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 A B S T R A C T

Spatial convolution is fundamental in constructing deep Convolutional Neural Networks (CNNs) for visual 
recognition. While dynamic convolution enhances model accuracy by adaptively combining static kernels, 
it incurs significant computational overhead, limiting its deployment in resource-constrained environments 
such as federated edge computing. To address this, we propose Fast Multi-Attention Dynamic Convolution 
(FMDConv), which integrates input attention, temperature-degraded kernel attention, and output attention to 
optimize the speed-accuracy trade-off. FMDConv achieves a better balance between accuracy and efficiency 
by selectively enhancing feature extraction with lower complexity. Furthermore, we introduce two novel 
quantitative metrics, the Inverse Efficiency Score and Rate-Correct Score, to systematically evaluate this trade-
off. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet demonstrate that FMDConv reduces the 
computational cost by up to 49.8% on ResNet-18 and 42.2% on ResNet-50 compared to prior multi-attention 
dynamic convolution methods while maintaining competitive accuracy. These advantages make FMDConv 
highly suitable for real-world, resource-constrained applications.
1. Introduction

Convolutional Neural Networks (CNNs) [1–4] have become the 
dominant approach for various vision-based tasks, including object 
detection [5,6], semantic segmentation [7,8], and image classifica-
tion [9,10]. While traditional networks like VGGNets, GoogLeNets, and 
ResNets rely on static convolutional kernels, these fixed-size kernels 
limit the ability to capture diverse contexts in images with varying 
scales and resolutions.

To address this, recent studies have explored dynamic convolu-
tion [11], where kernels adapt to different input characteristics.
SENet [12] introduced dynamic channel weighting, while CondConv
[13] further extended dynamic convolution by constructing unique 
kernels for individual images. DynamicConv [14] and ODConv [15] 
incorporated attention mechanisms into dynamic convolution, signif-
icantly improving the adaptability of convolutional operations and 
enhancing feature representation learning.

However, despite these advancements, existing methods struggle to 
effectively balance the trade-off between computational efficiency and 
accuracy. Many prior works focus primarily on improving accuracy but 
overlook the need for efficiency in real-world applications, particularly 
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in edge computing and mobile environments. While ODConv [15] inte-
grates multiple attention mecha nisms to enhance feature extraction, its 
complexity leads to substantial computational cost increases, making it 
less feasible for deployment in resource-limited scenarios.

A key challenge in deep learning is the speed-accuracy trade-off, 
which remains inadequately addressed. Existing studies primarily rely 
on empirical observations, using FLOPs or inference time as prox-
ies for efficiency, but struggle to provide a systematic framework 
to jointly evaluate both efficiency and accuracy. The lack of quan-
tifiable measures limits the development of efficiency-balanced deep 
learning models for broader applications. Moreover, most prior studies 
assess trade-offs based on empirical observations rather than theoret-
ical formulation, leading to inconsistencies in evaluating efficiency-
performance balance. The speed-accuracy trade-off, a well-established 
concept in psychology and neuroscience [16], offers valuable insights 
for computational science.

To address these limitations, we introduce Fast Multi-Attention Dy-
namic Convolution (FMDConv), as shown in Fig.  1, a novel lightweight 
convolutional block that selectively integrates multiple attention mecha
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Fig. 1. Overview of the FMDConv framework. The diagram illustrates the three attention mechanisms (Input, TD Kernel, and Output Attention) in FMDConv, each targeting a 
distinct stage of feature extraction for optimal efficiency and accuracy.
nisms—input attention, temperature-degraded kernel attention, and 
output attention—to reduce computational complexity while maintain-
ing competitive accuracy.

Additionally, we propose two novel quantitative metrics, the In-
verse Efficiency Score (IES) and the Rate-Correct Score (RCS), to sys-
tematically evaluate the efficiency-accuracy trade-off in deep learning 
architectures. Unlike prior works that only measure FLOPs or infer-
ence time, our metrics provide a unified framework to jointly assess 
computational efficiency and model accuracy, enabling standardized 
comparisons across different approaches.

Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet 
demonstrate that FMDConv achieves state-of-the-art efficiency-
accuracy trade-offs, reducing FLOPs by up to 49.8% on ResNet-18 
and 42.2% on ResNet-50, while maintaining competitive accuracy. 
Our findings highlight FMDConv’s potential for real-world, resource-
constrained applications and underscore the necessity of standardized 
efficiency-performance evaluations in deep learning.

Our main contributions can be summarized as follows:

• We propose IES & RCS, the first standardized metrics for evaluat-
ing the speed-accuracy trade-off in dynamic convolution, moving 
beyond previous qualitative assessments.

• We conduct a comprehensive evaluation of attention mechanisms 
in dynamic convolution and identify input attention, temperature-
degraded kernel attention, and output attention as the optimal 
structures for balancing efficiency and accuracy.

• We introduce Fast Multi-Attention Dynamic Convolution (FMD-
Conv), a novel lightweight convolutional block that selectively 
integrates these attentions, significantly reducing computational 
cost while maintaining accuracy. Compared to ODConv, FMD-
Conv achieves up to 49.8% and 42.2% FLOP reductions on 
ResNet-18 and ResNet-50, respectively, making it highly efficient 
for resource-constrained applications.

• Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet 
demonstrate the superiority of FMDConv, achieving a state-of-
the-art efficiency-accuracy trade-off with reduced computational 
overhead.

2. Related works

Deep Convolutional Neural Networks (CNNs) Architecture.
LeNet-5 is one of the first convolutional neural networks proposed 
by LeCun et al. [17] in the late 1990s, which was trained using 
backpropagation for a handwritten zip code recognition task with 
superior performance. AlexNet, invented by Krizhevsky et al. won the 
ImageNet 2012 challenge and significantly outperformed the second 
2 
place by over 10% in both classification and localization tasks. It 
adopts convolutional layers, dropout regularization, and data augmen-
tation strategies, and its success demonstrates the great potential of 
deep CNNs in visual recognition. By then, limited by computational 
resources, their work did not explore deeper architecture. Simonyan 
et al. from Oxford proposed a family of VGGNets [18], which introduces 
a systematic approach to designing deeper models. For example, the 
paper proposes using stacked small filters (i.e., 2 stacked 3 × 3 kernels) 
to replace a single large filter (i.e., 1 single 5 × 5 kernel), which can 
span the same receptive field with a deeper architecture but fewer 
computational operations. They showed that the number of layers 
positively correlates with the model accuracy of up to 16 layers, 
which outperforms AlexNet by a significant margin. However, they 
also observed that adding more layers (i.e., 19) cannot further improve 
the performance. InceptionNet [19], also known as GoogLeNet, takes 
a novel approach to expand the architecture horizontally within the 
same layer by using multiple kernels at different scales, where the 
computed feature maps are then concatenated to form the input for 
the next layer. It also uses numerous auxiliary classifiers at different 
levels to improve training convergence. He et al. [20] proposed a 
ResNet that uses residual connection structure to learn the depth of 
the architecture dynamically via backpropagation. ResNet won several 
visual recognition challenges and was used as the core for AlphaGo.

Lightweight architecture design has attracted great attention. Howa
rd et al. [21] introduced MobileNet, which is suitable for deploying 
on mobile and embedded devices. The model decomposes a standard 
convolutional filter into a depth-wise convolution and a point-wise 
convolution, greatly reducing computational operations. In addition, 
group convolution and channel shuffling used in ShuffleNet [22] are 
often used jointly with other design principles. In this paper, we 
consider both efficiency and performance from a trade-off perspective, 
and the proposed FMDConv can be used as a basic building block 
or a design paradigm in convolutional neural network architecture. 
These backbone networks, as we mentioned above, are mainly based 
on static convolution operators and have been widely adopted in many 
subsequent deep CNNs, which has stimulated further research.

Dynamic Convolution Neural Networks. The core idea of dy-
namic convolution originated from ConvCond, proposed by Yang et al. 
[13] in 2019. A static convolution applies the same kernel across the 
whole dataset; a dynamic convolution has a unique kernel for each 
image, which can be achieved by using parameterized convolutions 
that are conditioned on the input images. Chen et al. [14] proposed 
to use the attention mechanism over the kernel itself, which dynam-
ically integrates multiple parallel convolution kernels into one that is 
conditioned on the layer input. The experimental results showed that 
such an integration strategy can improve expression capacity without 
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Table 1
Comparison of existing static and dynamic convolution methods, summarizing key techniques, application scenarios, and limitations. 
 Method Key technique Application scenarios Limitations  
 VGG [18] Stacked small convolutional kernels General-purpose CNNs High computational cost  
 ResNet [20] Residual connections for deeper networks Deep CNN architectures Performance saturates at extreme depth 
 SENet [12] Channel recalibration via SE module Lightweight models Does not learn spatial dependencies  
 CondConv [13] Mixture of convolutional kernels Efficient deep models High memory overhead  
 DynamicConv [14] SoftMax-weighted kernel aggregation Image classification High computational cost  
 ODConv [15] Kernel, spatial, channel, and filter attention Large-scale vision models Higher computational cost  
increasing the depth and width of the network. We refer the readers 
to the works of Han et al. [23], Sun et al. [24], Wu et al. [25], 
Zhao et al. [26], Huang et al. [27], and Zhang et al. [28] for existing 
works and open problems in constructing dynamic convolution. It is 
worth noting that most works endow convolution kernels with dynamic 
properties through the single dimension of the kernel space (i.e., the 
number of convolution kernels). Li et al. [15] argued that integrating 
all dimensions (including kernel attention, output channel attention, 
input channel attention, and spatial attention) is capable of improving 
the learning capacity of the model and achieving better recognition per-
formance. However, dynamic convolution usually involves additional 
operations that are computationally expensive. The DCD Network pro-
posed by Li et al. [29] replaces dynamic attention over channel groups 
with channel fusion in a low-dimensional space, which requires fewer 
parameters and lower computational costs without sacrificing model 
accuracy. Inspired by ODConv [15] and DynamicConv [14] models, 
in this paper, we focus on trading off efficiency and accuracy via 
optimizing the integration of dynamic strategies through all possible 
dimensions of the kernel space.

Speed-Accuracy Trade-off. Huang [30] demonstrated various fea-
sible approaches to trading accuracy for speed and memory usage in 
deep learning-based object detection frameworks. Similar works were 
proposed for different application domains, such as Riel et al. [31] 
for medical applications using axial Computed Tomography (CT) im-
ages, Javadi et al. [32] for humanoid robots, and Chaves et al. [33] 
for forensic surveillance. In summary, the speed-accuracy trade-off 
can be achieved via either a model pruning strategy (such as par-
tial sequential pruning [34]) or specifically designed building blocks 
(such as COSFORMER [35], GSoP [36]). We notice that the speed-
accuracy trade-off [16] is a well-established concept in psychology 
and neuroscience that refers to the tendency of individuals to balance 
the speed and accuracy of their responses in a given task. Motivated 
by [16], in this paper we propose two new metrics to measure the 
trade-off between speed and accuracy and develop FMDConv, a novel 
efficiency-accuracy-balanced building block for deep CNNs.

Table  1 provides a structured comparison of existing static and 
dynamic convolution methods, emphasizing computational complexity, 
key mechanisms, and practical applications.

3. Methodology

In this section, we provide a detailed description of the architec-
ture and implementation of Fast Multi-Attention Dynamic Convolution 
(FMDConv). FMDConv introduces multiple attention mechanisms to 
enhance the efficiency and accuracy of convolutional neural networks 
by dynamically adjusting convolutional kernel weights as well as the 
input and output feature attentions.

3.1. Dynamic convolution & omni-dynamic convolution

Traditional static convolution applies the same kernel across all 
input images, whereas dynamic convolution adjusts kernel parameters 
dynamically according to the input image. In essence, the convolu-
tional kernel is a learned function conditioned on the input data. 
Mathematically, dynamic convolution can be defined as: 
𝑦 = (𝛼𝑥 𝑊 +⋯ + 𝛼𝑥 𝑊 +⋯ + 𝛼𝑥 𝑊 ) ∗ 𝑥 (1)
𝑤1 1 𝑤𝑖 𝑖 𝑤𝑛 𝑛

3 
where 𝑊𝑖 is the weight of the 𝑖th convolutional kernel, 𝛼𝑥𝑤𝑖
 is the 

corresponding attention value based on input 𝑥, 𝑦 represents the output 
feature map, and ∗ denotes the convolution operation.

Li et al. proposed to jointly use four different attentions in OD-
Conv [15] that can be formally defined as follows: 

𝑦 = (𝛼𝑥𝑤1
⊙𝛼𝑥𝑓1⊙𝛼𝑥𝑐1⊙𝛼𝑥𝑠1+⋯+𝛼𝑥𝑤𝑖

⊙𝛼𝑥𝑓𝑖⊙𝛼𝑥𝑐𝑖⊙𝛼𝑥𝑠𝑖+⋯+𝛼𝑥𝑤𝑛
⊙𝛼𝑥𝑓𝑛⊙𝛼𝑥𝑐𝑛⊙𝛼𝑥𝑠𝑛 ) ∗ 𝑥

(2)

where ⊙ denotes the element-wise Hadamard product. Here, 𝛼𝑥𝑤𝑖
, 𝛼𝑥𝑓𝑖 , 

𝛼𝑥𝑐𝑖 , 𝛼
𝑥
𝑠𝑖
 represent the kernel attention, output channel attention, input 

channel attention, and spatial attention, respectively, while 𝑥, and 𝑦
denote the input and output feature maps, respectively.

3.2. Metric of speed-accuracy trade-off

Motivated by the well-established speed-accuracy trade-off concept 
in psychology [16], we introduce two novel metrics, Inverse Efficiency 
Score (IES) [37] and Rate-Correct Score (RCS) [38], to jointly measure 
computational overhead and model accuracy. Note that in cognitive 
psychology, reaction time (RT) refers to human subjects’ response 
speed. Here, we adapt the concept to measure the computational 
overhead (e.g., training time, FLOPs) of deep learning models. We do 
not imply an exact one-to-one mapping but merely draw inspiration 
from the speed-accuracy trade-off phenomenon.

Inverse Efficiency Score (IES). The most commonly used measure 
for a speed-accuracy trade-off in experimental psychology is IES [37], 
which is typically defined as the mean correct reaction time (RT) 
divided by the proportion of correct classifications. In our case, we 
adopt the concept of the original IES and formulate the score as the 
ratio of the training time of an epoch to the Top-1 accuracy rate: 

𝐼𝐸𝑆𝑖𝑗 =
𝑅𝑇𝑖𝑗
𝑃𝐶𝑖𝑗

(3)

where 𝑅𝑇𝑖𝑗 is the mean training time of the model 𝑖 on correct-
classification trials with hyper-parameter set 𝑗, and 𝑃𝐶𝑖𝑗 is the pro-
portion of correct classifications of 𝑖 for 𝑗. Although most (if not 
all) research using IES has only included 𝑅𝑇 s with correct trails, the 
original study suggests all 𝑅𝑇 s (including error trials) should be taken 
into account.

Rate-Correct Score (RCS). We also adopt an alternative speed-
accuracy trade-off metric, the rate-correct score (RCS), that can be 
defined as: 

𝑅𝐶𝑆𝑖𝑗 =
𝑁𝐶𝑖𝑗

∑𝑛𝑖𝑗
𝑘=1 𝑅𝑇𝑖𝑗𝑘

(4)

where 𝑁𝐶𝑖𝑗 is the number of correct classifications of the model 𝑖 in 
condition of 𝑗, and the denominator reflects the total time the model 
𝑖 spent on training in condition of 𝑗 (i.e., the sum of RTs across all 
𝑛𝑖𝑗 training of the model 𝑖 in condition of 𝑗). RCS can be interpreted 
directly as the number of correct classifications per unit of time. Both 
methods compare accuracy and training time. The difference is that IES 
is only related to accuracy and running time, while RCS also considers 
the size of the training database.
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Fig. 2. The architecture of the Fast Multi-Attention Dynamic Convolution (FMDConv) block. It integrates three attention mechanisms: Input Attention, Temperature-Degraded (TD) 
Kernel Attention, and Output Attention. These attentions are computed via Sigmoid and SoftMax functions to adjust feature maps and convolution kernels dynamically.
3.3. Fast multi-attention dynamic convolution

In this section, we present the architecture of Fast Multi-Attention 
Dynamic Convolution (FMDConv). Unlike DynamicConv and ODConv, 
we introduce a multi-attention mechanism and optimize the integration 
of dynamic strategies across multiple kernel dimensions to enhance 
both efficiency and accuracy.

3.3.1. Architecture design
In this subsection, we present the proposed FMDConv block, namely 

Fast Multi-Attention Dynamic Convolution. Similar to Dynamic Convo-
lution [14] and Omni-Dynamic Convolution [15], we adopt a multi-
attention mechanism and calculate convolution from 𝑁 learnable ker-
nels with the same spatial size and channel dimension. However, 
based on those two proposed speed-accuracy trade-off metrics, we 
conclude that calculating kernel attention and spatial attention are 
computationally expensive, while both contribute very little to improv-
ing accuracy. Therefore, we replace these two attention mechanisms 
with temperature-degraded kernel attention originating from Dynam-
icConv [14]. The overall architecture of the proposed FMDConv is 
illustrated in Fig.  2. The proposed FMDConv can be formulated as: 

𝑦 = (𝛼𝑖1 ⊙ 𝛼𝑘′1 ⊙ 𝛼𝑜1 + 𝛼𝑖2 ⊙ 𝛼𝑘′2 ⊙ 𝛼𝑜2 +⋯ + 𝛼𝑖𝑛 ⊙ 𝛼𝑘′𝑛 ⊙ 𝛼𝑜𝑛 ) ∗ 𝑥 (5)

where 𝑥, and 𝑦 denote the input and output feature maps, respec-
tively, while 𝛼𝑖𝑛 , 𝛼𝑘′𝑛  and 𝛼𝑜𝑛  correspond to the input channel attention, 
temperature-degraded kernel attention, and output channel attention, 
respectively, as detailed in Algorithm 1.

As shown in Fig.  2, in input attention and output attention, the 
input information will first be squeezed by global average pooling, fol-
lowed by a fully connected layer, a ReLu activation layer, and another 
fully connected layer to calculate the sample-dependent information. 
To compute the final attention values {𝛼𝑐 , 𝛼′𝑘, 𝛼𝑓 }, we again apply 
different non-linear activation operators individually on the extracted 
sample-dependent feature for input attention, temperature-degraded 
kernel attention, and output attention. For input and output attention 
activation functions, sigmoid is used, while we use SoftMax for kernel 
attention instead.

3.3.2. Temperature of SoftMax activation function
The SoftMax activation function is commonly used for kernel at-

tention, but in the early stages of training, the uniform output of 
SoftMax can lead to slow convergence. To address this, we introduce 
a temperature degradation mechanism where the initial temperature is 
4 
Algorithm 1 Fast Multi-Attention Dynamic Convolution (FMDConv2d)
1: Input: Input tensor 𝑥, temperature 𝑇 , kernel size 𝑘, number of 
kernels 𝐾, input channels 𝐶in, output channels 𝐶out

2: Output: Output tensor after dynamic convolution
3:
4: Initialization:
5: Initialize attention layers Attention, Attention2, and convolution 
kernels 𝑊  with Kaiming initialization.

6: Initialize bias terms 𝑏 if applicable.
7:
8: Step 1: Input Attention Computation
9: Compute input attention 𝐴input = 𝜎(Conv(𝑥)) ⊳ 𝜎: Sigmoid 
activation

10: Compute output attention 𝐴output = 𝜎(Conv(𝑥))
11:
12: Step 2: Kernel Attention Computation
13: Compute kernel attention 𝐴kernel = Softmax

(

Attention2(𝑥)
𝑇

)

⊳
Temperature-scaled softmax

14:
15: Step 3: Dynamic Convolution Calculation
16: Multiply input 𝑥 by input attention: 𝑥 = 𝑥 × 𝐴input
17: Reshape input tensor 𝑥 to shape (1, 𝐶in × batch size,𝐻,𝑊 )
18: Reshape convolution kernel weights 𝑊  to shape (𝐾,𝐶out ×𝐶in, 𝑘, 𝑘)
19: Compute aggregate weight matrix: 𝑊agg = 𝐴kernel ×𝑊
20: if bias is not None then
21:  Compute aggregate bias 𝑏agg = 𝐴kernel × 𝑏
22:  Perform convolution: Output = Conv2d(𝑥,𝑊agg, 𝑏agg)
23: else
24:  Perform convolution: Output = Conv2d(𝑥,𝑊agg)
25: end if
26: Reshape output to batch size and apply output attention: Output =

Output × 𝐴output
27:
28: Return: Output tensor after applying multi-attention dynamic 

convolution.

set to 40 and decreases by 3 after each epoch until the temperature 
reaches 1. The formula for temperature-degraded SoftMax is given by: 

𝜎(𝑧𝑖) =
𝑒𝑧𝑖∕𝑇

∑𝐾
𝑗=1 𝑒

𝑧𝑗∕𝑇
(6)

where 𝜎(𝑧𝑖) denotes the output probability for the 𝑖th kernel, 𝑧𝑖 is the 
𝑖th element of the input vector 𝑧, 𝐾 is the total number of kernels, 
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and 𝑇  is the temperature parameter that controls the sharpness of 
the SoftMax distribution. We set the initial temperature to start at 40 
and subtract 3 after each epoch of training until T. When 𝑇 = 1, 
the formula is identical to normal SoftMax. Setting the temperature to 
decrease by 3 every epoch can greatly mitigate the slow start issue of 
SoftMax at the early epoch, which produces near one-hot output at the 
beginning of the training. When the temperature 𝑇  = 1, this function 
reduces to the standard SoftMax. Our experiments show that setting 
the initial temperature to 40 improves Top-1 accuracy by 2.95% on 
the CIFAR-100 dataset.

4. Experiments

4.1. Benchmark and experiment setting

To evaluate the proposed FMDConv, we adopted ResNet-18 as the 
backbone due to its low computational and memory requirements, 
making it suitable for resource-constrained platforms. The experiments 
were conducted on widely used benchmarks, including CIFAR-10, 
CIFAR-100, and ImageNet (ILSVRC 2012). The CIFAR datasets con-
sist of 50,000 training images and 10,000 testing images, while the 
ILSVRC2012 dataset contains 1,281,167 training images and 50,000 
validation images across 1000 categories. Compared to CIFAR datasets, 
ImageNet offers higher resolution, and more diverse image categories, 
and presents a greater challenge for classification tasks.

In this study, we initially tuned the hyperparameters based on the 
training set performance, as our model demonstrated robustness across 
a wide range of hyperparameter settings (as presented in Section 4.4). 
However, following the reviewer’s suggestion and adhering to best 
practices, we recognize the importance of using a validation set for 
hyperparameter optimization. In future work, we plan to incorporate 
a separate validation set to ensure hyperparameter tuning is conducted 
independently of the test set, thereby further enhancing the robustness 
and generalizability of our results.

For comparative analysis, we evaluated our method against existing 
dynamic convolution approaches, such as ODConv [15], DynamicConv, 
and CondConv, to comprehensively demonstrate the advantages of 
FMDConv.

In our training regimen for both CIFAR-10 and CIFAR-100, the 
initial learning rate was set to 0.1, with a decay factor of 20 applied 
every 30 epochs over 70 epochs of training. We used a weight decay of 
1e-4, a dropout rate of 0.1, and a reduction rate of 0.0625. The training 
batch size was 32, and the test batch size was 70. For ImageNet, we 
adopted a different strategy, initializing the learning rate at 0.1 and 
reducing it by a factor of 30 every 30 epochs, for a total of 100 epochs.

All experiments were conducted on a system with an NVIDIA 
GeForce RTX 3080 GPU (10 GB GDDR6X memory), 32 GB Corsair 
VENGEANCE RGB PRO DDR4 RAM, and an Intel® Core i9-12900K CPU. 
The software environment included PyTorch 1.12.1, CUDA 11.3, and 
Python 3.9.

4.2. Speed-accuracy trade-off evaluation

We first evaluate the speed-accuracy trade-off of four attention 
mechanisms used in Omni-Dynamic Convolution with the proposed 
metrics (IES and RCS) on an image classification task. Table  2 il-
lustrates the accuracy and time consumption of channel attention, 
kernel attention, spatial attention, and filter attention, respectively, on 
the CIFAR-10 dataset. The best two results are highlighted in bold. 
Our findings reveal that channel attention and filter attention achieve 
better accuracy (improvements of 1.13% and 1.12% on Top-1 accuracy, 
respectively) with a relatively small increase (12.53 s and 13.00 s extra 
per training epoch) in time consumption. However, kernel attention 
and spatial attention lead to significant time consumption with lim-
ited improvement in accuracy. We further conducted experiments on 
kernel attention with two and four kernels, where the kernel attention 
5 
improves Top-1 accuracy by 0.45% with an extra 97.71 s of time cost 
per training epoch when the kernel number is two and by 0.9% with an 
extra 158.53 s with four kernels. We also used RCS as the key index to 
measure the effectiveness of these four attention mechanisms. We found 
that channel attention and filter attention outperform kernel attention 
and spatial attention with RCS scores of 915.32 and 908.05, compared 
to kernel attention and spatial attention with RCS scores of 373.76 and 
481.63, respectively.

We conclude that spatial attention and kernel attention have little 
impact on the Top-1 accuracy of the CIFAR-10 dataset while signifi-
cantly increasing time consumption.

In Fig.  3(a), we present the experimental effects of the four attention 
mechanisms on CIFAR-10. The horizontal axis represents the time of 
each training epoch, and the vertical axis represents the percentage of 
Top-1 accuracy. The bubbles in the upper-left corner indicate higher 
Top-1 accuracy rates with less time and better results. Fig.  3(b) il-
lustrates the IES, which is the ratio of time to accuracy. A smaller 
ratio indicates better results with high accuracy and less time. Fig.  3(c) 
displays the RCS of each attention mechanism, which is the number of 
correct classifications per unit of time. A higher number indicates better 
results, implying that more correct images can be classified within a 
certain period.

4.3. Fast multi-attention dynamic convolution

We evaluate the performance of our FMDConv model on CIFAR-10, 
CIFAR-100, and ImageNet. The results of our experiments, presented 
in Table  3, show that our FMDConv model achieves the highest Top-1 
accuracy of 94.21% and Top-5 accuracy of 99.85%, with a time per 
epoch of 114.7 s in CIFAR-10. In addition, FMDConv outperforms the 
baseline regarding IES and RCS scores by a significant margin, with 
121.75 in IES points and 241.08 in RCS scores.

Similarly, on CIFAR-100, the FMDConv model achieves a top-1 
accuracy of 74.99% and a top-5 accuracy of 93.61%, with a time per 
epoch of 115.16 s in CIFAR-100. Table  4 illustrates that our approach 
achieves 153.16 in IES points and 390.71 in RCS score.

In our ImageNet training experiments, when we applied identical 
parameters, including learning rate, batch size, and number of epochs, 
our approach exhibited a substantial reduction in training time, nearly 
halving it in comparison to ODConv. Specifically, Table  5 compares the 
performance of different dynamic convolution models on the ImageNet 
validation set using ResNet18 as the backbone, trained for 100 epochs. 
Our proposed method, FMDConv (×4), achieved the highest Top-1 
accuracy of 73.21% and Top-5 accuracy of 90.88%, outperforming 
CondConv, DynamicConv, and ODConv. In terms of efficiency, FMD-
Conv showed clear advantages, with a time per epoch of 620.34 s, 
which is nearly half that of ODConv (1236.14 s). Additionally, FMD-
Conv achieved the lowest Inverse Efficiency Score (IES) of 847.34 and 
the highest Rate-Correct Score (RCS) of 1511.98, demonstrating that it 
offers the best trade-off between speed and accuracy.

Based on the experimental results presented in Table  6, we compare 
the performance of various dynamic convolution models on the Ima-
geNet validation set using ResNet50 as the backbone, trained for 100 
epochs. Our proposed method, FMDConv (×4), achieved the best Top-1 
accuracy of 78.34% and Top-5 accuracy of 93.57%, marginally outper-
forming ODConv (×4) in both metrics. Notably, FMDConv significantly 
reduced the computational overhead compared to ODConv, with a 
much lower Time per Epoch of 1028.57 s compared to 1780.35 s for 
ODConv. Additionally, FMDConv achieved superior efficiency, reflected 
in the lowest Inverse Efficiency Score (IES) of 1099.25 and a higher 
Rate-Correct Score (RCS) of 975.79, indicating that it provides better 
performance per unit of time.

Based on the experimental results shown in Table  7, we evaluate 
the performance of various dynamic convolution approaches on the Im-
ageNet validation set, using MobileNetV2 (×0.5) as the backbone and 
training for 100 epochs. Our proposed FMDConv (×4) delivered the best 
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Table 2
Comparison of results of each attention on the Cifar-10 validation set with the ResNet18 backbones trained for 100 epochs. We set r = 0.1. The best results are bold.
 Kernel number Channel attention Kernel attention Spatial attention Filter attention Top-1% Top-5% Time per epoch/s IES RCS  
 1 – – – – 89.7 99.65 47.01 – –  
 1 ✓ – – – 𝟗𝟎.𝟖𝟑 𝟗𝟗.𝟔𝟖 𝟓𝟗.𝟓𝟒 𝟔𝟓.𝟔𝟓 𝟗𝟏𝟓.𝟑𝟐  
 2 – ✓ – – 90.15 99.72 144.72 160.53 373.76 
 4 – ✓ – – 90.6 99.71 205.54 226.87 264.47 
 1 – – ✓ – 90.41 99.76 112.63 124.58 481.63 
 1 – – – ✓ 𝟗𝟎.𝟖𝟐 𝟗𝟗.𝟖𝟐 𝟔𝟎.𝟎𝟏 𝟔𝟔.𝟎𝟖 𝟗𝟎𝟖.𝟎𝟓  
Fig. 3. (a) Attentions Comparison on the CIFAR-10; (b) Inverse Efficiency Score (IES); (c) Rate-correct Score (RCS).
Table 3
Comparison of results on the Cifar-10 validation set with the ResNet18 backbones trained for 70 epochs. We set r = 0.1. The best results are 
bold.
 Model Top-1 accuracy Top-5 accuracy Time cost each epoch IES RCS  
 CondConv 81.19 98.96 100.50 s 123.78 484.72 
 DynamicConv 85.19 99.33 104.05 s 122.14 491.24 
 ODConv 93.82 99.82 223.61 s 238.34 251.74 
 𝐎𝐮𝐫𝐬 𝟗𝟒.𝟐𝟏 𝟗𝟗.𝟖𝟓 114.7 s 𝟏𝟐𝟏.𝟕𝟓 𝟒𝟗𝟐.𝟖𝟐  
Table 4
Comparison of results on the Cifar-100 validation set with the ResNet18 backbones trained for 100 epochs. We set r = 0.1. The best results 
are bold.
 Model Top-1 accuracy Top-5 accuracy Time cost each epoch IES RCS  
 CondConv 66.80 85.24 108.50 s 162.42 369.40 
 DynamicConv 67.21 86.89 105.98 s 157.68 380.50 
 ODConv 72.63 92.13 222.1 s 305.79 196.21 
 𝐎𝐮𝐫𝐬 𝟕𝟒.𝟗𝟗 𝟗𝟑.𝟔𝟏 115.16 s 𝟏𝟓𝟑.𝟓𝟕 𝟑𝟗𝟎.𝟕𝟏  
Table 5
Comparison of results on the ImageNet validation set with the ResNet18 backbones trained for 100 epochs. We set r = 0.0625. The best results 
are bold.
 Model Top-1 (%) Top-5 (%) Time per epoch (s) IES RCS  
 CondConv (×8) 71.99 90.27 625.68 s 869.12 1474.10 
 DynamicConv (×4) 72.76 90.79 618.45 s 849.98 1507.28 
 ODConv (×4) 73.09 90.86 1236.14 s 1691.26 757.52  
 𝐎𝐮𝐫𝐬(×𝟒) 𝟕𝟑.𝟐𝟏 𝟗𝟎.𝟖𝟖 𝟔𝟐𝟎.𝟑𝟒 𝐬 𝟖𝟒𝟕.𝟑𝟒 𝟏𝟓𝟏𝟏.𝟗𝟖  
Table 6
Comparison of results on the ImageNet validation set with the ResNet50 backbones trained for 100 epochs. We set r = 0.0625. The best results 
are bold.
 Model Top-1 (%) Top-5 (%) Time per epoch (s) IES RCS  
 CondConv (×8) 75.20 93.12 990.12 1316.65 973.05 
 DynamicConv (×4) 75.82 93.16 1008.54 1330.18 963.16 
 ODConv (×4) 78.32 93.56 1780.35 2273.17 563.60 
 𝐎𝐮𝐫𝐬(×𝟒) 𝟕𝟖.𝟑𝟒 𝟗𝟑.𝟓𝟕 1028.57 𝟏𝟎𝟗𝟗.𝟐𝟓 𝟗𝟕𝟓.𝟕𝟗  
performance with a Top-1 accuracy of 70.23% and a Top-5 accuracy of 
92.07%, slightly surpassing ODConv (×4) in both measures. Notably, 
FMDConv significantly improved computational efficiency, requiring 
only 87.37 s per epoch, which is a notable reduction compared to 
ODConv’s 119.21 s. Moreover, FMDConv demonstrated enhanced over-
all efficiency with the lowest Inverse Efficiency Score (IES) of 124.41 
and the highest Rate-Correct Score (RCS) of 10298.31, reflecting its 
superior balance between speed and accuracy when compared to the 
other models.
6 
To further demonstrate the effectiveness of our FMDConv model, 
we visualize Grad-CAM++ results for different attention mechanisms 
using ResNet-18, as shown in Fig.  4. The experimental results indi-
cate that input attention enhances the network’s focus on discrimi-
native regions before convolution operations, thereby improving the 
effectiveness of early feature extraction. Temperature-degraded kernel 
attention dynamically adjusts convolutional kernel weights, reinforcing 
fine-grained structural information while suppressing irrelevant back-
ground noise, leading to more stable feature representations. Output 
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Table 7
Comparison of results on the ImageNet validation set with the MobileNetv2(x0.5) backbones trained for 100 epochs. We set r = 0.0625. The 
best results are bold.
 Model Top-1 (%) Top-5 (%) Time per epoch (s) IES RCS  
 CondConv (×8) 66.41 90.32 83.27 125.39 10217.64 
 DynamicConv (×4) 68.75 91.37 85.62 124.54 10287.34 
 ODConv (×4) 70.21 91.95 119.21 169.79 7545.57  
 𝐎𝐮𝐫𝐬(×𝟒) 𝟕𝟎.𝟐𝟑 𝟗𝟐.𝟎𝟕 87.37 𝟏𝟐𝟒.𝟒𝟏 𝟏𝟎𝟐𝟗𝟖.𝟑𝟏  
Fig. 4. Grad-CAM++ visualization results for multiple attention mechanisms on ImageNet. (a) Original Images, (b) Feature Maps with Input Attention, (c) Feature Maps with 
Temperature-Degraded (TD) Kernel Attention, (d) Feature Maps with Output Attention, and (e) Feature Maps with All Combined Attentions.
Table 8
Top-1 and Top-5 accuracy comparison of FMDConv with different initial temperatures 
on CIFAR-100. The best results are bold.
 Temperature Top-1 accuracy (%) Top-5 accuracy (%) 
 1 72.04 92.29  
 10 72.19 92.46  
 22 73.53 92.97  
 31 73.65 92.82  
 34 73.65 93.47  
 37 74.45 93.26  
 40 74.99 93.61  
 43 73.64 92.87  
 46 73.58 93.10  
 49 73.10 92.62  

attention further refines the extracted features by emphasizing class-
relevant regions and reducing redundant activations, making the final 
feature maps more distinct.
7 
When all three attention mechanisms work together, the network’s 
focus significantly improves, optimizing both spatial selectivity and 
class discriminability, as illustrated in Fig.  4(e). Unlike ODConv, which 
applies attention across all dimensions at a higher computational cost, 
FMDConv leverages a more lightweight multi-attention mechanism to 
achieve superior feature selectivity. In conclusion, our FMDConv model 
performs better in terms of model accuracy and training time cost than 
the baseline ODConv model on both CIFAR and ImageNet datasets. This 
improvement is mainly due to the introduction of the multi-attention 
mechanism in our FMDConv model.

4.4. Ablation studies

We conducted ablation studies on the CIFAR-100 dataset to evaluate 
the impact of various factors on the performance of the proposed 
FMDConv.

Effect of Initial Temperature. We introduced a temperature mech-
anism in the kernel attention module to enhance the convergence rate 
of dynamic convolution. As shown in Table  8, we compared the top-1 
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Fig. 5. Top-1 and Top-5 accuracy comparison for FMDConv under different initial temperatures on CIFAR-100.
Table 9
Comparison of results of different kernel numbers on the Cifar-100 validation set with the ResNet18 backbones trained for 100 epochs. We set 
r = 0.1. The best results are bold.
 Kernel number Params Top-1 accuracy (%) Top-5 accuracy (%) Time cost each epoch (s) 
 K=1 12.23M 74.13 93.06 106.11  
 K=2 23.22M 73.80 93.01 110.64  
 K=4 45.20M 𝟕𝟒.𝟗𝟗 𝟗𝟑.𝟔𝟏 115.16  
 K=6 67.18M 74.23 93.05 117.07  
 K=8 89.16M 74.67 93.09 120.11  
 K=16 177.09M 73.13 92.64 132.26  
Table 10
Comparison of results of different start learning rates on the Cifar-100 validation set with the ResNet18 
backbones trained for 70 epochs. We set r = 0.1. The best results are bold. 
 Start LR Top-1 accuracy (%) Top-5 accuracy (%) Time per epoch (s) 
 1/4 73.73 93.11 112.99  
 1/8 73.78 92.75 113.22  
 1/10 𝟕𝟒.𝟗𝟗 𝟗𝟑.𝟔𝟏 115.16  
 1/16 74.50 93.12 115.59  
and top-5 accuracy rates under different initial temperatures to identify 
the optimal value. When the initial temperature decreased from 40, 
the model achieved its highest Top-1 accuracy, improving by 2.75% 
compared to the baseline temperature of 𝑇  = 1, as shown in Fig. 
5. Similarly, the Top-5 accuracy increased by 1.32%. The accuracy 
initially increases with temperature until it peaks at 40, after which 
it begins to decline. The best results are highlighted in bold.

Effect of the Number of Convolution Kernels. We evaluated the 
impact of varying the number of convolution kernels on classification 
accuracy. As shown in Table  9, when the initial temperature is fixed 
at 𝑇  = 40, the Top-1 accuracy reaches a maximum of 74.99% with 
four kernels (K = 4). Beyond K=4, increasing the number of kernels 
does not lead to further improvements, as the accuracy stabilizes or 
decreases slightly. The corresponding Top-5 accuracy follows a similar 
trend, reaching 93.61%.

Effect of Learning Rate. In this set of experiments, we tested dif-
ferent initial learning rates (1/2, 1/4, 1/8, 1/10, and 1/16) to evaluate 
their influence on accuracy. As shown in Table  10, a learning rate of 
1/10 produced the best Top-1 accuracy (74.99%) and Top-5 accuracy 
(93.61%) with minimal additional time per epoch. Lower learning rates 
did not yield significant improvements and, in some cases, resulted in 
a slight reduction in accuracy.
8 
5. Limitation

While FMDConv shows clear improvements in balancing speed and 
accuracy across various benchmarks, its deployment in highly resource-
constrained environments may still face challenges due to the addi-
tional computational overhead introduced by the multi-attention mech-
anisms. Additionally, the model’s performance has been validated pri-
marily on image classification tasks with ResNet architectures, leav-
ing its efficacy on more complex tasks (such as object detection or 
segmentation) and other network architectures relatively unexplored.

6. Conclusion

In this paper, we introduced FMDConv, a novel dynamic convo-
lution block designed to balance speed and accuracy. By leveraging 
three optimal attention mechanisms, FMDConv demonstrated superior 
performance on image classification benchmarks, making it suitable for 
resource-constrained environments. Our proposed metrics, the Inverse 
Efficiency Score (IES) and the Rate-Correct Score (RCS), effectively 
quantify the trade-offs between efficiency and accuracy. Future work 
will focus on extending FMDConv to more complex tasks, such as 
object detection, while further optimizing computational efficiency and 
exploring adaptive hyperparameter strategies for broader applicability.
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