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Abstract

Chest X-ray (CXR) imaging is a widely used and cost-effective medical imaging technique for detecting various pathologies. How-
ever, accurate interpretation of CXR images is a challenging and time-consuming task that requires expert radiologists. Although
deep learning methods have demonstrated high performance in CXR image classification, concerns over interpretability limit their
clinical adoption. Localising pathologies on chest X-rays could improve interpretability and trust in these systems. In this work, we
propose the Chest X-ray Localisation Network (CLN), a multi-task deep neural network designed to localise and classify patholo-
gies in CXR images. Our proposed architecture was trained and evaluated on a subset of the ChestX-ray14 CXR data set, which
included bounding box annotations of eight different pathologies from expert radiologists, achieving a maximum classification
mean AUC score of 0.918 and a maximum localisation mean IoU accuracy of 0.855 for the eight examined pathologies (atelectasis,
cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, and pneumothorax). Our approach outperformed state-of-the-art
methods, demonstrating its potential as a reliable solution for computer-aided CXR image diagnosis, offering notable advantages
over existing methods, including superior classification and localisation accuracy, reduced performance decay with increased IoU
thresholds, and an overall simpler architecture.
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1. Introduction

Chest X-ray (CXR) imaging is one of the most widely used
medical imaging tests in clinical practice (Kelly et al., 2016). In
comparison to other medical imaging techniques, chest radiog-
raphy is widely accessible and reasonably priced (Raoof et al.,
2012; Chandra et al., 2022). Chest X-rays are frequently used
as a frontline diagnostic imaging modality, particularly in un-
derdeveloped areas of the globe dealing with a high burden of
infectious illnesses (Dhoot et al., 2018), as they can be portable
and have reduced setup and operating expenses. CXR scans
provide vital information about a patient’s health, and skilled
radiologists can manually inspect them and detect illness mark-
ers and indicators. However, this is a challenging process that
is arduous and time-consuming, requiring expert radiologists in
order to avoid misinterpreting or overlooking important mark-
ers on the CXR. In addition, this is a manual process that is
prone to fatigue-related errors.

The burden on radiologists can be decreased by using auto-
mated CXR analysis to help with population screening, triaging
and interpretation (Doi, 2007). Also, automated CXR analy-
sis can offer the frontline practitioner a useful visual help for
diagnosing an illness, and can reduce the variation in reading
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across radiologists, better identify aberrant cases for expert in-
terpretation, and even act as a second reader throughout the
diagnostic decision-making process (Yu et al., 2011). It can
also be considerably helpful in remote areas that lack sufficient
medical personnel. Recent research on Computer Aided Di-
agnosis (CAD) systems has focused on the application of ma-
chine learning techniques for automating CXR-based diagno-
sis (Litjens et al., 2017; Ker et al., 2017), with various deep
learning methods being proposed in the literature for CXR im-
age classification and/or localisation, e.g. (Lakhani and Sun-
daram, 2017; Annarumma et al., 2019; Chandra et al., 2022;
Brunese et al., 2020; Okolo et al., 2022; Pereira et al., 2020;
Zhang et al., 2023). The public release of the large-scale NIH
Chest X-ray14 (Wang et al., 2017) and CheXpert (Irvin et al.,
2019) data sets, each with more than 100,000 CXR images en-
couraged further research in the area.

Deep learning (DL) methods have recently achieved impres-
sive performance in CXR image classification, but physicians
are reluctant to adopt and trust such systems due to their lack of
interpretability. A potential solution to this problem lies in the
localisation of detected pathologies within CXR images. Clas-
sification and localisation are two different but related problems
in computer vision. Classification is the task of assigning a
label to an image, while localisation is the task of identify-
ing the location of an object or anomaly in an image. In the
case of CXR images, the later is of utmost importance to physi-
cians as it would enable them to establish trust in deep learning
models and enhance their interpretability. Low abnormality lo-
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calisation accuracy and poor model interpretability have thus
emerged as major roadblocks to the widespread implementa-
tion of these methods in clinical practise. To this end, visual
attention is increasingly being used for model interpretability
and explainability as a result of recent developments in convo-
lutional neural network (CNN) attention modelling and learn-
ing (Zhou et al., 2016; Selvaraju et al., 2017), whereas more
recent approaches for CXR image localisation employ trans-
formers and self-attention mechanisms (Ouyang et al., 2021;
Han et al., 2023).

Many older works on automated CXR image analysis fo-
cused solely on classification using CNNs. Bar et al. (Bar et al.,
2015) used a DL approach that combined features retrieved by a
deep CNN model with low-level features for diagnosing pleural
effusion, cardiomegaly, and normal vs. abnormal cases. Their
method achieved an area under the curve (AUC) score of 93%,
89%, and 79% for pleural effusion, cardiomegaly, and normal
vs. abnormal, respectively. Cicero et al. (Cicero et al., 2017)
utilised the GoogleNet model, achieving AUC scores between
85%-96.4% for six different pathologies. Wang et al. (Wang
et al., 2017) employed a weak-supervised technique for the
classification of eight pathologies on the ChestX-ray8 CXR
data set, achieving an average AUC of 80.3%. A DenseNet-121
model (CheXNet) was used in (Rajpurkar et al., 2017) on the
ChestX-ray14 data set that contains 14 pathologies, reaching
an average AUC of 84.11%. A cascading neural network was
utilised by Kumar et al. (Kumar et al., 2018) on the same data
set. They used under-sampling and over-sampling strategies to
reduce bias resulting from unbalanced data, achieving an aver-
age AUC of 79.5%. Majdi et al. (Majdi et al., 2020) proposed
a custom DenseNet-121 for identifying cardiomegaly and pul-
monary nodules, reaching an AUC of 73% for pulmonary nod-
ule identification, and 92% for cardiomegaly detection. Zhao
et al. (Zhao et al., 2021) also worked on the Chest-Xray14 data
set and proposed a deep CNN model with attention mechanism
(AMDenseNet), achieving an average AUC of 85.37%. Blais
and Akhloufi (Blais and Akhloufi, 2021) used various models
with binary relevance to identify chest pathologies. When com-
bined with the Adam optimiser, the Xception deep CNN model
outperformed other models, reaching a mean AUC of 95.87%
on 6 pathologies and 94.90% on the CheXpert data set’s 14
pathologies. More recent approaches for CXR image classi-
fication employed transformers, such as the work by Okolo et
al. (Okolo et al., 2022), which proposed IEViT, an enhanced
version of the Vision Transformer for CXR image classification
and evaluated it on four different CXR data sets for turberculo-
sis, pneumonia, and COVID-19, achieving a maximum average
F1-score between 96.39% and 100%.

CXR classification and localisation are two interconnected
tasks. CXR classification aims to classify a given CXR image
into different predefined classes, typically referring to specific
pathologies, whereas localisation focuses on identifying the re-
gions of interest (ROIs) within the CXR image that refer to spe-
cific abnormalities. Accurate localisation can help in establish-
ing trust to a DL model as it can enhance its interpretability,
thus potentially enabling its use in clinical practice. Zhou et
al. (Zhou et al., 2016) introduced the concept of Class Acti-

vation Mapping (CAM) for localising ROIs in an image. CAM
provides a way to generate heat-maps that highlight the discrim-
inative regions contributing to the classification decision, pro-
viding insights into the ROIs for abnormality detection. By ap-
plying a thresholding technique to separate ROIs, the localised
regions are extracted, providing a visual explanation of the ar-
eas that significantly contribute to the target class predicted by a
CNN model (Selvaraju et al., 2017; Gascoigne-Burns and Kat-
sigiannis, 2022).

Multiple CNN-based CXR localisation methods have been
proposed in the literature. Among them, Rajpurkar et al.’s (Ra-
jpurkar et al., 2017) CheXNet DL model achieved performance
comparable to expert radiologists in pneumonia diagnosis. De-
spite focusing on classification, the model implicitly learns to
identify and localise pneumonia regions within CXR images.
Wang et al. (Wang et al., 2017) showed that a combined weakly
supervised multi-label image classification and disease locali-
sation framework is capable of detecting and even spatially lo-
calising thoracic diseases by using the activation and weights
acquired from the network. Li et al. (Li et al., 2018) proposed
a unified classification and localisation approach that leverages
both class information and limited location annotation by first
using a CNN to process the input image, and then divide the
image into a grid of patches to capture the local information
specific to the disease.

More recent CXR localisation techniques focused on the
use of transformers and attention-based mechanisms. Han et
al. (Han et al., 2023) proposed the Radiomics-Guided Trans-
former (RGT) model that combines global image information
with local radiomics-guided auxiliary data for accurate pathol-
ogy localisation and classification without requiring bounding
box annotations. RGT consists of image and radiomics Trans-
former branches, fusion layers for aggregating information, and
cross-attention layers for interaction between image and ra-
diomics features. Ouyang et al. (Ouyang et al., 2021) intro-
duced a novel attention-driven weakly supervised algorithm
that combines activation- and gradient-based visual attention
through a hierarchical attention mining framework. In another
work, Qi et al. (Qi et al., 2022) utilised a pre-trained U-Net
in order to segment the lung lobes and an intra-image graph
to compare different regions of the lobes to achieve weakly-
supervised disease localisation. It is evident from the litera-
ture that these newer methods outperform the CAM-based ones
that rely on CNNs. While these latest advancements in CXR
localisation have demonstrated promising results, it is essen-
tial to consider the trade-off between complexity and practi-
cal deployment. The increased complexity comes at the cost
of higher computational resource requirements, longer training
times, and complex optimisation to ensure efficient inference.

In this work, we propose the CXR Localisation Network
(CLN), a multi-task deep neural network for the task of CXR
image classification and localisation. CLN relies on a pre-
trained CNN backbone that is then fine-tuned on a large CXR
data set with 14 pathologies. The backbone is then followed by
two parallel network branches, one for pathology classification,
and one for pathology localisation by predicting a bounding box
through regression. CLN was trained and evaluated on a subset

3

                  



*No overlap between the image sets

Fl
at

te
n

FC

14

Sigmoid

Atelectasis
Cardiomegaly
Effusion
Infiltration
Mass
Nodule
Pneumonia
Pneumothorax
Consolidation
Edema
Emphysema
Fibrosis
Pleural 
Thickening
Hernia

14 classes

Trained on the official 
training/validation sets of 

the NIH dataset*

!"## = !%&'

IMAGE FEATURE EXTRACTION BACKBONE

Co
nv

 B
lo

ck
 #

1

Co
nv

 B
lo

ck
 #

2

Co
nv

 B
lo

ck
 #

3

Co
nv

 B
lo

ck
 #

N

…

Base CNN
(Pre-trained on ImageNet)

FC

8

SoftMax

Atelectasis
Cardiomegaly
Effusion
Infiltration
Mass
Nodule
Pneumonia
Pneumothorax

8 classes

FC

256

ReLU

FC

128

ReLU

FC

4

ReLU

x1
x2
y1
y2

Bounding box
coordinates

Trained on bounding box annotated 
images from the NIH dataset*

!$%$&' = %!"# + (( − %)!(%)

Co
nv

 B
lo

ck
 #

1

Co
nv

 B
lo

ck
 #

2

Co
nv

 B
lo

ck
 #

3

Co
nv

 B
lo

ck
 #

N

…

Base CNN
(Fine-tuned on CXR images)

Fl
at

te
n

FC

512

ReLU

Figure 1: An overview of the proposed CXR Localisation Network (CLN) method. CE: Cross-entropy, BCE: Binary Cross Entropy, IoU: Intersection over the
Union, FC: Fully-connected, ReLU: Rectified Linear Unit.

of the NIH ChestX-ray14 (Wang et al., 2017) data set that con-
tains CXR images annotated with bounding boxes for 8 differ-
ent pathologies. Our experimental evaluation showed that the
proposed CLN architecture outperformed state-of-the-art meth-
ods in both the localisation and classification tasks, achieving a
maximum classification mean AUC score of 0.918 and a maxi-
mum localisation mean Intersection over Union (IoU) accuracy
of 0.855.

The motivation behind our proposed Chest X-ray Localisa-
tion Network (CLN) stems from three key challenges in adopt-
ing AI for medical imaging. First, localisation of pathologies
enhances explainability, a crucial factor in increasing trust in
AI-based diagnostic systems. By visualising the specific re-
gions associated with each diagnosis, the model can provide
interpretable results that are more accessible to radiologists and
healthcare providers. Second, establishing trust among doctors
is essential for real-world deployment; by clearly indicating ar-
eas of interest within the CXR, our model addresses the hesi-
tation to rely on “black-box” AI systems. Third, while exist-
ing methods show promising accuracy, many have high compu-
tational demands, which can hinder their practicality in clin-
ical environments with limited processing capabilities. Our
approach aims to balance performance and computational ef-
ficiency, offering an interpretable, high-performing model that
requires lower computational resources than more complex net-
works. Furthermore, contrary to most state-of-the-art CXR lo-
calisation methods, our approach utilises localisation annota-
tions during training and learns to directly predict the location
of abnormalities, instead of relying purely on the classification
labels.

The contributions of this work can be summarised as follows:
(i) A novel multi-task architecture for CXR image localisation

and classification that outperforms the state of the art. (ii) Rel-
ative simplicity compared to state-of-the-art methods by utilis-
ing CNNs and fully-connected layers, instead of transformers,
attention mechanisms, and complex network structures. (iii)
Significantly improved stability in terms of localisation perfor-
mance with regards to the Intersection over Union (IoU) thresh-
old, compared to state-of-the-art methods, with mean IoU accu-
racy decaying much slower as the threshold increases.

Our source code is avalable to facilitate further research1.

2. Material and methods

In this work, we propose the CXR Localisation Network
(CLN), a multi-task deep neural network for the task of CXR
image localisation and classification. The proposed architec-
ture relies on a backbone that is fine-tuned for CXR image clas-
sification on a large CXR dataset that contains images with 14
pathologies. The network is then divided into two branches,
one designed to classify the input CXR image into one of the
available pathology classes, and one designed for the task of
localisation by performing regression in order to estimate the
coordinates of the bounding box that denotes the region of the
CXR that contains the signs of the detected pathology. An
overview of the proposed architecture is provided in Figure 1.
The proposed architecture was trained to support the following
8 pathologies: Atelectasis, Cardiomegaly, Effusion, Infiltration,
Mass, Nodule, Pneumonia, and Pneumothorax.

2.1. CXR data set
To develop and evaluate the proposed architecture, we used

the National Institute of Health’s (NIH) ChestX-ray14 CXR

1A download link will be provided upon acceptance of the paper
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data set (Wang et al., 2017). The data set contains 112,120
CXR images of 30,805 subjects. Images are in PNG format
with a resolution of 1024×1024, and are associated with one or
more of 14 different pathologies, i.e. atelectasis, cardiomegaly,
effusion, infiltration, mass, nodule, pneumonia, pneumothorax,
consolidation, edema, emphysema, fibrosis, pleural thickening,
and hernia. Furthermore, the data set contains 984 bound-
ing box coordinates for 880 of the CXR images that were
hand-annotated by board-certified radiologists for 8 pathology
classes: atelectasis, cardiomegaly, effusion, infiltration, mass,
nodule, pneumonia, and pneumothorax. The NIH data set
comes with an official training/validation/test split, with all the
880 bounding-box annotated images belonging to the test set.

In this work, the data set was utilised in two different man-
ners. The official training and validation sets were used for fine-
tuning the feature extraction backbone of the proposed architec-
ture, whereas the subset of 880 bounding box annotated CXR
images was used for training and evaluating the final multi-task
network, which required bounding boxes for its training. Ran-
dom stratified sampling was used to split the subset of 880 im-
ages into a training (80%) and test (20%) set, with the training
set being further divided into a training (90%) and a validation
(10%) set. Furthermore, all images were resized to 224 × 224
pixels. It must be noted that there was no overlap between the
images used to fine-tune the feature extraction backbone and
the ones used to train and evaluate the final multi-task network,
thus there is no danger of data leakage and overfitting.

2.2. The CXR Localisation Network (CLN)
As illustrated in Figure 1, the proposed CLN architecture

takes as an input a CXR image. The CXR image is then fed
into a CNN-based image feature extraction backbone that has
been fine-tuned on CXR images for the classification of vari-
ous pathologies. The output of the convolutional base of the
backbone is then flattened and passed to two separate branches
of the architecture, one for CXR image classification and one
for CXR image localisation. Thus, the features extracted by the
backbone are shared across the two branches of the architecture.

2.2.1. Image feature extraction backbone
During the first stage of the proposed multi-task neural net-

work architecture, the input CXR image is passed through a
feature extraction module in order to compute an appropriate
representation of the image. This feature extraction module
constitutes the backbone of the proposed architecture and relies
on a convolutional neural network (CNN) that has been pre-
trained on the task of image classification. For our network’s
backbone, we opted to use pre-trained models trained on the ex-
tensive ImageNet (Krizhevsky et al., 2017) data set. This data
set consists of 1.4 million annotated images belonging to 1,000
different classes, and these models have demonstrated excep-
tional efficiency in extracting image features, as evidenced by
their outstanding classification performance in various applica-
tions. The models examined in this work as the backbone of the
proposed architecture were CheXnet (i.e. a DenseNet121) (Ra-
jpurkar et al., 2017), EfficienetB4 (Tan and Le, 2019), Incep-
tionV3 (Szegedy et al., 2016), Resnet50V2 (He et al., 2016),

Xception (Chollet, 2017), and MobileNetV3Small (Howard
et al., 2019). It must be noted that the Keras implementations
of the pre-trained models were used for this work.

The pre-trained feature extraction backbone was fine-tuned
on CXR images by training it using the full NIH CXR data set
that contained 14 pathologies. To this end, as shown in Fig-
ure 1, a flatten layer was added after the convolutional base of
the backbone network, followed by a fully connected layer of
size 14. Given that each image can be associated with multiple
labels (multi-label classification), a Sigmoid activation function
was used in the output layer for the final classification. The
network was then trained end-to-end on the training set using
binary cross-entropy as the loss function. The final model was
then selected as the model from the training epoch that provided
the best classification performance on the validation set.

Given the small number of bounding-box annotated CXR
images in the data set compared to the total number (880 vs.
112,120), as well as the smaller number of pathologies (8 vs.
14), we opted to fine-tune the feature extraction backbone on
the full NIH data set in order to create a more efficient and gen-
eralisable CXR image feature extractor by exploiting the signif-
icantly large number of images in the full data set. Furthermore,
it must be noted that the annotated images were not included in
the training and validation sets of the full data set.

As illustrated in Figure 1, the convolutional base of the fine-
tuned model was then used as the first stage of the proposed
multi-task neural network architecture, followed by a flattening
layer. After the flattening layer, the network is subsequently
split into two parallel branches, one targeting CXR image clas-
sification, and one targeting CXR image localisation. Consider-
ing that various CNNs can be used as the image feature extrac-
tion backbone of the proposed CLN architecture, we utilise the
following naming convention for clarity: CLN-BackboneCNN.
For example, CLN-ResNet50V2 refers to our proposed CLN ar-
chitecture using a ResNet50V2 model as its image feature ex-
traction backbone.

2.2.2. CXR image classification module

For the CXR image classification module of the proposed
architecture, the output of the flattening layer after the fea-
ture extraction backbone is passed to a fully-connected layer
of size 8 that uses a SoftMax activation function for the final
classification into the 8 pathologies included in the annotated
subset of the NIH data set, i.e. atelectasis, cardiomegaly, effu-
sion, infiltration, mass, nodule, pneumonia, and pneumothorax.
Given that each annotated image is associated with a single la-
bel (multi-class classification), the Softmax activation function
was used in the output layer for the final classification. It must
be noted that, since the loss function that will be used for train-
ing will take into consideration both classification and localisa-
tion performance, the network can only be trained with CXR
images for which localisation annotations exist. Consequently,
out of the 14 pathologies included in the NIH dataset, only the
8 included in the annotated subset can be supported by the CXR
image classification module.
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2.2.3. CXR image localisation module
For the CXR image localisation module of the proposed ar-

chitecture, the output of the flattening layer after the feature
extraction backbone is passed through a series of four fully-
connected layers. The first, second, and third fully-connected
layers have a size of 512, 256, and 128, respectively, and they
all use a rectified linear unit (ReLU) activation function. The
final fully-connected layer has a size of 4 and also uses a ReLU
activation function in order to ensure that the output values can-
not be negative. The four outputs of the final fully-connected
layer correspond to the values x1, x2, y1, y2 of a bounding box
defined by the coordinates (x1, y1), (x1, y2), (x2, y1), (x2, y2).
The CXR image localisation branch in our proposed architec-
ture utilises the CXR image features extracted by the feature
extraction backbone module. Its purpose is to estimate the re-
gion (bounding box) within the CXR image that corresponds to
the pathology prediction made by the CXR image classification
branch, employing a regression approach.

2.3. Loss function & Training

To train the proposed architecture, we propose the use of a
loss function that combines two loss metrics, one for classifica-
tion and one for localisation, with their combination controlled
by a hyperparameter λ that defines the contribution of each loss
to the total loss. For the classification metric, the Cross-Entropy
loss (LCE) was selected:

LCE = −
M∑

c=1

yo,c log(po,c), (1)

with M = 8 the number of classes, yo,c ∈ {0, 1} denoting
whether observation o belongs to class c, and po,c the predicted
probability that o is of class c. For the localisation metric, we
selected the Intersection over Union (IoU) metric, which de-
scribes the extent of overlap between the predicted bounding
box and the ground-truth bounding box, with higher overlap
leading to higher IoU values. IoU is defined as

IoU(Bpred, Bgt) =
|Bpred ∩ Bgt |
|Bpred ∪ Bgt | , (2)

where Bpred is the predicted bounding box and Bgt is the
ground-truth bounding box. IoU ranges between 0 and 1, with
0 denoting no overlap and 1 denoting perfect overlap. Higher
overlap corresponds to better localisation and leads to higher
IoU values, thus we define the IoU loss as:

LIoU = 1 − IoU(Bpred, Bgt) (3)

The final loss function for the training of the proposed architec-
ture is then defined as:

Ltotal = λLCE + (1 − λ)LIoU (4)

The contribution of the classification loss (LCE) to the to-
tal loss (Ltotal) is controlled by the hyperparameter λ, while
the contribution of the localisation loss (LIoU) is controlled by

(1 − λ). By combining these two losses, the overall loss func-
tion aims to capture both classification and localisation errors,
with the trade-off between the two losses controlled by the hy-
perparameter λ. The value of the hyperparameter λ is critical to
the performance of the proposed method. Its effect on localisa-
tion and classification performance is thoroughly examined in
Section 3.4.2.

Based on preliminary experimentation for selecting the train-
ing hyperparameters, the proposed multi-task neural network
architecture was trained using the proposed loss function and
the Adam (Kingma and Ba, 2014) optimiser with a batch size
of 16 and an initial learning rate of 0.001 that was reduced
by a factor of 2 after every 4 epochs, with a lower limit of
0.000001. All experiments were conducted using the Tensor-
Flow library and the Keras API on a GeForce RTX 4090 24GB
GPU. Early stopping was also applied, with training stopping
after 20 epochs with no improvement in validation loss.

3. Results

3.1. Evaluation Protocol & Metrics
The proposed multi-task neural network architecture for

CXR image localisation and classification underwent train-
ing and evaluation using the subset of 880 annotated CXR
images, encompassing 8 different pathologies. The perfor-
mance of the network was then compared against state-of-
the-art methods. Six variants of the proposed CLN architec-
ture were evaluated, CLN-ResNet50V2, CLN-EfficientNetB4,
CLN-InceptionV3, CLN-Xception, CLN-MobileNetV3Small,
and CLN-CheXNet, each differing in terms of the image feature
extraction backbone used. To ensure a fair performance evalua-
tion, localisation and classification performance was evaluated
according to the performance metrics utilised in the compared
works. To this end, classification performance was evaluated in
terms of the area under the ROC curve (AUC), whereas local-
isation performance was evaluated using the IoU metric, com-
puted using the predicted and the ground truth bounding boxes.

As is common across the literature (Han et al., 2023; Wang
et al., 2017; Li et al., 2018; Ouyang et al., 2021), IoU accuracy
is defined by considering the localisation to be correct when
the computed IoU is larger than a fixed IoU threshold T (IoU).
Consequently, the reported localisation accuracy for a given
threshold T (IoU) denotes the percentage of images for which
the IoU between the predicted and the ground truth bound-
ing box was higher than the threshold T (IoU). The proposed
CLN architecture was evaluated for seven different IoU thresh-
olds, i.e. T (IoU) ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. Evaluating
IoU at various thresholds is a standard practice in object detec-
tion to comprehensively assess a model’s localisation perfor-
mance. IoU measures the overlap between the predicted bound-
ing box and the ground truth, providing a quantitative metric for
localisation accuracy (Zheng et al., 2020; Luo et al., 2024). By
analysing performance across a range of IoU thresholds, we can
determine how well the model balances precision and recall at
different levels of overlap. This approach is particularly rele-
vant in medical imaging, where precise localisation is crucial
for accurate diagnosis and treatment planning.
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Table 1: Pathology localisation results using state-of-the-art methods and the proposed method for six different backbone models on the NIH chest X-ray dataset.
Results are measured by IoU accuracy at a fixed threshold ([0.1,0.7]).

T(IoU) Method Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.1

ViT-based (Han et al., 2023) 0.58 0.91 0.61 0.77 0.44 0.11 0.75 0.25 0.553
Wang et al. (Wang et al., 2017) 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38 0.569
RGT (Han et al., 2023) 0.61 0.95 0.65 0.82 0.50 0.13 0.79 0.28 0.591
Li et al. (Li et al., 2018) 0.71 0.98 0.87 0.92 0.71 0.40 0.60 0.63 0.728
Ouyang et al. (Ouyang et al., 2021) 0.71 1.00 0.89 0.88 0.76 0.65 0.91 0.78 0.820
CLN-ResNet50V2 (ours) 0.76 0.93 0.73 0.92 0.65 0.94 0.92 0.72 0.822
CLN-MobileNetV3Small (ours) 0.89 1.00 0.75 0.84 0.67 0.64 0.96 0.95 0.837
CLN-EfficientNetB4 (ours) 0.84 0.97 0.73 1.00 0.56 0.94 0.92 0.79 0.844
CLN-InceptionV3 (ours) 0.89 1.00 0.75 0.86 1.00 0.77 0.91 0.62 0.850
CLN-Xception (ours) 0.89 1.00 0.79 0.83 0.73 0.77 1.00 0.81 0.852
CLN-CheXNet (ours) 0.79 1.00 0.83 0.84 0.88 0.75 1.00 0.75 0.855

0.2

ViT-based (Han et al., 2023) 0.38 0.85 0.39 0.55 0.24 0.01 0.51 0.15 0.385
Wang et al. (Wang et al., 2017) 0.47 0.68 0.45 0.48 0.26 0.05 0.35 0.23 0.371
RGT (Han et al., 2023) 0.41 0.91 0.41 0.59 0.26 0.05 0.57 0.19 0.424
Li et al. (Li et al., 2018) 0.53 0.97 0.76 0.83 0.59 0.29 0.50 0.51 0.623
Ouyang et al. (Ouyang et al., 2021) 0.54 1.00 0.75 0.79 0.67 0.53 0.86 0.60 0.720
CLN-ResNet50V2 (ours) 0.68 0.93 0.63 0.92 0.65 0.94 0.89 0.72 0.794
CLN-MobileNetV3Small (ours) 0.81 0.97 0.75 0.84 0.56 0.57 0.96 0.95 0.800
CLN-EfficientNetB4 (ours) 0.81 0.97 0.73 1.00 0.56 0.88 0.92 0.74 0.826
CLN-InceptionV3 (ours) 0.78 1.00 0.68 0.82 1.00 0.77 0.77 0.62 0.805
CLN-Xception (ours) 0.87 1.00 0.73 0.83 0.67 0.65 0.88 0.81 0.806
CLN-CheXNet (ours) 0.79 0.97 0.80 0.84 0.82 0.69 1.00 0.70 0.826

0.3

ViT-based (Han et al., 2023) 0.20 0.45 0.19 0.32 0.06 0.00 0.21 0.02 0.181
Wang et al. (Wang et al., 2017) 0.24 0.46 0.30 0.28 0.15 0.04 0.17 0.13 0.221
RGT (Han et al., 2023) 0.28 0.79 0.22 0.38 0.12 0.01 0.41 0.05 0.283
Li et al. (Li et al., 2018) 0.36 0.94 0.56 0.66 0.45 0.17 0.39 0.44 0.496
Ouyang et al. (Ouyang et al., 2021) 0.40 1.00 0.52 0.68 0.58 0.46 0.69 0.43 0.600
CLN-ResNet50V2 (ours) 0.60 0.82 0.57 0.92 0.65 0.88 0.89 0.72 0.755
CLN-MobileNetV3Small (ours) 0.76 0.97 0.69 0.72 0.56 0.50 0.82 0.95 0.744
CLN-EfficientNetB4 (ours) 0.76 0.97 0.73 1.00 0.56 0.88 0.77 0.74 0.800
CLN-InceptionV3 (ours) 0.78 0.97 0.68 0.82 0.95 0.65 0.77 0.57 0.773
CLN-Xception (ours) 0.83 1.00 0.70 0.83 0.67 0.35 0.76 0.81 0.744
CLN-CheXNet (ours) 0.70 0.97 0.77 0.80 0.77 0.69 1.00 0.65 0.792

0.4

ViT-based (Han et al., 2023) 0.10 0.21 0.03 0.05 0.02 0.00 0.04 0.00 0.056
Wang et al. (Wang et al., 2017) 0.09 0.28 0.20 0.12 0.07 0.01 0.08 0.07 0.115
RGT (Han et al., 2023) 0.17 0.54 0.13 0.18 0.07 0.01 0.26 0.02 0.173
Li et al. (Li et al., 2018) 0.25 0.88 0.37 0.50 0.33 0.11 0.26 0.29 0.374
Ouyang et al. (Ouyang et al., 2021) 0.26 1.00 0.29 0.56 0.40 0.35 0.50 0.32 0.460
CLN-ResNet50V2 (ours) 0.61 0.82 0.50 0.92 0.65 0.75 0.89 0.72 0.731
CLN-MobileNetV3Small (ours) 0.76 0.97 0.63 0.72 0.56 0.43 0.82 0.95 0.728
CLN-EfficientNetB4 (ours) 0.76 0.97 0.60 0.91 0.56 0.63 0.73 0.68 0.730
CLN-InceptionV3 (ours) 0.78 0.90 0.54 0.77 0.90 0.59 0.77 0.48 0.716
CLN-Xception (ours) 0.74 1.00 0.67 0.83 0.53 0.29 0.76 0.71 0.693
CLN-CheXNet (ours) 0.70 0.97 0.67 0.76 0.71 0.63 1.00 0.60 0.753

0.5

ViT-based (Han et al., 2023) 0.05 0.15 0.01 0.04 0.02 0.00 0.03 0.00 0.034
Wang et al. (Wang et al., 2017) 0.05 0.18 0.11 0.07 0.01 0.01 0.03 0.03 0.061
RGT (Han et al., 2023) 0.08 0.32 0.05 0.09 0.05 0.00 0.12 0.01 0.090
Li et al. (Li et al., 2018) 0.14 0.84 0.22 0.30 0.22 0.07 0.17 0.19 0.269
Ouyang et al. (Ouyang et al., 2021) 0.15 0.99 0.14 0.33 0.27 0.22 0.35 0.22 0.330
CLN-ResNet50V2 (ours) 0.58 0.74 0.50 0.92 0.59 0.69 0.89 0.72 0.703
CLN-MobileNetV3Small (ours) 0.70 0.97 0.63 0.64 0.44 0.21 0.82 0.90 0.664
CLN-EfficientNetB4 (ours) 0.70 0.97 0.47 0.82 0.50 0.50 0.73 0.68 0.671
CLN-InceptionV3 (ours) 0.76 0.84 0.39 0.77 0.90 0.41 0.77 0.48 0.665
CLN-Xception (ours) 0.71 1.00 0.58 0.75 0.47 0.18 0.72 0.67 0.634
CLN-CheXNet (ours) 0.70 0.91 0.60 0.72 0.71 0.63 0.96 0.55 0.720

0.6

ViT-based (Han et al., 2023) 0.01 0.03 0.01 0.01 0.01 0.00 0.01 0.00 0.010
Wang et al. (Wang et al., 2017) 0.02 0.08 0.05 0.02 0.00 0.01 0.02 0.03 0.029
RGT (Han et al., 2023) 0.02 0.15 0.03 0.04 0.03 0.00 0.06 0.00 0.041
Li et al. (Li et al., 2018) 0.07 0.73 0.15 0.18 0.16 0.03 0.10 0.12 0.193
Ouyang et al. (Ouyang et al., 2021) 0.08 0.97 0.05 0.18 0.14 0.15 0.27 0.11 0.240
CLN-ResNet50V2 (ours) 0.58 0.74 0.47 0.88 0.53 0.31 0.89 0.61 0.626
CLN-MobileNetV3Small (ours) 0.60 0.90 0.59 0.56 0.33 0.07 0.82 0.80 0.584
CLN-EfficientNetB4 (ours) 0.60 0.90 0.33 0.77 0.25 0.44 0.73 0.53 0.569
CLN-InceptionV3 (ours) 0.65 0.84 0.29 0.64 0.79 0.35 0.68 0.43 0.583
CLN-Xception (ours) 0.43 1.00 0.39 0.63 0.27 0.00 0.60 0.48 0.474
CLN-CheXNet (ours) 0.52 0.81 0.50 0.72 0.53 0.31 0.92 0.40 0.588

0.7

ViT-based (Han et al., 2023) 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.001
Wang et al. (Wang et al., 2017) 0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.011
RGT (Han et al., 2023) 0.01 0.04 0.01 0.02 0.01 0.00 0.03 0.00 0.015
Li et al. (Li et al., 2018) 0.04 0.52 0.07 0.09 0.11 0.01 0.05 0.05 0.118
Ouyang et al. (Ouyang et al., 2021) 0.02 0.77 0.01 0.12 0.08 0.10 0.06 0.03 0.150
CLN-ResNet50V2 (ours) 0.47 0.74 0.43 0.80 0.29 0.13 0.85 0.44 0.520
CLN-MobileNetV3Small (ours) 0.51 0.90 0.56 0.48 0.33 0.00 0.82 0.70 0.538
CLN-EfficientNetB4 (ours) 0.46 0.77 0.17 0.73 0.19 0.19 0.69 0.26 0.432
CLN-InceptionV3 (ours) 0.35 0.84 0.25 0.64 0.42 0.24 0.64 0.33 0.463
CLN-Xception (ours) 0.11 0.85 0.21 0.33 0.13 0.00 0.28 0.38 0.288
CLN-CheXNet (ours) 0.33 0.81 0.43 0.60 0.24 0.13 0.71 0.35 0.450

∗λ set to 0.1 for CLN-ResNet50V2 and CLN-EfficientNetB4, to 0.2 for CLN-Xception, and to 0.4 for CLN-InceptionV3, CLN-MobileNetV3Small, and CLN-CheXNet.
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Table 2: AUC scores for the annotated subset of the NIH dataset for the task of CXR image classification. Results ordered by ascending mean AUC. Methods in
bold are also included in the localisation performance comparison.

Method Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean
Wang et al. (Wang et al., 2017) 0.72 0.81 0.78 0.61 0.71 0.67 0.63 0.81 0.718
ViT-based (Han et al., 2023) 0.74 0.78 0.81 0.72 0.70 0.66 0.65 0.76 0.728
CrossViT (Han et al., 2023) 0.69 0.71 0.72 0.72 0.74 0.79 0.82 0.88 0.759
PS-ViT (Han et al., 2023) 0.75 0.81 0.82 0.73 0.79 0.73 0.69 0.81 0.766
DNetLoc (Gündel et al., 2018) 0.77 0.88 0.83 0.71 0.82 0.76 0.73 0.85 0.794
CAN (Ma et al., 2019) 0.78 0.89 0.83 0.70 0.84 0.77 0.72 0.86 0.799
Li et al. (Li et al., 2018)a 0.80 0.87 0.87 0.70 0.83 0.77 0.67 0.88 0.799
Ouyang et al. (Ouyang et al., 2021) 0.77 0.87 0.83 0.71 0.83 0.79 0.72 0.88 0.800
Liu et al. (Liu et al., 2019) 0.79 0.87 0.88 0.69 0.81 0.73 0.75 0.89 0.801
Seyyed-Kalantari et al. (Seyyed-Kalantari et al., 2021) 0.81 0.92 0.87 0.72 0.83 0.78 0.76 0.88 0.821
CLN-InceptionV3 (ours) 0.83 0.96 0.70 0.71 0.86 0.92 0.78 0.84 0.825
Han et al. (Han et al., 2021) 0.83 0.92 0.87 0.76 0.85 0.76 0.77 0.86 0.828
Rajpurkar et al. (Rajpurkar et al., 2017) 0.82 0.91 0.88 0.72 0.86 0.78 0.76 0.89 0.828
CLN-EfficientNetB4 (ours) 0.77 0.94 0.79 0.83 0.73 0.94 0.77 0.87 0.831
RGT (Han et al., 2023) 0.80 0.92 0.78 0.86 0.88 0.88 0.79 0.81 0.839
CLN-CheXNet (ours) 0.75 0.96 0.84 0.74 0.90 0.86 0.78 0.97 0.849
CLN-Xception 0.80 0.99 0.86 0.84 0.85 0.90 0.83 0.95 0.878
CLN-ResNet50V2 (ours) 0.83 0.90 0.81 0.92 0.90 0.95 0.91 0.92 0.893
CLN-MobileNetV3Small 0.89 0.99 0.88 0.89 0.85 0.93 0.93 0.98 0.918
aResults refer to the 80% annotated - 80% unannotated setting

∗λ set to 0.1 for CLN-ResNet50V2 and CLN-EfficientNetB4, to 0.2 for CLN-Xception, and to 0.4 for CLN-InceptionV3, CLN-MobileNetV3Small, and CLN-CheXNet.
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Figure 2: Pathology localisation results for the examined IoU thresholds.

3.2. Pathology Localisation

The six variants of the proposed CLN architecture were eval-
uated in terms of IoU accuracy against five state-of-the-art CXR
image localisation methods, i.e. ViT-based (Han et al., 2023),
Wang et al. (Wang et al., 2017), RGT (Han et al., 2023), Li et
al. (Li et al., 2018), and Ouyang et al. (Ouyang et al., 2021).
Localisation results are summarised in Table 1 for each of the
8 pathologies included in the annotated subset of the NIH data
set. The mean IoU accuracy across all pathologies is also re-
ported for all the examined methods and is also illustrated in
Figure 2. From Table 1 and Figure 2, it is evident that all the

six examined variants of the proposed CLN architecture out-
perform the compared state-of-the-art localisation methods for
all the examined IoU thresholds, achieving a maximum mean
IoU accuracy of 0.855 for T (IoU) = 0.1 using the CLN-
ChexXNet variant. In comparison, the best state-of-the-art
method (Ouyang et al. (Ouyang et al., 2021)) achieved a mean
IoU accuracy of 0.820 for the same threshold. At T (IoU) = 0.1,
the variants of the proposed architecture achieved an improve-
ment in the localisation performance of individual pathologies
for 7 out of the 8 pathologies, performing worse only for effu-
sion, for which (Ouyang et al., 2021) achieved an IoU accuracy
of 0.89 compared to 0.83 for the proposed method. For car-
diomegaly, both the proposed method and (Ouyang et al., 2021)
achieved perfect localisation performance, with IoU accuracy
reaching 1.00.

The improvement in localisation performance of the pro-
posed method compared to the state of the art becomes more
substantial for higher IoU thresholds, as shown in Figure 2
and Table 1. At T (IoU) = 0.2, the highest mean IoU ac-
curacy is improved by 14.7% compared to (Ouyang et al.,
2021) (0.826 vs. 0.720), achieving an improvement for 7 out
of the 8 pathologies, whereas both (Ouyang et al., 2021) and
the proposed CLN method achieved a perfect localisation per-
formance for cardiomegaly. At T (IoU) = 0.3, the improve-
ment is 33.3% (0.800 for CLN-EfficientNetB4 vs. 0.600 for
(Ouyang et al., 2021)), outperforming the other methods for all
pathologies, whereas both the proposed method and (Ouyang
et al., 2021) achieved perfect localisation performance for car-
diomegaly (1.00). At T (IoU) = 0.4 the improvement is
63.7% (0.753 vs. 0.460), performing considerably better for all
pathologies, whereas both the proposed method and (Ouyang
et al., 2021) achieved perfect localisation performance for car-
diomegaly (1.00). The improvement at T (IoU) = 0.5 and
T (IoU) = 0.6 rises to 118.2% (0.720 vs. 0.330) and 160.8%
(0.626 vs. 0.240), respectively, achieving better localisation for
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Atelectasis Cardiomegaly Effusion Infiltration

Mass Nodule Pneumonia Pneumothorax

Figure 3: Visualisation of pathology localisation for a randomly selected CXR image for each pathology. Green and red denote the ground-truth and the predicted
bounding box, respectively, using the proposed CLN-CheXNet model.

all pathologies. Finally, the proposed CLN method achieved a
remarkable improvement of 246.7% (0.520 vs. 0.150) over the
state of the art for T (IoU) = 0.7, achieving better localisation
for all the examined pathologies.

It must be noted that for the reported results, CLN-
ResNet50V2 and CLN-EfficientNetB4 were trained with λ =
0.1, CLN-Xception with λ = 0.2, whereas CLN-InceptionV3,
CLN-MobileNetV3Small, and CLN-CheXNet were trained
with λ = 0.4. Models were trained and fine-tuned using the
training and validation subsets of the bounding box annotated
CXR images from the NIH data set, and results are reported for
the test subset. Examples of the predicted bounding boxes for
each pathology are shown in Figure 3.

A Wilcoxon signed-rank test was used to test for signifi-
cance by comparing the distribution of the IoU accuracy scores
achieved for all pathologies and for all the IoU thresholds
(T (IoU)) by our best performing CLN-CheXNet model against
each of the other methods outlined in Table 1. The distri-
bution of IoU accuracy scores was significantly different than
the four compared state-of-the-art methods, with p << 0.01.
However, a statistically significant difference could not be es-
tablished against the other examined variants of our proposed
method (p > 0.05).

3.3. Pathology Classification

We evaluated the performance of the proposed method for
pathology classification of the 8 pathologies in the annotated
subset of the NIH data set by comparing to state-of-the-art
methods for CXR image classification. In the experimental
comparison, we included the five CXR localisation methods ex-
amined in the previous section, as well as seven additional CXR
image classification methods (CrossViT (Han et al., 2023),
PS-ViT (Han et al., 2023), DNetLoc (Gündel et al., 2018),
CAN (Ma et al., 2019), Liu et al. (Liu et al., 2019), Han et

al. (Han et al., 2021), Rajpurkar et al. (Rajpurkar et al., 2017)).
Classification performance is reported in Table 2 in terms of
the AUC score for each individual pathology, as well in terms
of the mean AUC across the 8 pathologies. From this table, it
is evident that the CLN-MobileNetV3Small variant of the pro-
posed architecture outperformed all the compared methods in
terms of mean AUC, achieving a mean AUC of 0.918. The
second best mean AUC (0.893) was achieved by the proposed
CLN-ResNet50V2, whereas the third best (0.878) by the pro-
posed CLN-Xception. From Table 2, it is evident that, com-
pared to the state of the art, the variants of the proposed archi-
tecture were able to achieve improved AUC for all the examined
pathologies. For effusion, the best AUC of 0.88 was achieved
by the proposed CLN-MobileNetV3Small, the Liu et al. (Liu
et al., 2019) and the Rajpurkar et al. (Rajpurkar et al., 2017)
methods.

A Wilcoxon signed-rank test was used to test for sig-
nificance by comparing the distribution of the AUC scores
achieved for all pathologies by our best performing CLN-
MobileNetV3Small model against each of the other methods
outlined in Table 2. The distribution of AUC scores was sig-
nificantly different than the compared state-of-the-art methods,
with p < 0.05 for the Liu et al. (Liu et al., 2019), Han
et al. (Han et al., 2021), Rajpurkar et al. (Rajpurkar et al.,
2017), and RGT (Han et al., 2023) methods, and p < 0.01
for the rest. When compared against the other variants of the
proposed method, the distribution of AUC scores was signif-
icantly different than CLN-InceptionV3, CLN-EfficientNetB4,
and CLN-Xception (p < 0.05), but a statistically significant
difference could not be established against CLN-CheXNet and
CLN-ResNet50V2 (p > 0.05).
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Figure 4: Pathology localisation and classification results for the six examined variants of the proposed architecture in relation to the λ hyperparameter. Values in
the y axis depict the mean IoU accuracy or the mean AUC score depending on the respective series.

3.4. Ablation study

It is evident from the experimental results that the perfor-
mance of the proposed CLN architecture can be affected by
the model used as the image feature extraction backbone, by
the value of the hyperparameter λ, and by the IoU threshold
used to compute the IoU accuracy. We evaluated the effect of
the IoU threshold and of λ by conducting various ablation ex-
periments, whereas the effect of the six different models used

as the image feature extraction backbone was extensively dis-
cussed in Section 3.2 and can be seen in Table 1 and Table 2.
In addition, we compared the localisation performance of the
proposed approach to the localisation performance achieved
by using Gradient-weighted Class Activation Mapping (Grad-
CAM) (Selvaraju et al., 2017) on the CNN-based image feature
extraction backbone of the proposed architecture.
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3.4.1. Effect of IoU threshold T (IoU)
The effect of the IoU threshold on the mean IoU accuracy is

examined in Figure 2. There is a clear negative relation be-
tween T (IoU) and mean IoU accuracy for all the examined
methods, with higher T (IoU) leading to lower mean IoU ac-
curacy in all cases. Nevertheless, it is evident that the proposed
CLN architecture is more resistant to the increase in T (IoU),
exhibiting much slower decay in mean IoU accuracy compared
to the state-of-the-art methods, which demonstrated rapid decay
as T (IoU) increased, as shown in Figure 2.

3.4.2. Effect of λ
The effect of the λ hyperparameter on the classification mean

AUC score and on the localisation mean IoU accuracy is ex-
amined in Figure 4 for λ ∈ [0.1, 0.9]. Given the proposed loss
function (Eq. 4), a higher λ implies a higher weight to the cross-
entropy loss and a lower weight to the IoU loss, i.e. a higher
weight for the classification metric and lower for the localisa-
tion metric. A λ = 0 or λ = 1 would lead to only the classifi-
cation or the localisation metric to be considered, respectively.
λ’s effect on mean AUC score seems to depend on the model
used as the image feature extraction backbone. Mean AUC
scores for CLN-InceptionV3, CLN-CheXNet, CLN-Xception,
and CLN-MobileNetV3Small are less affected by λ, with scores
ranging from 0.777 to 0.837 (σ = 0.022), from 0.818 to
0.887 (σ = 0.021), from 0.817 to 0.888 (σ = 0.024), and
from 0.831 to 0.919 (σ = 0.025), respectively, whereas CLN-
EfficientNetB4 and CLN-ResNet50V2 are much more affected,
with scores ranging from 0.713 to 0.831 (σ = 0.033) and from
0.711 to 0.893 (σ = 0.066), respectively.

From Figure 4, it is evident that λ’s effect on mean IoU accu-
racy is much more dramatic compared to AUC. λ values at the
mid of its range seem to underperform considerably. In most
cases, localisation performance seems to drop as λ increases
and then improves again for higher values. The observed trend
for each variant is consistent across the different IoU thresh-
olds (T (IoU)), but the drop in localisation performance for mid-
valued λ is less prominent for T (IoU) = 0.1.

Considering that the proposed architecture aims at both
pathology classification and localisation, the selected λ should
maximise both mean AUC and mean IoU accuracy. How-
ever, as shown in Figure 4, the best mean AUC is typically
achieved for a different λ than the one providing the best mean
IoU accuracy, thus a trade-off must be made during hyperpa-
rameter tuning. In this work, we attempted to achieve a bal-
ance between the two metrics, leading to λ = 0.1 being se-
lected for CLN-ResNet50V2 and CLN-EfficientNetB4, λ = 0.2
for CLN-Xception, and λ = 0.4 for CLN-InceptionV3, CLN-
MobileNetV3Small, and CLN-CheXNet.

3.4.3. Comparison to Grad-CAM
Gradient-weighted Class Activation Mapping (Grad-

CAM) (Selvaraju et al., 2017) is a localisation method that can
generate class-wise visual explanations of the classification
predictions of CNN-based networks. For each possible class,
Grad-CAM uses the gradients flowing into the last convolu-
tional layer of the network to create a heatmap that indicates
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Figure 5: Localisation results of CLN-ChexNet and Grad-CAM in terms of
mean IoU accuracy for the examined IoU thresholds (T (IoU)).

the image regions that were most important for predicting the
respective class. Localisation bounding boxes can then be
extracted from the heatmap after applying thresholding and
drawing the bounding box around the largest contiguous group
of selected pixels (Gascoigne-Burns and Katsigiannis, 2022).
Considering that our proposed CLN architecture relies on a
CNN-based backbone, localisation bounding boxes can also
be computed by applying Grad-CAM on the last convolutional
layer of the CNN backbone.

To demonstrate the effectiveness of our proposed approach,
we compared the best performing CLN variant’s (CLN-
ChexNet) localisation performance against Grad-CAM, applied
to the CNN-based image feature extraction backbone of the
model. Given that the selected threshold affects localisation
performance (Gascoigne-Burns and Katsigiannis, 2022), results
for Grad-CAM were computed for two different thresholds,
i.e. accepting pixel values within the range [127, 255] and
[180, 255], respectively. The thresholds refer to the Grad-CAM
heatmap’s pixels intensity, after normalising them to the range
[0, 255]. Localisation performance for CLN-CheXNet and the
two Grad-CAM thresholds are illustrated in Figure 5. From this
figure, it is evident that the proposed approach performs consid-
erably better than Grad-CAM applied on its CNN-based back-
bone, with CLN-CheXNet achieving a maximum mean IoU ac-
curacy of 0.855 for T (IoU) = 0.1, compared to 0.382 for Grad-
CAM with the [127, 255] threshold and 0.302 for Grad-CAM
with the [180, 255] threshold. Examples of bounding boxes
created by Grad-CAM and by CLN-CheXNet in relation to the
ground truth bounding boxes are shown in Figure 6.

4. Discussion

It is evident from Table 1 and 2 that the proposed CLN ar-
chitecture outperforms the examined state-of-the-art models for
both CXR image localisation and classification. Among the six
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Grad-CAM threshold = [127, 255] Grad-CAM threshold = [180, 255]

Figure 6: Visualisation of pathology localisation for randomly selected CXR
images. Green denotes the ground-truth bounding box. Red denotes the pre-
dicted bounding box using the proposed CLN-CheXNet model. Blue denotes
the predicted bounding box using Grad-CAM for a threshold of [127, 255] (left
column) and a threshold of [180, 255] (right column).

examined CLN variants, CLN-CheXNet achieved the best bal-
ance among localisation and classification, ranking first among
all models for localisation and fourth behind other CLN vari-
ants for classification. Apart from the improved performance,
the proposed approach offers two significant advantages over
the compared methods; better stability in localisation perfor-
mance as the IoU threshold increases, and relative simplicity
that leads to lower computational complexity.

Regarding the stability in localisation performance as the IoU
threshold increases, it is evident from Figure 2 that mean IoU
accuracy for the examined state-of-the-art localisation methods
drops sharply with the increase in T (IoU), whereas the accu-
racy for the variants of the proposed architecture drops at a
much slower rate. The stability of the proposed approach with
regards to the IoU threshold is further demonstrated in Fig-
ure 7, which depicts the decrease in mean IoU accuracy as a
percentage of the mean IoU accuracy for T (IoU) = 0.1 for
the proposed CLN variants and the compared CXR localisa-
tion methods. The best performing state-of-the-art Ouyang et
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Figure 7: Decrease in mean IoU accuracy as a percentage of the mean IoU
accuracy for T (IoU) = 0.1 as the IoU threshold increases for the proposed
CLN variants and the compared CXR localisation methods.

al. (Ouyang et al., 2021) method exhibited a 81.7% decrease in
mean IoU between T (IoU) = 0.1 and T (IoU) = 0.7, whereas
the worst performing ViT-based (Han et al., 2023) method ex-
hibited a decrease of 99.8%. On the contrary, the best per-
forming variant of the proposed architecture (CLN-CheXNet)
exhibited a decrease of only 48.8% in mean IoU accuracy be-
tween T (IoU) = 0.1 and T (IoU) = 0.7, whereas the worst
performing variant (CLN-ResNet50V2) exhibited a decrease of
only 36.7%, demonstrating better stability in localisation per-
formance compared to the examined state-of-the-art models as
the IoU threshold increases.

Regarding its complexity, the proposed architecture relies on
a pre-trained CNN model and fully-connected layers for classi-
fication and for localisation via regression. The compared state-
of-the-art approaches employ combinations of transformers, at-
tention mechanisms, and complex network structures, leading
to a substantial increase in complexity. The size of each ex-
amined CLN variant in terms of its number of parameters is
presented in Table 3, alongside its computational cost in terms
of floating point operations per second (FLOPS). From Ta-
ble 3, it is evident that the size and complexity of the proposed
method depends mainly on the size and complexity of the im-
age feature extraction backbone. Smaller backbones (e.g. Mo-
bileNetV3Small) lead to smaller CLNmodels and vice versa.

We attribute the performance improvements of the proposed
method to the following reasons: By utilising localisation anno-
tations during training in the form of bounding boxes, the model
learns to directly predict the location of abnormalities, which is
more precise than methods that rely purely on classification la-
bels, due to increased spatial awareness. In addition, the use of
the localisation bounding boxes in the training also allows the
loss function to incorporate a localisation quality metric, i.e.
IoU, thus forcing the training process to optimise the proposed
method for both localisation and classification. Finally, follow-

12

                  



Table 3: Size and floating point operations per second (FLOPS) for the exam-
ined CLN variants.

Model Total Parameters Trainable Parameters FLOPS
CLN-ResNet50V2 24,795,020 24,749,580 6.99 GFLOPS
CLN-MobileNetV3Small 1,403,900 1,391,788 0.12 GFLOPS
CLN-EfficientNetB4 18,770,916 18,645,716 3.08 GFLOPS
CLN-InceptionV3 23,033,004 22,998,572 5.69 GFLOPS
CLN-Xception 22,091,700 22,037,172 9.13 GFLOPS
CLN-CheXNet 7,735,244 7,651,596 5.70 GFLOPS

ing a multi-task approach allowed each branch of the proposed
architecture (localisation and classification) to be optimised for
each intended task, thus having a dedicated part of the archi-
tecture for predicting localisation bounding boxes, as opposed
to various state-of-the-art methods that approach localisation as
a by-product of the classification task, e.g. using Grad-CAM,
attention maps, etc.

However, the proposed architecture has some limitations. Its
training requires CXR images annotated with bounding boxes
from expert radiologists. Annotating large numbers of CXR im-
ages is an arduous, time-consuming, and costly task, leading to
limited availability of such annotated images for many patholo-
gies. Furthermore, to the best of the authors’ knowledge, there
is no other CXR data set that contains bounding box annota-
tions for the pathologies examined in this work, thus a cross-
dataset evaluation is not possible. In addition, the proposed
architecture does not support the prediction of multiple bound-
ing boxes on the CXR image, thus being limited in providing
localisation for a single pathology. Finally, a trade-off between
classification and localisation performance must be made dur-
ing hyperparameter tuning, as the ablation study showed that
the best performance is achieved for different λ for each task.

5. Conclusion

In this work, we proposed the Chest X-ray Localisation Net-
work (CLN), a multi-task deep neural network designed for
the tasks of CXR image classification and localisation. Built
on a pre-trained convolutional neural network backbone, the
CLN architecture uses separate branches for classification and
bounding box regression (localisation), achieving a mean AUC
of 0.918 in classification and a mean IoU accuracy of 0.855 in
localisation across eight pathologies in a publicly available an-
notated CXR dataset. Our proposed method provides notable
advantages over existing methods, including superior classifi-
cation and localisation accuracy, reduced performance decay
with increased IoU thresholds, and an overall simpler architec-
ture. The results indicate that CLN can offer an efficient solu-
tion for computer-aided CXR diagnosis, offering interpretable
and effective support for radiologists. Nevertheless, the pro-
posed method also has some limitations. In terms of practical
considerations, the model’s reliance on high-quality annotated
data sets may limit its scalability to other imaging datasets lack-
ing similar annotations. In addition, a trade-off between clas-
sification and localisation performance is required during hy-
perparameter tuning. Furthermore, the proposed architecture
does not support the prediction of multiple bounding boxes on

a CXR image. In terms of theoretical considerations, while
CLN demonstrates interpretability, the approach could bene-
fit from incorporating more advanced explainability techniques
to increase trust in clinical applications. Future work will ad-
dress these limitations by incorporating additional pathologies,
supporting multiple bounding boxes per image, and further en-
hancing interpretability to align more closely with radiologists’
needs.
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