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Turbidity currents, which are stratified, sediment-laden bottom flows in the ocean or lakes,
can run out for hundreds or thousands of kilometres in submarine channels without losing
their stratified structure. Here, we derive a layer-averaged, two-layer model for turbidity
currents, specifically designed to capture long-runout. A number of previous models have
captured runout of only tens of kilometres, beyond which thickening of the flows becomes
excessive, and the models without a lateral overspill mechanism fail. In our framework, a
lower layer containing nearly all the sediment is a faster, gravity-driven flow that propels
an upper layer, where sediment concentration is nearly zero. The thickness of the lower
layer is controlled by competition between interfacial water entrainment due to turbulent
mixing and water detrainment due to sediment settling at the interface. The detrainment
mechanism, first identified in experiments, is the key feature that prevents excessive
thickening of the lower layer and allows long-runout. Under normal flow conditions,
we obtain an exact solution to the two-layer formulation, revealing a constant velocity
and a constant thickening rate in each of the two layers. Numerical simulations applied
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to gradually varied flows on both constant and exponentially declining bed slopes, with
boundary conditions mimicking field observations, show that the predicted lower layer
thickness after 200 km flow propagation compares with observed submarine channel
depths, whereas previous models overestimate this thickness three- to fourfold. This
formulation opens new avenues for modelling the fluid mechanics and morphodynamics
of long-runout turbidity currents in the submarine setting.

Key words: gravity currents, sediment transport, stratified flows

1. Introduction: submarine fans and long-runout turbidity currents
Submarine, or deep-sea fans represent the major ultimate sinks for terrestrial sediment.
Sediment is transported across these fans through submarine channels that may extend for
hundreds or thousands of kilometres into water that is up to thousands of metres deep. The
longest of these fans is the Bengal Fan at ∼ 3000 km (Curray et al. 2002; Schwenk et al.
2003). Other very large fans include the Congo Fan at ∼ 1000 km (Picot et al. 2016), the
Indus Fan at ∼ 1500 km, the Amazon Fan at ∼ 700 km, the Mississippi Fan at ∼ 500 km,
and the Rhone Fan at ∼ 400 km (Wetzel 1993; Deptuck & Sylvester 2017). Submarine
fan systems are emplaced largely by sediment transported through submarine channels,
which both convey and are constructed by turbidity currents, i.e. dense bottom flows that
obtain their driving power from suspended sediment (Daly 1936; Kuenen 1938; Pirmez
& Imran 2003). The channels are commonly highly sinuous (Imran et al. 1999; Schwenk
et al. 2003), and build the fan itself by avulsing across the fan surface (Jobe et al. 2020).

Views of the Amazon Submarine Fan and the meandering Amazon Channel itself are
given in figure 1. The sinuosity of this channel, and many other channels on submarine
fans, implies that the down-channel lengths may notably exceed the length of the fan itself.

Covault et al. (2011) have documented 20 long profiles of submarine channels as they
traverse an upstream canyon and emanate onto the fan below (figure 2a). Eight of these
are 200 km or more in length. It can be seen from the figure that channels on canyon–
fan systems have long profiles that vary from approximately constant slopes to strongly
upward concave.

Figure 2(b) shows the along-channel profile of the Amazon Channel of figure 1,
including channel thalweg, levee crest and canyon top. Distances are measured down-
channel and thus include the effect of sinuosity. The reach in the submarine canyon is
120 km long, and the downstream reach on the submarine fan is 760 km long. Bed slope
ranges from approximately 0.014 upstream to approximately 0.002 downstream.

The turbidity currents that excavate submarine canyons and emplace submarine fans
thus must also run out as much as hundreds or thousands of kilometres without dissipating
or becoming so thick and dilute that they cannot coherently channelize themselves. We
refer to such currents as long-runout turbidity currents. Although numerous models of
turbidity currents have been presented to date, none has had the capability of satisfying
this constraint over such lengths. Here, we provide a resolution to this problem.

2. Existing models of turbidity currents
Meiburg & Kneller (2010) presented an overview of both models of turbidity current
dynamics and their objectives. Models to date that predict either spatial or spatiotemporal
evolution of such currents fall into three classes. The first of these includes layer-averaged
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Figure 1. Amazon Submarine Fan and channels: (a) the fan itself (after Mikkelsen et al. 1997);
(b) a ∼ 200 km long reach of the submarine channel (the red box in figure 1a) (from IFREMER, France).
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Figure 2. (a) Down-channel long profiles of 20 canyon–fan systems (after Covault et al. 2011). (b) Long
profiles of channel thalweg, levee crest and top of canyon for the Amazon Channel of figure 1. The channel is
confined within the Amazon Canyon for the first 120 km, then extends out 760 km on the fan. The distances are
measured along the channel thalweg (based on Pirmez & Imran 2003).
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models; the second encompasses Reynolds-averaged models that can resolve the structure
of the flow in the upward normal direction and averaged flow fields; and the third
encompasses high-fidelity – large eddy simulations (LES) or direct numerical simulations
(DNS) – models that resolve all or part of the turbulent structure.

One-dimensional (1-D) layer-averaged models for turbidity currents were presented by
Fukushima et al. (1985) and Parker et al. (1986) in the context of submarine canyons.
These models are based on an extension of the 1-D model of Ellison & Turner (1959)
for the downstream evolution of sediment-free dense underflows, such as those driven by
thermohaline effects. Ellison & Turner (1959) assumed their ambient fluid to be infinitely
deep. In turn, the 1-D assumption implicitly assumes infinitely high vertical frictionless
sidewalls. These assumptions were also used in the formulation of the 3-equation and
4-equation models, and is retained in the analysis below. The models of Fukushima et al.
(1985) and Parker et al. (1986) adapt concepts from Pantin (1979) and Parker (1982) to
explain how turbidity currents could ‘ignite’ or self-accelerate via the entrainment of
bed sediment. Further developments in layer-averaged modelling have been presented by
Garcia (1994), Bonnecaze et al. (1993), Fay (2012), Hu et al. (2012, 2015), Cao et al.
(2015) and Bolla Pittaluga et al. (2018).

The 3-equation and 4-equation layer-averaged models of Fukushima et al. (1985) and
Parker et al. (1986) have been used to study the formation of sediment waves and
submarine gullies on the seafloor (Izumi 2004), and cyclic step instability within the flow
(Kostic & Parker 2006; Wu & Izumi 2022). A two-dimensional (2-D) extension of variants
of these models has been used to explain incipient self-channelization of turbidity currents
via levee emplacement (Imran et al. 1998; Halsey & Kumar 2019). Wahab et al. (2022)
have applied the 4-equation model to the morphodynamics of submarine fans. Traer et al.
(2018a,b) have used a version of the 4-equation model to study flow stripping over levees.
A version of the model was further developed to simulate the excavation of submarine
canyons (Zhang et al. 2017).

Reynolds-averaged models of turbidity current dynamics that can resolve the vertical
structure of the flow, and in particular k−ε models, have been presented by Eidsvik &
Brørs (1989), Sequeiros et al. (2009), Yeh et al. (2013), Luchi et al. (2018) and Iwasaki
& Parker (2020). High-fidelity models have been presented by Cantero et al. (2009a,b),
Biegert et al. (2017), Salinas et al. (2019a,b, 2020, 2021a, 2022) and Xie et al. (2023b).
Wells & Dorrell (2021) provide a comprehensive overview of such techniques, and the
features that they capture in addition to those captured by layer-averaged approaches.

These different modelling approaches, each of which has its intrinsic value,
cannot be used generally to directly predict long-runout turbidity currents over
hundreds or thousands of kilometres. This is due to either computational limitations
(e.g. DNS) or the configuration studied (e.g. lock exchange). The layer-averaged model
of Bolla Pittaluga et al. (2018) adopts the mechanism of the flow stripping over pre-
existing levees as one element to overcome the overthickening problem, and so capture
the long-runout. Such an assumption, however, precludes the possibility that the same
model predicts the levee formation process (such as Imran et al. 1998; Halsey & Kumar
2019).

The Reynolds-averaged model of Luchi et al. (2018) and the high-fidelity model of
Salinas et al. (2021b) applied to the Froude-subcritical regime have demonstrated that
flow conditions exist that would facilitate long-runout turbidity currents, the former due
to flow detrainment, and the latter through suppression of turbulence. However, none of
these Reynolds-averaged, DNS and LES models can predict the evolution of the current
over hundreds or thousands of kilometres, as such simulations require large computational
domains that are computationally prohibitive. Traditional layer-averaged models based
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Figure 3. Definition diagrams for layer-averaged turbidity currents: (a) single-layer formulation such as used
in the 3-equation model; (b) two-layer formulation proposed here.

on 3-equation and 4-equation models do not present such computational difficulty. They
nevertheless suffer from a deficiency in the formulation itself, as illustrated below.

2.1. Deficiency of layer-averaged approaches to turbidity currents
The deficiency in question is common to both the 3-equation and 4-equation models of
Parker et al. (1986), so only the 3-equation model is outlined here. The configuration is
shown in figure 3(a). The turbidity current is contained within a single layer. It runs over
a bed with slope S, and has thickness δ and layer-averaged stream velocity U . It carries
a dilute suspension of sediment with layer-averaged volumetric concentration C (� 1).
The sediment has submerged specific gravity R (where R = 1.65 for quartz in water).
With t and x denoting time and the down-channel coordinate, and g denoting gravitational
acceleration, the governing equations for momentum, fluid mass and suspended sediment
conservation are

∂δU

∂t
+ ∂δU 2

∂x
= −1

2
Rg

∂Cδ2

∂x
+ RgCδS − C f bU 2, (2.1)

∂δ

∂t
+ ∂Uδ

∂x
= ewsU, (2.2)

∂Cδ

∂t
+ ∂UCδ

∂x
= vs (Es − rC) , (2.3)

where C f b is a dimensionless coefficient of bed friction, here taken as constant for
simplicity, ews is a coefficient of water entrainment across the interface between the
turbidity current and the ambient fluid, vs is the fall velocity of sediment, Es is a
dimensionless coefficient of sediment entrainment from the bed into suspension, which
is in turn a function of near-bed flow, and r is the ratio of near-bed concentration to
layer-averaged concentration. The closure relation for ews has been obtained empirically
as (Parker et al. 1987)

ews = ews[Rib] = 0.075√
1 + 718 Ri2.4

b

, (2.4)

Rib = RgCδ

U 2 = Rgqs

U 3 , (2.5)

qs = UδC. (2.6)
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Here, Rib is a bulk Richardson number, and qs is the volume transport rate of suspended
sediment per unit width [L2T −1]. In the case of steady flows that develop spatially
downstream, (2.1), (2.2) and (2.3) can be cast in the forms

δ

U

dU

dx
=

−
(

1 + 1
2

Rib

)
ews + Rib S − C f b − 1

2
vs

U
r Rib

(
qse

qs
− 1

)
1 − Rib

, (2.7)

dδ

dx
=

(
2 − 1

2
Rib

)
ews − Rib S + C f b + 1

2
vs

U
r Rib

(
qse

qs
− 1

)
1 − Rib

, (2.8)

δ

qs

dqs

dx
= vs

U
r

(
qse

qs
− 1

)
, (2.9)

where qse is the value of qs that would be in equilibrium with the local flow:

qse = Uδ
Es

r
. (2.10)

The densimetric Froude number of the flow Frdb can be defined as

Frdb = U√
RgCδ

= U 3/2
√

Rgqs
= Ri−1/2

b . (2.11)

In the case of Froude-supercritical flow (Frdb > 1, Rib < 1), (2.7), (2.8) and (2.9) can be
integrated downstream upon specification of upstream values U , δ and qs . As noted above,
these relations can be used to predict self-acceleration upon the assumption of appropriate
functional forms for Es and r . The major deficiency of this model is, however, best seen
in the case of bypass flow, according to which there is no net exchange of sediment with
the bed:

qs = constant (e.g. qse). (2.12)

Such flows can be realized, for example, by running the currents over a sediment-starved
bed.

The above equations possess a normal flow solution over a constant bed slope S for
bypass flow. Here, the normal flow state is defined in the sense of Ellison & Turner (1959),
and in such a state, Richardson number Rib and velocity U attain constant values, and
thickness δ increases linearly with distance downstream:

−
(

1 + 1
2 Rib

)
ews[Rib] + Rib S − C f b = 0, (2.13)

dδ

dx
= ews[Rib]. (2.14)

For given values of S and C f b, (2.13) can be solved in conjunction with (2.4) to obtain the
normal flow Richardson number Ribn , from which normal velocity Un is found to be

Un =
(

Rgqs

Ribn

)1/3

. (2.15)

The defect associated with these models becomes apparent upon consideration of (2.14).
For example, we consider a value Ribn = 0.7. This corresponds to a Froude-supercritical
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flow in the sense that the densimetric Froude number Frdb takes the value 1.20 > 1.
According to (2.4), ews takes the constant value 0.0043. A current that is 5 m thick
upstream (x = 0) and has the normal velocity at that point would attain a thickness of at
least 1720 m at x = 400 km. The suspended sediment concentration at x = 400 km would
be an order of 10−3 times smaller than its upstream value. According to Jobe et al. (2020),
channels on the Amazon Submarine Fan have bankfull depths ranging from 147 m to 10 m
down-fan. As noted above in the context of figure 2, the channel is at least 760 km long.
Similarly, the channel of the Congo Fan has depth approximately 100–150 m for the first
900 km of the channel (Hasenhündl et al. 2024). Referring to the example with Rib = 0.7,
there is no obvious way for 1720 m thick turbidity current, with a suspended sediment
concentration that is of the order of one-thousandth of its upstream value, to follow a
channel that is 10–150 m deep, much less construct it.

The models like Bolla Pittaluga et al. (2018) suffer from the same defect of
overthickening. They achieve long-runout only by limiting current thickness by means
of overflow across pre-existing levees. Were the levees not already confining the flow, the
flow would overthicken, and the suspended sediment concentration would become dilute
to the point where the flow would be incapable of constructing them.

Cao et al. (2015) have succeeded in running a layer-averaged model of turbidity currents
in a reservoir over 60 km. Their innovative model is able to capture the plunge point where
the river dives into the reservoir to form a bottom turbidity current. During turbidity
current events they studied, the deepest part of the reservoir is approximately 60 m, or
approximately three times the thickness of the turbidity currents. Due to the shallow
environment, Cao et al. (2015) added a dynamic formulation of the flow in the ambient
water above the current as well as the current itself, calling their formulation a ‘double
layer-averaged model’. The volume sediment concentration in the current is approximately
0.085, corresponding to a hyperconcentrated flow. This and the relatively slow-moving
flow dictate the value of Rib of the order of hundreds, in which case values of ews are
so small that thickening over 60 km is negligible. This result, however, cannot be used
to formulate a general model of long-runout turbidity currents because such large bulk
Richardson numbers with near-vanishing entrainment of ambient water constitute a special
case.

The Cao et al. (2015) model includes a turbidity current layer and an ambient water
layer, the dynamics of which must be considered in the shallow setting of the reservoir
that they model. In that sense, our model is a ‘three-layer model’: driving layer, driven
layer and ambient layer. In our model, we take the ambient water to be infinitely deep, so
can treat it as stagnant, which enables the description of the deep sea environment.

Here, we seek a model that allows long-runout turbidity currents over hundreds or
thousands of kilometres for arbitrary values of the Richardson number, which neither
overthicken nor become overdilute, and as such would be competent to emplace their own
levees far downstream (see Imran et al. 1998; Halsey & Kumar 2019).

2.2. Water detrainment from turbidity currents
An examination of the above calculations reveals that in the case of bypass conditions,
when sediment fall velocity vs is neglected in the problem, the formulation becomes
identical to that of Ellison & Turner (1959) for a conservative contaminant such as
dissolved salt. Yet fall velocity should play a role even in bypass suspensions. An easy
way to see this is in terms of the Rouse solution for the equilibrium (bypass) vertical
distribution of suspended sediment in an open channel. Even though there is no net bed
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erosion or deposition, the higher the fall velocity, the more the suspended sediment profile
is biased towards the bed. Such grain size bias is also observed in direct measurements
of turbidity currents and their deposits in the Monterey Canyon (Symons et al. 2017),
and is built into, for example, the high-fidelity calculations reported in Balachandar et al.
(2024). Bonnecaze et al. (1993) made a first attempt to consider the role of fall velocity
in the case of a 1-D formulation of non-turbulent lock-exchange flow driven by suspended
sediment.

Further insight into the role of sediment fall velocity can be gained by the study of
turbidity currents entering into bowl-like basins with horizontal scales of the order of
tens of kilometres, called minibasins. These basins can fill over time due to the delivery
of sediment from turbidity currents (Lamb et al. 2004). In the course of experiments on
turbidity currents flowing into minibasins, Lamb et al. (2006) and Toniolo et al. (2006a,b)
recognized a phenomenon that they called detrainment. Under the right circumstances, a
fully turbulent turbidity current can flow continuously into a minibasin, yet no sediment
escapes over the downstream lip of the minibasin. In other words, the turbidity current
can form a relatively stagnant pond with a settling interface that equilibrates below the
downstream lip of the minibasin. If the pond is sufficiently stagnant, so that there is
negligible flow circulation within it (Reece et al. 2024), then water detrains across the
interface and then escapes the minibasin at the rate vs A, where A is the surface area of the
settling interface within the minibasin.

With the above in mind, Toniolo et al. (2006b) proposed a formulation according to
which (2.2) is amended to

∂δ

∂t
+ ∂Uδ

∂x
= ewsU − vs . (2.16)

In simple terms the fall velocity in (2.16) indicates that the sediment ‘fights back’
against turbulent entrainment into the ambient fluid above. Bolla Pittaluga et al. (2018)
incorporated this formulation into the 3-equation model.

Luchi et al. (2018) further developed this idea using a k−ε model of turbidity currents
that naturally accounts for the effect of water detrainment mediated by sediment fall
velocity through its presence in the equation of conservation of suspended sediment. Luchi
et al. (2018) modelled the evolution of the flow down a slope that is uniform in space but
developing in time. After a sufficient amount of time, the flow segregates into two layers.
The turbulent flow in the bottom layer contains nearly all the suspended sediment, and
eventually achieves a near steady-state thickness and streamwise velocity profile. The flow
in the top layer is also turbulent but nearly sediment-free, and thickens monotonically
in time. They referred to the bottom layer as the ‘driving’ layer, in that the suspended
sediment sequestered there provides the impelling force for the flow. They referred to the
top layer as the ‘driven’ layer, in that the nearly sediment-free water there is more or less
simply dragged along by the driving layer, as in the case of a flow above a plate moving at
constant velocity.

The interface between the driving layer and the driven layer in the model of Luchi et al.
(2018) corresponds to a settling interface. This interface is not necessarily as sharp as that
seen in a fully ponded minibasin, because the downward tendency of the settling interface
works against turbulent mixing of the flow itself. This notwithstanding, as the driven
layer thickens, the mean concentration of suspended sediment in it becomes negligible
compared to the driving layer.
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3. A two-layer formulation
The k−ε model of Luchi et al. (2018) is not easily implemented on a scale of hundreds
or thousands of kilometres. The essence of the model results can, however, be cast in
terms of a much simpler two-layer, layer-averaged model that does have that capability.
This configuration is summarized in figure 3(b). Our model is again 1-D, with the implicit
assumtion of infinitely high, vertical frictionless sidewalls. As such, it does not directly
pertain to cases including meandering or levee overflow. Guidance for future work in this
regard is provided in § 4. We apply the model to bed slopes ranging from a high of 0.03 to
a low of 0.003.

The fluid mechanical basis for the two-layer model presented here is the two-layer
formulation of Arita & Jirka (1987a,b), originally designed for the treatment of saline
wedges. (Several misprints were corrected in Arita 1998.) That framework is adapted here,
but the characterization of the boundary between the two layers is amended in terms of
a settling interface. We also replace the relation for water entrainment used by Arita &
Jirka (1987b) for saline wedges to (2.4) (Parker et al. 1987), which is more appropriate for
density underflows.

Let δL and δU denote the thicknesses of the lower (driving) layer and upper (driven)
layer in figure 3(b). The corresponding layer-averaged velocities are UL and UU . The layer-
averaged volume suspended sediment concentration in the lower layer is C ; the upper
layer is approximated as sediment-free. The friction coefficient at the interface between
the two layers is denoted as C f i . The coefficient of water entrainment across the interface
between the lower and upper layer is denoted as ews , whereas the corresponding coefficient
between the upper layer and the ambient water is denoted as ewo. Insofar as the upper layer
is (to a first approximation) sediment-free, the value of ewo can be computed from (2.4)
as the limiting value in the absence of stratification (Rib → 0), so that ewo → 0.075. The
coefficient of bed friction C f b corresponds to the turbulent rough flow considered here.

The governing equations for the lower layer are

∂ULδL

∂t
+ ∂U 2

LδL

∂x
= −1

2
Rg

∂Cδ2
L

∂x
+ RgCδL S − C f bU 2

L − C f i |UL − UU | (UL − UU ),

(3.1)

∂δL

∂t
+ ∂ULδL

∂x
= ews (UL − UU ) − vs, (3.2)

∂CδL

∂t
+ ∂ULCδL

∂x
= vs (Es − rC) . (3.3)

A derivation of (3.2) from the 2-D (streamwise – upward normal) continuity equation is
provided in Appendix A. A corresponding derivation of (3.3) is given in Appendix B. In
the case of bypass flows, (3.3) is replaced by (2.12). As opposed to the 3-equation model
of Parker et al. (1986), however, the effect of sediment does not vanish in the bypass
case; it enters through the right-hand side of (3.2). The corresponding forms for the upper
layer are

∂UU δU

∂t
+ ∂U 2

U δU

∂x
= C f i |UL − UU | (UL − UU

)
, (3.4)

∂δU

∂t
+ ∂UU δU

∂x
= ewoUU − ews (UL − UU ) + vs . (3.5)
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Arita & Jirka (1987b) evaluate the interfacial friction coefficient as C f i = 2ews . The
Richardson number used in (2.4) must be modified to account for the two-layer structure
of the flow. Insofar as it represents a ratio between bulk gravitational (buoyancy) gradient
and bulk shear strength, the appropriate generalization is Rgδ ΔC/(ΔU )2. Insofar as we
approximate the upper layer as sediment-free, this reduces to RgCδL/(UL − UU )2. We
thus amend the relation for the turbulent entrainment coefficient ews to

ews = 0.075√
1 + 718 Ri2.4

I

, (3.6a)

RiI = RgCδL

(UL − UU )2 = Rgqs

UL(UL − UU )2 , (3.6b)

which is used to obtain numerical results of the two-layer model.
The assumption of a sediment-free upper layer merits some elaboration. The present

model specifically tracks the boundary between the two layers in terms of a settling
interface. Thus as sediment is mixed upwards against fall velocity, the interface itself
moves upwards, rather than suspended sediment being transferred into the upper layer.
In a turbulent flow, the interface can always be expected to be diffuse, and in this sense
the upper layer is not entirely sediment-free. But as elaborated below, the thickness of the
upper layer tends to grow much more rapidly in the downstream direction than the lower
layer, so that the layer-averaged concentration in the upper layer tends to vanish.

To illustrate how the two-layer formulation overcomes the shortcomings of the 3-
equation model, it is useful to cast (3.1)–(3.5) into the form for steady, gradually varied
flow corresponding to (2.7)–(2.9). The relations for the lower layer are

δL

UL

dUL

dx
= 1

1 − Ri

[
−

(
1 + 1

2
Ri

)
ews

UL − UU

UL
+

(
1 + 1

2
Ri

)
vs

UL

+ Ri S − C f b − C f i
|UL − UU | (UL − UU )

U 2
L

− 1
2

vs

UL
r Ri

(
qse

qs
− 1

)]
,

(3.7a)

dδL

dx
= 1

1 − Ri

[(
2 − 1

2
Ri

)
ews

UL − UU

UL
−

(
2 − 1

2
Ri

)
vs

UL

− Ri S + C f b + C f i
|UL − UU | (UL − UU )

U 2
L

+ 1
2

vs

UL
r Ri

(
qse

qs
− 1

)]
, (3.7b)

δL

qs

dqs

dx
= vs

UL
r

(
qse

qs
− 1

)
. (3.7c)

In (3.7a) and (3.7b), Ri is a bulk Richardson number based on the lower layer:

Ri = RgCδL

U 2
L

= Rgqs

U 3
L

. (3.8)
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The corresponding equations for the upper layer are

δU

UU

dUU

dx
= −ewo + ews

UL − UU

UU
− vs

UU
+ C f i |UL − UU | (UL − UU

)
U 2

U

, (3.9a)

dδU

dx
= 2ewo − 2ews

UL − UU

UU
+ 2

vs

UU
− C f i |UL − UU | (UL − UU

)
U 2

U

. (3.9b)

As in the case of the single-layer model, when the flow in the lower layer is Froude
supercritical, i.e. Ri < 1, the above equations can be integrated downstream from specified
upstream values of UL , δL , qs , UU and δU .

3.1. Normal flow for bypass conditions
To show how the introduction of settling detrainment affects the behaviour of a turbidity
current, we consider the case of bypass flow, so that (3.7c) is replaced with (2.12).
Accordingly, (3.7a) and (3.7b) reduce to

δL

UL

dUL

dx
= 1

1 − Ri

[
−

(
1 + 1

2
Ri

)
ews

UL − UU

UL
+

(
1 + 1

2
Ri

)
vs

UL

+ Ri S − C f b − C f i
|UL − UU | (UL − UU )

U 2
L

]
,

(3.10a)

dδL

dx
= 1

1 − Ri

[(
2 − 1

2
Ri

)
ews

UL − UU

UL
−

(
2 − 1

2
Ri

)
vs

UL

− Ri S + C f b + C f i
|UL − UU | (UL − UU )

U 2
L

]
.

(3.10b)

Just as in the case of the 3-equation bypass model and Ellison & Turner (1959), these
equations have a normal flow solution. Setting dUL/dx = 0 in (3.10a) and dUU /dx = 0
in (3.9a), it is possible to solve for the constant normal values ULn and UUn . From these
values, it can be found that (3.10b) and (3.9b) reduce to the forms

dδL

dx
= AL , (3.11a)

dδU

dx
= AU , (3.11b)

where AL and AU are constants obtained from the right-hand sides of (3.10b) and (3.9b).
In summary, at normal flow, the velocities of both the lower and upper layers are constant,
and the layer thicknesses of the lower and upper layers increase linearly downstream. We
find below that the effect of settling renders the downstream growth rate of the lower layer
much less than the upper layer, indeed so much less that a turbidity current is likely able
to track (and thus potentially make) its own channel.

The two-layer model is compared with the original one-layer model of Ellison & Turner
(1959) for the case of vanishing fall velocity in Appendix C using sample laboratory-
scale input parameters. It is shown there that the results of the two models are in general
agreement over a downstream scale of 10 m, but show divergent behaviour at a scale
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of 200 m. We suggest here that this divergence can be attributed to the more complete
physical description of the two-layer model.

The relations for ULn and UUn can be cast in dimensionless form using

Rin = Rgqs

U 3
Ln

, RiI n = Rgqs

U 3
Ln (1 − Γ )2 , Γ = UUn

ULn
, ṽs = vs

(Rgqs)
1/3 (3.12a–d)

to give(
1 + 1

2 Rin

) [
ṽs Ri1/3

n − ews [RiI n] (1 − Γ )
]
+ Rin S

− C f b − 2ews[RiI n](1 − Γ )2 = 0, (3.13a)

− ewoΓ
2 + ews [RiI n] Γ (1 − Γ ) − ṽs Ri1/3 Γ + 2ews [RiI n] (1 − Γ )2 = 0. (3.13b)

From (3.13a,b), it can be found that once the three parameters S, ṽs and C f b are specified,
the two variables Rin and Γ can be determined. These values in turn set the dimensional
values UU and UL . Thus UU and UL at the normal flow condition do not depend on
boundary conditions. Here, without losing generality, we set C f b = 0.002, which is typical
for fine-grained channels (Konsoer et al. 2013; Ma et al. 2017, 2020; Simmons et al. 2020).
A wide range of values of S and ṽs , compatible with submarine channels (Covault et al.
2011), are chosen to illustrate solutions to the normal flow condition obtained from solving
(3.13a,b). The results are shown in figures 4(a–d). The pattern of normal flow solutions
divides into a Froude-supercritical regime defined in terms of the lower layer (Ri < 1)
for sufficiently large values of S and ṽs , and a Froude-subcritical regime (Ri > 1) as S
and ṽs become small. A clear threshold behaviour can be identified: when S > 0.0063
or ṽs > 0.0042, the flow is always Froude-supercritical regardless of the value of the
other parameter. Assuming qs = 0.6 m2 s–1 (a value justified below) as an example in
the computation of ṽs , three lines corresponding to grain sizes D = 31.25, 62.5, 125 µm
(specific gravity of quartz, so R = 1.65 and water temperature 20 ◦C) are plotted in all of
figures 4(a–d).

3.2. Calculations at field scale under bypass conditions
Advances in field measurements have shown that turbidity currents come in a variety
of shapes and sizes (Xu et al. 2004; Dorrell et al. 2014; Hughes Clarke 2016; Paull
et al. 2018; Pope et al. 2022; Talling et al. 2022), depending mainly on the sizes of the
systems and the transported grain sizes. Long-runout flows are known to have emanated
from the Gaoping Canyon and the Grand Banks Canyon, where breakages of submarine
telecommunication cables have provided indications of peak velocities at approximately
15–20 m s–1 (Heezen & Ewing 1952; Hsu et al. 2008). More recently, measurements of
long-runout flows have been made in the Congo Canyon, where flows can accelerate for
over 1200 km to reach peak velocities 8 m s–1 upon reaching the abyssal plain at water
depth over 5 km (Talling et al. 2022). Unfortunately, this flow was so powerful that it
destroyed all the instrumentation, consequently there are no flow discharge measurements
from this event. More detailed velocity measurements of smaller flows in the Congo
Canyon show that at ∼ 150 km offshore and water depth almost 2 km, turbidity current
events have peak discharges of up to ∼ 16 000 m3 s–1, and typically last for approximately
a week (Azpiroz-Zabala et al. 2017). Following the passage of the faster head of the
flow, a flow speed of approximately 0.75 m s–1 is typically maintained for 5 days, but
occasionally for up to 8 days (Simmons et al. 2020). However, these detailed measurements
were taken opportunistically, so are unlikely to be channel-forming turbidity currents.
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Figure 4. Bulk Richardson number of the lower layer Ri and the velocity ratio Γ of UU to UL solved from
(3.13a,b) for various combinations of channel slope S and dimensionless settling velocity ṽs at bypass normal
flow. (a) Plot of Ri as a function of S and ṽs . Since the lower-layer Froude number is Frd = 1/

√
Ri , the isoline

Ri = 1 separates the Froude-supercritical and -subcritical flow regimes. A clear threshold behaviour can be
identified: when S > 0.0063 or ṽs > 0.0042, the flow is always Froude-supercritical regardless of the value of
the other parameter. (b) Plot of Γ = UUn/ULn as a function of S and ṽs . Note that the upper layer is always
slower than the lower layer; this effect strengthens as S and ṽs become small. (c) Plot of AL as a function
of S and ṽs . There is a neutral line where water entrainment due to turbulent mixing and water detrainment
due to sediment settling zeros out. Below the line where S is small and ṽs is large, the turbidity currents may
subside (negative thickening rate) due to sediment-settling induced drop in the level of the interface. (d) Plot
of AU as a function of S and ṽs ; AU is at least one order of magnitude larger than AL because the ambient
water entrainment coefficient ew0 = 0.075 sets the top interface boundary condition for the upper layer, which
corresponds to the upper bound for this coefficient. Assuming qs = 0.6 m2 s–1, three lines corresponding to
D = 31.25, 62.5, 125 µm are shown in all plots.

For the rarer and more powerful channel-forming flows, we refer to the reconstruction
of channel-forming turbidity currents by Konsoer et al. (2013).

Konsoer et al. (2013) reconstructed channel-forming flows in turbidity currents by
means of an approximate matching of current driving force with rivers. They offer two
estimates each for mean sediment concentration C and the bed resistance Cbf . Of these,
we choose Cu = 0.006 and Cbf = 0.002, where Cu is the upstream boundary condition for
C . The levee-to-levee channel width of the Amazon Submarine Channel at x = 270 km is
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found to be approximately 2 km in figure 3(d) of Pirmez & Imran (2003). The channel-
forming discharge at this width can be estimated to be 200 000 m3 s–1 according to
figure 9 of Konsoer et al. (2013). Therefore, we assume a water discharge per unit width
qwu at the upstream end of our calculation of 100 m2 s–1. Insofar as we consider bypass
currents, we hold the volume sediment discharge per unit width qs at the constant value
100 m2 s−1 × 0.006 = 0.6 m2 s−1. This is the justification for using qs = 0.6 m2 s–1 in
figure 4.

We now show numerical results for the spatial, down-canyon development of a
bypass turbidity current. All the calculations shown below assume a size 62.5 µm for
the suspended sediment, a bed friction coefficient C f b = 0.002, a suspended sediment
transport rate per unit width 0.6 m2 s–1, an upstream flow discharge qwu = 100 m2 s–1,
and an upstream volume suspended sediment concentration Cu = 0.006. We consider two
cases for slope: one with constant slope 0.03, and one with a slope that exponentially
declines downstream in approximate concordance with the long profile of figure 2(b). The
numerical results were obtained by solving (3.10a,b) and (3.9a,b). The cases below are
for the Froude-supercritical condition, which allows a stepwise downstream numerical
solution to (3.9) and (3.10) using the Euler step method. Sample numerical results under a
Froude-subcritical condition can be found in figure 9 of Appendix D.

Figure 5 shows the downstream development of a bypass flow over a constant slope
S = 0.03. This slope has been chosen insofar as it is representative of the constant-slope
channel profiles of Covault et al. (2011) shown in figure 2(a). In figure 5, two Froude-
supercritical upstream conditions have been chosen for the numerical solution of (3.9a,b)
and (3.10a,b): (UL , UU , δL , δU ) = (2.5 m s–1, 1.25 m s–1, 40 m, 1 m) and (4.5 m s–1,
2.25 m s–1, 22.22 m, 1 m).

In figure 5(a), velocities converge to the normal values (UL , UU ) = (3.083 m s–1,
0.853 m s–1) within approximately 5 km. It is not necessary to confirm that these
correspond to long-runout values; on a constant slope, they would not change even
hundreds of kilometres downslope. The result UL > UU confirms that the lower layer is
the driving layer, and the upper layer is the driven layer.

Figure 5(b) shows the development of the layer thicknesses δL and δU out to 200 km.
By 200 km, δU has thickened to over 13 000 m, an unreasonable value in line with the
overthickening of the original 3-equation model. This issue is considered in more detail in
§ 4. The lower layer, on the other hand, has thickened to only 520 m. This is comparable
with channel depth 165 m, and a levee crest to back-levee elevation difference of at
least 270 m at the Shepard Bend of Monterey Channel (Fildani et al. 2006), which is
approximately 140 km down-channel of the canyon head. This system has a mean down-
channel slope close to the value 0.03 assumed here (Covault et al. 2011). Figure 5(c) is
identical to figure 5(b) except that the spatial domain has been reduced to 10 km. The
results clearly show that in the two-layer model, the lower layer thickens downstream at a
much slower rate (factor 0.038) than the upper layer, whereas the upper layer thickens at a
rate higher than that predicted by the single-layer 3-equation model.

Figure 6 provides a comparison of the spatial evolution predicted by three models: the
two-layer model described here in (3.9a,b) and (3.10a,b), the original 3-equation model in
(2.1), (2.2) and (2.12) (Fukushima et al. 1985; Parker et al. 1986), and the 3-equation model
modified to include detrainment in (2.1), (2.16) and (2.3) (Toniolo et al. 2006a; Bolla
Pittaluga et al. 2018). Again, the bed slope S is held constant at 0.03. All calculations use
one of the sets of upstream conditions of figure 5. Figure 6(a) shows spatial evolution of
velocity over a 5 km reach. The results for UL of the two-layer model, U of the 3-equation
model, and U of the 3-equation model modified to include detrainment, all show similar

1009 A19-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

24
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.246


Journal of Fluid Mechanics

(a)

(b) (c)

0
0.5

1.0

1 2

2 4 6 8 10

3 4 5

Distance downstream (km)

V
el

o
ci

ty
 (

m
 s

–
1
)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

qwu = 100 m2 s–1; qs = 0.6 m2 s–1; S = 0.03; Cfb = 0.002; D = 62.5 µm

Lower layer

Upper layer
ULu = 4.5 m s–1

UL-equ = 3.083 m s–1

UU-equ = 0.853 m s–1

Slope = 66.1 × 10−3 Slope = 66.1 × 10−3

Slope = 2.5 × 10−3  Slope = 2.5 × 10−3

0 050 100 150 200

2000

4000

L
ay

er
 t

h
ic

k
n
es

s 
(m

)

L
ay

er
 t

h
ic

k
n
es

s 
(m

)

6000

8000

10000

12000

14000 800

700

600

500

400

300

200

100

ULu = 2.5 m s–1

Distance downstream (km) Distance downstream (km)

Figure 5. (a) Spatial evolution of the lower layer and upper layer velocities UL and UU , over a 5 km reach,
starting from two sets of upstream conditions. In all cases, the velocities evolve towards normal flow. (b) Spatial
evolution of thicknesses of the lower and upper layers δL and δU over a 200 km reach. (c) Spatial evolution of
lower and upper layer thicknesses δL and δU over a 10 km reach, using two different sets of upstream conditions.

spatial evolution, and approach nearly the same normal velocity. Figure 6(b) shows spatial
evolution over a 200 km reach of δL of the two-layer model, δ of the 3-equation model,
and δ of the 3-equation model modified to include detrainment. The predictions for δ from
both versions of the 3-equation model at 200 km are greatly in excess of that predicted for
δL by the two-layer model. In figure 7, a current running down a long, concave upward
profile is considered. Slope declines downstream in accordance with an exponential law
that is an approximate fit to figure 2(b) (Amazon Submarine Channel) over 800 km:

S = Su e−(x/xe), (3.14)

where x and xe are in km, with xe = 265.8 km and Su = 0.0166.
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Figure 6. Comparison of spatial development on the slope S = 0.03. (a) Spatial evolution over a 5 km reach
of lower-layer velocity UL and upper-layer velocity UU of the two-layer model, velocity U of the 3-equation
model, and velocity U of the 3-equation model modified to include detrainment. (b) Spatial evolution over a
200 km reach of lower-layer thickness δL of the two-layer model, thickness δ of the 3-equation model, and
thickness δ of the 3-equation model modified to include detrainment.

Figure 7(a) shows the downstream evolution over a 400 km reach of UL and UU of
the two-layer model, and U of the original 3-equation model and the version modified
for detrainment. We terminate the calculation where the Froude number declines to the
Froude-critical value (Frd = 1); a hydraulic jump may occur upstream of this point,
depending on downslope conditions. It can be seen that both versions of the 3-equation
model reach the condition Frd = 1 at distances shorter than 400 km. The two-layer model
reaches Frd = 1 at 402 km. The results for UL compare well with those for U of the two
versions of the 3-equation model, with values declining to 2.14 m s–1 at x = 400 km. The
predicted values of UU are uniformly lower than UL , again indicating that the upper layer
is driven by the lower layer. Also shown in the diagram is the slope profile S = 0.0037
at x = 400 km. Figure 7(b) shows the corresponding results for δL and δU , and also δ

predicted by the two versions of the 3-equation model. The predicted values of δ of the
3-equation models are far too high to follow any channel so far down the system. The
predicted value of δL , on the other hand, is 250 m at x = 200 km, a value that compares
reasonably with estimates of channel bankfull depth (see below) (Pirmez & Imran 2003;
Fildani et al. 2006).

Figure 7(c) shows the long profiles of the Froude number Frd (= Ri−1/2)) predicted
for the lower layer of the two-layer model and the two versions of the 3-equation model.
The Froude number declines downstream towards unity in all three cases. In the case of
the 3-equation model, critical flow is attained at x = 260 km and 380 km, respectively. In
the two-layer model, it is attained at x = 402 km. As noted above, the implication is that a
hydraulic jump may occur somewhat upstream of this point. The spatially varying model
encompassed in (3.9a,b) and (3.10a,b) cannot capture hydraulic jumps. A shock-fitting
solution to the primitive equations (3.1), (3.2), (3.4) and (3.5) would, however, capture
them (Fildani et al. 2006).

Figures 7(d) and 7(e) respectively show the down-channel evolution of water discharge
per unit width qw and suspended sediment concentration C . Note that qw reaches a
maximum and then declines after x = 328 km, and C reaches a minimum and then
increases after this point. These extreme points are because UL can quickly adjust to the
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Figure 7. Bypass calculations based on a simplified profile of the Amazon Canyon–Fan system, using 62.5 µm
suspended sediment over a 400 km reach. (a) Spatial evolution of velocities UL and UU for the two-layer model,
U for the 3-equation model, and U for the 3-equation model modified to include detrainment. The slope profile
is also shown. (b) Spatial evolution of thicknesses δL and δU for the two-layer model, δ for the 3-equation
model, and δ for the 3-equation model modified to include detrainment. (c) Densimetric Froude number Frd
for the lower layer of the two-layer model, the 3-equation model, and the 3-equation model modified to include
detrainment. (d) Spatial evolution of water discharge per unit width qw for the lower layer of the two-layer
model, the 3-equation model, and the 3-equation model modified to include detrainment. (e) Spatial evolution
of the suspended sediment concentration C in the lower layer of the two-layer model, the 3-equation model,
and the 3-equation model modified to include detrainment.

local equilibrium value, which decreases with exponentially declining channel slope. This
flow slowdown effect dominates farther downstream, where δL increases more slowly than
linear. As a result, qw = ULδL declines downstream of its peak value. Concentration C
has a minimum at the same location because C = qs/qw and qs is constant for the bypass
condition.

A lower-layer thickness δL = 250 m at x = 200 km compares well with the observed
channel depth of approximately 110–170 m in the Amazon system (Pirmez & Imran 2003).
It should be expected that flow thickness exceeds channel depth, but is of the same order
of magnitude in order to construct the channel and its levees. The present model is 1-D,
which means that it corresponds to flow between frictionless vertical walls. In actual
submarine channels, flow stripping (i.e. the overflow that builds the levees and confines
the channel) should cause streamwise flow discharge to decline downstream. A possible
way to incorporate this process into a model of long-runout turbidity currents is presented
by Spinewine et al. (2011) and later by Bolla Pittaluga et al. (2018).

4. Discussion
The two-layer model of bypass turbidity currents presented here offers many avenues for
future development, allowing us to extend our understanding of the fluid dynamics and
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morphodynamics of long-runout turbidity currents and the morphologies they create. We
enumerate a few of these below.

The example flows that are modelled here are limited to 1-D steady, Froude-supercritical
flows that develop in the downstream direction. By definition, such a steady flow that has
run out 1000 km must be continuously occupying the channel for 1000 km. Measurements
in the Congo Submarine Channel indicate that turbidity current events can last for a week
or more in the proximal part of the system (Azpiroz-Zabala et al. 2017) and for up to several
weeks in the distal part of the system (Baker et al. 2024). As the head of the flows outruns
the rest of the flow, these flows are likely to stretch to hundreds of kilometres and last for
weeks in the distal part of the system. Such stretching flows can be modelled, at least in
part, by abandoning the steady, gradually varied flow assumption, and instead solving the
full time-varying equations (3.1), (3.2), (3.4) and (3.5), and for bypass flows, (2.12). An
appropriate shock-capturing numerical technique such as the one used by Kostic & Parker
(2006) and Cao et al. (2015) can model unsteady flow, whether Froude-supercritical or
Froude-subcritical. It was used by Kostic & Parker (2006) to reproduce the migrating
turbidity current head and hydraulic jump of one of the experiments of Garcia & Parker
(1989). The same formulation could presumably be used to model the hydraulic jumps
observed in the field by Sumner et al. (2013) and Clarke & Jhon (2016).

A bypass current cannot be used directly to model the morphodynamics of bed
evolution. Morphodynamics can, however, be modelled by implementing the full forms
of (3.1)–(3.5), along with the Exner equation of bed sediment conservation. That is, where
η is bed elevation, λ is bed porosity and qb is the volume rate of bedload transport per unit
width, we have

(1 − λ)∂η

∂t
= −∂qb

∂x
+ vs (rC − Es) . (4.1)

Appropriate closure assumptions are necessary for Es , r and qb. For example, Parker et al.
(1987) and Garcia & Parker (1991) present closures for Es and r , and a closure for qb
that is valid up to and including the regime of unidirectional bedload sheet flow is given
in Ribberink (1998). Among the various submarine phenomena that can be revisited with
a morphodynamic two-layer formulation are field observations of accelerating flow on
constant and decreasing slopes (Talling et al. 2022), flows that grow rapidly in sediment
volume by a factor 100–1000 (Pope et al. 2022; Böttner et al. 2024), and the formative
conditions for large trains of knickpoints (Heijnen et al. 2020) or smaller trains of
upstream-migrating crescentic bedforms (Clarke & Jhon 2016). A morphodynamic version
of the two-layer model can also be adapted to model the incision necessary to excavate
submarine canyons (Zhang et al. 2017) with the aid of, for example, the sandblasting model
of Lamb et al. (2008).

The 3- and 4- equation models have, after extension to a 2-D streamwise-lateral form,
been used to explain self-channelization of turbidity currents via levee emplacement
(Imran et al. 1998; Halsey & Kumar 2019) and the emplacement of channelized submarine
fans (Wahab et al. 2022). Due to the limitations of these models, such features have been
successfully modelled out to only approximately 5–25 km. The new two-layer model, upon
extension to two dimensions, offers the possibility of modelling levee emplacement over
most of the length of a long-runout turbidity current path. Built into such a model would
be a characterization of flow stripping (channel overflow; Spinewine et al. 2011), which
would cause flow discharge to decline downstream and bring the flow thickness more in
line with the observed levee elevations. A 2-D formulation could also be used to extend the
work of Imran et al. (1999) on meandering submarine channels with self-formed levees, in
which case sinuosity might abet mixing between the two layers (Straub & Mohrig 2008).
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Field measurements have shown that the dynamics of the migrating front or nose of a
turbidity current may be too complex to be modelled even using a version of the two-layer
model that captures front behaviour, as sediment concentrations can be above 10 % (Paull
et al. 2018; Wang et al. 2020). A first step in overcoming this issue is suggested by the
model of Spinewine & Capart (2013) for intense flow and sediment transport at the nose
of a dam-break flow. It may be possible to adapt this formulation to the front of a turbidity
current otherwise modelled by the present two-layer formulation.

The two-layer model presented here represents an extension of the 3-equation model
of Fukushima et al. (1985) and Parker et al. (1986). Cao et al. (2015) referred to their
model as a ‘double-layer averaged model’. Their model includes a turbidity current layer
and an ambient water layer, the dynamics of which must be considered in the shallow
setting of the reservoir that they model. In that sense, our model is a ‘three-layer model’:
driving layer, driven layer and ambient layer. In our model, we take the ambient water to
be infinitely deep, so can treat it as stagnant, which enables the description of the deep sea
environment. Parker et al. (1986) also include a 4-equation model, where the extra equation
accounts for the balance of turbulent kinetic energy. In principle, the extension of kinetic
energy balance to the two-layer model is straightforward, adding one extra equation each
to the formulation for the lower and upper layers. It may be useful to revisit the formulation
in light of the results of Fay (2012).

Numerical methods that resolve the upward normal structure of the flow, such as k−ε,
LES or DNS, may not be feasible to implement for long-runout turbidity currents. They
nevertheless could be used to develop refined closures for the two-layer model that enhance
its performance and accuracy.

While the entrainment coefficient ewo = 0.075 for unstratified turbulent flow is well
justified by data, it may not apply to upper layers that are predicted by the present model
to become thousands of metres thick (e.g. as shown in figure 5b). There are a number
of potential reasons why ewo might not attain such a high value. First, a semi-empirical,
fully turbulent entrainment coefficient ewo = 0.075 corresponds to the limit of a plane
free jet (Ri → 0; Parker et al. 1987). The rate of production of turbulent energy for such
a flow should scale as du/dz, where z is the upward normal coordinate, and u is local
streamwise velocity averaged over turbulence. As the upper layer becomes thicker and
thicker, the term du/dz may drop to the point where full turbulence can no longer be
maintained. Were an entirely sediment-free upper layer flow to become fully laminar, dU
would scale as x1/2 at normal flow, in accordance with the Prandtl result for laminar flow
over a flat plate, rather than the turbulent scaling dU ∼ x1 used here (corresponding to
constant bed resistance coefficient C f b). Second, we have adopted a relation between
entrainment rate ews and Richardson number RiI at the interface between the lower
and upper layers, again assuming fully turbulent flow (Parker 1982; Parker et al. 1987;
Johnson & Hogg 2013). Especially for flow in the Froude-subcritical range, however,
there are conditions under which stratification is so strong at the lower/upper interface
that turbulence is extinguished there (Dorrell et al. 2019; Marshall et al. 2021; Salinas
et al. 2021a; Lloyd et al. 2022). Under such conditions, mixing at both lower/upper and
upper/ambient interfaces is likely to be governed by laminar processes, and can thus be
expected to be much weaker than that predicted by (3.6). Information in Arita & Jirka
(1987a) suggests that the condition for the domination of entrainment by laminar effects
becomes more stringent with increasing Reynolds number of the lower layer. Third, the
value ewo = 0.075 is for a 2-D (streamwise-upward normal) plane jet where the flow
is not allowed to spread in the third, transverse dimension. In a field case, however,
the upper layer loses confinement and turns three-dimensional when it overspills the
submarine levee, reducing vertical entrainment (Rajaratnam 1976) and causing direct loss
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of water, e.g. flow stripping (Fildani et al. 2006; Spinewine et al. 2011). It is this transverse
spreading and overspilling, rather than the failure of (2.4) and (3.6) themselves, that is the
likely reason why Traer et al. (2015) implied that this relation overpredicts entrainment.
This feature represents a limitation of the present 1-D formulation that can be overcome in
a 2-D formulation. Moreover, although it is very dilute, there should still be some sediment
in the upper layer entrained from the lower layer, which can also reduce the entrainment
coefficient (Salinas et al. 2019b). The present model is 1-D in nature and cannot capture
lateral expansion of both the lower and upper layers, and corresponding effects that would
help to limit the streamwise increase in flow thickness. The two-layer model may thus
merit modifications in light of the above comments.

The formula for water entrainment coefficient ews (2.4) was developed empirically
(Parker et al. 1987) based on laboratory-scale flume experiments (∼ 10 m) of both density
currents with saline or clay-silt particles (negligible settling velocity) and particulate
turbidity currents with non-negligible settling velocity. No adjustment for the effect of
detrainment on the data used to develop (2.4) was made in the analysis, because the
relevance of detrainment was not generally recognized until the work of Toniolo et al.
(2006a). Such an adjustment is warranted in the future; it would result in somewhat
higher estimates of the entrainment coefficient ews for experiments of silty and sandy
turbidity currents. The general form of the relation, however, is anchored towards the
upper limit, lower limit and part of the middle range by experiments of particulate currents
with negligible fall velocity, and as such, we use it for the present analysis. In the future,
experiments on turbidity currents in long flumes (∼ 100 m) will be of great advantage to
study the water detrainment effect, and thus two-layer structures of turbidity currents in a
strong turbulent flow, in light of indiscrimination between density and particulate turbidity
currents in small scale flumes (Appendix C).

The two-layer model with a single grain size can be adapted in a straightforward way
to a three-layer model with two grain sizes. Choosing one of these grain sizes to be in
the sand range and the other to be in the mud range can help to clarify the nature of
morphodynamic channel–levee interaction (Deptuck & Sylvester 2017). It can also further
quantify the role of mud that has a relatively small settling velocity in maintaining sand
that has a relatively high fall velocity, in suspension, so as to transport the sand farther
downstream (Salaheldin et al. 2000). More complex grain size distributions and patterns
of dispersion can be considered in the future (Xie et al. 2023a).

5. Conclusions
Turbidity currents are bottom density flows driven by the excess weight of suspended
sediment. Turbidity currents in the deep sea are known to sculpt leveed channels that are
hundreds or thousands of kilometres long. To construct such channels, a current must run
out at least that far, consistently following the channel that is sculpted by the current itself.
No existing model of turbidity current dynamics is capable of accomplishing this. Here,
informed by the k−ε model of Luchi et al. (2018), we quantify the problem in terms of a
simpler two-layer model. The lower (driving) layer is where nearly all suspended sediment
is sequestered. This sediment is assumed to have a single, constant settling velocity and
to be transported as a dilute suspension. The upper layer is nearly sediment-free, and
is dragged along by the lower (driving) layer. It is essential to introduce the concept
of detrainment across the two-layer interface to quantify how sediment resists upward
turbulent mixing via its fall velocity, an issue that was first studied systematically in the
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context of turbidity currents entering a minibasin (Toniolo et al. 2006a). We apply the
model to sediment bypass conditions, such that there is no net flux of sediment at the bed.
The model presents a normal flow solution analogous to that of Ellison & Turner (1959)
for thermohaline bottom density flows. At normal flow, both lower and upper velocities
UL and UU attain constant values, and both lower and upper layer thicknesses δL and δU
increase linearly downstream. Under normal flow conditions, two thresholds are identified:
one related to channel slope, and the other to the non-dimensional settling velocity.
Exceeding either threshold causes the turbidity current to become Froude-supercritical.
Although both layers thicken linearly downstream, we show that the effect of detrainment
mediated by fall velocity dramatically slows the thickening rate of the lower layer. Our
calculations using gradually varied flow show that the lower layer of a turbidity current
can run out 400 km without overthickening to the point that it would lose track of its
own channel. The calculations terminate there only because the flow reaches the Froude-
critical condition, beyond which the computational method is no longer applicable. This
issue can be overcome in the future by solving the parent unsteady, non-uniform version of
the model (3.1)–(3.5). The model opens up further future avenues in the study of the fluid
dynamics and morphodynamics of long-runout turbidity currents, including non-bypass
flows, levee construction and the effect of multiple sediment sizes on grain-size-specific
sediment runout.
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Appendix A. Derivation of (3.2)
The flow is incompressible turbulent and uniform in the transverse direction, and contains
a dilute suspension of sediment with fall velocity vs . It is assumed that the flow velocity
averaged over turbulence is (u, w), where u is the velocity in the x direction, and w is the
velocity in the z direction. The equation of continuity is

∂u

∂x
+ ∂w

∂z
= 0. (A1)

The velocity (us, ws) of a sediment particle is taken to be

(us, ws) = (u, w − vs). (A2)

Integrating (A1) from z = 0 to z = δL yields

∂

∂x

∫ δL

0
u dz − u|δL

∂δL

∂x
+ w|δL

= 0. (A3)
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The settling interface is a material interface following the sediment, not the fluid. An
appropriate version of the kinematic boundary condition for this case is

∂δL

∂t
+ u|δL

∂δL

∂x
− (

w|δL
− vs

) = ue, (A4)

where ue is a turbulent entrainment velocity of fluid across the interface. Set

ue = ews(UL − UU ), (A5)

where ews is a coefficient of turbulent entrainment. Define

ULδL =
∫ δL

0
u dz. (A6)

From (A3)–(A6),

∂δL

∂t
+ ∂ULδL

∂x
= ews(UL − UU ) − vs . (A7)

Appendix B. Derivation of (3.3)
The analysis follows from Appendix A. With c(t, x, z) denoting volume suspended
sediment concentration averaged over turbulence, the relevant 2-D conservation
equation is

∂c

∂t
+ ∂uc

∂x
+ ∂wc

∂z
− vs

∂c

∂z
= −∂ FR

∂z
, FR = c′w′, (B1)

where the primes denote fluctuating quantities, and FR denotes the upward normal flux of
suspended sediment due to turbulence. Integrating from z = 0 to z = δL and using (A4), it
is found upon some reduction that

∂δLC

∂t
+ ∂ULδLC

∂x
− c|δL

(
∂δL

∂t
+ u|δL

∂δL

∂x
− w|δL

+ vs

)
= − FR|δL

+ vs (E − rC) ,

(B2)
where

CδL =
∫ δL

0
c dz, ULδLC =

∫ δL

0
uc dz, FRb = vs E, r = cb

C
, (B3)

and the subscript b denotes a near-bed value. Substituting (A4) and the closure hypothesis
(B4) into (B2) reducing with the closure hypothesis, (B4), (B2) yields (3.3)

FR|δL
= c|δL

we, (B4)

we reduce (B2) to (3.3).

Appendix C. Comparison of the two-layer model with the one-layer model of Ellison
& Turner (1959) for the case of a density flow with vanishing fall velocity
Here, we consider a comparison of the results of the two-layer model applied to the case of
vanishing fall velocity with the corresponding version of the 3-equation one-layer model.
In this case, the 3-equation model corresponds to that of Ellison & Turner (1959), who
performed their experiments in a laboratory channel with length 2 m. We run the models
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Figure 8. Numerical results for vanishing fall velocity under laboratory-scale conditions. (a–c) Flow velocity,
layer thickness and sediment volumetric concentration at the laboratory scale (x < 10 m). The difference
between single-layer and two-layer models is small. (d–f ) Flow velocity, layer thickness and sediment
volumetric concentration at the far field (x < 200 m). The difference between single-layer and two-layer models
is more visible. The upstream boundary conditions are (UL , UU , δL , δU ) = (0.8 m s–1, 0.05 m s–1, 0.375 m,
0.1 m).

with the same values S = 0.03 and C f b = 0.002 as the field-scale runs of figure 6, but
with laboratory-scale values as follows: qwu = 0.3 m2 s–1, qs = 0.01 m2 s–1, U3u = 0.8
m s–1 and δ3u = 0.375 m for the 3-equation, single-layer model; and qwu = 0.3 m2 s–1,
qs = 0.01 m2 s–1, ULu = 0.8 m s–1, UUu = 0.05 m s–1, δLu = 0.375 m and δUu = 0.1 m for
the two-layer model. The results are compared in figure 8.

Figures 8(a–c) show results for velocity, layer thickness and sediment concentration
profiles for x ≤ 10 m. The results for the lower layer of the two-layer model and
the 3-equation, single-layer model show relatively little difference at this scale.
Figures 8(d–f ) show the corresponding results for x ≤ 200 m, where differences are more
apparent.

Appendix D. Gradually varied flow under a Froude-subcritical condition
The numerical results under the Froude-subcritical condition are shown in figure 9. The
channel slope is set one order of magnitude smaller than the Froude-supercritical case
(figures 5 and 6), and grain size is halved. Under the Froude-supercritical condition,
the boundary condition is given downstream, and (3.10a,b) and (3.9a,b) are integrated
upstream to obtain the numerical results.
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Figure 9. Numerical results of long profiles of gradually varied (a) flow velocity and (b) layer thickness under
Froude-subcritical conditions. The blue line represents the lower layer of the two-layer model. The black dashed
line represents the original 3-equation model, and the black solid line represents the 3-equation model with the
water detrainment term. The red dashed line represents the upper layer velocity. The solutions were obtained
by integrating upstream from the downstream boundary (UL , UU , δL , δU ) = (0.5 m s–1, 0.275 m s–1, 200 m,
an arbitrary large value) at x = 70 000 m.
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