditions to allow 
ocean‑driven inland retreat (Golledge et al., 2021).

Near‑future changes are likely in the marine basins of Antarctica, due to their 
vulnerability to ocean‑driven basal melting and run‑away grounding line retreat. 
However, each catchment has a different sensitivity to climate and ocean forc‑
ing (Golledge et al., 2017a). New direct glaciological combined with geological 
evidence of past ice‑sheet behaviour and regional ocean dynamics are needed to 
inform tipping points and thresholds on a sector‑by‑sector basis.

2.3.4  The Bipolar Seesaw and Atmosphere‑Ocean‑Ice Sheet 
Interactions in the Late Pleistocene

The bipolar seesaw invokes the interhemispheric redistribution of atmospheric 
and oceanic heat on centennial to millennial timescales via changes in the AMOC 
(Stocker and Johnsen, 2003) to explain the anti‑phase temperature patterns 
observed in Greenland and Antarctic ice cores (Blunier et al., 1998; EPICA Com‑
munity Members, 2006). In this hypothesis, a strong AMOC causes warming in the 
North Atlantic and cooling in the SO, whereas a collapse of AMOC and reduced 
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North Atlantic Deep Water formation leads to cooling in the North Atlantic and 
warming in the SO (Broecker, 1998; Stocker and Johnsen, 2003). The forcing gen‑
erating this seesaw could originate from processes affecting deep‑water formation 
in both the North Atlantic and/or the SO, while both oceanic and atmospheric pro‑
cesses probably played a role in transmitting such signals (WAIS Project Members, 
2015; Buizert et al., 2018). In the case of a weakened AMOC, the build‑up of 
ocean heat north of the ACC is transferred poleward across the ACC via eddies to 
Antarctica, which melts sea ice and sets up the ice‑albedo feedback that results in 
further warming (Pedro et al., 2018). SO observations today show warming and 
freshening trends around the Antarctic margin (Bronselaer et al., 2020), impacting 
SO overturning circulation (Figure 2.4).

The bipolar seesaw can cause significant local warming of the ocean and the 
atmosphere in the vicinity of Antarctica that is above the expected ‘background’ 
levels for a given climate state (Holden et al., 2010), which could help explain 
peak Pleistocene interglacial Antarctic temperatures that were ~2–4°C warmer 
than pre‑industrial conditions (Marino et al., 2015). Such warming could be cru‑
cial for driving both atmospheric and ocean mechanisms that influence ice‑sheet 
stability (Clark et al., 2020). For example, Antarctic ice loss during early MIS 5e 
has been proposed during and/or following Heinrich Stadial 11 when the AMOC 
was perturbed by freshwater released by Northern Hemisphere ice sheets (Rohling 
et al., 2019; Turney et al., 2020; Figure 2.5), and several other climate states such 
as the last deglaciation (Golledge et al., 2014; Weber et al., 2014). The bipolar see‑
saw can act as a positive feedback mechanism for Antarctic ice mass loss, whereby 
enhanced upper‑ocean stratification around Antarctica and southward shifts in 
Southern Hemisphere westerly winds (Menviel et al., 2018) arise in response to 
weakening of the AMOC, enhancing upwelling and incursions of warm CDW onto 
and across Antarctic continental shelves (Fogwill et al., 2014) and reducing AABW 
formation and abyssal ocean ventilation (Phipps et al., 2016; Figure 2.6). Such 
wind shifts have been observed over recent decades (Herraiz‑Borreguero et al., 
2022). The resemblance between processes that operated during MIS 5e and those 
characterising the present‑day or near future suggests that inter‑hemispheric cou‑
pling could play a major role in regulating the future of the Antarctic system.

These processes are consistent with those captured in recent observations and 
modelled outcomes for future ice‑ocean feedbacks and AABW formation (Silvano 
et al., 2018; Bronsalear et al., 2018; Figure 2.5c–e). Furthermore, there is also 
evidence for AMOC instability within other recent interglacial periods (e.g., MIS 
11; Galaasen et al., 2020; Glasscock et al., 2020), which suggests that it may be a 
persistent feature of the climate system, and one that could reoccur in the future. 
Current ice sheet simulations are typically run until 2100 (e.g., Golledge et al., 
2019), preventing a full assessment of how bipolar seesaw mechanisms will impact 
Antarctic contributions to sea‑level rise in the coming centuries.



FIGURE 2.4  The Antarctic Ice Sheet contribution to MIS 5e sea‑level rise following Heinrich Stadial 
11 (130–135 ka). (a) Antarctic air temperature (Jouzel et al., 2007), (b) Southern Ocean 
TEX86

L sea‑surface temperature (Hayes et al., 2014), (c) Antarctic sea‑ice extent inferred 
from sea salt sodium flux (ssNa) (Wolff et al., 2006), (d) authigenic U accumulation rate 
at ODP Site 1094 in the Southern Ocean (Hayes et al., 2014), (e) Nd isotopic composition 
tracing AMOC changes from ODP Site 1063 on the Bermuda Rise, NW Atlantic (Deaney 
et al., 2017), (f) Greenland Ice Sheet contribution to global sea level from the model‑data 
assimilation of Yau et al. (2016), (g) AIS contribution to sea‑level rise based on the differ‑
ence between (h) the Red Sea KL11 global sea‑level record and the Greenland sea‑level 
contribution (Rohling et al., 2019). Shading shows 95% confidence intervals.



FIGURE 2.5  (a) Present‑day conditions in the Southern Ocean showing the divergence 
between westerly and easterly winds that drives upwelling of CDW, which 
is transformed into either lighter intermediate and mode waters (upper 
overturning) or denser AABW (lower overturning); (b) A strengthening 
and poleward shift of westerly winds, combined with weaker easterly 
winds (dashed arrows; Bronselaer et al., 2020), causes isopycnals to shoal 
near the Antarctica, driving more warm water intrusions onto the conti‑
nental shelf (dashed line). Increased meltwater discharge from the AIS 
enhances ocean stratification near the surface (figure from Silvano, 2020).



FIGURE 2.6  The bipolar seesaw at the end of the penultimate glaciation 130–135 ka ago, 
showing the change in AABW formation in response to iceberg discharge 
(Heinrich stadial 11) in the North Atlantic, which disrupted the AMOC 
(A–B) and resulted in a build‑up of heat in the Southern Hemisphere.  
(C) Ice core evidence shows substantial ice mass loss from the Weddell 
Sea sector of Antarctica in response to ocean heat transfer via CDW to the 
Antarctic margin during the Last Interglacial (figure modified from Turney 
et al., 2020).



34 Antarctica and the Earth System

2.4 Summary and Future Directions

The geological record provides observations of the Antarctic Ice Sheet (AIS) and 
SO during remarkably different climate settings and over a range of timescales. 
These observations provide constraints for modelling studies to test our under‑
standing of the processes that are relevant to predictions of future Antarctic and SO 
change. The processes and rates governing AIS mass loss continue to contribute 
large uncertainties to future sea‑level rise projections (Oppenheimer et al., 2019). 
These processes include those governing ice dynamics, such as marine ice cliff 
instability and hydrofracturing, the role of subglacial hydrology/hydrogeology, the 
solid‑Earth response to changes in ice mass and feedbacks associated with meltwa‑
ter and sea ice that can act to moderate oceanic and atmospheric warming.

Ice‑sheet growth and retreat since the establishment of the AIS around 40 Ma 
has increased the extent of interaction between the ice sheet and the ocean. This 
vulnerability developed through repeated erosion of the Antarctic continent during 
warm periods across the Oligocene and Miocene, resulting in low‑lying topogra‑
phy in West Antarctica and large subglacial basins in East Antarctica (e.g., Wilkes 
Basin, Aurora Basin; Figure 2.2). The growth of continental shelves and associated 
expansion of the ice sheet as the climate cooled during the Plio‑Pleistocene modi‑
fied the interaction of the AIS with the ocean. Glacial expansion of the ice sheet 
calved deep troughs seaward, which today, under modified atmospheric and oce‑
anic conditions, help to facilitate the cross‑shelf transport of CDW to the grounding 
lines of glaciers draining low‑lying basins (e.g., Thwaites and Pine Island Glaciers).

Paleo‑archives from the Mid‑Miocene Climate Optimum, with peaks in atmos‑
pheric CO2 of ~800 ppm (CenCO2PIP Consortium et al., 2023), provide insight into 
the worst‑case SSP5–8.5 future climates, with some differences due to the modern 
ice sheet being more sensitive to ocean forcing and runaway retreat than for the more 
stable Miocene Antarctic topography. The CO2 forcing of the Mid‑Pliocene Warm 
Period (367 ppm; de la Vega et al., 2000) has already been surpassed today. How‑
ever, the warm Mid‑Pliocene provides insight into an equilibrated climate state with 
smaller ice sheets associated with more southerly SO SST gradients and reduced sea 
ice relative to present. More recent warm interglacial periods of the Pleistocene, par‑
ticularly MIS 11 and MIS 5e, experienced strong SO heat build‑up associated with 
the collapse of AMOC and are likely the best short‑term (centennial to millennial 
scale) analogues to current and future anthropogenic climate forcing.

Further international collaboration is necessary across the Antarctic‑SO science 
community to develop new geological archives to understand which vulnerable 
sectors of Antarctica will contribute to sea‑level rise in the near‑term, the regional 
climate and solid‑Earth thresholds associated with atmospheric and oceanic forc‑
ing, and estimates of the rate of ice sheet change. Other feedbacks requiring further 
research include the impact of changes in sea ice and meltwater on wider SO eco‑
systems and climate feedbacks related to changes in the global overturning circula‑
tion system.
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