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Major-minorness in tonal music: 
Evaluation of relative mode 
estimation using expert ratings and 
audio-based key-finding principles

Tuomas Eerola1  and Michael Schutz2

Abstract
Mode is a foundational concept of Western music, serving as the basis for chords and harmonies, 
detecting and assessing cadences and form, and conveying musical emotion. Traditionally treated 
categorically, here we build upon recent work exploring this crucial musical construct on a continuum, 
an approach we refer to as ‘relative mode’. Specifically, we formulate and evaluate a computational 
model calculating this property from either symbolic or audio representations of music by adapting 
common key-finding techniques traditionally used to identify mode categorically. Here, we use them 
to infer the relative mode based on differences between the potential strength of major and minor key 
candidates. The model evaluation is based on a corpus of excerpts from Preludes by Bach, Chopin, 
and Shostakovich previously assessed by expert music analysts. Our results suggest that the model 
(using only audio files) is able to predict relative mode to a degree closely aligning with experts (using 
both audio and notated scores). A pragmatic set of parameters for the model is identified, and the 
shortcomings and the applicability of the model to other eras and genres are discussed.
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Modality is a foundational construct in Western music theory, where it is core to tasks ranging 
from identifying chords to detecting cadences and assessing form. In addition, it plays a crucial 
role in music perception, particularly with respect to emotion. As mode (major/minor) forms a 
crucial aspect of  key (C Major, c minor), scholarship on key-finding provides a useful point of  
departure. In that literature, automated approaches to key-finding (such as the Krumhansl–
Schmuckler algorithm, Frankland & Cohen, 1996; Vos & Van Geenen, 1996) typically assess a 

1Durham University, Durham, UK
2McMaster University, Hamilton, ON, Canada

Corresponding author:
Tuomas Eerola, Department of Music, Durham University, Palace Green, DH1 3RL, Durham, UK. 
Email: tuomas.eerola@durham.ac.uk

1326065 POM0010.1177/03057356251326065Psychology of  Music X(X)Eerola and Schutz
research-article2025

Original Empirical Investigations

https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/pom
mailto:tuomas.eerola@durham.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03057356251326065&domain=pdf&date_stamp=2025-05-13


2	 Psychology of Music 00(0)

passage’s pitch-class distribution against key profiles derived from probe-tone experiments 
(Krumhansl, 1990; Krumhansl & Kessler, 1982).

Refinements include revising the profiles (Temperley, 1999), altering calculation principles 
(Shmulevich & Yli-Harja, 2000; Temperley, 2002), re-weighting elements (Schmuckler & 
Tomovski, 2005), accounting for nuances in minor keys (Vuvan et al., 2011), exploring time-
varying approaches (Toiviainen & Krumhansl, 2003) and optimising key-finding by combining 
different approaches (Albrecht & Shanahan, 2013). Moving beyond key-finding algorithms 
requiring symbolic representations, the next tranche of  improvements utilise audio, typically 
by applying either templates akin to key profiles (Izmirli, 2005) or mathematical models to 
chromagrams – decompositions of  energies across the spectrum into pitch-classes (Chuan & 
Chew, 2005, 2006, 2014). Others incorporate temporal contingencies between the detected 
local keys (Nápoles López et al., 2019).

Although key-finding itself  is largely resolved (> 90% correct in global key-finding results, 
Nápoles López et al., 2019), our intention here is not to identify keys but to estimate mode on a 
continuum from minor to major – a concept we call ‘relative mode’. Treating mode as a continuum 
(rather than a discrete category) offers a useful degree of  nuance in analysing musical structure. 
Among other benefits, we see value in enhancing our understanding of  its effects on perception 
(such as predicting emotional responses). The ability to compute this from digital audio offers an 
invaluable tool for a wide range of  computational, perceptual, and analytical tasks.

Modality: Discrete or continuous?

Our thinking regarding mode as a continuous versus categorical construct brings to mind 
research on categorisation, which distinguishes between ‘natural’ and ‘artificial’ categories 
(Prentice & Miller, 2007; Rosch et al., 1976). Applying that framework to musical analysis, 
Zbikowski (2002) uses the terms Type 1 (implicit/naturally arising) and Type 2 (explicit identi-
fication of  features). That framework is helpful in thinking about modality – a term that can be 
either a Type 1 or Type 2 category depending upon context. For example, when applied to chords 
and scales, modality functions as a Type 2 category, with clear definitions regarding the distance 
between root and third of  a chord (i.e., four semitones for major; three for minor). However, as 
a descriptor of  musical passages, modality functions more like a Type 1 category with fuzzy 
boundaries (e.g., some minor key passages end on major chords; some major passages ‘borrow’ 
harmonies from parallel minor keys). Our position is that when discussing passages of  music, 
mode functions more like the Type 1 category, with some passages exhibiting a larger collection 
of  major (or minor) features than others.

Although to the best of  our knowledge modality has not previously been discussed explicitly 
as a continuous construct, the renowned composer Arnold Schoenberg notes the Lydian and 
Mixolydian modes are ‘major-like’ (Schoenberg & Stein, 1969), as they are, in a sense, ‘varia-
tions’ on a major scale (with raised fourth and lowered seventh scale degree, respectively). 
Schoenberg similarly referred to the Dorian, and Phrygian modes as ‘minor-like’, as their struc-
tures are ‘variations’ on the natural minor scale (with a lowered second, and an ascending 
harmonic minor scale, respectively). Although these modes originate from periods of  music 
history prior to modern conceptions of  tonality, as ‘our twenty-first century ears are accus-
tomed to major and minor scales, we sometimes hear the modes as alterations of  these more 
familiar scales’ (Clendinning & Marvin, 2016; for historical functions of  keys, see Long, 2020). 
Assessing this intuition experimentally, Temperley and Tan (2012) found ratings of  happiness 
– which here could be taken as an index of  valence – identify the Ionian (major) scale as the 
most happy and the Aeolian as one of  the least happy (with Phrygian even ‘sadder’ than 
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Aeolian). Temperley (2007) also treats some aspects of  tonality as a continuum – for example, 
‘tonalness’ as the degree to which passages reflect the common-practice tonality; ‘tonal clarity’ 
as a ratio between the most probable and the second most probable key. Although these con-
cepts are mode-agnostic, they treat key information as a continuous (vs. discrete) category. 
Similarly, White (2012) proposed a key-finding algorithm that expands into temporal analysis 
through interpolation of  local profiles over time, which is also an interesting and relevant 
related process (see also Quinn, 2010 for a related localised key-finding algorithm). These 
insights are reminders that Type 2 categorisations of  modality (i.e., clear-cut binary classifica-
tion of  major and minor) are just one way of  considering the pitch structures – albeit one with 
implications for conceptual coherence for Western common period practice music.

Key-finding approaches

The traditional categorical treatment of  modality guides contemporary approaches to key-find-
ing, which essentially translate a pool of  continuous measures to a singular identifier. Here, we 
adapt that approach to generating automated predictions of  relative mode using the concep-
tual framework employed by MIR toolbox (Lartillot et  al., 2008). MIR toolbox is a MATLAB 
toolkit for extracting musical features from audio, which has been used to build models of  emo-
tion and mood recognition (Lin et al., 2011), inform music recommendation systems such as 
Spotify (Vasu & Choudhary, 2022), and identify the relative ‘ground truth’ for musical features 
crucial for emotion expression (Beveridge & Knox, 2009). Although it is the most commonly 
used tool for placing stimuli along the major/minor spectrum, the quality of  these evaluations 
has not been formally assessed and general explorations have documented issues with the MIR 
toolbox’s consistency and reliability (Kumar et al., 2015; Zhou et al., 2023). We do note, how-
ever, recent work from one of  us exploring this issue suggests Librosa (McFee et al., 2015) to be 
a more suitable tool for chromagram-based tasks (Swierczek & Schutz, 2025).

For many applications (including the vast majority related to musical emotion), identifica-
tion of  the chroma component of  the nominal key (i.e., the ‘D’ in ‘D minor’) is less important 
than the modality component (i.e., the ‘minor’ in ‘D minor’). In other words, knowing that a 
passage is ‘major’ is more important than whether it is in A Major versus D Major (the wide-
spread adoption of  equal temperament has essentially removed differences in interval sizes 
between major keys). For these reasons, tools reliably quantifying the relative modality of  music 
from audio files would be valuable for both the research and applied communities.

Aims and approach

Our goal in this series of  analyses is to explore the challenges, possibilities, and opportunities for 
using a continuous treatment of  mode derived computationally from audio files. Given the 
complexity of  mode in music created outside scientific experiments (Battcock & Schutz, 2019), 
the ability to automatically compute relative mode would aid efforts to better predict listener 
responses to audio files. It would also provide a perceptually informed set of  tools for music 
theorists, music information retrieval specialists, and music cognition scholars to better under-
stand and more accurately quantify a crucial aspect of  musical structure.

Any exploration of  this nature requires credible ‘ground truth’ clarifying the theoretically 
correct values. Our approach draws upon a data set consisting of  relative mode ratings from a 
team of  five music theorists, who each analysed eight measure excerpts from sets of  preludes 
composed between 1610 and 1988 (Delle Grazie et al., 2025). That study offers expert ratings 
of  all 72 pieces analysed in this manuscript: preludes from Bach’s Well Tempered Clavier (Book 
1), Chopin’s 24 Preludes, and Shostakovich’s 24 Preludes (Op 34).



4	 Psychology of Music 00(0)

Here, we use those expert ratings to assess the quality of  relative mode evaluations com-
puted algorithmically. Building on a large corpus of  materials used in recent studies of  special-
ised 24 Prelude sets (Delle Grazie et al, 2025) as well as expansions of  those materials specifically 
for this project, we conducted three experiments. The first computes relative mode from sym-
bolic representation (MIDI) for all 72 preludes, using this as a theoretical upper limit for evalu-
ating the effectiveness of  various key-finding profiles and means of  assessment. The second 
assesses parameters crucial to the chromagram interpretation (required when moving to digi-
tal audio files), using one example of  each of  the 72 pieces from our full corpus. The third evalu-
ates the effectiveness of  our approach using the full corpus containing 18 recordings of  Bach’s 
Well Tempered Clavier (Book 1), 14 of  Chopin’s Preludes (Op 28), and 10 of  Shostakovich’s 
Preludes (Op 34), computing relative mode from 42 recordings of  these three sets of  preludes 
(1,008 pieces in total; detailed in Appendix 4).

These analyses hold three benefits for the research community. First, they provide a proof-of-
concept for the ability to quantify relative modality from audio files, which promises important 
applications for predicting emotional responses to music – particularly for passages that are not 
notated. Second, they offer an exploration of  different approaches to automated mode identifica-
tion by comparing competing models (stage one), assessing differences between symbolic repre-
sentation and actual audio recordings (stage two), and evaluating the robustness of  this approach 
with respect to performer interpretation and/or recording parameters (stage three). Third, they 
document a procedure for quantifying relative modality (i.e., treating mode as a continuous 
rather than discrete variable). Together, they lay the groundwork for future analysis of  musical 
emotion that is not reliant on symbolic representation – which is important as many musical 
cultures do not use the score-based notation system common in the Western classical tradition.

Relative mode estimation model

Our proposal for the relative mode estimation (RME) model is based upon common key-finding 
algorithms, which generally have three steps: (1) transforming of  spectrum (audio) or note 
events (MIDI) into pitch-class distributions (PCDs), (2) summing the energies across analysis 
windows for the pitch-class distributions, and (3) calculating similarity between empirical key 
profiles and PCDs. Here, we also propose a fourth step, (4) calculating RME by taking the differ-
ence between the most likely major and minor key profiles. The schematic of  the full process is 
shown in Figure 1.

Technical details

The first three steps are well known in the literature. The first (pitch-class extraction) is 
done simply by tallying the notes from scores in the case of  symbolic data (e.g., Krumhansl, 
1990) or extracting the chroma (i.e., pitch-classes) in the case of  digital audio (Gómez, 2006). 
There are several techniques for extracting this cue from audio, such as the Constant Q 
Transform or CQT (Brown, 1991) and enhancements to the CQT (Müller & Ewert, 2011), as 
well as constant Q harmonic coefficients (Rafii, 2022), discussed in detail later.

The second step compares PCDs from the first with reference key profiles derived from a 
series of  empirical experiments (Krumhansl, 1990). Numerous studies have developed alterna-
tive key profiles, some arising from the analysis of  music and diagnostic operations involving 
key finding (Aarden, 2003; Albrecht & Shanahan, 2013; Bellmann, 2005; Sapp, 2011; 
Temperley, 2007). We will evaluate these alternative profiles later to assess their utility in cap-
turing relative mode.
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The third step compares PCDs and key profiles using a similarity measure. The Pearson cor-
relation coefficient has been used most frequently and originally as this metric (Krumhansl, 
1990), but other similarity metrics based on Cosine and Euclidean distances have also been 
proposed (Albrecht & Shanahan, 2013; Temperley, 2007). We will formally evaluate these in 
subsequent experiments.

The fourth and final step compares the strength of  candidate keys in major and minor, using 
the difference (Δ) between the maximum major key strength (Smaj) and the maximum minor 
key strength (Smin). Here, we define key strength as the highest similarity of  the major and 
minor 12 keys, calculating this according to:

� � �max( max( min) )S Smaj .

This measure will be positive if  the strongest major key has a higher maximum than the 
strongest minor key and vice versa. Although this approach to RME can in theory apply to pas-
sages of  any length, we envisage it to be most useful when it is applied within a relatively short 
window (e.g., 3 s). This windowed analysis is sensitive to the fluctuating nature of  relative mode 
as music unfolds in time. This prevents passages that modulate from clearly major to clearly 
minor from yielding RME values suggesting a lack of  clear tonality.

Demonstrating our approach

To exemplify this concept, the same example excerpt shown in Figure 1 (Bach C Major 
Prelude from WTC I) is processed through two variants of  the RME (explained in detail later) 
using a one-bar window of  analysis at a time (Figure 2). The first (darker line) utilises so-called 
Simple key profiles (Sapp, 2011), and the second line represents key profiles established by 
Albrecht and Shanahan (2013). The figure illustrates the score (Panel A), the pitch-class 

Figure 1.  Overall Stages of Relative Mode estimation (RME) Involving (1) the Extraction of PCDs, (2) 
Comparison of PCDs to Key Profiles, (3) Calculation of Similarity Between PCDs and Key Profiles, and (4) 
Drawing of An Inference From the Difference Between Maximum Major and Minor Key Similarities. The 
Excerpt Represents the Opening Bar and Half From C Major Prelude From WTC I by J. S. Bach.
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distribution within the window (Panel B), and the result of  the RME for each window (markers) 
with an integration of  the relative mode over time (lines) (Panel C). The lowest panel also shows 
the harmonic analysis (roman numerals) and the means of  the RMEs across the excerpt in the 
final bar. For the simple key profile, this mean is 0.13 and 0.29 for the process relying on 
Albrecht’s variant key profiles.

Both versions of  the RME clearly suggest that the excerpt is in major, but two bars (second, 
fifth) flirt with minor. The central difference between these two key profiles is that the Simple pro-
file does not quite fit with the straightforward C major profile of  Bars 1 and 4, as the profile expects 
dominant more than the third (we will explore the impact of  different key profiles in detail later).

Reliable information on relative modality is central to assessing the accuracy of  our 
approach. For this, we used a novel data set developed through a collaboration between MS and 
a team of  music analysts. Their data consist of  evaluations from five expert musicians in a 
three-phase procedure inspired by widely recognised protocols for minimising error in evalua-
tion of  complex constructs (Kahneman et al., 2021). As full discussion of  that process and data 
set is forthcoming (Delle Grazie et al., 2025), here we focus on summarising only those aspects 
crucial to understanding the data we use here as ground truth for assessing the accuracy of  
computational estimates of  mode.

To arrive at continuous estimates of  modality, Delle Grazie et al. asked five raters to indepen-
dently evaluate ‘relative mode’ for the first eight measures (corresponding to a normative musical 
phrase) of  the same preludes by Bach, Chopin, and Shostakovich used in our study (as well as 
numerous other prelude sets). Each rater received packets containing the notation for each excerpt 
(with identifications of  composer removed) consisting of  excerpts presented in an order ran-
domised uniquely for each rater. Raters also had access to performances of  these excerpts taken 
from commercially available audio used in numerous perceptual experiments (Anderson & Schutz, 
2022; Delle Grazie et al., in press; Kelly et al., 2021), performed by Pietro De Maria (2015) for Bach, 
Vladimir Ashkenazy (1993) for Chopin, and Konstantin Scherbakov (2003) for Shostakovich.

Figure 2.  The First 8 Bars of C Major Prelude by Bach (Panel A) With Pitch-Class Extraction (Panel B) 
and Relative Mode Estimated Using Windowed Analysis (Panel C).
The two lines in panel C show the output of RME using two key profiles, Simple (grey line) and Albrecht (black line), both 
using the Cosine similarity metric. For clarity in this example, the analysis window size (illustrated with rectangles) is set 
to four beats. A conventional harmonic analysis has been added as an annotation, and the final bar contains the mean 
values from both relative mode estimations (0.13 and 0.29 for Albrecht and Simple, respectively).
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In Phase 1, each rater independently evaluated excerpts on a scale from 1 (entirely minor) to 
7 (entirely major) while noting key structural features. In Phase 2, raters reviewed each other’s 
notes and evaluations for a selection of  12–20 excerpts, before discussing as a group and being 
given the option of  confidentially updating their ratings. In Phase 3, raters independently 
reviewed personalised packets grouped by rating (e.g., each received a packet of  excerpts they 
had evaluated as ‘1’, ‘2’, and ‘3’, etc.) with a final opportunity for adjustment. Although this 
method resulted in well-explained and meaningful differences of  opinion for some pieces, it 
nonetheless led to strong agreement. Delle Grazie et al. found an average correlation of  .90 for 
the 72 pieces used here in our study, with some differences between the three composers in 
question (rBach = .89, rChopin = .95, rShostakovich = .84). For reasons articulated at length in their 
manuscript, they believe these correlations likely represent the maximum level of  agreement 
achievable by expert assessors.

Experiment 1: Assessing model parameters using symbolic data

Our first experiment chose the best reference key profile and similarity measure. To do so, we 
built pitch-class distributions from symbolic notation as a reference point. Specifically, we used 
the first eight measures of  the 72 preludes, extracting pitch distributions using the MIDI tool-
box (Eerola & Toiviainen, 2003), employing exponential weighting of  the note durations pro-
posed by Parncutt’s (1994) durational accent model, adjusting durations to be perceptually 
plausible. We minimised the issues of  note durations and modulations by using a 3 s, non-over-
lapped window (which we believe is useful in capturing nuance, although for simplicity in this 
proof-of-concept, here, we later averaged these running windows to yield one RME value per 
piece). We applied six variations of  key profiles and three variations of  similarity metrics – 18 
approaches in total. This included six variations of  calculating PCDs: the classic empirical key 
profiles from probe-tone experiments by Krumhansl and Kessler (1982), the empirical key pro-
files extracted from the Essen corpus by Aarden (2003), key profiles established by Bellmann 
(2005), the variant profiles proposed by Temperley (2007), the simple weightings offered by 
Sapp (2011), and altered key profiles proposed by Albrecht and Shanahan (2013). We com-
pared the PCDs to each of  these six types of  profiles using three similarity metrics (Pearson, 
Cosine, and Euclidean). We used MATLAB for PCD extraction and R for all other steps.

Table 1 shows the correlations between the expert ratings and model outputs using different 
key profiles and similarity metrics. The key profiles and correlation metrics generally perform 
comparably, delivering correlations between .820 and .850 with only minor differences 
between them (although we note lower performance for Krumhansl and Aarden profiles, and 
slightly better performance using the Cosine metric for all of  them). It is worth noting that the 
simple key profile performs at least at the same level as many of  the complex and optimised key 
profiles. Neither window length nor method of  collapsing a series of  values (e.g., mean vs 
median) affected performance.

Figure 3 plots the output of  our RME model against expert ratings (slightly jittered to avoid 
overlaps of  excerpts with the same means). The plot suggests a linear relationship between the 
expert ratings and model predictions, with some differences across the composers: excerpts by 
Bach and Chopin tend to be further away from the centre barring some notable exceptions (e.g., 
Bach F-major Prelude). Excerpts by Shostakovich tend to be more evenly spaced across the rated 
dimension, which is also reflected in the model. The correlations for each composer range from 
.832 for Bach and .868 for Chopin to .791 for Shostakovich with the overall being r = .835.

These results suggest that the RME can predict the expert ratings reasonably well in this 
small sample (N = 72). To contextualise, the obtained correlation coefficient (r = .84) is only 
slightly lower than the correlation between raters, r = .90. In terms of  variance predicted, 
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the model achieves approximately 70%, although this is only suggestive of  the model predic-
tion rate as this is a small sample and no formal cross-validation was built into the 
evaluation.

Experiment 2: Assessing model parameters using a small sample 
of audio data

The first experiment used pitch-class distributions derived from symbolic notation (MIDI repre-
sentation). The second assessed the efficacy of  that conceptual approach applied to audio. In 
addition to key profiles and similarity metrics, this experiment considers the impact of  different 
chroma extraction techniques used in extracting the PCDs from audio.

Table 1.  Correlations Between Expert Ratings and Continuous Mode Estimation Model for 72 MIDI 
Encoded Preludes From Bach (Book I), Chopin (Book I), and Shostakovich (Book I).

Key profile Pearson Cosine Euclidean

Krumhansl .692 .709 .711
Aarden .755 .754 .747
Temperley .820 .827 .824
Bellmann .844 .850 .846
Simple .833 .840 .830
Albrecht .840 .842 .835
Mean .797 .804 .799

Figure 3.  Expert Ratings Versus Model Predictions Across the 24 Preludes From Three Composers 
(N = 72) Using ‘Simple’ Key Profile and Cosine Similarity Metric.
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Given the large model parameter space (the acoustic analysis options, the wrapping of  the 
spectrum, the role of  the key profiles, and similarity metrics), we first ran iterations of  the analy-
ses on a small subset of  the materials. We chose one recording from each prelude and composer 
(72 total) in a pseudo-randomised fashion (specific choices appear in Appendix 4). This set 
included mostly piano renditions recorded between 1934 and 2020, as well as seven recordings 
of  the Bach preludes on harpsichord (Galling, Hamilton, Kirkpatrick, Landowska, Leonhardt, 
and two by Newman). Together, these offer a range of  variations regarding instruments, tuning, 
audio quality, and performance characteristics (tempo, dynamics, timing variation). Altogether 
we drew upon recordings from 42 different albums by 36 different artists (for a full list, see 
Appendices 1 to 3). We analysed 72 of  these 1,008 recordings, assessing different spectral 
decomposition parameters, key profiles, and similarity metrics on an RME model implemented in 
Python using the Librosa library (McFee et  al., 2015). We used set parameters (threshold: 0, 
octaves:7, bins/octave:36 bins, hop length:8,192, f0 minimum: 65.4 Hz) for three variant 
extraction techniques. These included constant Q transform (CQT, see Schörkhuber & Klapuri, 
2010), constant energy normalised variant (CENS, Müller & Ewert, 2011), and constant Q har-
monic coefficients (CQHC, Rafii, 2022) (more details at https://github.com/tuomaseerola/rela-
tive_mode). Correlations between our resulting RME and expert ratings appear in Table 2.

Table 2 suggests RME calculations from audio are only slightly inferior to those from sym-
bolic data (Experiment 1): .018 (Pearson), .013 (Cosine), and .018 (Euclidean) in the averaged 
correlations between the model and expert ratings when averaged over the six key profiles. 
Consistent with Experiment 1, we found improvements on the classic empirical profile by 
Krumhansl in all newer variants including the simple key profile.

In terms of  the chroma extraction, CQT leads to the best results (max r = .859, mean 
r = .786 shown in Table 2), and the variant extraction techniques led to inferior overall 
predictions (CENS rmax = .842 and rMean = .782, and CQHC rmax = .824 and rMean = .741). As 
the difference between CQT and CENS is marginal (.786 vs .782), we speculate the newer 
extraction techniques may offer improvements only when the sonic materials (timbre) are 
more variable. There are minor variations in the model correlations across the subsets of  
the composers, with Bach generally close to the overall mean (r = .811), and Chopin receiv-
ing higher correlations (r = .881) and Shostakovich lower (r = .775).

Although numerous combinations of  parameters are worthy of  exploration, our work thus 
far succeeds in identifying the parameters consistently performing well in this small data set. 
Therefore, it appears RME can be reliably discerned from audio (at least in this repertoire).

Experiment 3: Model performance in a large sample of audio data

In our final experiment, we utilise all 1,008 examples (18 × 24 for Bach, 14 × 24 for Chopin, 
10 × 24 for Shostakovich) recorded between 1934 and 2020. Several Bach recordings utilise 
harpsichord rather than piano (details appear in Appendices 1 to 3). This diverse range of  record-
ings allows for the exploration of  audio-based RME computation across different approaches to 
tempo, dynamics, instrument, expression, and recording quality. As in Experiment 2, we utilise 
the RME model that capitalises simple key profile, CQT chroma extraction (with tuning calibra-
tion and the Cosine similarity metric), applying the model to all recordings.

Figure 4 displays the mean correlations and the confidence intervals (derived from bootstrap-
ping with 1,000 resamples), along with the practical ceiling based on agreement among expert 
raters. At first glance, it appears that older recordings may suffer from small artefacts (e.g., tape 
hiss, narrow bandwidth, unusual tuning reference) harming performance within Bach. 
However, upon closer investigation, we did not find any recording characteristics (tempo, timbre, 
dynamics, compression, instruments, microphone positions) consistently affecting performance. 

https://github.com/tuomaseerola/relative_mode
https://github.com/tuomaseerola/relative_mode
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To identify the consistent noise factors in the RME analysis, we extracted dynamics, several tim-
bral descriptors (brightness, spectral centroid, spectral flux, RMS amplitude, roughness) and 
tempo descriptors for each excerpt and added these as additional predictors to the regression 
with RME model predicting the expert ratings. However, no single audio descriptor could con-
tribute significantly (more than 1%–2% of  variance accounted) to the model that already had a 
highly successful predictor (RME) within it. A more extensive analysis of  the potential additional 
considerations would benefit from a larger set of  materials and from systematic alterations of  the 
most plausible variations of  these factors. However, we consider that best left for future research.

Our model appears fairly robust across general variations in the acoustic and performance 
qualities of  recordings; however, performance clearly varies by specific recording (Figure 4). For 
example, Shostakovich preludes recorded by Jascha Nemtsov (2009) have the lowest correlations 
with expert ratings and one of  the largest confidence intervals. Further inspection suggests our 
model performs worse on short excerpts, which most often occur in Shostakovich (e.g., eight bars 
in fast tempo for E major prelude performed by Nemtsov lasts 6 s, F minor for 7 s). Altering the 
length of  the window (from 1.5 to 3 s) and the overlap of  the window (from 25% to 75%) miti-
gates the issue for the shortest examples but do not bring significant improvements to the data set 
as a whole. To keep the overall architecture of  this model parsimonious, we do not propose 
changes to the model at this stage but signpost this as an area for future improvement.

Figure 5 summarises the success of  the model across individual performances for each prel-
ude. The vast majority (96% of  1,008 recordings) of  the 72 preludes fall within the least square 
line of  fit when we look at the distribution of  RME values (the thick lines denoting QI range). For 
Bach’s preludes, the exception is B major which is rated as moderately major by the experts but 
moderately minor by the model. For Chopin, the linear fit captures the majority of  the Preludes 
with notable exceptions for C and the E minor preludes (which experts consider minor but the 
model evaluates as borderline).

It is also worth highlighting that expert ratings of  Bach and Chopin are clearly bifurcated but 
more evenly spread on a continuum for Shostakovich. The lack of  excerpts falling into the middle 
of  the continuum for Bach and Chopin may artificially increase the linear correlation. However, 
Shostakovich’s preludes covering the full distribution of  RME ratings suggest this might not in 
fact be an issue in the other subsets (we note this as an aspect warranting future exploration).

Summary across the experiments

To summarise, we compiled correlation coefficients for all three analyses into one summary 
table (Table 3). All analyses use the same parameters (3-s non-overlapping windows, simple key 
profiles, and Cosine similarity metric).

Table 2.  Correlations Between Expert Ratings and Continuous Model for 72 Recorded Performances of 
Preludes From Bach (Book I), Chopin (Book I), and Shostakovich (Book I).

Key profile Pearson Cosine Euclidean

Krumhansl .648 .636 .624
Aarden .708 .716 .699
Temperley .850 .854 .847
Bellmann .833 .838 .832
Simple .846 .859 .853
Albrecht .828 .838 .832
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Data in Table 3 suggest the larger and more diverse sample of  recordings in the present 
Experiment 3 can be predicted approximately at the same level (r = .820) as the other, simplified 
data sets (overall r = .835 for Experiment 1 and r = .859 for Experiment 2) when averaging. 
Mean correlations (and 95% CIs) suggest a fairly consistent pattern within composers, with the 

Figure 4.  Correlation Between Model Predictions and Expert Ratings Across Recordings and Data Sets.
Filled (piano) and empty (harpsichord) circles denote the instrument and squares symbolic (MIDI) denote the repre-
sentations. The dashed line shows the model average, and the shaded area shows the feasible maximum (defined as the 
average correlation between the experts for each data set).
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RME model more accurate in capturing expert ratings of  Chopin versus Bach and Shostakovich 
Preludes (with marginal differences between Bach and Shostakovich). In the more detailed anal-
ysis reported in supporting materials (https://github.com/tuomaseerola/relative_mode), we 
summarised the main aspects that occasionally led to poor fit between the model prediction and 

Figure 5.  RME Model Predictions Summarised Across Preludes, Recordings and Datasets (N = 1,008).
The distribution of the values in the Y-axis indicates the mean, quantile intervals (QI) and 95% confidence intervals (CI) 
and outliers are shown by the first two initials of the performer last name (Mu = Mustonen, Ne = Newman, Sc =Scherba-
kov, Ro = Rozanova, Pe = Petrushansky, see Appendices 1 to 3). X-axis shows the mean expert ratings for the preludes. 
The least square fit has been added to demonstrate the linear relationship between the model predictions and the 
expert ratings. The outliers (1.5 QI range) have been added with the initial letters of the performer.

https://github.com/tuomaseerola/relative_mode
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expert ratings (primarily excerpt length and window size/overlap). However, the model overall 
performs in a robust manner, explaining 70%–74% of  the expert ratings.

Bearing in mind the mean correlation between the expert ratings of  .890 (Bach), .940 
(Chopin), and .840 (Shostakovich), the model accuracy could be said to be near the ceiling of  
algorithmic performance for a complex construct on which even trained musical experts will not 
always agree. When considered in that context, only a small amount of  improvement (.05–.10) 
could be expected. However, the actual process of  assessing the relative mode by the experts and 
the algorithm is probably different, as experts can use their extensive knowledge of  harmonic 
patterns, cadences, and phrases to their advantage in this process, whereas the algorithm is 
merely counting the pitch-classes.

As mentioned earlier, the mirmode function in MIR toolbox (version 1.8.1, Lartillot et  al., 
2008) provides a similar estimation, but this is known to be unreliable (Kumar et al., 2015; Zhou 
et al., 2023). Nonetheless, as the MIR toolbox is widely used in the field of  music cognition, we 
felt colleagues might benefit from knowing its performance in this type of  task. Therefore, we 
applied this function with default parameters to the full data in Experiment 3. This achieves a 
correlation of  .474 with all recordings (r = .394 with Bach recordings, r = .630 with Chopin 
recordings, and r = .289 with Shostakovich recordings). This suggests the effectiveness of  our 
RME model is not independent of  the manner in which it is implemented.

Discussion

Using a novel corpus of  1,008 audio recordings featuring different performances of  24-piece 
Prelude sets by Bach (18), Chopin (14), and Shostakovich (10), here we propose a process 
automating RME through an approach explaining a substantial amount of  variance of  
expert ratings (>70%). To place this in context, other automated extractions of  scalar ratings 
of  music excerpts usually deliver lower prediction rates: other studies document audio-based 
cues predict approximately 35% of  ‘wanting to move’ ratings (Witek et al., 2014) and 52% of  
tension ratings (Barchet et al., 2024), as well as 45% of  valence and 61% of  arousal ratings 
(Malheiro et  al., 2016; Saari et  al., 2016). Therefore, we find our model’s performance in 
predicting a complex and fairly novel construct such as relative mode promising.

In addition to absolute performance, we find the outcome of  our model encouraging for 
three reasons. First, reasonable analysts will disagree about complex musical constructs, and 
here, we find a correlation between our model and expert ratings close to that achieved between 
the experts themselves. Second, we chose the most parsimonious parameters for the model that 
delivered consistent results, suggesting future refinements might build upon our ‘generic’ 

Table 3.  Results Across Composers and Variants Using Correlations Between the Expert Ratings and the 
RME Model (Means and 95% CIs).

Composer Exp. 1 Exp. 2 Exp. 3

MIDI (N = 72) Audio (N = 72) Audio (N = 1,008)
Bach .832 [.638, .942] .839 [.659, .928] .782 [.555, .901]
Chopin .868 [.729, .937] .915 [.811, .963] .900 [.779, .956]
Shostakovich .791 [.631, .882] .799 [.584, .909] .777 [.548, .898]
Overall .835 [.666, .920] .859 [.784, .910] .820 [.628, .919]
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parameters. Third, our model appears robust across many common variations in recorded per-
formances. For example, the expressive (timing, tempo, dynamics, tuning, balance between the 
two hands in piano, etc.) and technical (room size, reverberation, microphone placement, 
recording quality, compression, and instrument type) factors are known to affect the tonal con-
tents of  a signal (Müller & Ewert, 2011).

Although the concept of  relative mode is not currently in widespread use, its foundation can 
be seen in the writings of  notable theorists (Clendinning & Marvin, 2016; Temperley & Tan, 
2012; Schoenberg & Stein, 1969). This is particularly true of  research on the role of  mode in 
different musical eras, as its nature and function have changed remarkably. Therefore, we 
believe RMEs hold significant potential benefits for enhancing our understanding of  music. 
Moreover, as mode is widely recognised as the ‘super cue’ of  musical emotion (Eerola et al., 
2013), a more granular approach to classification beyond the traditional binary of  major/
minor could prove useful for a wide range of  musical scholars.

We see particular value for a more nuanced treatment of  modality within the field of  music 
cognition, where mode is often treated as a binary category – particularly in experimental stimuli 
which often employ highly controlled and simplified examples (Baumgartner et al., 2006; Costa 
et al., 2004; Dalla Bella et al., 2001; Gagnon & Peretz, 2003; Gosselin et al., 2007; Gosselin et al., 
2006). However, the process of  obtaining RMEs from expert analysers is time-intensive and 
requires not only a careful assemblage of  scores, recordings, and expert theorists but also extensive 
discussion of  nuances and distinctions (Delle Grazie et al., 2025). Consequently, software tools for 
automating this process would be highly desirable for scholars in a variety of  domains.

Limitations

Despite the encouraging results, we note several instances of  mismatch between our RME and 
expert ratings. These often relate to the length of  the excerpts, that is, when extremely short excerpts 
do not behave well with a fixed windowing. In some rare cases, the poor fit between the experts and 
the model may reflect complexities in the passages leading to disagreement amongst experts in ways 
the algorithm is not exploring (i.e., patterns of  chords and cadences). However, we observed too few 
cases to construct alternative modelling strategies for these examples. Consequently, future research 
using a more diverse range of  relative mode ratings with different types of  excerpts and composi-
tional strategies would be useful in expanding and improving this approach.

Another limitation relates to the musical scope of  our materials: here, we used relatively 
homogeneous Western classical music materials by three composers from the late 17th to early 
20th century. Consequently, more research is needed to explore a broader scope of  material 
spanning different classical music time periods and genres. It would also be useful to explore the 
viability of  the relative mode concept and the algorithm in materials outside Western classical 
music. Although the efforts to obtain expert data on a wider span of  classical music are ongoing 
(Delle Grazie et al., 2025), it remains to be seen to what degree the model can predict ratings in 
such materials. The notion could also be explored with non-Western tonal systems which have 
well-codified associations with modes such as North Hindustani ragas (Mathur et al., 2015) or 
Korean court music (Nam, 1998).

Implications for future analyses

Major and minor form foundational concepts in Western music theory with a well-understood 
role in conveying musical emotion. Western music theory as well as music cognition generally 
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treat major and minor as a binary category with explicitly defined features (i.e., Type 2 catego-
ries). However, treating it instead as a Type 1 category (i.e., a collection of  features with fuzzy 
boundaries) holds potential to better capture its actual use. Given the primacy of  mode in 
emotional responses to music, a more granular understanding of  its structure holds tremen-
dous potential. This more nuanced perspective could have multiple uses from probabilistic 
modelling of  musical structure to predicting emotions expressed by music.

In addition to implications for our understanding of  mode as a construct, we believe this 
approach of  exploring classic categorical music-theoretic concepts on a continuum could be 
invaluable for other topics in music theory and music cognition. For instance, much of  music 
theory has been driven by notational constraints that articulate elements as categorical (key 
signatures, cadences, pitches, and phrases). Yet many of  these constructs are operationalised in 
a continuous fashion – segment boundaries can be seen as probabilistic rather than binary 
(Abdallah et al., 2015; Krumhansl, 1996); and absolute pitch is more of  a continuum of  a 
pitch memory than a clearly categorical phenomenon (Schellenberg & Trehub, 2003). 
Reviewing some of  the classic categorical concepts as continuums may expand the toolbox of  
music analysts and allow those who strive to capture perception of  music to capitalise richer 
sets of  data.
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Appendix 1

Recordings Used – Bach’s Well Tempered Clavier Book.

Performer Year Label Instrument

Joerg Demus 1956/1992 MCA Records Piano
Sviatoslav Richter 1970/1992 BMG Classics Piano
Glenn Gould 1963/64/65/93 Sony Classical Piano
João Carlos Martins 1964/1994 Labour Records Piano
Friedrich Gulda 1972/1995 Decca Piano
Rosalyn Tureck 1953/1999 Deutsche Grammophon Piano
Anthony Newman 2001 KHAEON World Music Piano
Vladimir Ashkenazy 2006 Decca Piano
Daniel Barenboim 2006 Warner Classics Piano
Edwin Fischer 1989/2007 EMI Records Piano
Pietro De Maria 2015 Decca Piano
Ralph Kirkpatrick 1963 Deutsche Grammophon Harpsichord
Malcolm Hamilton 1964 Everest Harpsichord
Anthony Newman 1973 Columbia Masterworks Harpsichord
Wanda Landowska 1987 RCA Victor Red Seal Harpsichord
Gustav Leonhardt 1973/1989 BMG Classics Harpsichord
Anthony Newman 2001 Vox Cum Laude Harpsichord
Martin Galling 2006 Vox Records Harpsichord
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Appendix 2

Recordings Used – Chopin’s 24 Preludes.

Performer Year Label Instrument

Friedrich Gulda 1954 Decca Piano
Irina Zaritskaya 1989 Naxos Piano
Vladimir Ashkenazy 1993 Decca Piano
Martha Argerich 2002 Deutsche Grammophon Piano
Daniel Barenboim 1976/2003 EMI Classics Piano
Vlado Perlemuter 2006 Nimbus Records Piano
Philippe Giusiano 2006 Mirare Piano
Pietro De Maria 2008 Decca Piano
Alain Planès 2011 Harmonia Mundi Piano
Grigory Sokolov 2013 Naïve Piano
Giampaolo Stuani 2014 OnClassical Piano
Maria Korecka-
Soszkowska

2019 DUX Recording 
Producers

Piano

Alfred Cortot 2020 Archipel Records Piano
Victor Merzhanov 1975/2021 Vista Vera Piano

Appendix 3

Recordings Used – Shostakovich’s 24 Preludes.

Performer Year Label Instrument

Konstantin Scherbakov 2003 Naxos Piano
Boris Petrushansky 2006 Stradivarius Piano
Elena Rozanova 2008 Harmonia Mundi Piano
Lilia Boyadjieva 2009 Artek Piano
Jascha Nemtsov 2009 Profil Medien Piano
Timur Sergeyanya 2011 Northern Flowers Piano
Andrei Korobeinikov 2012 Mirare Piano
Andrea Vivanet 2021 Gramola Records Piano
Olli Mustonen 2015 Decca Piano
Marta Deyanova 1985 Nimbus Records Piano
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Appendix 4

A Random Sample of Recordings Used in Experiment 2.

Bach’s WTC I Chopin’s 24 preludes Shostakovich’s 24 preludes

Ashkenazy A Major Argerich C Major Boyadjieva C Minor
Ashkenazy A Minor Argerich G Minor Boyadjieva Bb Minor
Barenboim G# Minor Ashkenazy C Minor Boyadjieva F Minor
De Maria Ab Major Ashkenazy Ab Major Korobeinikov B Major
De Maria G Minor Ashkenazy Db Major Korobeinikov Db Major
Demus G Major Barenboim C# Minor Korobeinikov F# Major
Fischer F# Minor Barenboim G# Minor Nemtsov B Minor
Galling F# Major Cortot D Major Nemtsov C# Minor
Gould F Minor Cortot A Major Nemtsov F# Minor
Gulda F Major De Maria D Minor Petrushansky D Major
Hamilton E Minor De Maria A Minor Petrushansky G Major
Kirkpatrick E Major Giusiano Bb Major Rozanova D Minor
Landowska Eb Minor Giusiano Eb Major Rozanova G Minor
Leonhardt Eb Major Gulda Bb Minor Scherbakov Eb Major
Martins D Minor Gulda Eb Minor Scherbakov Eb Minor
Newman B Major Korecka-Soszkowvska B Major Scherbakov Ab Major
Newman B Minor Korecka-Soszkowvska E Major Scherbakov G# Minor
Newman C# Major Merzhanov B Minor Sergeyanya E Major
Newman C# Minor Merzhanov E Minor Sergeyanya A Major
Newman D Major Perlemuter F Major Vivanet E Minor
Richter C Minor Planes F Minor Vivanet A Minor
Richter Bb Minor Sokolov F# Major Ashkenazy C Major
Tureck C Major Stuani F# Minor Ashkenazy Bb Major
Tureck Bb Major Zaritskaya G Major Ashkenazy F Major

Table contents refer to the performer, chroma, and mode, sampled from the full set of recordings (N = 1008, see Ap-
pendices 1 to 3).


