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A B S T R A C T 

Nearby extremely metal-poor galaxies (XMPs) allow us to study primitive galaxy formation and evolution in greater detail 
than is possible at high redshift. This work promotes the use of convolutional neural networks (CNNs) to efficiently search for 
XMPs in multiband imaging data based on their predicted N2 index (N2 ≡ log { [N II ] λ6585/H α} ). We developed a sequential 
characterization pipeline, composed of three CNN procedures: (i) a classifier for metal-poor galaxies, (ii) a classifier for XMPs, 
and (iii) an N2 predictor. The pipeline is applied to o v er 7.7 million Sloan Digital Sk y Surv e y (SDSS) DR17 imaging data 
without SDSS spectroscopy. The predicted N2 values are used to select promising candidates for observations. This approach 

was validated by new observations of 45 candidates with redshifts less than 0.065 using the 2.54 m Isaac Newton Telescope and 

the 4.1 m Southern Astrophysical Research Telescope between 2023 and 2024. All 45 candidates are confirmed to be metal poor, 
including 28 new disco v eries. There are 18/45 galaxies lacking detectable [N II ] λ6585 lines ( S / N < 2); for these, we report 
2 σ upper limits on their oxygen abundance. Our XMPs have estimated oxygen abundances of 7 . 1 ≤12 + log ( O / H ) ≤ 8 . 7 (2 σ

upper limit), based on the N2 index, and 21 of them with estimated metallicity < 0 . 1 Z �. Additionally, we identified 4 potential 
candidates of low-metallicity AGNs at � 0 . 1 Z �. Finally, we found that our observed samples are mostly brighter in the g band 

compared to other filters, similar to blueberry galaxies, resembling green pea galaxies and high-redshift Ly α emitters. 

Key words: methods: data analysis – galaxies: abundances – galaxies: dwarf. 
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 I N T RO D U C T I O N  

xtremely metal-poor galaxies (hereafter XMP) are commonly
efined to have a gas-phase metallicity ten times lower than the Sun
Kunth & Östlin 2000 ). Some of the well-known examples include
 Zwicky 18 (Sargent & Searle 1970 ) and SBS 0335–052 (Izotov
t al. 1997 ), each having a metallicity of � 1 / 30 Z �. Due to selection
ffects, the XMPs are mostly star-forming dwarf galaxies such as
lue compact dwarf galaxies, that are characterized by prominent
ydrogen emission lines. They tend to be less massive (10 6 –10 8 M �)
ut contain massive stars, harbour near-pristine gas, and appear to
e at the early stage of galaxy evolution. These characteristics are
nalogous to some of the prime v al galaxies which were formed in
 primordial gas environment during the early stages of cosmic
istory and provide an excellent laboratory in the local Universe
or the studies of galaxy evolution and the formation of massive
tars (Bromm et al. 2009 ; Bromm &Yoshida 2011 ; Wise et al. 2012 ;
ukushima et al. 2024 ). 
Additionally, XMPs have been used to study big bang nucleosyn-

hesis such as determining the primordial 4 He abundance (Fukugita &
a wasaki 2006 ; Izoto v, Thuan & Guse v a 2014 ; Peimbert, Peimbert &
uridiana 2016 ; Fern ́andez et al. 2019 ; Hsyu et al. 2020 ; Aver et al.
021 ; Matsumoto et al. 2022 ), because they have not experienced
uch chemical evolution. The relative abundances of the light
 E-mail: tycheng.sunny@gmail.com 
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lements (such as H, He, and Li) that were formed shortly after the
ig bang allow us to study the properties of the early Universe, as well
s search for possible extensions to the standard model (Steigman
007 ). 
Given the great interest and wide applications of XMPs, there have

een many attempts to search for new candidates. With great effort,
he number of XMPs has been increased from 31 samples listed
n the re vie w of Kunth & Östlin ( 2000 ) to a few hundreds of XMPs
eported in literature (e.g. van Zee 2000 ; Thuan & Izotov 2005 ; Izotov
t al. 2006 , 2009 ; Guse v a et al. 2007 ; Izotov & Thuan 2007 , 2009 ;
ustilnik et al. 2010 ; Izotov, Thuan & Guse v a 2012 ; Skillman et al.
013 ; Hirschauer et al. 2016 ; Guse v a et al. 2017 ; Hsyu et al. 2017 ;
ames et al. 2017 ; Yang et al. 2017 ; Hsyu et al. 2018 ; Ruiz-Escobedo
t al. 2018 ; Kojima et al. 2020 ; Nakajima et al. 2022 ; Nishigaki et al.
023 ). The modern searches of XMP samples include the following
pproaches: (1) search for low redshift H I 21 cm emission associated
ith blue optical colours (e.g. Skillman et al. 2013 ; Hirschauer et al.
016 ; Karachentsev et al. 2023 ); (2) human inspection and colour
election of multiband imaging to identify galaxies that look similar
o known XMP (e.g Hsyu et al. 2018 ; Grossi et al. 2025 ); (3) trawling
urv e y spectra to identify galaxies with weak metal emission lines
e.g Guse v a et al. 2017 ; Zou et al. 2024 ); and (4) applying machine
earning algorithms to photometric properties to create a list of XMP
andidates, combined with follow-up longslit spectroscopy (Kojima
t al. 2020 ). Without spectroscopy, the identification process of (1)
nd (2) is generally based on colour–colour selections. The selection
riteria usually also require human inspection. This not only leads
© 2025 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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o a prejudiced decision boundary, but one also cannot easily assess
ore than three dimensions of colour–colour diagrams with human 

nspection alone. 
Approach (4), by Kojima et al. ( 2020 ), is the first attempt with

 machine learning approach using a neural network classifier that 
an provide numerical decision boundaries in a multidimensional 
pace. Their goal is to separate XMPs from stars, QSOs, and other
alaxies using the photometric magnitudes in different bands such as 
he Hyper Suprime-Cam (HSC) griz bands and the Sloan Digital 
k y Surv e y (SDSS) ugriz bands. The photometric magnitudes 
re generated from the spectral energy distribution (SED) models 
f star, QSOs, XMPs, and non-XMPs for the HSC and SDSS, 
espectively. Hence, their training XMP samples are a set of emulated 
agnitudes from the SED models co v ering the physical properties 

f typical known XMPs. The samples for validation are selected at 
 < 0 . 03 with 12 + log ( O / H ) < 7 . 69 ( ∼0 . 1 Z �) from literatures.
heir classifier accomplishes a completeness of 86 per cent and a 
urity of 46 per cent XMP classifications. This indicates that their 
lassifier could possibly misidentify o v er a half of the samples as
MPs, given only the photometric magnitudes in different bands. 
In this work, we promote three main impro v ements with our deep

earning (DL) pipeline composed of three individual models, made of 
onvolutional neural networks (CNN). During the visual inspection 
rocess, the focus typically lies in identifying key characteristics, 
uch as compact, ball-like structures and notably bluer colours. 
herefore, by employing CNN, we directly work with multiband 

maging data, which provide pixel-wise visual analysis and yields 
ore comprehensive information, including both morphology and 

olour of the target objects. In addition to providing more infor-
ation, the morphological and colour features contained in images 

re directly extracted by the CNNs without human interference. Our 
pproach could be more inclusi ve to wards dif ferent types of XMPs
han applying a specific SED model. Secondly, due to the scarcity of
he XMPs in the local Universe, it can be challenging to look for this
iny needle from a haystack of galaxies. Our DL pipeline performs
 sequential classification procedure to simplify the task for each 
NN model that helps to purify the XMP classification. Finally, in 
ddition to classification, the pipeline predicts a proxy of metallicity 
hat can be used to select the most promising XMP candidates. 

Our paper is outlined as follows: The data sets used in this work
re described in Section 2 , while the details of our methodology are
ntroduced in Section 3 . With the DL prediction, the selection of XMP
andidates and the observations of these candidates are described in 
ection 4 . The analysis and discussion of the new observations are
arried out in Section 5 . We summarize the validation of the proposed
ethodology and the analyses of our ne w observ ations in Section 6 .

 DATA  SET  

ll DL approaches rely on reliable training data set and labels in
rder to perform their task. In this section, we describe the data
et and labels that we have adopted to train our algorithm. For the
abels, we used the N2 index (N2 ≡ log { [N II ] λ6585/H α} ) as the
roxy for metallicity, probed by the oxygen abundance (Storchi- 
ergmann, Calzetti & Kinney 1994 ; Raimann et al. 2000 ; Denicol ́o,
erlevich & Terlevich 2002 ; Pettini & Pagel 2004 ; Yin et al. 2007 ),

o select XMP candidates. The N2 index is a well-established strong
ine diagnostic that exhibits a monotonic relationship with oxygen 
bundance, making it a valuable tool for metallicity estimation. For 
ractical reasons, the [N II ] λ6585 and H α lines are located close to
ach other, making the N2 index much less sensitive to dust extinction
nd flux calibration errors. Additionally, the H α line is typically very 
trong, of fering an adv antage in deri ving more robust measurements
ven under poor observing conditions. Nevertheless, in the future, 
e plan to accommodate other lines such as [O III ], [O II ], and H β

ines to impro v e the pipeline. 
The photometric data (including five bands, u , g, r , i, z) of the

DSS Data Release 17 (DR17; Abdurro’uf et al. 2022 ) were used as
he input images to the DL pipeline. As mentioned in Section 1 , one of
he key characteristics of XMPs is their notably bluer visual colours,
rimarily driven by the continuua of the residing OB stars. Thus,
olour information plays a critical role in this search. To preserve
olour information in the CNN models, we converted the fluxes 
pixel values) of galaxy cutouts in each band into the relative fluxes
o the ones of the r-band image by 

 jk, norm 

= 

f jk − n k 

f r, max − n r 
, (1) 

here the subscript j represents the pixel index from 0 to N − 1
with N being the number of pixels) and the subscript k indicates
ve filters: u , g, r , i, and z. The numerator measures the intrinsic
ux by subtracting the raw flux of each pixel in each band ( f jk ) by

he background level of each band ( n k ) which is determined by the
verage flux of the most common pixel values in a galaxy cutout of the 
lter. To determine the most common value, we construct a histogram
f the pixel fluxes, and set the background level to be the peak of the
istribution. The denominator represents the difference between the 
aximum value of flux in r band ( f r, max ) and the background level
easured in r band ( n r ). The scaled flux of each pixel in each band,

 jk, norm 

, therefore provides an analogy of ‘colour’ per pixel for each
and relative to the r band. 

.1 Known samples: training the CNN models 

ith the SDSS spectroscopic observation, we select samples that 
ot only have a spectroscopic measurement of the N2 index but also
ave appropriate imaging coverage across all five SDSS bands. The 
2 index is provided by the MPA-JHU measurements – galSpec –
sing SDSS DR12 data 1 (Kauffmann et al. 2003a ; Brinchmann et al.
004 ; Tremonti et al. 2004 ). This gives the N2 index for 180 369
alaxies. Additionally, we collect other kno wn lo w-metallicity sam- 
les and their N2 values from the series of the EMPRESS project
Kojima et al. 2020 ; Isobe et al. 2022 ; Xu et al. 2022 ; Nakajima
t al. 2022 ) and the following literature: Zee ( 2000 ); Thuan & Izotov
 2005 ), Izotov et al. ( 2006 , 2009 ), Guse v a et al. ( 2007 ), Izotov &
huan ( 2007 , 2009 ), Pustilnik et al. ( 2010 ), Skillman et al. ( 2013 ),
irschauer et al. ( 2016 ), Guse v a et al. ( 2017 ), James et al. ( 2017 ),
syu et al. ( 2018 ), Ruiz-Escobedo et al. ( 2018 ). This provides the
2 index of an additional 108 nearby galaxies at redshift � 0 . 05. 
In this work, we define a metal-poor galaxy (hereafter MP) as a

alaxy with N2 ≤ −1 . 0, and an XMP is defined to have N2 ≤ −1 . 5
approximately 12 + log ( O / H ) � 8 . 0; estimated using equation 9 in
in et al. ( 2007 , hereafter Y07 )]. With the collection of the SDSS

pectroscopic samples and additional MP samples from the literature, 
he initial training sample contains 180 477 galaxies in total with
097 MP ( N2 ≤ −1 . 0; ∼2.82 per cent of total samples) and 384
MP ( N2 ≤ −1 . 5; ∼0.2 per cent of total samples). The redshift
istributions of the initial training sample is � 0 . 1 with the average
alue of 〈 z〉 ∼ 0 . 05. 
MNRAS 540, 128–142 (2025) 
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Table 1. The selection criteria for SDSS DR17 data query. 

16 ≤ mag r ≤ 22 ( u − g) ≤ 1 . 7 ( u − r) ≤ 2 . 1 
( u − i) ≤ 2 . 2 ( u − z) ≤ 2 . 5 ( g − r) ≤ 0 . 6 ( g − i) ≤ 0 . 9
( g − z) ≤ 1 . 2 ( r − i) ≤ 0 . 7 ( r − z) ≤ 0 . 9 ( i − z) ≤ 1 . 0

Input Conv 1

Conv 2Pool 1

Pool 2

u

g

r

i

z

Dense 1 Dense 2

Output

Figure 1. Schematic diagram of the CNN architecture used in this work. 
The input is a galaxy image of five different filters ( u , g, r , i, z). The ‘Conv 
1’ and ‘Conv 2’ represent convolutional layers, and each layer is followed by 
a pooling layer (Pool 1 and Pool 2), respectively . Finally , two dense layers 
(Dense 1 and Dense 2) are used before the output layer. 
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2 We note that our final XMP candidates are all well-inside our selection box. 
This suggests our selection box has not significantly impacted the selection 
of XMP candidates. 
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.2 Training samples and labels 

ith the scarce number of XMPs, the prediction of the N2 index
ould be driven by the majority of samples with higher metallicities.
ence, we carry out a sequential approach with multiple CNN models

ocusing on different tasks: (i) classifying MP candidates from the
otal sample; (ii) classifying XMP candidates from the predicted

P samples; and (iii) predicting the N2 index from the predicted
MP samples (see details in Section 3.1 ). To perform these different

asks, the corresponding training samples and labels are different, as
ollows: 

(i) MP classifier: applied to all samples 

(a) MP: N2 ≤ −1 . 0 
(b) non-MP: N2 > −1 . 0 

(ii) XMP classifier: applied to the subset with N2 ≤ −0 . 5 

(a) XMP: N2 ≤ −1 . 5 
(b) non-XMP: −0 . 5 ≥ N2 > −1 . 5 

(iii) N2 predictor: applied to the MP samples 

Amongst these samples, we randomly select 1000 testing data,
ollowing the distribution of the total samples (Section 2.1 ). This
ontains approximately 28 MPs including two XMPs. These testing
ata are remo v ed from the training procedures. To reduce the impact
f data selection on training a CNN model, we also create three
ifferent training and testing sets for each procedure [(i), (ii), and
iii)]. 

Finally, to a v oid any training bias caused by the number differences
etween the target outputs in each task (examined in Cheng et al.
020 ), we balance the number of samples between the target outputs
y rotating galaxy cutouts. Each galaxy is rotated by 90, 180, and
70 degrees due to the fixed cutout frame. This provides only three
imes more extra data in training. To further increase our training
ata set, an additional negligible Gaussian noise, generated with a
ispersion equal to 1percnt of the standard deviation of the pixel
alues in a cutout, is then added to each cutout after rotation. With
hese tiny perturbations in inputs, the models are further impro v ed
ven if using the repeated rotated images (check the discussion of
ele v ant approaches in Goodfellow, Shlens & Szegedy 2014 ). Note
hat in this work the utilisation of these additive noises is not to
hange the visual appearance of the cutout nor help regularisation
f the model training, but just provide a nominal difference in pixel
alues. This step of data augmentation ensures that our training is
erformed on a balanced data set. 
For the classifiers at the procedure (i) and (ii), the balancing

s carried out between two target classes. For the N2 predictor at
he procedure (iii), the target output is a floating value. Hence, we
ugment the data across several bins of the N2 index to ensure
hat each bin has an equal number of samples. We divide the range
etween −1 . 0 and −2 . 1 into 11 bins with an interval of 0.1. For
he samples with N2 ≤ −2 . 1, we form one bin due to the scarce
opulation in this range. There are 2064 galaxies in the first bin of
 −1 . 0 , −1 . 1 ) , and the last bin of ( −2 . 1 , ) contains 15 galaxies. The
umber of data in each bin is augmented to equal the number of data
n the first bin. 

.3 Working samples: SDSS images without spectroscopy 

n this subsection, we describe the SDSS imaging sample that we
se, in combination with our trained algorithm, to disco v er new XMP
andidates that do not currently have spectroscopic confirmation
NRAS 540, 128–142 (2025) 
rom SDSS. The query for the SDSS DR17 is based on the physical
roperties such as colours and brightness of the known MP samples
n the initial training samples. We applied query criteria as shown
n Table 1 when retrieving SDSS DR17 imaging data. We select
ources classified as galaxies by the SDSS pipeline, without applying
ny additional SDSS flags. The query criteria covers greater than 99
er cent of the MP samples in our data set. Note that the colour
riteria was applied to prevent wasting computational resources on
nlikely samples, rather than determining the final list of candidates.
e therefore allowed a broader co v erage in these criteria, such that

nly the upper limits of the colour distributions were used, to a v oid
xcluding desired samples that may have physical properties that
iffer from the currently known MPs. 2 Additionally, as CNN models
re capable of extrapolating beyond the training distributions (Cheng
t al. 2021 , 2023 ), we considered galaxies that are up to 2 mag
ainter in r band than the training set. The limit of mag r ≤ 22 is
hosen as it becomes challenging to observ e an y candidates with a
ontinuum fainter than this limit using 4-m telescopes (see Section 4 ).
dditionally, we further exclude samples that are missing one or
ore of the five filters or are positioned near the image edge resulting

n incomplete cutouts. By excluding data with SDSS spectroscopic
bservation and our samples, the number of working samples is
763 821. 

 DEEP  L E A R N I N G  APPROACH  

e use multiband imaging data as the input of a DL pipeline to
arry out sequential predictions of classifying XMP candidates and
stimating their N2 index. Due to the scarce population of XMPs, the
L pipeline is composed of three CNN algorithms: (i) MP classifier;

ii) XMP classifier; and (iii) N2 predictor. The architecture of each
NN model is the same (see Fig. 1 )for simplicity. The input cutouts
ave a dimension of 32 by 32 pixels and contain five bands ( u , g, r ,
, z). The architecture contains two convolutional layers (Conv 1 and
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Table 2. The hyper-parameters used for each CNN model. The ‘conv 1’ and ‘kernel 1’ are the channel and kernel size 
for the first convolutional layer (Conv 1), and the ‘conv 2’ and ‘kernel 2’ are for the second convolutional layer (Conv 2). 
The ‘neuron 1’ and ‘neuron 2’ are the number of neurons used in the dense layers (Dense 1 and Dense 2), respectively. 

Learning rate l2 Dropout conv 1 conv 2 kernel 1 kernel 2 neuron 1 neuron 2 

MP classifier 0.0001 0.0 0.5 16 256 3 7 64 156 
XMP classifier 0.0001 0.0 0.0 256 256 3 3 512 16 

N2 predictor 0.0004 0.0 0.0 128 128 7 3 128 256 

Figure 2. Each panel presents the result applying the nine trained CNN models to the specific data set (including training and testing samples) for each 
procedure (Section 2.2 ). The left and middle panels are the confusion matrices of the MP and XMP classifiers. The classification probability thresholds for 
assigning classes are > 0 . 5. The value in each quadrant indicates the fraction (number) of the samples predicted by CNN in each true (observed) class. The right 
panel shows the comparison between the predicted N2 index by CNN models and the observed N2 values from literature (listed in Section 2.1 ). The solid line 
shows a one-to-one relation and the dashed lines indicate a scatter of 0.2 dex. 
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onv 2) followed by a pooling layer (Pool 1 and Pool 2) for each
on volutional layer , as well as two dense layers (Dense 1 and Dense
). Two dropout layers were implemented after the second pooling 
ayer and before the output layer, to reduce the number of parameters
nside the networks. The dropout rate is one of the hyper-parameters 
nd a constant for both dropout layers. 

The hyper-parameters for each CNN model, ho we ver, are opti-
ized individually for each model using the Bayesian optimization 
ethod (Frazier 2018 ) due to the use of different data sets (see
ection 2.2 ) in training different models. Table 2 shows the hyper-
arameters used for the MP classifier, the XMP classifier, and the N2
redictor, respectively. We applied the Adam optimizer (Kingma & 

a 2015 ), and the learning rates are also hyper-parameters optimized 
ndependently for each model. The maximum number of iterations 
or each training is 20 epochs, but only the model with the minimum
alidation loss within the 20 epochs is saved. 

.1 Training XMP classification and N2 prediction 

s mentioned in Section 2.2 , we created three different training and
esting sets for each procedure, (i), (ii), (iii) to account for the impact
f the quality of randomly selected data sets. Furthermore, we train 
hree independent CNN models for each procedure to account for 
he variation caused by having a random initial state when training 
 new model. Therefore, there are 3 × 3, i.e. 9 CNN models trained
or each procedure, and each model is assessed by its corresponding 
esting set. 

In this section, we describe the details of how each algorithm 

s trained and e v aluated independently. For classifiers, the median 
alues of the output probabilities from the nine CNN models, trained 
or each classifier, are used to assign classes. Similarly, for the N2
redictor, the median value of the predicted N2 indices from the nine
odels is used for the selection of the candidates. The validation of

ach procedure is carried out separately using their whole assigned 
amples (including training and testing sets) for each procedure, as 
tated in Section 2.2 . 

In detail, the MP classifier is trained with all available samples
excluding their testing sets) separated into two classes: MP ( N2 ≤
1 . 0) and non-MP ( N2 > −1 . 0). The numbers of MP and non-
P samples in the training set are equal after data augmentation

or training. The median value of the predicted probabilities from 

he nine models is used to assign classes. The trained models are
pplied to all samples in this work including 180 477 galaxies, and
he result is shown at the left panel of the Fig. 2 . This confusion

atrix of the MP classifier uses a threshold of 0.5 applied to the
edian predicted probabilities. The classification accuracy is about 

9.26 per cent, which indicates the fraction between the number of
orrectly classified samples and the total number of samples. The 
rained MP classifier correctly identifies o v er 99.98 per cent MP
alaxies (i.e. the recall is 99.98 per cent). The false positive, which
he model identifies as a MP but with N2 > −1 . 0, occupies about
0.78 per cent of the predicted MP samples, containing mostly (o v er
 fraction of 0.9686) galaxies with N2 ≤ −0 . 5. 

With the high fraction of false positives with N2 ≤ −0 . 5, the
MP classifier is trained on the subset of samples with N2 ≤ −0 . 5.
he ne gativ e label, ‘non-XMP’, is therefore for the galaxies with N2
etween −0 . 5 and −1 . 5 (see also, Section 2.2 ). The numbers of XMP
nd non-XMP training samples are balanced with data augmentation 
or training. Again, the median value of the predicted probabilities 
s used to assign classes, and the middle panel of Fig. 2 shows the
MNRAS 540, 128–142 (2025) 
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M

Figure 3. Unlike Fig. 2 , this figure presents the e v aluation of the sequential process. The left panel shows the confusion matrix of the XMP classifier for the 
predicted MP candidates from Fig. 2 . The classification probability threshold is > 0 . 5. The value in each quadrant indicates the fraction (number) of the samples 
predicted by CNN in each true (observed) class. The right panel shows the comparison between the predicted N2 index of the predicted XMP candidates by 
CNN models and their observed N2 values from literature. The solid line shows a one-to-one relation and the dashed lines indicate a scatter of 0.2 dex. 
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esult applying the trained models of the XMP classifier to all subset
amples with N2 ≤ −0 . 5. The XMP classifier also reaches a high
lassification accuracy of 99.97 per cent. There are around 3 per cent
f false positives, which the model identifies as a XMP but with
2 > −1 . 5. In this test, all of the false positives are in fact MP
alaxies with N2 ≤ −1 . 0. 

We therefore anticipate that the vast majority of the classified
MPs after the sequential classification of two classifiers shall satisfy

he definition of MP. The N2 predictor is trained with only the MP
amples with N2 ≤ −1 . 0 to focus on ef fecti vely predicting the N2
ndex at the lowest range. As stated in Section 2.2 , we separate the MP
amples into 12 bins based on their N2 index. The first 11 bins have
n interval of 0.1, and the last bin co v ers the remaining samples with
 broader range of N2 values, ( −2 . 6 , −2 . 1 ) , where −2 . 6 is the lowest
2 value in our sample. We augment the number of data in each bin

o match the number of data in the first bin, ( −1 . 1 , −1 . 0 ] . Since the
rimary goal of this work is to identify XMP candidates with the
owest possible N2 index, we introduce a loss weighting factor (3 ×)
or the systems that have a true N2 index ≤ −2 . 1. This ensures that
he network is more severely penalized when it incorrectly predicts
he N2 index of the most metal-poor XMPs. 

The right panel of Fig. 2 shows the comparison of all MP samples
5097 galaxies) between the predicted N2 index by CNN and the
bserved values collected from the literature (Section 2.1 ). The
rediction of the N2 index is accurate with the root-mean-squared
eviation (RMSD) of 0.031 dex and the median absolute deviation
MAD) of 0.015 dex. 

.2 Evaluation of the sequential process 

hen a new set of galaxy cutouts is fed to the sequential process,
nly the predicted MP candidates with P MP > 0 . 5 from the MP
lassifier proceed to the XMP classifier; similarly, only the predicted
MP candidates with P XMP > 0 . 5 from the XMP classifier advance

o the N2 predictor. Therefore, the sequential process constructs a
ist of XMP candidates with their MP predicted probability ( P MP >

 . 5), XMP predicted probability ( P XMP > 0 . 5), and the predicted N2
ndex. The output N2 index is used to select the most promising
andidate for observation, which we discuss further in Section 4.1 . 
NRAS 540, 128–142 (2025) 
The assessment of the sequential process with all available samples
i.e. 180 477 galaxies) is shown in Fig. 3 . Unlike Fig. 2 , only
he predicted MP candidates in the left panel of Fig. 2 (i.e. 6433
amples) proceed to the XMP classifier (the left panel of Fig. 3 ),
nd only the predicted XMP candidates (containing 400 samples)
ontinue to the N2 predictor (the right panel of Fig. 3 ). With the
wo classifiers carrying out a sequential classification, the fraction of
.96 and 0.99 of predicted XMP candidates are indeed XMP galaxies
nd MP galaxies, respectively (i.e. the precision is 96 per cent and
9 per cent). The predicted N2 index has the RMSD of 0.13 dex
nd a MAD of 0.012 dex. With such small statistics, the RMSD is
ke wed to wards the outliers; while the MAD, which is less affected
y outliers, is consistent with the individual test in Fig. 2 . 

 OBSERVATI ONS  A N D  DATA  R E D U C T I O N  

.1 Sample selection 

he trained CNN models are applied to the working samples
Section 2.3 ) – SDSS DR17 multiband imaging without SDSS
pectroscopy. This gives 232 954 XMP candidates with P MP > 0 . 5
nd P XMP > 0 . 5 and the predictions of their N2 values from o v er
 million SDSS galaxy cutouts. 
We select only the most promising XMP candidates with the

owest range of metallicities for observation by applying P MP > 0 . 99,
 XMP > 0 . 99, and N2 < −1 . 8. This contains approximately 550
andidates. We then performed a fast visual inspection to exclude
pparent artefacts and faulty images, leaving 390 highly possible
MP candidates with lowest ranges of N2 index ( < −1 . 8) predicted
y the DL pipeline. A few subtle artefacts remain among the samples,
equiring further assessment before they can be selected as final
bservational candidates. 

.2 Obser v ations 

o validate the effectiveness of the DL pipeline as well as disco v er
ew XMP galaxies, we conducted observational programmes using
he 2.54 m Isaac Newton Telescope (INT) and the 4.1 m Southern
strophysical Research (SOAR) Telescope between 2023 and 2024.
able 3 lists 45 targets for which we acquired spectra as part of
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Table 3. The list of observed XMP samples from INT and SOAR telescope. The order is sorted based on the predicted N2 values by our CNN algorithms. The 
‘ObsDate’ is the date that the observations were conducted. The ‘ExpTime’ provides the exposure time used for a single exposure, and the ‘ExpN’ is the number 
of exposures for an object. The ‘ref.’ column provides references to XMP galaxies that have been investigated in the literature. 

Name a RA DEC N2 Instrument ObsDate ExpTime ExpN ref. b 

(J2000.0) (J2000.0) (CNN) (s) 

XMP0013 + 1354 00 13 42.62 + 13 54 17.1 −1.92 ±0.07 INT/IDS 21-Aug-2023 1000 3 –
XMP0124 + 0838 01 24 06.58 + 08 38 06.9 −2.17 ±0.10 SOAR/Goodman 8-Nov-2023 800 3 –
XMP0219 −0059 02 19 30.34 −00 59 14.3 −1.81 ±0.04 SOAR/Goodman 6-Oct-2023 800 3 1,7 
XMP0429 + 0026 04 29 51.38 + 00 26 52.0 −1.88 ±0.03 INT/IDS 4-Mar-2024 1200 3 –
XMP0742 + 1103 07 42 18.07 + 11 03 30.6 −1.86 ±0.04 INT/IDS 5-Mar-2024 1800 3 –
XMP0752 + 2340 07 52 11.06 + 23 40 16.7 −2.00 ±0.09 INT/IDS 3-Mar-2024 1000 3 –
XMP0801 + 2640 08 01 03.92 + 26 40 54.3 −1.89 ±0.05 INT/IDS 5-Mar-2024 600 3 2 
XMP0803 + 1635 08 03 16.04 + 16 35 44.6 −1.81 ±0.06 INT/IDS 3-Mar-2024 1500 3 –
XMP0827 + 1059 08 27 46.65 + 10 59 11.1 −1.97 ±0.06 INT/IDS 6-Mar-2024 1500 3 12 
XMP0850 + 1150 08 50 57.57 + 11 50 45.6 −2.06 ±0.07 INT/IDS 28-Feb-2024 1000 3 –
XMP0856 + 2414 08 56 01.07 + 24 14 21.5 −1.88 ±0.04 INT/IDS 6-Mar-2024 1400 3 6 
XMP0916 + 5002 09 16 06.66 + 50 02 30.6 −2.11 ±0.07 INT/IDS 5-Mar-2024 1800 3 –
XMP0916 + 0257 09 16 25.09 + 02 57 43.2 −2.13 ±0.02 INT/IDS 4-Mar-2024 1800 3 –
XMP0922 + 6324 09 22 23.86 + 63 24 36.9 −2.12 ±0.06 INT/IDS 4-Mar-2024 2000 3 12 
XMP0928 + 3601 09 28 44.73 + 36 01 04.2 −1.91 ±0.08 INT/IDS 3-Mar-2024 1200 3 4 
XMP0930 + 4934 09 30 04.97 + 49 34 29.7 −1.95 ±0.06 INT/IDS 28-Feb-2024 1000 3 –
XMP0931 + 2617 09 31 14.14 + 26 17 27.4 −1.98 ±0.15 INT/IDS 6-Mar-2024 1800 3 –
XMP1003 + 2746 10 03 10.80 + 27 46 31.7 −1.92 ±0.13 INT/IDS 6-Mar-2024 1600 3 –
XMP1030 + 3151 10 30 44.81 + 31 51 24.0 −2.04 ±0.09 INT/IDS 3-Mar-2024 1100 3 –
XMP1032 + 5035 10 32 00.39 + 50 35 07.7 −2.08 ±0.08 INT/IDS 5-Mar-2024 1000 3 –
XMP1035 + 3814 10 35 07.20 + 38 14 30.4 −1.89 ±0.02 INT/IDS 28-Feb-2024 1500 3 6 
XMP1139 + 0040 11 39 00.41 + 00 40 42.6 −2.02 ±0.07 INT/IDS 4-Mar-2024 1500 3 12 
XMP1140 + 5037 11 40 45.72 + 50 37 07.6 −1.95 ±0.06 INT/IDS 5-Mar-2024 1400 3 –
XMP1214 + 1245 12 14 33.11 + 12 45 49.2 −2.18 ±0.02 INT/IDS 3-Mar-2024 1100 3 3 
XMP1228 + 4313 ∗ 12 28 48.09 + 43 13 48.9 −2.00 ±0.04 INT/IDS 6-Mar-2024 600 3 –
XMP1230 + 0544 12 30 11.99 + 05 44 50.7 −1.96 ±0.02 INT/IDS 6-Mar-2024 1000 3 –
XMP1238 + 3246 ∗ 12 38 40.25 + 32 46 00.9 −2.02 ±0.02 INT/IDS 28-Feb-2024 2200 3 10 
XMP1322 + 2251 13 22 01.75 + 22 51 31.5 −2.03 ±0.03 INT/IDS 5-Mar-2024 1800 2 –
XMP1329 + 2237 13 29 24.31 + 22 37 12.3 −2.00 ±0.05 INT/IDS 28-Feb-2024 1000 3 –
XMP1344 + 0621 13 44 57.48 + 06 21 46.3 −1.96 ±0.02 INT/IDS 6-Mar-2024 1000 3 –
XMP1347 + 0755 13 47 56.00 + 07 55 32.1 −2.31 ±0.07 INT/IDS 4-Mar-2024 1500 3 12 
XMP1408 + 1753 14 08 16.16 + 17 53 50.9 −1.86 ±0.04 INT/IDS 3-Mar-2024 1000 3 –
XMP1422 + 5414 14 22 38.85 + 54 14 09.2 −1.81 ±0.07 INT/IDS 3-Mar-2024 600 3 8 
XMP1631 + 4426 16 31 14.25 + 44 26 04.7 −2.42 ±0.02 INT/IDS 4-Mar-2024 1800 3 5,9 
XMP1638 + 2421 16 38 58.01 + 24 21 39.2 −2.07 ±0.08 INT/IDS 5-Mar-2024 1200 3 –
XMP1655 + 6337 16 55 39.20 + 63 37 03.3 −2.10 ±0.02 INT/IDS 6-Mar-2024 1500 1 3 
XMP2048 −0559 20 48 34.22 −05 59 01.4 −2.07 ±0.08 INT/IDS 21-Aug-2023 2300 1 –
XMP2136 −0307 21 36 09.38 −03 07 30.7 −1.86 ±0.05 SOAR/Goodman 6-Oct-2023 800 3 –
XMP2149 −0535 21 49 12.62 −05 35 05.6 −2.16 ±0.08 INT/IDS 21-Aug-2023 3000 1 –
XMP2156 + 0856 21 56 33.58 + 08 56 36.6 −1.86 ±0.06 INT/IDS 20-Aug-2023 800 2 6 
XMP2212 + 2205 22 12 59.31 + 22 05 05.5 −1.89 ±0.03 INT/IDS 21-Aug-2023 1000 3 –
XMP2325 + 2008 23 25 37.75 + 20 08 17.2 −1.91 ±0.14 INT/IDS 22-Aug-2023 1000 3 –
XMP2329 + 0226 23 29 26.60 + 02 26 28.1 −1.85 ±0.05 INT/IDS 21-Aug-2023 1000 3 11 
XMP2331 + 2226 23 31 00.91 + 22 26 34.8 −1.81 ±0.04 INT/IDS 21-Aug-2023 2000 3 –
XMP2336 −0404 23 36 31.64 −04 04 36.6 −1.96 ±0.08 SOAR/Goodman 8-Nov-2023 800 3 –

a A ‘ ∗’ indicates a nearby H II region ( z < 0 . 002). 
b Reference: (1) Ann, Seo & Ha ( 2015 ), (2) Griffith et al. ( 2011 ), (3) Hsyu et al. ( 2018 ), (4) James et al. ( 2017 ), (5) Kojima et al. ( 2020 ), (6) Liu et al. ( 2023 ), 
(7) Miche v a et al. ( 2013 ), (8) Thuan, Izoto v & Lipo v etsk y ( 1995 ), (9) Thuan, Guse v a & Izotov ( 2022 ), (10) v an Zee & Haynes ( 2006 ) (H II region), (11) Wang 
et al. ( 2018 ), (12) Yang et al. ( 2017 ). 
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hese observations. 3 Although some targets have been reported in the 
iterature, they either lack N2 measurements or only have values with 
pper limits or large uncertainties. The order of this table is sorted
ccording to their right ascension. If a galaxy has previously been 
bserved in the literature, we also list its corresponding references. 
 Due to time allocations and weather conditions, we were unable to observe 
ll candidates during this run. A follow-up observation request has been 
ubmitted for the remaining targets. 

W
s  

g  

F  
he details of each of these observing programmes are provided in
he following subsections. 

.2.1 INT observations 

e collected 41 new optical spectra using the Intermediate Disper- 
ion Spectrograph (IDS) with the Red + 2 detector and R632V
rating on the INT during 2023 August 19–22 (2023B) and 2024
ebruary 28–March 6 (2024A). The Red + 2 detector provides a
MNRAS 540, 128–142 (2025) 
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Figure 4. Examples of the reduced spectra with (XMP0801 + 2640: left; > 10 σ ) and without (XMP1347 + 0755: right; < 2 σ ) clear detection of the [N II ] λ6585 
lines. 
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patial scale of 0.44 arcsec per pixel. The detector binning was set to
e 1 × 1 (i.e. unbinned). The R632V grating has a total wavelength
o v erage of 2178 Å and the spectral resolution of R ∼ 2270 at
500 Å, with a nominal sampling of ∼1 Å/pixel. This grating was
hosen to resolve the weak [N II ] line from the much stronger H α

ine, as well as its better efficiency ( > 60 per cent) within the target
ange of wavelengths. All observations were made using a 1 arcsec
lit and the slit angle is at the approximate parallactic angle during
he observations. We use observations of G191-B2B 

4 to flux calibrate
he data taken in both observation periods. 

The 2023B observation serves as a preliminary assessment for
alidating the DL pipeline. Since the redshifts of our selected samples
ere unknown, a central wavelength of 6460.5 Å was chosen to co v er
 wavelength range from 5370 to 7540 Å for good-quality observation
f the [N II ] λ6585 line at z < 0 . 15. Spectroscopic observation of
ight XMP candidates were made, and their redshifts were all less
han 0.055. This observation provides an important validation of
he DL pipeline. For the 2024A observation, we adjust the central
avelength to 5940 Å with the prior knowledge from previous
bservation to ensure co v erage on [O III ] doublet at λλ4960 , 5008 Å,
 β, [N II ] doublet at λλ6550 , 6585 Å, and H α lines. We observed
3 XMP candidates total, and their redshifts are all less than 0.065. 

.2.2 SOAR observations 

e collect four spectra using the Goodman High Throughput
pectrograph (Goodman; Clemens, Crain & Anderson 2004 ) with

he SOAR GHTS BLUECAM camera on the SOAR telescope on 2023
ctober 6 and 2023 No v ember 8. The spatial scale is 0.15 arcsec
er pixel, and the binning for the detector is set to be 2 ×2. We use
he SYZY 400 grating, which has a spectral resolution of R ∼ 850
t 5500 Å (assuming a 1 arcsec slit). This setup provides optimal
hroughout for the wavelength range covering the [O III ] doublet at
λ4960 , 5008 Å, H β, [N II ] doublet at λλ6550 , 6585 Å, and H α

ines. The slit size is set to 1 arcsec and the slit angle is at the
pproximate parallactic angle during the observations. The standard
tar for flux calibration is LTT 3864. 5 Three observations of 800 s
ach are made for each object. 
NRAS 540, 128–142 (2025) 

 https:// www.eso.org/ sci/ observing/ tools/ standards/ spectra/ g191b2b.html 
 https:// www.eso.org/ sci/ observing/ tools/ standards/ spectra/ ltt3864.html 
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s  
.3 Data reduction 

he data reduction is carried out using the PYPEIT data reduction
ipeline (Prochaska et al. 2020a , 2020b ). The reduction process
ncludes the subtraction of bias frames, the correction of the flat-
eld using dome flats, identification and masking of cosmic rays,
k y subtraction, wav elength calibration using arc frames, 1D boxcar
xtraction and flux calibration using the chosen standard stars. When
vailable, three exposures of a single candidate are combined using
he PYPEIT coaddition tools. The number of exposures for each target
s also listed in Table 3 . Examples of the reduced and combined
pectra with clear (left) and unclear (right) detection of [N II ] λ6585
ines are shown in Fig. 4 . 

 ANALYSI S  A N D  DI SCUSSI ON  

sing data from INT and SOAR, we have collected 45 spectro-
copically confirmed XMPs, including 28 new disco v eries. Most
f these samples exhibit typical characteristics of XMPs, such as
luer colours, and compact, ball-like structures. Ho we ver, some
f our observed samples appear to display diffuse, irregular or
idal structures. This suggests a diversity of structural morphologies
mong dwarf galaxies, even within the lower metallicity regime. 

In this study, our primary focus is the N2 index for validating
he CNN pipeline and deriving oxygen abundances via strong line
iagnostics. This work provides 29 first spectra and 36 new N2 mea-
urements. Where possible, we also measured the [O III ] λ5008/H β

ux ratio (i.e. the O3 index; O3 ≡ log { [O III ] λ5008/H β} ), to assess
he existence of AGN activity in our samples. The O3 index will
e used to impro v e our pipeline in future work. Ho we ver, note that
ight XMPs observed during INT 2023B do not have the necessary
o v erage for O3 index measurement. 

.1 The fluxes and ratios of emission lines 

he fluxes of emission lines, [N II ] λ6585 and H α, are initially fit with
aussian models using a χ2 minimization Absorption LIne Software

 ALIS ; see more details in Cooke et al. 2014 ). We use this fitting
ethod to assess whether there is a clear detection of [N II ] λ6585. If

he [N II ] λ6585 emission line is confidently detected ( S / N ≥ 2), we
hen measure the integrated fluxes of [N II ] λ6585 and H α lines by
umming the pixel values associated with the target line. Conversely,

https://www.eso.org/sci/observing/tools/standards/spectra/g191b2b.html
https://www.eso.org/sci/observing/tools/standards/spectra/ltt3864.html
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Table 4. The measurements of H α emission line flux, the N2 index, and the O3 index. The missing values are indicated 
with three dots. For samples with significance ≥2, we provide the N2 values measured with the integrated flux approach; 
for other samples, we provide the 2 σ values. 

Name Redshift F ( H α) a Significance b N2 O3 

XMP0013 + 1354 0.0524 2921 ±48 2.41 −1.99 ±0.21 –
XMP0124 + 0838 0.0487 912.7 ±4.4 9.47 −2.01 ±0.05 0.828 ±0.005 
XMP0219 −0059 0.0085 1947.6 ±6.6 17.28 −2.24 ±0.04 0.716 ±0.004 
XMP0429 + 0026 0.0119 519.1 ±8.0 3.88 −2.04 ±0.18 0.801 ±0.015 
XMP0742 + 1103 0.0438 136.5 ±4.3 1.84 < −1.50 0.726 ±0.026 
XMP0752 + 2340 0.0474 1048 ±11 5.37 −1.93 ±0.09 0.910 ±0.007 
XMP0801 + 2640 0.0265 3963 ±27 12.98 −1.82 ±0.04 0.805 ±0.007 
XMP0803 + 1635 0.0211 440.4 ±6.0 2.71 −2.13 ±0.19 0.842 ±0.013 
XMP0827 + 1059 0.0436 327.4 ±7.6 2.27 −2.48 ±0.89 0.723 ±0.022 
XMP0850 + 1150 0.0293 620.9 ±8.9 2.37 −1.68 ±0.09 0.820 ±0.014 
XMP0856 + 2414 0.0511 295.9 ±8.3 2.81 −1.72 ±0.25 0.897 ±0.020 
XMP0916 + 5002 0.0497 206.2 ±4.7 2.48 −2.12 ±0.41 0.918 ±0.018 
XMP0916 + 0257 0.0385 421.2 ±6.0 1.75 < −2.03 0.786 ±0.011 
XMP0922 + 6324 0.0395 457.0 ±5.7 2.63 −2.00 ±0.16 0.728 ±0.014 
XMP0928 + 3601 0.0312 244.1 ±6.1 0.26 < −1.89 0.890 ±0.018 
XMP0930 + 4934 0.0247 507.0 ±8.5 3.70 −1.79 ±0.12 0.895 ±0.014 
XMP0931 + 2617 0.0638 164.1 ±5.5 −1.60 < −1.70 0.804 ±0.033 
XMP1003 + 2746 0.0398 219.1 ±5.9 0.27 < −1.73 0.783 ±0.031 
XMP1030 + 3151 0.0436 1617 ±12 4.74 −2.41 ±0.13 0.782 ±0.007 
XMP1032 + 5035 0.0318 123.9 ±6.2 1.03 < −1.29 0.948 ±0.035 
XMP1035 + 3814 0.0254 553.1 ±6.9 3.67 −1.94 ±0.14 0.900 ±0.014 
XMP1139 + 0040 0.0418 281.5 ±5.5 0.61 < −1.87 0.784 ±0.019 
XMP1140 + 5037 0.0278 270.8 ±5.7 2.07 −1.93 ±0.25 0.812 ±0.020 
XMP1214 + 1245 0.0192 154.3 ±6.1 1.00 < −1.59 0.314 ±0.031 
XMP1228 + 4313 0.0017 2001 ±21 9.32 −1.86 ±0.08 0.649 ±0.013 
XMP1230 + 0544 0.0397 421.8 ±9.6 1.58 < −1.69 0.869 ±0.019 
XMP1238 + 3246 0.0011 360.4 ±5.6 1.56 < −1.94 0.165 ±0.019 
XMP1322 + 2251 0.0373 131.6 ±4.5 0.14 < −1.55 0.820 ±0.029 
XMP1329 + 2237 0.0247 2246 ±16 11.65 −1.82 ±0.04 0.836 ±0.007 
XMP1344 + 0621 0.0229 661 ±11 2.69 −2.26 ±0.29 0.799 ±0.018 
XMP1347 + 0755 0.0438 848.5 ±8.0 0.65 < −2.36 0.844 ±0.009 
XMP1408 + 1753 0.0238 5116 ±23 13.13 −2.26 ±0.04 0.823 ±0.004 
XMP1422 + 5414 0.0212 2904 ±22 4.27 −2.52 ±0.18 0.844 ±0.007 
XMP1631 + 4426 0.0313 133.5 ±4.0 1.43 < −1.54 0.264 ±0.031 
XMP1638 + 2421 0.0344 630.2 ±8.0 1.10 < −2.08 0.928 ±0.013 
XMP1655 + 6337 0.0211 522 ±12 0.92 < −1.81 0.409 ±0.023 
XMP2048 −0559 0.0480 719 ±28 1.15 < −1.46 –
XMP2136 −0307 0.0536 1736.6 ±5.8 17.26 −2.01 ±0.03 0.779 ±0.003 
XMP2149 −0535 0.0542 237 ±20 0.02 < −1.26 –
XMP2156 + 0856 0.0118 3506 ±58 2.76 −1.89 ±0.16 –
XMP2212 + 2205 0.0288 3320 ±50 3.95 −1.90 ±0.16 –
XMP2325 + 2008 0.0391 1992 ±41 2.46 −1.87 ±0.22 –
XMP2329 + 0226 0.0293 2327 ±45 2.39 −2.11 ±0.33 –
XMP2331 + 2226 0.0231 609 ±20 1.98 < −1.41 –
XMP2336 −0404 0.0303 1190.6 ±5.1 4.67 −2.22 ±0.06 0.703 ±0.004 

a The integrated flux of the H α line. The unit is 10 −17 erg s −1 cm 

−2 . 
b The significance of the N2 measurements. The [N II ] λ6585 and H α lines are fitted with Gaussian profiles using χ2 

minimization, where the signal represents the amplitude ratio of the fits and the noise denotes the uncertainty. 
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f the [N II ] λ6585 line is not confidently detected ( S / N < 2), we use
he 2 σ value from the Gaussian profile fitting to provide an upper
imit on the N2 index. 

When calculating the inte grated flux es of emission lines, we 
t the continua of observed spectra with a quartic polynomial 
unction. Since the H α and [N II ] λ6585 lines may blend together,
e first integrate the flux across both lines (as a measurement of

he H α+ [N II ] λ6585 flux. We then refit the curve between the H α

nd [N II ] λ6585 lines with quartic polynomial function to obtain 
n accurate measurement of the [N II ] λ6585 line flux alone. By
ubtracting the two fluxes, we obtain the H α flux measurement for
alculating the N2 index. When calculating the O3 index, the fluxes
f the [O III ] λ5008 and H β lines are integrated separately. The fitting
esults are compiled in Table 4 . 

For the samples with detectable [N II ] λ6585 line ( S / N ≥ 2),
he measurements using Gaussian fitting and integrated fluxes are 
onsistent with each other, with a MAE of ∼0 . 11 dex. 

From the literature, there are o v erlapping N2 measurements 
or nine objects. If the literature reported the flux ratio between
N II ] λ6585 + [N II ] λ6550 and H α lines, we converted their quoted
[N II ] λ6550 + [N II ] λ6585)/H α ratio to [N II ] λ6585Ha line by
ultiplying their line ratio by a constant of 2.96/3.96 (i.e. we
MNRAS 540, 128–142 (2025) 
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Figure 5. Comparison of the N2 index between CNN predictions and the 
observed values. The grey dots show the values of our training samples. 
The dashed lines indicate the MAE measured using the samples marked as 
squares. The blue and orange squares represent the values measured using 
integrated flux with good ( S / N ≥ 3) and fair (2 ≤ S / N < 3) detection of 
[N II ] λ6585 line, respectively. The red circles are 2 σ upper limits, due to the 
lack of a detectable [N II ] λ6585 line. 
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ssume the [N II ] λ6585/[N II ] λ6550 = 2.96; Tachiev & Froese
ischer 2001 ). The comparison between literature values and our
easurements ( S/N ≥ 2) are consistent with each other to within a
AE of 0.086 dex. 

.2 The N2 index: CNN versus observation 

ig. 5 shows the comparison of the N2 index between our CNN
redictions and our observational measurements. The MAE of the
alues with detectable [N II ] λ6585 line ( S / N ≥ 2; squares in Fig. 5 )
s around 0.16 dex. We use this value to distinguish outliers. The
utliers abo v e the upper dashed line mostly lack robust detection
f [N II ] λ6585 lines. On the other hand, we found that a subset
f samples tends to have lower N2 values than those predicted by
he CNN model, falling below the bottom dashed line (hereafter,
ower outliers). We do not find any evident differences in the visual

orphology and colour distributions between the lower outliers and
on-outliers. This indicates that our CNN pipeline behaves correctly
y assigning the values corresponding to their visual appearances.
o we ver, these galaxies someho w have lo wer N2 v alues than their
isual appearances suggest. This also means that some of our
e w observ ations behave dif ferently to the majority of our training
ets. Interestingly, we also identify three similar outliers within the
raining set itself (see grey dots in Fig. 5 ), for which our CNN exhibits
imilar predictive behaviour. While we can artificially balance the
ata across different ranges of N2 values, the diversity of XMPs
resent in the training sets is fixed. Therefore, we propose that our
MP sample shows some differences to the majority of the training

et. 
If this difference has a physical origin, there are couple possible

auses: (1) these galaxies may have lost their nitrogen gas during their
volutionary history without altering their colour or morphology; (2)
NRAS 540, 128–142 (2025) 
heir nitrogen gas may have a distinct origin compared to most of
he galaxies in our training set (Chiappini, Romano & Matteucci
003 ; Pilyugin, Thuan & V ́ılchez 2003 ; Roy et al. 2021 ); or (3) these
alaxies might have high-ionization parameters, leading to enhanced
N III ] and [N IV ] lines rather than [N II ]. The first reason would
equire substantial outflows from these galaxies or gas stripping
ffects from the environments in which they reside. Investigating
his possibility requires more e xtensiv e and deeper spectroscopic
bservations to detect any features indicating the flows, as well as
nderstanding their environments. As for the second possibility, one
ould examine the N/O and O/H relationship. Secondary nitrogen
roduction in stars occurs via the CNO cycle, catalysed by the carbon
hat was already present in the interstellar medium before the star
as born (ISM; e.g. Meynet & Maeder 2002 ). In contrast, primary
roduction happens when the carbon catalyst is derived directly
rom the helium-burning core rather than from the ISM (Marigo
001 ). If primary production dominates, the N/O ratio should be
ndependent of O/H, whereas a correlation between N/O and O/H
ould indicate dominant secondary production. Currently, we cannot

heck this hypothesis because the [O II ] λλ3727 , 3730 doublet, which
s necessary to determine the N/O ratio, is not co v ered by our
bservations. Additionally, this doublet can be used to probe the
onization parameter, helping to address the third proposed possible
ause. These possibilities will be investigated in the future with our
ollo w-up observ ations. 

.3 Deri v ed physical properties 

e have derived several physical properties of the XMP galaxies
bserved with our programme, including the oxygen abundance, star
ormation rate (SFR), and stellar mass; these values are summarized
n Table 5 . 

.3.1 Oxygen abundance 

he oxygen abundance is estimated using the observed N2 values
ogether with the empirical relation from Y07 : 

2 + log ( O / H ) = 9 . 263 + 0 . 836 × N2 . (2) 

he relation is based on a linear least-squares fit to the data
ollected from SDSS and various literature sources, providing a better
escription of the data compared to the empirical relation of Pettini &
agel ( 2004 ). The uncertainty of this linear fit to the data used in Y07

s 0.159 dex. If a galaxy’s [N II ] λ6585 line is not detected, we report
 2 σ upper limit on the oxygen abundance. The estimated oxygen
bundance of our samples ranges between 7 . 1 ≤12 + log ( O / H ) ≤
 . 7 (2 σ upper limit). We have 21 samples with estimated oxygen
bundances of 12 + log ( O / H ) ≤ 7 . 7 ( ∼0 . 1 Z �), and 18 samples are
eported with 2 σ upper limits. Planned follow-up observations of
hese targets will firmly pin down the chemistry of these near-pristine
alaxies. The distribution of oxygen abundance estimates is shown
n the leftmost panel of Fig. 6 . 

.3.2 Distance, H α luminosity, and star formation rate 

 or distance-deriv ed properties, such as luminosity and SFR, we use
he luminosity distance to estimate these quantities. The luminosity
istance ( D L ) is calculated using spectroscopic redshifts from our
bservations in combination with ASTROPY ’s cosmology package
Astropy Collaboration 2022 ). We assume a flat � CDM cosmol-
gy with H 0 = 67 . 4 ± 0 . 5 km s −1 Mpc −1 and 	m 

= 0 . 315 ± 0 . 007
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Table 5. Derived physical properties of the XMP galaxies reported in this work. Oxygen abundances are derived by the N2 index ( Y07 ). For samples with 
significance S / N < 2, we report a 2 σ upper limit on the oxygen abundance. Calculations of luminosity distance ( D L ), H α luminosities ( L ( H α) ), SFR, and 
stellar mass ( M ∗) are described in Section 5.3 . 

Name 12 + log ( O / H ) D L D L (corrected) L ( H α) SFR M ∗
(Mpc) (Mpc) ( ×10 39 erg s −1 ) ( ×10 −3 M � yr −1 ) ( ×10 6 M �) 

XMP0013 + 1354 7.60 ±0.24 241.99 245.2 ±1.8 210.2 ±4.7 922 ±20 7100 ±1600 
XMP0124 + 0838 7.58 ±0.16 224.39 228.3 ±1.7 56.91 ±0.89 249.8 ±3.9 1510 ±350 
XMP0219 −0059 7.39 ±0.16 38.26 40.66 ±0.32 3.853 ±0.063 16.91 ±0.27 0.57 ±0.13 
XMP0429 + 0026 7.56 ±0.22 53.37 51.93 ±0.62 1.675 ±0.048 7.35 ±0.21 1.19 ±0.28 
XMP0742 + 1103 < 8.47 201.47 200.7 ±1.5 6.58 ±0.23 28.9 ±1.0 198 ±46 
XMP0752 + 2340 7.65 ±0.17 218.53 221.5 ±1.7 61.5 ±1.1 270.0 ±4.9 2990 ±690 
XMP0801 + 2640 7.74 ±0.16 120.11 123.36 ±0.94 72.2 ±1.2 316.7 ±5.2 120 ±28 
XMP0803 + 1635 7.48 ±0.23 95.48 100.8 ±1.6 5.36 ±0.19 23.51 ±0.83 39.6 ±9.2 
XMP0827 + 1059 7.19 ±0.76 200.26 203.7 ±1.5 16.25 ±0.45 71.3 ±2.0 500 ±110 
XMP0850 + 1150 7.86 ±0.18 133.03 133.2 ±1.1 13.17 ±0.29 57.8 ±1.3 86 ±20 
XMP0856 + 2414 7.82 ±0.26 235.91 237.2 ±1.8 19.91 ±0.63 87.4 ±2.8 1170 ±270 
XMP0916 + 5002 7.49 ±0.38 229.22 232.4 ±1.7 13.32 ±0.36 58.5 ±1.6 403 ±93 
XMP0916 + 0257 < 8.07 176.27 176.5 ±1.7 15.70 ±0.37 68.9 ±1.6 157 ±36 
XMP0922 + 6324 7.59 ±0.21 180.99 180.4 ±1.4 17.79 ±0.35 78.1 ±1.5 125 ±29 
XMP0928 + 3601 < 8.17 142.17 145.2 ±1.2 6.16 ±0.18 27.03 ±0.81 25.4 ±5.9 
XMP0930 + 4934 7.77 ±0.19 111.97 106.41 ±0.89 6.87 ±0.16 30.15 ±0.71 21.1 ±4.9 
XMP0931 + 2617 < 8.28 297.41 297.2 ±3.5 17.34 ±0.71 76.1 ±3.1 1500 ±350 
XMP1003 + 2746 < 8.27 182.32 187.2 ±1.4 9.19 ±0.29 40.3 ±1.3 164 ±38 
XMP1030 + 3151 7.25 ±0.19 200.11 203.5 ±1.5 80.2 ±1.4 351.8 ±6.0 840 ±190 
XMP1032 + 5035 < 8.65 145.04 151.9 ±1.2 3.42 ±0.18 15.02 ±0.79 324 ±75 
XMP1035 + 3814 7.64 ±0.20 115.08 118.27 ±0.88 9.26 ±0.18 40.63 ±0.79 30.8 ±7.1 
XMP1139 + 0040 < 8.16 191.86 186.5 ±1.4 11.72 ±0.29 51.4 ±1.3 301 ±69 
XMP1140 + 5037 7.65 ±0.26 126.21 122.38 ±0.98 4.85 ±0.13 21.30 ±0.56 78 ±18 
XMP1214 + 1245 < 8.44 86.82 88.07 ±0.68 1.432 ±0.061 6.28 ±0.27 70 ±16 
XMP1228 + 4313 7.71 ±0.17 7.69 4.87 ±0.13 0.0568 ±0.0030 0.249 ±0.013 0.0251 ±0.0059 
XMP1230 + 0544 < 8.33 181.72 183.4 ±1.4 16.98 ±0.46 74.5 ±2.0 325 ±75 
XMP1238 + 3246 < 8.19 4.87 8.14 ±0.66 0.0286 ±0.0046 0.125 ±0.020 0.0196 ±0.0055 
XMP1322 + 2251 < 8.41 170.74 171.2 ±1.3 4.62 ±0.17 20.26 ±0.75 74 ±17 
XMP1329 + 2237 7.75 ±0.16 111.80 113.95 ±0.87 34.89 ±0.59 153.1 ±2.6 151 ±35 
XMP1344 + 0621 7.37 ±0.29 103.60 103.1 ±3.1 8.41 ±0.53 36.9 ±2.3 18.8 ±4.5 
XMP1347 + 0755 < 7.77 201.43 201.4 ±1.5 41.19 ±0.72 180.8 ±3.2 640 ±150 
XMP1408 + 1753 7.38 ±0.16 107.82 109.86 ±0.97 73.9 ±1.3 324.3 ±5.9 14.2 ±3.3 
XMP1422 + 5414 7.16 ±0.22 95.79 98.45 ±0.73 33.68 ±0.56 147.8 ±2.5 38.0 ±8.8 
XMP1631 + 4426 < 8.43 142.33 146.4 ±1.1 3.42 ±0.11 15.03 ±0.50 16.5 ±3.8 
XMP1638 + 2421 < 7.98 156.82 159.6 ±1.2 19.20 ±0.39 84.3 ±1.7 82 ±19 
XMP1655 + 6337 < 8.21 95.46 100.88 ±0.75 6.36 ±0.17 27.90 ±0.75 5.2 ±1.2 
XMP2048 −0559 < 8.49 220.98 217.7 ±1.8 40.8 ±1.7 179.0 ±7.6 1190 ±270 
XMP2136 −0307 7.58 ±0.16 248.06 247.8 ±1.8 127.6 ±1.9 559.9 ±8.5 4010 ±930 
XMP2149 −0535 < 8.64 251.08 253.0 ±1.9 18.1 ±1.5 79.6 ±6.7 1280 ±290 
XMP2156 + 0856 7.68 ±0.21 52.83 51.94 ±0.39 11.31 ±0.25 49.7 ±1.1 3.47 ±0.80 
XMP2212 + 2205 7.67 ±0.21 130.70 133.74 ±1.00 71.1 ±1.5 311.8 ±6.6 262 ±61 
XMP2325 + 2008 7.70 ±0.25 179.25 174.6 ±1.4 72.7 ±1.9 318.9 ±8.3 1370 ±320 
XMP2329 + 0226 7.50 ±0.32 133.18 134.65 ±0.99 50.5 ±1.2 221.6 ±5.4 369 ±85 
XMP2331 + 2226 < 8.55 104.64 97.8 ±1.2 6.97 ±0.28 30.6 ±1.2 26.5 ±6.1 
XMP2336 −0404 7.40 ±0.17 137.63 138.8 ±1.1 27.46 ±0.44 120.5 ±1.9 94 ±22 
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Planck Collaboration VI 2020 ). The distance is corrected for 
eculiar velocity based on the results from Carrick et al. ( 2015 ). Both
he original ( D L ) and corrected [ D L (corrected)] values are listed in
able 5 . The quoted uncertainties include the uncertainties on the 
edshift, peculiar velocity, and cosmological parameters. The H α

uminosity, L ( H α) , is then calculated by the following conversion 
sing the corrected luminosity distances and the measured H α

uxes: 

 ( H α) = F ( H α) 4 πD L 
2 . (3) 

he SFR can be estimated using hydrogen emission lines such as H α

ine. This line is produced by the recombination of ionized hydrogen 
n the H II regions. Thus, the H α luminosity is linked with the number
f ionizing photons and traces the formation of young ( < 20 Myr),
assive ( > 10 M �) stars. The following conversion between SFR and
 α luminosity is provided in Kennicutt ( 1998 ) derived by Kennicutt,
amblyn & Congdon ( 1994 ) and Madau, Pozzetti & Dickinson
 1998 ). 

FR = 7 . 9 × 10 −42 × ( L ( H α) / erg s −1 ) M � yr −1 . (4) 

ote that this relationship assumes a Salpeter initial mass function 
IMF; Salpeter 1955 ). We apply a correction factor of 1.8 to convert
his relationship to a Chabrier ( 2003 ) IMF. The resulting values of
og 10 (SFR) are between −3.9 and −0.035, with the median value of 

1 . 16 ± 0 . 60, which includes ∼69 per cent of the samples. The SFR
istribution of our sample is shown in the middle panel of Fig. 6 . 
MNRAS 540, 128–142 (2025) 
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Figure 6. The distributions of oxygen abundance, SFR, and stellar mass of our XMP galaxy sample. The grey histograms show the values of all samples, while 
the blue histograms in the first panel represent the values of the samples with significantly detected [N II ] λ6585 lines ( S / N ≥ 2). 
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Figure 7. Diagnostic diagram of [N II ] λ6585/H α versus [O III ] λ5008/H β. 
The grey dashed line shows equation 1 from Kauffmann et al. ( 2003b ), which 
delineates star-forming galaxies and AGN. The black solid line represents the 
mean of local star-forming sequences for SDSS galaxies analysed in K e wley 
et al. ( 2006 ), while the dotted black lines show the error of 0.1 dex from their 
models (K e wley et al. 2013 ). The symbols show our sample of XMP galaxies, 
with the same colour-coding as used in Fig. 5 . 
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.3.3 Stellar mass 

he stellar mass is estimated using stellar mass-to-light ratio,
btained with the broad-band luminosity in SDSS i-band, in combi-
ation with the r − i colour (Bell et al. 2003 , B03 ). The conversion of
he solar absolute magnitude to SDSS i-band filter is from Blanton &
oweis ( 2007 ). The filter choices are to reduce contamination from

trong emission lines. Ho we ver, we note that this kind of relationship
s not robust for metal-poor dwarf galaxies. The results presented in
his work just serve as an indicative measure of the stellar mass of the
MP galaxies in our sample. We adopt the following relationship: 

log 10 

(
M ∗
L 

)
= 0 . 006 + 1 . 114 × ( r − i ) , (5) 

here the value of M ∗/L is expressed in solar units. Another
elationship, using more complex stellar models, was introduced
n Zibetti, Charlot & Rix ( 2009 , Z09 ). To assess which of these
forementioned stellar mass models are more suitable for the XMP
alaxies of our sample, we compared the stellar mass of Leo P
stimated using both B03 and Z09 relations to the robust stellar
ass measurement derived from Hubble Space Telescope imaging

y McQuinn et al. ( 2015 ). Among the two, the B03 relation yielded
 closer estimate to the robust value. Therefore, for stellar mass
stimation in this work, we adopt equation ( 5 ) from B03 , and divided
he value by a factor of correct the ‘diet’ Salpeter IMF used in B03
o Chabrier ( 2003 ) IMF. The resulting values of log 10 ( M ∗/ M �) are
etween 4.3 and 9.8, with the median value of 8 . 1 ± 1 . 0 including
bout 71 per cent of the sample. The distribution is shown in the
ightmost panel of Fig. 6 . 

.4 AGN activity 

ig. 7 shows the BPT diagram (Baldwin, Phillips & Terlevich 1981 )
[N II ] λ6585/H α versus [O III ] λ5008/H β diagnostic diagram –

or assessing AGN activity in our sample of XMP galaxies. The
rey dashed line represents the relation provided in equation 1 of
auffmann et al. ( 2003b ) to separate the population of star-forming
alaxies and AGN. This indicates that our XMP galaxies do not
how any indication of AGN activity. The black solid line and
NRAS 540, 128–142 (2025) 
otted lines show the mean of SDSS star-forming galaxies at redshift
 . 04 < z < 0 . 1 (K e wley et al. 2006 , 2013 ). This range contains 91
er cent of the SDSS star-forming galaxies from K e wley et al. ( 2006 ).
our of our objects are outliers to this trend with lower O3 values.
his could be due to their low-metallicity nature. Gro v es, Heckman &
auffmann ( 2006 ) studied the evolution of diagnostic diagrams for

o w-metallicity AGN (lo wer than 1 Z �). At metallicity of 0 . 1 Z �,
heir simulations predicted a decrease in the [O III ] λ5008/H β ratio
lower than 0.5). This may explain the outliers’ behaviour on the



Search for XMP with CNNs 139 

Figure 8. Colour distributions of training MP samples (grey shadings), training XMP samples (blue shadings) and the observed XMPs (unfilled blue histogram). 
The red dashed lines indicate the upper limit applied to each colour for querying the working samples (see Table 1 and the discussion in Section 2.3 ). 
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iagnostic diagram, indicating that they may contain low-metallicity 
GN. To test this possibility, future observations will target the [O II ],

Ne III ], and [Ne V ] emission lines. 

.5 Colour distribution 

n Fig. 8 , we compare the colour distributions of the observed galaxies
nd the training samples (MP and XMP). Note that the majority of
he training XMP samples have an N2 value between −1.5 and −1.8
 > 77 per cent). Thus, we expect there to be a slight difference in
he colour distributions between the training XMP samples and our 
bserved XMP galaxies with predicted N2 < −1 . 8. 
Ho we v er, a notable discrepanc y e xists in the colour distributions

f those calculated particularly using the g band between the training 
amples and the observed XMPs. These samples tend to be brighter 
n g band compared to the majority of training XMP samples. The
righter g-band magnitudes are likely due to significant emission 
rom the [O III ] doublet, which dominates the flux in the SDSS g 

and given the redshifts of our observed XMPs. This characteristic 
s similar to that of blueberry (BB) galaxies (Yang et al. 2017 ,
ereafter Y17 ), which are low-redshift counterparts of green pea 
alaxies (Cardamone et al. 2009 ) and high redshift Ly α emitting 
alaxies. 

Fig. 9 shows the colour distributions of the observed XMP (blue 
ontours), BB galaxies from Y17 (black dots), and the training XMP
amples (grey dots) in this work. The red dashed lines in each panel
epresent the colour criteria used in Y17 to select green pea galaxies
t z � 0 . 05. This figure demonstrates that the observed XMPs are
ostly greener 6 than the majority of the training samples. About 

8 per cent (17 XMPs) of the observed objects fall into the colour
 We describe our samples as ‘greener’ rather than ‘bluer’ because only g 
and appears brighter, while the u band does not exhibit a similar increase in 
rightness. 

g
o
a
H  

d  
egions of BB galaxies defined by Y17 . We found that the N2 values
f the training samples satisfying the colour criteria of BB galaxies
re lower than those outside these criteria. Specifically, the median 
2 value of BB-like training XMP samples (within the red-dashed 

ines in Fig. 9 ) is −2 . 02, while those outside these regions have
 median N2 value of −1 . 64. This indicates that the phenomenon
hown here are simply due to the blind selection of samples with
ower N2 index. 

.6 Comparison with Blueberry Galaxies 

ince BB galaxies are considered promising analogues to high 
edshift star-forming galaxies, we compare the derived physical 
roperties of our XMPs with those of BB galaxies reported in Y17
n this section. In Fig. 10 , we compare derived physical properties,
uch as stellar mass and SFR, as well as the measured O3 index,
etween our observed XMPs and the BB galaxies from Y17 . We
nd a distinct difference in the physical properties between the two
amples. In terms of stellar mass, Y17 estimates their values using
tarburst99 models (Leitherer et al. 1999 ) based on photometric 
ata, whereas our estimates rely on the photometric relation from 

03 , which is likely less reliable in the low metallicity regime (see
ection 5.3 ). Given the differing estimation methods, the observed 
iscrepancy in stellar mass between the two samples is therefore 
easonable. In terms of SFRs, although Y17 estimates are based 
n the H β line while this work uses the H α line, both methods
ield fairly robust estimates. Nonetheless, the BB galaxies from 

17 exhibit higher SFRs than our observed XMP samples, even 
mong those that satisfy the colour selection criteria defined for BB
alaxies in Y17 (blue dots/shadings). One of the key characteristics 
f BB galaxies is their high-ionization parameters, which may be 
 primary factor contributing to the observed differences in SFRs. 
o we ver, in the right panel of Fig. 10 , we do not observe a significant
ifference in the distributions of their O3 index. It is important to
MNRAS 540, 128–142 (2025) 
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Figure 9. The comparison of the colour–colour diagram and histograms 
between the observed XMP (blue contours and histograms), samples of BB 

galaxies from Y17 (black dots and histogram), and training XMP samples 
(TrainXMP) from this work (grey dots and histogram). The red dashed lines 
are the colour criteria used in Y17 to select green pea galaxies at z � 0 . 05. 
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ote that a more reliable probe of ionization parameters requires
he [O II ] λλ3727 , 3730 doublet, which is not co v ered by our current
bservations. As mentioned in Section 5 , we will investigate this
urther with follow-up observations. 

 SUMMARY  

o advance the disco v ery of new XMP galaxies, we promote the
se of CNNs to accelerate the process of XMP identification and
haracterization for current and upcoming wide-area multiband sky
urv e ys. A primary advantage of this approach is to efficiently con-
ider both morphology and colour information simultaneously from
road-band images. Our DL pipeline is built from three individual
NN procedures: (i) MP classifier , (ii) XMP classifier , and (iii) N2
redictor, to conduct sequential classification and predictions of the
2 index (N2 ≡ log { [N II ] λ6585/H α} ) for MP galaxies. The N2

ndex is then used to select the most promising XMP galaxies. This
esign is to ensure an ef fecti ve and efficient training and identification
f the extremely sparse population of XMPs. Each CNN procedure
ontains nine CNN models (i.e. 3 different initializations × 3 training
ata sets) to account for the variation in each training run and the
mpact of quality of the selected training subsets. The median values
f these nine CNNs are used for each classifier and the N2 predictor.
NRAS 540, 128–142 (2025) 
The trained DL pipeline is applied to the multiband imaging data
ithout spectroscopy from the SDSS DR17. There are 232 954 XMP

andidates selected with the criteria of P MP > 0 . 5 and P XMP > 0 . 5
rom o v er 7 million SDSS galaxies. F or observational candidates, we
urther select 390 promising candidates with P MP > 0 . 99, P XMP >

 . 99, and N2 < −1 . 8. Among them, we successfully observed 45
MP candidates with redshifts less than 0.065 using the 2.54 m

NT and the 4.1 m SOAR Telescope between 2023 and 2024. All
5 observed XMP candidates are spectroscopically confirmed to be
etal poor, including 28 new disco v eries. Additionally, our obser-

ations provide the first N2 measurements for 36 XMPs. These N2
easurements are found to be consistent with the CNN predictions
ith a MAE of 0.16 dex. Ho we ver, we found a set of samples with
ifferences between predicted and observed N2 values greater than
.16. These objects do not show distinct morphologies and colours
rom those within the MAE threshold, indicating that these objects
omeho w possess lo wer N2 v alues than their morphologies and
olours suggest. These galaxies may have experienced significant
utflows or gas stripping in their evolutionary history. Another
ypothesis is that their nitrogen gas may have originated from a
ifferent route compared to the majority of our training XMPs. Or,
he y may hav e a high-ionization parameter, leading to enhanced
onized nitrogen gas, such as [N III ] and [N IV ]. Nevertheless, as this
ork aims to report a new methodology and the disco v ery of new
MP galaxies, our observations do not have sufficient wavelength

o v erage and depth to validate this hypothesis. We will address this
ith forthcoming observations. 
The reported samples have estimated oxygen abundances of

 . 1 ≤12 + log ( O / H ) ≤ 8 . 7 (2 σ upper limit), based on the N2 in-
ex. There are 21/45 galaxies with estimated oxygen abundances
elow 7.7, and 18/45 galaxies lack of detectable [N II ] λ6585 lines
 S / N < 2). These samples offer an exciting opportunity to identify
 record-breaking XMP, providing valuable insights into chemical
b undances and ev olutionary processes within galaxies in extremely
etal-deficient environments. The SFRs of our XMPs are between

0 −3 . 9 –10 −0 . 035 M � yr −1 , and their stellar masses are in the range
0 4 . 3 –10 9 . 8 M � based on the B03 calibration, with a correction to the
habrier IMF. The BPT diagram of our XMPs shows that our objects
re mostly star-forming galaxies without AGN acti vity. Ho we ver,
our XMPs without detectable [N II ] λ6585 lines deviate from the
ypical trend of star-forming galaxies on the BPT diagram, suggesting
hat they may potentially be low-metallicity AGN at metallicity
 0 . 1 Z �. Future observations that co v er the emission lines [O II ],

Ne III ], and [Ne V ] at wavelengths < 4000 Å are required to test this
ossibility. 
Finally, we examined the colour distributions of our observed

alaxies, and found that they tend to be brighter in the SDSS g band
han the training samples. This is likely to be caused by significant
mission of the [O III ] λλ4960 , 5008 doublet that coincide with the
andpass of this filter. This characteristic is reminiscent of green pea
alaxies and high-redshift Ly α emitters, but at lower redshifts ( z �
 . 05), similar to BB galaxies. By applying the Y17 BB colour criteria,
8 per cent (17 XMPs) of the observed samples are categorized as
B galaxies. We found that our training samples, which share similar
olour characteristics to the BB galaxies, tend to have lower N2
alues. This leads to a skew of our observed samples, selected based
n low predicted N2 v alues, to wards the colour regions associated
ith BB galaxies. Ho we ver, when comparing physical properties

uch as stellar mass and SFR, we found a discrepancy between our
bserved XMPs and the Y17 samples, even for those that satisfy the
olour criteria. To resolve this discrepancy, observations covering
dditional emission lines, such as [O II ], are required. 
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Figure 10. Comparisons of stellar mass, SFR, and the O3 index between all observed XMPs (grey squares/shadings), BB-like observed XMPs (blue 
squares/shadings), and BB galaxies from Y17 (dots/unfilled black histogram). 
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In this work, we developed a DL pipeline and validated its
f fecti veness using new observations. In the near-future, we will 
onduct follow-up spectroscopic observations that will co v er ad- 
itional key emission lines to: (1) enable direct measurements of 
xygen abundances; (2) measure the primordial 4 He abundance; 
nd (3) address questions that were raised in our analysis, includ- 
ng: (a) the origin of outliers in our pipeline – potentially due 
o outflows, environmental impact, or nitrogen produced through 
ifferent channels; (b) test if the 4 galaxies with low [O III ] λ5008/H β

nd low [N II ] λ6585/H α contain a low-metallicity AGN; and (c)
evelop the connection between our discoveries, and high-redshift 
alaxies.d 
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