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We present REMIX, a smoothed particle hydrodynamics (SPH) scheme designed to alleviate 
effects that typically suppress mixing and instability growth at density discontinuities in SPH 
simulations. We approach this problem by directly targeting sources of kernel smoothing error and 
discretisation error, resulting in a generalised, material-independent formulation that improves 
the treatment both of discontinuities within a single material, for example in an ideal gas, and of 
interfaces between dissimilar materials. This approach also leads to improvements in capturing 
wider hydrodynamic behaviour unrelated to mixing. We demonstrate marked improvements 
in three-dimensional test scenarios, focusing on cases with particles of equal mass across the 
simulation. This choice is particularly relevant for use cases in astrophysics and engineering – 
specifically those in which particles are free to evolve over a large range of density scales – where 
bespoke choices of unequal particle masses in the initial conditions cannot easily be used to address 
emergent and evolving density discontinuities. We achieve these improvements while maintaining 
sharp discontinuities; without introducing additional equation of state dependence in, for example, 
particle volume elements; and without contrived or targeted corrections. Our methods build 
upon a fully compressible and thermodynamically consistent core-SPH construction, retaining 
Galilean invariance as well as conservation of mass, momentum, and energy. REMIX is integrated 
in the open-source, state-of-the-art Swift code and is designed with computational efficiency 
also in mind, meaning that its improved hydrodynamic treatment can be used for high-resolution 
simulations without prohibitive cost to run-speed.
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1. Introduction

Computational simulations are an invaluable tool for studying the inherently complex behaviour of fluids. Smoothed particle 
hydrodynamics (SPH), first developed by Lucy [1] and Gingold and Monaghan [2], is frequently utilised across a range of applications 
spanning astrophysics [3–5] and engineering [6,7]. In astrophysics, it is used in particular for its geometry-independent adaptive 
resolution, inherent conservation properties, and elegant coupling with gravity solvers [8]. For engineering applications, it offers 
advantages in the treatment of dynamic free surfaces, fluid–structure interactions, and in simulating multiphase flow [9,10]. This 
is in addition to its relatively simple construction, numerical stability, and low computational cost. In this work, our motivation 
and methods focus on conservative, fully-compressible, gravity-coupled SPH schemes, where particles have unchanging masses and 
material types throughout a simulation.

Two key concepts characterise SPH: the representation of a fluid as a discrete set of interpolation points, or ‘particles’, that move 
with the fluid velocity; and the use of a kernel function to estimate fluid fields and their gradients at particle positions, by interpolation 
over neighbouring particles [11]. However, specific errors are introduced with the assumptions that underpin these core concepts. 
The discretisation of the continuous underlying fluid results in leading-order error in the momentum equation, which is sensitive to 
disorder in the local particle distribution [12]. Additionally, the use of an extended kernel in the traditional, integral form of the 
SPH density estimate leads to inadvertent smoothing of interpolated densities [11,13]. In regions where variations in the underlying 
density field are not well resolved by the instantaneous particle configuration, this can lead to the calculation of spurious particle 
pressures, and subsequently to spurious pressure gradients that are used in the equations of motion.

These errors combine particularly strongly at density discontinuities in simulations where a fluid is represented by particles of 
fixed, equal mass. In such a case, a density discontinuity constitutes a sharp change in particle spacing. Both discretisation and kernel 
smoothing error combine to give rise to a spurious surface tension-like effect that greatly suppresses both the mixing of fluid across 
the interface and the growth of instabilities that would act to drive turbulent mixing [14]. This is a well-established shortcoming of 
SPH, and a range of approaches have been developed to address these sources of error.

First, we consider methods to reduce discretisation error. Using higher-order kernel functions with more particle neighbours will 
generally reduce error [15], and choices of free functions in the generalised form of the equations of motion can be exploited to 
mitigate zeroth-order error [12,16]. In conjunction with these, improved gradient estimates from, for example, reproducing kernels 
[17–19] or integral-based gradient estimates [20–22] have been demonstrated to improve the treatment of fluid mixing and instability 
growth. These methods have no dependence on material or equation of state (EoS) in their construction or underlying assumptions. 
We therefore make use of some of these methods in this work.

Next, we consider ways to address kernel smoothing error at contact discontinuities, many of which explicitly assume the use of 
a single, ideal gas EoS. In particular, we note the use of artificial conduction for this purpose, by which particle internal energies are 
smoothed over a similar length scale to the inadvertent density smoothing [23]. This requires thermodynamic behaviour such that 
smooth density and internal energy fields result in a smooth pressure field. Therefore, this cannot reliably improve the treatment 
of interfaces between dissimilar materials, represented by different EoS. Alternatively, methods that use modified density estimates, 
weighted by a simple thermodynamic quantity such as specific internal energy, also assume a simple relationship between density 
and internal energy at constant pressure, typically the inversely proportional relationship of an ideal gas [12,24].

Dealing with kernel smoothing errors at interfaces between arbitrarily different materials is more challenging since the simplicity 
of the ideal gas equation cannot be exploited. A boundary between dissimilar materials in thermal and pressure equilibrium will 
in general result in a density discontinuity, so these problematic scenarios occur frequently in simulations with multiple materials. 
Additionally, the surface tension-like effects caused by the density smoothing are particularly strong for “stiff” EoS, for which small 
changes in particle densities can result in large changes in calculated pressures [25].

Methods to improve the treatment of material interfaces in fully-compressible SPH formulations have been explored in the context 
of planetary impacts [26], where density discontinuities between multiple, stiff materials are common and can evolve across a range 
of thermodynamic phase space throughout the course of a single simulation. The treatment of discontinuous free surface interfaces 
is also important in this context [27]. Hosono et al. [28] present a “density independent SPH” (DISPH [29]) scheme adapted for 
use with multiple materials. Here, rather than being calculated from particle masses and densities, volume elements are based on 
functions of pressure that are evolved in time and recalculated to satisfy kernel normalisation in an additional iterative step [30]. 
Although this approach prevents spurious pressures at density discontinuities, specifically in regions with otherwise continuous 
pressures, the extension of this method to arbitrary EoS leads to material-dependent volume elements that intricately depend on fluid 
thermodynamics. Pearl et al. [31] present an advanced scheme that, among other improvements, makes use of Riemann solvers [32] 
and an optional slip condition at material interfaces. Their choice of material-dependent density estimate effectively smooths volume 
rather than density at material interfaces, in simulations where particles of the same material have equal masses. If particles are 
deliberately set up with equal volumes, then this density estimate will significantly reduce both kernel-smoothing and discretisation 
errors. This improvement is evident in Pearl et al. [31]’s mixing tests, where particles start on a single, ordered grid. However, 
these tests do not validate mixing with their methods for cases with emergent and evolving density discontinuities, where particle 
configurations cannot easily be controlled in this way throughout the simulation.

This approach of addressing smoothing error through the choice of particle masses is also taken by Deng et al. [33], who demon-
strate enhanced mixing in their meshless finite-mass (MFM) [34–37] simulations of planetary giant impacts. Although MFM includes 
Riemann solvers and more advanced gradient estimates that can improve on standard SPH formulations, densities are still calculated 
with an interpolated estimate that in this case smooths volume, and therefore is still subject to kernel smoothing error. Additionally, 
a range of SPH modifications specific to material boundaries, rather than arbitrary density discontinuities, have also been developed 
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[38–40]. All the methods discussed here that address density smoothing directly, rather than in the construction of initial conditions, 
rely on EoS- or material-dependent treatments in, for example, the calculation of volume elements and density estimates.

Here, we present the REMIX (Reduced Error MIXing) SPH scheme. REMIX is constructed with the following goals in mind: (1) to 
improve the treatment of density discontinuities and mixing in simulations with both one and multiple EoS, by directly addressing 
sources of error in traditional SPH methods; (2) to be able to achieve this for simulations with particles of equal mass; (3) to retain the 
key characteristics of the SPH formalism; (4) to introduce no additional EoS dependence in, for example, volume elements or density 
estimates; (5) for computational efficiency, to require no more than three loops over particle neighbours and no additional iterative 
steps compared with the traditional formulation. An implementation of REMIX is publicly available as part of the open-source Swift 
code1 [41].

This paper is structured as follows: in §2, we describe elements of the core SPH formalism that we build on and key sources of 
error that we address in the construction of REMIX, as well as the methods used in practice to run our simulations; in §3, we present 
each component of the REMIX SPH scheme; in §4, we validate REMIX in a range of hydrodynamic test simulations; and we summarise 
our findings in §5.

2. Methods

2.1. Smoothed particle hydrodynamics

We first describe the key constituent components of SPH. Although REMIX includes many improvements to traditional SPH2

(tSPH), we do not deviate far from the core SPH formalism. Additionally, we take this as an opportunity to describe both the sources 
of error in SPH, whose reduction is central to the REMIX formulation, and the nomenclature and notation that is used throughout. 
An additional glossary of notation is included in Appendix A.

2.1.1. Kernel interpolation and the SPH density estimate

Kernel interpolation theory forms the framework for SPH estimates of fluid fields and their gradients. In particular, the integral 
form of the density estimate is a core component of many SPH schemes [11], by which a smoothed density field at the position of 
particle 𝑖, ⟨𝜌𝑖⟩, can be reconstructed from the local spatial distribution of neighbouring particles 𝑗, their masses, 𝑚𝑗 , and a kernel 
function, 𝑊𝑖𝑗 (described below), via

⟨𝜌𝑖⟩ =∑
𝑗

𝑚𝑗𝑊𝑖𝑗 . (1)

Throughout the governing equations of these SPH schemes, the interpolated density, ⟨𝜌𝑖⟩, is used as an estimate of the underlying 
density field at the positions of particles, 𝜌(𝐫𝑖). This density estimate is a specific application of kernel interpolation, which in general 
can be used to reconstruct an arbitrary field, 𝐹 , from its value sampled at the positions of particle neighbours, via

⟨𝐹𝑖⟩ =∑
𝑗

𝐹𝑗𝑊𝑖𝑗𝑉𝑗 , (2)

where 𝑉𝑗 are volume elements of particle 𝑗. In Eqn. (1), volume elements are taken to be 𝑉𝑗 = 𝑚𝑗∕𝜌𝑗 . Kernel interpolation can also 
be used in estimates of the gradient3 of 𝐹 ,⟨

𝑑𝐹

𝑑𝐫 
||||𝑖
⟩
=
∑
𝑗

𝐹𝑗
𝑑𝑊

𝑑𝐫 
||||𝑖𝑗𝑉𝑗 , (3)

such as in the calculation of pressure gradients and velocity divergences for the SPH equations of motion.
The smoothing kernel, 𝑊 (𝐫 − 𝐫′, ℎ(𝐫)), is a weighting function with radial extent characterised by the smoothing length ℎ. 𝑊 (𝐫 −

𝐫′, ℎ(𝐫)) approaches a delta function in the limit ℎ(𝐫) → 0. Traditionally, 𝑊 is a positive function with approximately a truncated 
Gaussian-like shape; the kernel is typically normalised, and spherically symmetric, as this ensures the exact interpolation of linear 
fields in the continuum limit of kernel sampling (number of neighbours, 𝑁 →∞). For a particle pair 𝑖, 𝑗: 𝑊𝑖𝑗 ≡𝑊 (𝐫𝑖𝑗 , ℎ𝑖) ≡𝑊 (𝐫𝑖 −
𝐫𝑗 , ℎ(𝐫𝑖)), where 𝐫𝑖𝑗 ≡ 𝐫𝑖 − 𝐫𝑗 . Subscripts denote quantities either sampled at the position of, or associated with, a particle. Kernels 
with a compact support, 𝐻 ≡𝐻(ℎ) such that 𝑊 (𝑟 >𝐻) = 0, are used to limit the number of neighbours to a finite number. We adopt 
the convention of defining the smoothing length ℎ as twice the standard deviation of the kernel4 [15]. This relates the smoothing 
length to the compact support by a constant multiplication factor 𝐻∕ℎ.

1 Swift is in open development including extensive documentation and examples at swiftsim.com.
2 We use a tSPH formulation based on that of Price [11], summarised in Appendix C, as a basis for our discussion and for comparisons throughout.
3 We make the choice of notation, here and throughout, to express kernel gradients as total derivatives rather than with “∇” which is often used to imply derivatives 

with fixed smoothing length. In later sections, this allows us to more easily distinguish between gradient estimates with and without grad-ℎ terms [42].
4 Despite the ubiquitous use of the nomenclature and notation of the “smoothing length, ℎ”, different definitions are frequently used for both the relationship 

between 𝐻 and ℎ, and the method used to calculate ℎ (in our case, Eqn. (4)). Although the differences are subtle, we draw attention to this as an example of the 
difficulty of one-to-one comparisons between simulation codes, especially as methods become increasingly complex.

http://www.swiftsim.com
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In the SPH construction presented here, a particle’s smoothing length is evaluated iteratively to satisfy

ℎ𝑖 = 𝜂kernel

(
1 ∑

𝑗 𝑊 (𝐫𝑖𝑗 , ℎ𝑖)

)1∕𝑑

, (4)

where 𝑑 is the spatial dimensionality of the simulation and 𝜂kernel is a chosen constant. Eqn. (4) ensures that particles across the 
simulation have an approximately constant number of neighbours, determined by the form of the kernel function and the choice of 
𝜂kernel.

We use the Wendland 𝐶2 kernel [43] for validation of the REMIX SPH scheme:

𝑊WC2
(|𝐫 − 𝐫′|, 𝐻(ℎ)

)
=
⎧⎪⎨⎪⎩
𝐶

𝐻𝑑

(
1 − |𝐫 − 𝐫′|

𝐻

)4(
1 + 4 |𝐫 − 𝐫′|

𝐻

)
for |𝐫 − 𝐫′| <𝐻 ,

0 otherwise ,
(5)

with 𝜂kernel = 1.487 (∼100 neighbours for 𝑑 = 3) [15]. Here 𝐶 = 21∕(2𝜋) is the normalisation constant for the Wendland 𝐶2 kernel in 
3D. Higher-order kernels can reduce error but require greater numbers of neighbours, which can come at a significant cost to code 
speed. This kernel offers a suitable compromise between improved accuracy and fast simulation run-time, a relevant consideration 
for science applications. In Appendix D we demonstrate the effect of the choice of kernel function in REMIX simulations, finding that 
REMIX performs well even with the comparatively low-order cubic spline kernel with fewer neighbours.

2.1.2. SPH equations of motion

The equations of motion govern the kinematic and thermodynamic evolution of SPH particles. The Euler equations are used as the 
basis for the SPH equations of motion for inviscid fluids. These consist of the continuity equation, momentum equation, and energy 
equation, which are closed by an “equation of state”, discussed in §2.2. The general, thermodynamically consistent SPH equations of 
motion, where we additionally use the same kernel function across the equations, take the form [12,42]

𝑑𝜌𝑖
𝑑𝑡 

= 
∑
𝑗

𝑚𝑗
𝜁𝑖
𝜁𝑗
𝐯𝑖𝑗 ⋅

𝑑𝑊

𝑑𝐫 
||||𝑖𝑗 , (6)

𝑑𝐯𝑖
𝑑𝑡 

= −
∑
𝑗

𝑚𝑗

(
𝑃𝑖

𝜌2
𝑖

𝜉𝑖
𝜉𝑗

+
𝑃𝑗

𝜌2
𝑗

𝜉𝑗

𝜉𝑖

)
𝑑𝑊

𝑑𝐫 
||||𝑖𝑗 , (7)

𝑑𝑢𝑖
𝑑𝑡 

= 
𝑃𝑖

𝜌2
𝑖

∑
𝑗

𝑚𝑗
𝜁𝑖
𝜁𝑗
𝐯𝑖𝑗 ⋅

𝑑𝑊

𝑑𝐫 
||||𝑖𝑗 , (8)

where particle densities, 𝜌𝑖, velocities, 𝐯𝑖, and specific internal energies, 𝑢𝑖, are evolved in time based on gradients of pressure, 𝑃𝑖, and 
velocity divergences calculated using the relative velocity of particle pairs 𝐯𝑖𝑗 ≡ 𝐯𝑖 − 𝐯𝑗 . The free functions 𝜁 and 𝜉 are introduced in 
the process of discretisation. An SPH scheme that explicitly conserves energy and momentum requires antisymmetric kernel gradient 
terms in the exchange of particle pairs 𝑖 and 𝑗. The integral form of the density estimate (Eqn. (1)) is equivalent to the differential 
form (Eqn. (6)) in the continuum limit, for 𝜁𝑖 = 𝜁𝑗 [12].

2.1.3. Kernel smoothing error

A fluid field reconstructed using an extended kernel with ℎ ≠ 0 will be affected by smoothing error, even when sampled in 
the continuum limit [11]. In the continuum limit, a reconstructed field, ⟨𝐹 ⟩, is the convolution of the underlying field, 𝐹 , with a 
smoothing kernel 𝑊 ,

⟨𝐹 (𝐫, ℎ)⟩ = ∫ 𝐹 (𝐫′) 𝑊 (𝐫 − 𝐫′, ℎ) 𝑑𝑉 ′ . (9)

Eqn. (2) is the discretised form of this equation. Assuming a continuous, infinitely differentiable field 𝐹 , we can Taylor expand about 
the point 𝐫 to give

⟨𝐹 (𝐫, ℎ)⟩ = 𝐹 (𝐫) 
��������� 1

∫ 𝑊 (𝐫 − 𝐫′, ℎ) 𝑑𝑉 ′ + 𝑑𝐹 
𝑑𝑟𝛼

||||𝐫������������ 𝟎

∫ (𝐫′ − 𝐫)𝛼 𝑊 (𝐫 − 𝐫′, ℎ) 𝑑𝑉 ′

+ 1
2

𝑑2𝐹 
𝑑𝑟𝛼𝑑𝑟𝛽

||||𝐫 ∫ (𝐫′ − 𝐫)𝛼 (𝐫′ − 𝐫)𝛽 𝑊 (𝐫 − 𝐫′, ℎ) 𝑑𝑉 ′ + … (10)

= 𝐹 (𝐫) + 1
2

𝑑2𝐹 
𝑑𝑟𝛼𝑑𝑟𝛽

||||𝐫 ∫ (𝐫′ − 𝐫)𝛼 (𝐫′ − 𝐫)𝛽 𝑊 (𝐫 − 𝐫′, ℎ) 𝑑𝑉 ′ + … , (11)

where Greek letter superscripts correspond to spatial dimensions, and like indices are summed over [11,44]. We separate the first 
two terms in Eqn. (10) to demonstrate that, in the continuum limit, the choice of a normalised, spherically symmetric kernel results 
in the zeroth- and first-order integrals of the expansion taking values 1 and 𝟎 respectively.
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In the continuum limit, kernel interpolation will only reproduce 𝐹 (𝐫) without error if the integrals of the second and higher order 
terms are all equal to zero. Due to the assumed symmetry properties of the kernel, integrals in odd terms of the expansion are trivially 
equal to 0, while in general even terms will be non-zero. For a positive kernel these non-zero terms act to smooth the reconstructed 
field. Although the integrals in Eqn. (11) will be of order ℎ2 and higher powers of ℎ, with exponents corresponding to the term of the 
expansion [13], the errors become significant in regions where second and higher order derivatives of the underlying field are large 
over length scales of ℎ [45]. This is, in particular, the case for an underlying field that approaches a discontinuity relative to ℎ-length 
scales. A discontinuity, where the field is not differentiable, will inevitably be erroneously smoothed by kernel interpolation.

The integral SPH density estimate, Eqn. (1), is an example of the discrete form of Eqn. (9). Through Eqn. (11), we see how a 
quantity calculated by kernel interpolation in this way will experience smoothing error when the underlying field varies sharply 
over ℎ-length scales. At density discontinuities, smoothing of the density field leads to spurious pressures that contribute to surface 
tension-like effects that impede particle mixing across the interface.

2.1.4. Discretisation error

The kernel smoothing errors discussed above are in addition to, and separate from, errors introduced by discretisation [11,46]. 
Discretisation errors manifest themselves both through the choice of free functions in the equations of motion – affecting how closely 
Eqns. (6)–(8) approximate their continuous Euler equation equivalents – and through the imperfect sampling of the kernel by a finite 
number of particle neighbours, i.e. in the discretisation of integrals like Eqn. (9).

The use of a normalised, spherically symmetric kernel leads to the exact reconstruction of linear fields in the continuum limit by 
Eqn. (9), as the higher-order derivatives in Eqn. (11) are zero by construction. However, in the process of discretisation of the fluid 
into a finite set of particles, the conditions∑

𝑗

𝑊𝑖𝑗𝑉𝑗 = 1 , (12)∑
𝑗

𝐫𝑖𝑗𝑊𝑖𝑗𝑉𝑗 = 𝟎 , (13)

are no longer enforced. The exact reconstruction of fluid fields is therefore lost, even to zeroth order. The amount of discretisation 
error is a function of the disorder in the local particle distribution. This also applies to gradient estimates, such as those used in the 
equations of motion. Furthermore, in the equations of motion, gradient estimates are typically modified to enforce conservation, so 
generally deviate further from exact reproduction of underlying linear fields.

In SPH simulations where a fluid is represented by particles of equal mass, a density discontinuity constitutes a sharp change in 
particle spacing and thus large local anisotropies in particle distribution. This leads to discretisation error also playing a considerable 
role in suppressing mixing at density discontinuities [12].

2.2. Equations of state

The EoS characterises the thermodynamic behaviour of a material. In SPH simulations, hydrodynamical evolution is tied directly 
to pressures and sound speeds, calculated through the EoS. Many applications in astrophysics use simulations with only a single, ideal 
gas EoS. However, in some cases, multiple EoS are required to simulate dissimilar materials or phases, such as for planetary impacts, 
where EoS are often highly complex [25]. The improvements offered by the REMIX SPH scheme are EoS-independent, and so our 
methods can be applied effectively to these simulations, as well as other applications with multiphase fluids.

For the hydrodynamic test simulations presented in §4, we validate the REMIX scheme using both ideal gases and more complex 
EoS. For ideal gas simulations, the adiabatic index, 𝛾 , is problem-specific and chosen to draw comparisons with past work. For 
simulations using more complex materials, we use EoS typically used for planetary impact simulations. In most of these tests, we 
consider iron and rock in conditions representative of the core–mantle boundary in an Earth-like planet. We use the updated ANEOS 
Fe85Si15 and forsterite EoS for these materials, respectively [47]. For simplicity, we hereafter refer to these as “iron” and “rock”. In 
§4.9, we also consider a Jupiter-like planet. For these simulations, we use the hydrogen–helium EoS from Chabrier and Debras [48], 
with a helium mass fraction of 𝑌 = 0.245, and the AQUA EoS from Haldemann et al. [49] to represent heavy elements or ice.

We note that in the simulations we present here, these materials are treated as fluids without physical viscosities or strength 
properties.

2.3. The Swift code

Swift is a state-of-the-art, open-source hydrodynamics and gravity code that specialises in SPH simulations for planetary ap-
plications as well as galaxy formation and cosmology [41,50]. By using task-based parallelism, asynchronous communications, and 
graph-based decomposition of the work between compute nodes, Swift can perform high-resolution simulations efficiently on mod-
ern high-performance computing architectures [51]. REMIX is fully integrated into and was developed using the Swift code, and is 
therefore publicly available.5 All simulations presented here were carried out using the Swift code and all tests shown below are 

5 Swift is available at www.swiftsim.com alongside extensive documentation and a large suite of examples.

http://www.swiftsim.com
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shipped with the code package. The algorithms used for gravity and neighbour-finding are detailed in Schaller et al. [41] and are 
used identically for simulations with both REMIX and traditional SPH.

We use a kick–drift–kick time-stepping scheme, with time steps calculated with the CFL condition and 𝐶CFL = 0.1 [8]. In tests 
of Sod shock tubes, we find only small differences in REMIX simulations with 𝐶CFL up to 0.2. Above this we find sharper spikes at 
the discontinuities of density and internal energy. For REMIX simulations, the signal velocity in time-step calculations is taken to be 
𝑣sig, 𝑖 =max𝑗 (𝑐𝑖+𝑐𝑗 −4min(𝜇𝑖𝑗 , 𝜇𝑗𝑖)) where 𝑐 are particle sound speeds, the operation max𝑗 is the maximum value for all neighbouring 
particles, and 𝜇 are calculated by Eqn. (40), presented later. Future work will explore optimising time-step choices to further enhance 
performance.

3. REMIX SPH

In this section, we detail the constitutive equations of the REMIX SPH scheme.6 We improve the treatment of mixing by directly 
addressing the sources of SPH error discussed in §2.1. By targeting both smoothing and discretisation error, we alleviate spuri-
ous surface tension-like effects at density discontinuities, including in challenging cases with equal-mass particles and at interfaces 
between dissimilar, stiff materials. Note that we aim to address mixing at the particle scale and not below. Therefore, we do not 
consider diffusion of material type between particles, meaning that the material of each particle remains fixed for the duration of the 
simulation.

We target error by exploiting three key freedoms in the SPH equations of motion presented in §2.1.2: in the choice of density 
estimate (§3.1); in the choice of free functions (§3.2); and in the form of the kernel function (§3.3). Additionally, we develop a 
method that enables the appropriate treatment of free surfaces when using these improved kernels (§3.4), and we use improved 
artificial viscosity (§3.5) and artificial diffusion (§3.6) formulations. These include new approaches both for the treatment of shocks 
and to weakly smooth and mitigate accumulated noise on the particle scale. We also include a term in the density evolution that 
re-ties densities to the local particle distribution (§3.7). These components combine into the REMIX equations of motion, given by

𝑑𝜌𝑖
𝑑𝑡 

=
∑
𝑗

𝑚𝑗
𝜌𝑖
𝜌𝑗
𝑣𝛼𝑖𝑗

1
2

(
𝑑̃
𝑑𝑟𝛼

||||𝑖𝑗 − 𝑑̃
𝑑𝑟𝛼

||||𝑗𝑖
)

+ 
(
𝑑𝜌𝑖
𝑑𝑡 

)
difn

+ 
(
𝑑𝜌𝑖
𝑑𝑡 

)
norm

, (14)

𝑑𝑣𝛼
𝑖

𝑑𝑡 
= −

∑
𝑗

𝑚𝑗
𝑃𝑖 +𝑄𝑖𝑗 + 𝑃𝑗 +𝑄𝑗𝑖

𝜌𝑖 𝜌𝑗

1
2

(
𝑑̃
𝑑𝑟𝛼

||||𝑖𝑗 − 𝑑̃
𝑑𝑟𝛼

||||𝑗𝑖
)
, (15)

𝑑𝑢𝑖
𝑑𝑡 

=
∑
𝑗

𝑚𝑗
𝑃𝑖 +𝑄𝑖𝑗
𝜌𝑖 𝜌𝑗

𝑣𝛼𝑖𝑗
1
2

(
𝑑̃
𝑑𝑟𝛼

||||𝑖𝑗 − 𝑑̃
𝑑𝑟𝛼

||||𝑗𝑖
)

+ 
(
𝑑𝑢𝑖
𝑑𝑡 

)
difn

, (16)

where 
(
𝑑̃∕𝑑𝐫|𝑖𝑗 − 𝑑̃∕𝑑𝐫|𝑗𝑖)∕2 are improved kernel gradient terms that are antisymmetric in the exchange of 𝑖 and 𝑗 for explicit 

conservation of momentum and energy; 𝑄𝑖𝑗 and 𝑄𝑗𝑖 are pairwise, artificial viscous pressures; 
(
𝑑𝜌𝑖∕𝑑𝑡

)
difn and 

(
𝑑𝑢𝑖∕𝑑𝑡

)
difn are 

artificial diffusion of density and internal energy; and 
(
𝑑𝜌𝑖∕𝑑𝑡

)
norm is the kernel normalising term. Each of these are discussed in 

detail in their corresponding sections below.
The equations of the REMIX scheme were developed to be implemented in just three loops over particle neighbours, and without 

introducing any additional iterative steps. In our test simulations, performed on the COSMA8 HPC system,7 using REMIX led to a 
run-speed ∼1.3–1.6 times longer than equivalent simulations performed with traditional SPH (and everything else unchanged). The 
exact amount of slowdown is problem-dependent: this range includes simulations both with and without gravity, and those using 
different kernel functions.8 On the COSMA7 HPC system (which has fewer cores per node), simulations with the overhead of gravity 
take ∼1.6–1.8 times longer, and simulations without gravity take ∼2–3 times longer, depending on the test case. We find that REMIX, 
in addition to dealing with density discontinuities that are problematic in traditional SPH at all resolutions, is able to achieve an 
improved treatment of non-discontinuous regions in simulations with over an order of magnitude lower resolution compared with 
equivalent traditional SPH results (§4.3.1). The effective slowdown from using REMIX is therefore much smaller in practice than the 
ranges above suggest, since simulations with a lower resolution (fewer SPH particles) could be used to obtain equivalent results. As 
such, in many cases a science simulation with REMIX would run faster than a traditional SPH simulation that would require a higher 
resolution to achieve a comparable level of numerical convergence. For example, the 2.9 × 105 particle REMIX Kelvin–Helmholtz 
instability in §4.3.1 runs over 20 times faster (on COSMA8) than the 4.7 × 106 particle traditional SPH simulation, and is closer to 
the converged solution.9

6 The full set of the final equations used in the REMIX scheme are listed in Appendix B. The equations of the traditional SPH scheme that we use for comparison 
simulations are listed in Appendix C.

7 Simulations carried out on COSMA8 used 1 node with 128 cores and those on COSMA7 used 1 node with 28 cores. These are both part of the DiRAC cluster hosted 
by Durham University (https://dirac.ac.uk/memory-intensive-durham/).

8 Simulations used to investigate the runtime were: 3D Kelvin–Helmholtz instabilities (§4.3.2) and planets in hydrostatic equilibrium (§4.9). These were tested with 
cubic spline and Wendland 𝐶2 kernels.

9 See REMIX, 𝑁 = 128 and tSPH, 𝑁 = 512 in Fig. 4.

https://dirac.ac.uk/memory-intensive-durham/
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3.1. Density estimate

In the REMIX SPH scheme we use a differential form of the density estimate: we evolve the density in time with Eqn. (14) rather 
than recalculating it each timestep (e.g. Eqn. (1)), similarly to internal energy in traditional SPH schemes. There are three key benefits 
of this treatment: (1) we directly address systematic smoothing error in particle densities, which is particularly significant at density 
discontinuities, including those at free surfaces; (2) it allows us to constrain zeroth-order error in the equations of motion while 
starting from a basis of thermodynamic consistency (§3.2); (3) we do not require an additional loop over particle neighbours to 
calculate a new density each timestep. We note that particle mass is fixed throughout the simulation, so the evolution of densities 
is equivalent to an evolution of volumes. In §4.4, we show the differences in Kelvin–Helmholtz instability simulations when using 
the full REMIX scheme, and the REMIX scheme modified to use a traditional integral density estimate. Using our evolved density 
estimate, both to calculate thermodynamic quantities and in volume elements, leads to a considerable improvement in addressing 
spurious surface tension-like effects that suppress instability growth and mixing on the particle scale.

In practice, we set a density floor 𝜌min, i ≡ ⟨𝜌𝑖⟩min =𝑚𝑖𝑊 (𝟎, ℎ𝑖) such that 𝜌𝑖 = 𝜌min, i if the density would evolve below the minimum 
value. This prevents EoS extrapolation issues that arise for tiny densities in simulations involving a vacuum region.

Evolved density estimates are used frequently in SPH schemes developed for engineering applications [52] as well as in some 
astrophysical SPH schemes, in particular those that include material strength models [53]. However, in most astrophysical SPH 
schemes, an integral density estimate is preferred for its robustness: the accumulation of error in an evolved density estimate is less 
predictable than the relatively controlled errors in a density estimate calculated each timestep from the instantaneous local particle 
distribution. For instance, if left to evolve freely over many timesteps, densities could in principle take values such that volume 
elements 𝑚𝑗∕𝜌𝑗 are far from normalising the kernel 𝑊𝑖𝑗 , despite the kernel being a normalised function.10 We address these concerns 
with four approaches: (1) by introducing a novel term in the density evolution that re-ties densities to the local particle distribution 
(§3.7); (2) by using kernels that are normalised to the evolved densities (§3.3); (3) by including a weak density diffusion to smooth 
out accumulated noise (§3.6); (4) and by taking preventative measures in reducing error that could accumulate with time, reflected 
in the choices of our equations of motion (§3.2), the use of kernel functions constructed to reduce discretisation error (§3.3), and our 
improved viscosity formulation (§3.5).

Evolved densities are used wherever density appears in the equations of the REMIX scheme. This includes for calculating thermo-
dynamic quantities, using the equation of state, and in all volume elements.

3.2. Free functions in the equations of motion

In traditional SPH formulations, the free functions, 𝜁 and 𝜉, in the equations of motions (Eqns. (6)–(8)) typically take equal values 
for all particles and cancel. An alternate formulation with 𝜁 = 𝜉 = 𝜌, such that the equations of motion include ratios of the densities 
of particles 𝑖 and 𝑗, helps to constrain error in the equations of motion at density discontinuities and for irregular particle distributions 
on the kernel scale [12]. This choice avoids the use of gradients of density in the derivation of the momentum equation, by using the 
identity

∇𝑃
𝜌 

= ∇𝑃
𝜌 

+ 𝑃

𝜌 
∇1 , (17)

rather than

∇𝑃
𝜌 

=∇
(
𝑃

𝜌 

)
+ 𝑃

𝜌2
∇𝜌 . (18)

SPH formulations using the density as the free functions have been shown to improve the treatment of mixing [16]. For simulations 
using only a single ideal gas, the choice of 1∕𝑢 as a free function is equivalent to this, with the additional assumption of constant 
pressure on the kernel scale [24].

Using density as the free function in the integral form of the density estimate (Eqn. (1)) for simulations with arbitrary EoS is not 
possible without iteration, since the density would be needed in the density calculation. However, using the differential form to evolve 
the density (Eqn. (14)) enables us to develop the REMIX SPH scheme from a basis of full thermodynamic consistency with 𝜁𝑖 = 𝜌𝑖. 
We also use 𝜉𝑖 = 𝜌𝑖 to reduce zeroth-order error in the momentum equation [12,16]. All densities used are the evolved densities of 
particles.

In §4.4, we demonstrate the improvements in REMIX simulations of the Kelvin–Helmholtz instability from using 𝜁𝑖 = 𝜉𝑖 = 𝜌𝑖, 
compared with the REMIX scheme modified to use traditional equal-valued free functions.

3.3. Linear-order reproducing kernels

To reduce discretisation error, we construct kernels that explicitly satisfy the conditions given by Eqns. (12) and (13). Therefore, 
these kernels reproduce exact values for fields that are spatially constant or that vary linearly with position. This methodology is 
largely based on that of Frontiere et al. [19]. To account for spatial variations of the smoothing length, we include grad-ℎ terms that 

10 Volume elements that use the interpolated density, 𝑉𝑗 = 𝑚𝑗∕⟨𝜌𝑗⟩, are inherently tied to kernel normalisation. The equations for kernel normalisation, Eqn. (12), 
and the integral density estimate, Eqn. (1), are equivalent to each other in the limit of constant density on the kernel length scale, ⟨𝜌𝑗⟩→ ⟨𝜌𝑖⟩ for all 𝑗.
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were previously neglected. These grad-ℎ terms take a non-standard form, compared with Hopkins [42], since our evolved density is 
not tied directly to smoothing lengths through the instantaneous distribution of particles. We also modify our kernels to include a 
free-surface treatment (§3.4) to allow them to appropriately handle vacuum boundaries.

The modified kernel, 𝑖𝑗 , is constructed so that the sum over neighbours always satisfies∑
𝑗

𝑖𝑗𝑉𝑗 = 1 , (19)

∑
𝑗

𝐫𝑖𝑗𝑖𝑗𝑉𝑗 = 𝟎 . (20)

We use volume elements 𝑉𝑗 = 𝑚𝑗∕𝜌𝑗 , where 𝜌𝑗 are the evolved densities. We stress that for use in the equations of motion we must 
undergo a necessary step to make the kernel gradient terms antisymmetric in exchanges of particle pairs, to enforce the conservation of 
energy and momentum, as is also done by Frontiere et al. [19]. Therefore, the gradient estimates used in the equations of motion end 
up being not exactly first-order reproducing. Despite this, these gradient estimates show significant improvements when compared 
with unmodified kernels (as seen directly in §4.4).

To construct 𝑖𝑗 , an unmodified SPH kernel is multiplied by a linear polynomial

𝑖𝑗 ≡𝐴𝑖
(
1 +𝐵𝛼𝑖 𝑟

𝛼
𝑖𝑗

)
𝑊 𝑖𝑗 , (21)

where 𝑊 𝑖𝑗 ≡ [𝑊 (𝐫𝑖𝑗 , ℎ𝑖) +𝑊 (𝐫𝑗𝑖, ℎ𝑗 )]∕2 is a symmetrised kernel,11 and 𝐴𝑖 and 𝐁𝑖 are coefficients that satisfy Eqns. (19) and (20), 
as shown in Appendix A of Frontiere et al. [19]:

𝐴𝑖 =
(
𝑚0, 𝑖 −

(
𝑚

−1
2, 𝑖

)𝛼𝛽
𝑚
𝛼
1, 𝑖 𝑚

𝛽

1, 𝑖

)−1
, (22)

𝐵𝛼𝑖 = −
(
𝑚

−1
2, 𝑖

)𝛼𝛽
𝑚
𝛽

1, 𝑖 , (23)

where the geometric moments are defined as

𝑚0, 𝑖 =
∑
𝑗

𝑊 𝑖𝑗𝑉𝑗 , (24)

𝑚
𝛼
1, 𝑖 =

∑
𝑗

𝑟𝛼𝑖𝑗𝑊 𝑖𝑗𝑉𝑗 , (25)

𝑚
𝛼𝛽

2, 𝑖 =
∑
𝑗

𝑟𝛼𝑖𝑗 𝑟
𝛽
𝑖𝑗
𝑊 𝑖𝑗𝑉𝑗 . (26)

Greek letter indices correspond to spatial dimensions and like indices are summed over. Bars indicate the use of the symmetrised kernel 
in the kernel interpolation. This distinction becomes important since we use 𝑚0, 𝑖 , calculated similarly but using an unsymmetrised 
kernel, for alternative gradient estimates used later in this section and in §3.7.

To calculate gradient terms for the equations of motion, we require the spatial derivative of  . We include terms that depend on 
the gradient of smoothing lengths, unlike Frontiere et al. [19]. We find the effects of these to be small in practice, but include them 
for completeness of the method – without assuming these to be negligible.

The smoothing length dependence of Eqns. (21)–(26) is contained within 𝑊 𝑖𝑗 . We therefore express the derivatives with the 
parameterisation (𝐫, 𝐫𝑗 ) ≡ (

𝐫 − 𝐫𝑗 , 𝑊 (𝐫 − 𝐫𝑗 , ℎ(𝐫), ℎ(𝐫𝑗 )), 𝐴(𝐫), 𝐁(𝐫)
)

, giving

𝑑
𝑑𝑟𝛾

=𝐴𝐵𝛾𝑊 + 𝜕 
𝜕𝑊

𝑑𝑊

𝑑𝑟𝛾
+ 𝜕
𝜕𝐴 

𝑑𝐴 
𝑑𝑟𝛾

+ 𝜕 
𝜕𝐵𝛼

𝑑𝐵𝛼

𝑑𝑟𝛾
. (27)

When evaluated for a particle pair 𝑖, 𝑗 this becomes12

𝑑
𝑑𝑟𝛾

||||𝑖𝑗 =𝐴𝑖𝐵𝛼𝑖 𝑊 𝑖𝑗 +𝐴𝑖
(
1 +𝐵𝛼𝑖 𝑟

𝛼
𝑖𝑗

)
𝑑𝑊

𝑑𝑟𝛾

||||𝑖𝑗 +
(
1 +𝐵𝛼𝑖 𝑟

𝛼
𝑖𝑗

)
𝑊 𝑖𝑗

𝑑𝐴 
𝑑𝑟𝛾

||||𝑖 +𝐴𝑖𝑟𝛼𝑖𝑗𝑊 𝑖𝑗
𝑑𝐵𝛼

𝑑𝑟𝛾

||||𝑖 . (28)

Equations to calculate the gradients of 𝐴, 𝐵, and the geometric moments are included in Appendix B. The derivative of the symmetrised 
kernel is given by13

11 We find this to be beneficial when we enforce the antisymmetrisation required for use in the equations of motion, as demonstrated in Appendix E. Note that for 
certain computational steps, this choice extends the definition of particle 𝑖’s “neighbours”, 𝑗, to be those that satisfy either |𝐫𝑖𝑗| <𝐻𝑖 or |𝐫𝑖𝑗 | <𝐻𝑗 rather than just the 
first condition.
12 We use the notation 𝑑

𝑑𝑟𝛾
|||𝑖𝑗 ≡ 𝑑

𝑑𝑟𝛾

(
𝐫𝑖 − 𝐫𝑗 , 𝑊 (𝐫𝑖 − 𝐫𝑗 , ℎ(𝐫𝑖), ℎ(𝐫𝑗 )), 𝐴(𝐫𝑖), 𝐁(𝐫𝑖)

) ≡ 𝑑
𝑑𝑟𝛾

(
𝐫𝑖𝑗 , 𝑊 𝑖𝑗 , 𝐴𝑖, 𝐁𝑖

)
.

13 Note that we are taking the derivative of the continuous function 𝑊 (𝐫, 𝐫𝑗 ) = [𝑊 (𝐫−𝐫𝑗 , ℎ(𝐫))+𝑊 (𝐫𝑗 −𝐫, ℎ(𝐫𝑗 ))]∕2 with respect to 𝐫, with fixed neighbour positions 
𝐫𝑗 , and evaluating it at 𝐫𝑖 . Therefore, there is only a grad-ℎ term associated with the first term in the brackets.
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𝑑𝑊

𝑑𝑟𝛾

||||𝑖𝑗 = 1
2

(
𝜕𝑊

𝜕𝑟𝛾

||||𝑖𝑗 + 𝜕𝑊

𝜕ℎ 
||||𝑖𝑗 𝑑ℎ 𝑑𝑟𝛾

||||𝑖 − 𝜕𝑊

𝜕𝑟𝛾

||||𝑗𝑖
)
, (29)

and so the inclusion of grad-ℎ terms in the gradient calculations in practice only takes the form of the additional term in Eqn. (29). 
Both 𝜕𝑊 ∕𝜕𝑟𝛾 and 𝜕𝑊 ∕𝜕ℎ can be calculated directly from the kernel function [54].

Finally, we require 𝑑ℎ∕𝑑𝑟𝛾 . In SPH schemes that use the traditional density estimate, 𝑑ℎ∕𝑑𝑟𝛾 do not need to be calculated explicitly 
[42], since smoothing lengths and densities are inherently linked. However, for the scheme presented here, where we use an evolved 
density estimate, we must calculate this explicitly. One approach is to directly differentiate Eqn. (4). However, we find that zeroth-
order error from calculating grad-ℎ terms in this way leads to spurious behaviour in simulations. We therefore calculate these by 
kernel interpolation. Since, in practice, 𝑑𝑊 ∕𝑑𝑟𝛾 has not been constructed yet due to the order of these operations in the loops over 
particle neighbours, we are unable to use these improved gradient terms for 𝑑ℎ∕𝑑𝑟𝛾 if we want to avoid introducing a 4th loop. 
This also applies for gradient estimates in our viscosity (§3.5) and diffusion (§3.6) schemes, discussed later. We therefore require 
an alternative gradient estimate for these calculations. However, we must be mindful of kernel normalisation in these alternative 
gradient estimates, since we use evolved densities for volume elements throughout. We therefore use the kernel gradient term

𝜕
𝛾
𝑖
�̂�𝑖𝑗 ≡ 𝜕

𝛾
𝑖
𝑊𝑖𝑗

𝑚0, 𝑖
−
𝑊𝑖𝑗

𝑚2
0, 𝑖
𝜕
𝛾
𝑖
𝑚0 , (30)

where we note that the lack of bars throughout indicates the use of a standard (e.g. Wendland 𝐶2) kernel, rather than one symmetrised 
by averaging with neighbouring kernels, and ‘𝜕’, rather than total derivatives, indicates a lack of grad-ℎ terms. These choices allow 
us to calculate these kernel gradients in two loops over particle neighbours, so they can be used here and in the artificial viscosity 
and diffusion schemes. Circumflexes, here and throughout, indicate the use of the normalised kernel �̂�𝑖𝑗 ≡𝑊𝑖𝑗 ∕ 𝑚0, 𝑖.

We then calculate

𝜕
𝛾
𝑖
ℎ̂ =

∑
𝑗

(ℎ𝑗 − ℎ𝑖) 𝜕
𝛾
𝑖
�̂�𝑖𝑗

𝑚𝑗

𝜌𝑗
, (31)

and use this in place of 𝑑ℎ∕𝑑𝑟𝛾 .
All these equations combine in Eqn. (28) to give the gradients of the linear-order reproducing kernels. The use of these kernels 

reduces discretisation error in the equations of motion. In §4.4, we show the effect of these kernels on simulations of the Kelvin–
Helmholtz instability by using either the full REMIX scheme or the REMIX scheme with unmodified, Wendland 𝐶2 kernels.

3.4. Vacuum boundary treatment

We present a method to switch the kernel gradients constructed in §3.3 to the unmodified spherically symmetric kernel gradients 
in regions identified as vacuum boundaries. We stress that this method is not applying a targeted correction to vacuum boundaries as 
done by, for example, Reinhardt and Stadel [27]. In fact, our evolved density estimate corrects density smoothing at discontinuous 
free surfaces without any need for a targeted approach. Instead, the vacuum treatment we present here is just an expansion of the form 
of the linear-order reproducing kernels (§3.3) to allow them to capture free surfaces as vacuum boundaries, a case not considered – 
rather than handled poorly – in their general construction.

Similar approaches, in which a kernel gradient correction matrix is used to revert to the gradient of the uncorrected kernel function 
at free surfaces, have been previously developed for schemes utilising different forms of kernel corrections. Oger et al. [55] presented 
a method that switches to uncorrected kernel gradients based on a discrete threshold. Similar approaches have been demonstrated in 
the context of breaking wave simulations, by Zago et al. [56] and Lyu et al. [57]. Ren et al. [58] presented a scheme more similar to 
our own, in which the switch to the uncorrected kernel gradient function is treated smoothly.

A region with no SPH particles is not trivially equivalent to the representation of a vacuum. Since SPH particles are moving 
interpolation points, a region not sampled by SPH particles can be seen as analogous to a region in a grid-based code where the grid 
points have been removed. There is therefore no inherent information associated with these regions that would make them equivalent 
to a region with zero pressure, rather than a region to extrapolate into. However, if a spherically symmetric kernel, normalised to the 
continuum, is used to calculate pressure gradients in the equation of motion, vacuum-like behaviour is achieved. At a free surface, 
a particle with a spherically symmetric kernel will calculate pressure gradients equivalent to those calculated if the vacuum region 
were built up of particles with appropriate volumes but zero pressure.14

This is not the case for the linear-order reproducing kernels described in §3.3. Since kernels are constructed to satisfy Eqns. (19) 
and (20) for volumes built up by particles only, the vacuum region is treated as a region to extrapolate into. SPH applications typically 
require the treatment of a region without SPH particles as a vacuum, or a region with negligible pressure. We therefore switch our 
kernel gradient terms to gradients of unmodified kernels at free surfaces:

𝑑̃
𝑑𝑟𝛾

||||𝑖𝑗 = 𝑠𝑖 𝑑𝑑𝑟𝛾 ||||𝑖𝑗 + (
1 − 𝑠𝑖

) 𝑑𝑊
𝑑𝑟𝛾

||||𝑖𝑗 , (32)

14 These gradients may not be fully equivalent in the equations of motion where the additional condition of antisymmetry in exchange of neighbours is imposed, 
however, they remain closely related.
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where 𝑠 is a function that switches from 1 in regions where no vacuum boundary is detected, to 0 in regions near a vacuum boundary. 
Note that we smoothly switch between kernel gradients rather than the kernels themselves. This is to avoid terms with gradients 
of 𝑠. A switch that is accurate in identifying vacuum boundary particles only will inevitably have sharp spatial gradients, which 
could significantly influence the evolution of particles. Since we do not calculate densities by Eqn. (1), we do not require the direct 
calculation of the function whose derivative is given by Eqn. (32) to maintain thermodynamic consistency.

We modify the kernel gradient terms based only on parameters of the kernel function itself. Therefore, conceptually, we adapt 
the kernel function rather than making the kernel respond to the physical system simulated. For 𝑠, we use a Gaussian switch,

𝑠
(
ℎ𝑖|𝐁𝑖|) = ⎧⎪⎨⎪⎩

exp

[
− 

(
0.8 − ℎ𝑖|𝐁𝑖|)2

0.08 

]
for ℎ𝑖|𝐁𝑖| ≥ 0.8 ,

1 otherwise ,

(33)

where the offset, 0.8, and denominator, 0.08, of the switch are chosen empirically to identify boundary particles as those with a 
large |𝐁𝑖| (Eqn. (23)) greater than ∼1∕ℎ𝑖. These are particles whose kernels would have to drastically change shape to deal with large 
anisotropies in the volume elements of particle neighbours. We find that using these values allows the switch to identify particles near 
free surfaces reliably without misidentifying particles in non-vacuum regions, as we show in §4.9, where we also demonstrate the need 
for this vacuum boundary treatment. In the example presented, the free surface of a Jupiter-like planet in hydrostatic equilibrium is 
unstable when the vacuum boundary treatment is not included. As well as its use in switching the kernel function, 𝑠 is also used in 
the kernel normalisation term in the density evolution, as detailed in §3.7.

3.5. Artificial viscosity

Artificial viscosity is required to capture shocks in SPH simulations, whose constituent equations otherwise model adiabatic and 
dissipationless evolution [59]. A difficulty faced by artificial viscosity constructions is over-dissipation in regions not affected by a 
shock. Artificial viscosity switches, like the Balsara switch [60],

𝑖 =
||∇ ⋅ 𝐯𝑖||||∇ ⋅ 𝐯𝑖|| + ||∇× 𝐯𝑖|| + 0.0001 𝑐𝑖∕ℎ𝑖

, (34)

where 𝑐 is the sound speed, or higher-order switches like that of Read and Hayfield [61] are used to switch artificial viscosity off in 
shearing regions. Time-dependent viscosity parameters have also been developed [62–64] to reduce over-dissipation.

Recently, the limiting of artificial viscosity by the use of reconstructed velocities at particle-pair midpoints has been demonstrated 
to be an effective alternative approach [19,22,31]. For each particle pair, two velocities are estimated at the midpoint of the pair 
based on Taylor expansions from each particle using their individual velocities and estimated velocity gradients. The difference 
between these velocities is then used in the viscosity scheme instead of the relative velocity of the particles themselves. This is the 
approach taken in REMIX. We use linear reconstruction as we find further improvements due to quadratic reconstruction to be small, 
as also noted by Rosswog [22]. If the velocity field is locally linear, artificial viscosity would effectively be switched off with linear 
reconstruction. For schemes that use linear reconstruction, the viscosity in shearing regions where the velocity field is not exactly 
locally linear is not negligible and will still influence the fluid behaviour. However, this results in a helpful effect, acting as a weak 
artificial diffusion of momentum that smooths particle noise in the velocity field by guiding it towards being locally linear on the 
particle scale.

Our artificial viscosity treatment is largely based on those of Frontiere et al. [19] and Rosswog [22], with some additional, novel 
approaches. As detailed below, a slope limiter is used to prevent reconstruction at discontinuities, thereby increasing artificial viscosity 
where it is required for shock capturing. However, we find that a slope limiter alone does not effectively switch off reconstruction, 
because the velocity gradients used to construct it are inherently smoothed by their calculation using a smoothing kernel. Therefore, 
they do not identify sharp discontinuities well. We introduce a Balsara switch (Eqn. (34)) into the slope limiter term to switch off 
reconstruction at shocks more effectively. Here we calculate ||∇ ⋅ 𝐯𝑖|| and ||∇× 𝐯𝑖|| in the Balsara switch using the kernel gradient term 
given by Eqn. (30), and also use these same gradient estimates for the velocity gradients used in the linear reconstruction,

𝜕
𝛾
𝑖
�̂�𝛼 =

∑
𝑗

(𝑣𝛼𝑗 − 𝑣
𝛼
𝑖 ) 𝜕

𝛾
𝑖
�̂�𝑖𝑗

𝑚𝑗

𝜌𝑗
. (35)

The velocity reconstructed to the midpoint of a particle pair is given by

�̃� 𝛼𝑖𝑗 = 𝑣
𝛼
𝑖 +

1
2
(
1 −SL

𝑖

)
Φ𝑣, 𝑖𝑗

(
𝑟
𝛾
𝑗
− 𝑟𝛾

𝑖

)
𝜕
𝛾
𝑖
�̂�𝛼 , (36)

where SL
𝑖

is the standard Balsara switch (Eqn. (34)), and the SL (slope limiter) superscript just indicates its use in conjunction with 
the slope limiter. Φ𝑖𝑗 is the van Leer slope limiter [65], given by
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Φ𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 for 𝐴𝑖𝑗 < 0 ,

4𝐴𝑖𝑗
(1 +𝐴𝑖𝑗 )2

exp
⎡⎢⎢⎣−

(
𝜂min
𝑖𝑗

− 𝜂crit

0.2 

)2⎤⎥⎥⎦ for 𝜂min
𝑖𝑗

< 𝜂crit ,

4𝐴𝑖𝑗
(1 +𝐴𝑖𝑗 )2

otherwise ,

(37)

where the additional Gaussian term in Eqn. (37) switches the slope limiter to 0 for particle pairs with a small separation. 𝜂min
𝑖𝑗

is the 
smaller value of |𝜼𝑖𝑗 | and |𝜼𝑗𝑖|, where 𝜼𝑖𝑗 = (𝐫𝑖 − 𝐫𝑗 )∕ℎ𝑖 and similarly for the exchanged particle indices. 𝜂crit represents a separation 
closer than one would expect from the distribution of the rest of the particle’s neighbours. For viscosity calculations, we use the ratio 
of projected velocity gradients 𝐴𝑖𝑗 ≡𝐴𝑣, 𝑖𝑗 given by

𝐴𝑣, 𝑖𝑗 =
𝜕𝛼
𝑖
�̂� 𝛽 (𝐫𝑗 − 𝐫𝑖)𝛽 (𝐫𝑗 − 𝐫𝑖)𝛼

𝜕
𝛾
𝑗
�̂�𝜙(𝐫𝑗 − 𝐫𝑖)𝛾 (𝐫𝑗 − 𝐫𝑖)𝜙

. (38)

For 𝜂crit we use

𝜂crit =
1 
ℎ𝑖

(
1 ∑
𝑗 𝑊𝑖𝑗

)1∕𝑑

≡ 1 
𝜂kernel

, (39)

where the equivalency is due to the definition of the smoothing length in Eqn. (4). Note that the term in brackets is an approximation 
of the particle volume assuming neighbours with equal volumes.

The reconstructed velocities appear in the artificial viscosity formulation through

𝜇𝑖𝑗 =
⎧⎪⎨⎪⎩

�̃�𝑖𝑗 ⋅ 𝜼𝑖𝑗
𝜼𝑖𝑗 ⋅ 𝜼𝑖𝑗 + 𝜖2

for �̃�𝑖𝑗 ⋅ 𝜼𝑖𝑗 < 0 ,

0 otherwise ,
(40)

and similarly for 𝜇𝑗𝑖 with all particle indices exchanged throughout the calculations. 𝜖 = 0.1 is a small constant. Similarly to the 
artificial viscosity of Monaghan and Gingold [59], each pressure term in the equations of motion is modified with the addition of 
a pairwise viscous pressure.15 The viscous pressure terms 𝑄𝑖𝑗 combine a linear bulk viscosity term and a quadratic Von Neumann–
Richtmyer viscosity term [66],

𝑄𝑖𝑗 =
1
2
(
𝑎visc + 𝑏viscvisc

𝑖

)
𝜌𝑖

(
−𝛼𝑐𝑖𝜇𝑖𝑗 + 𝛽𝜇2𝑖𝑗

)
, (41)

and similarly for 𝑄𝑗𝑖 with all particle indices exchanged throughout the calculations. The constants 𝛼 and 𝛽 set the strengths of the 
bulk and Von Neumann–Richtmyer terms. The constants 𝑎visc and 𝑏visc set the strength of the viscosity in regions of different flow, 
based on the Balsara switch, visc

𝑖
.

The REMIX artificial viscosity scheme differs from those of Frontiere et al. [19] and Rosswog [22] in some notable aspects: firstly, 
the Balsara switch, SL

𝑖
, is included in the slope limiter term (in Eqn. (36)). This avoids reducing the artificial viscosity where it is 

needed, leading to a more effective targeting of shocks. This allows us to introduce a factor of 1∕2 in Eqn. (41) to recover equations 
more closely equivalent to those in Price [11]. Otherwise, the contributions from both 𝑄𝑖𝑗 and 𝑄𝑗𝑖 would effectively lead to this being 
a factor of 2 stronger, which is to some extent mitigated by those schemes being ineffective at switching off velocity reconstruction in 
shocks. Secondly, we use 𝛼 = 1.5 and 𝛽 = 3 as we find that these slightly larger constants, compared with 𝛼 = 1 and 𝛽 = 2 as used by 
Frontiere et al. [19] and Rosswog [22], help to dissipate spurious oscillations in shocks in 3D. This is consistent with typical values 
used in planetary impact simulations [e.g. 27,67]. Thirdly, we use an additional Balsara switch directly in Eqn. (41), which, combined 
with the values we use for 𝑎visc = 2∕3 and 𝑏visc = 1∕3, acts to switch between 𝛼 = 1.5 and 𝛽 = 3 in shocks and 𝛼 = 1 and 𝛽 = 2 in 
shearing regions. Here we make relatively conservative choices to limit the effect of artificial viscosity in smoothing particle noise 
in shearing regions, despite finding it to be a useful effect, owing to the velocity reconstruction to particle midpoints. Our artificial 
viscosity scheme is constructed to be less dissipative in shearing regions and to target shocks more effectively than similar schemes. 
These choices are all discussed in more detail in Appendix F.

Note that REMIX does not include methods to explicitly redistribute particles towards more isotropic or otherwise error-reducing 
distributions, such as particle shifting techniques [68,69] or regularisation approaches [70]. Instead, similarly to Frontiere et al. [19], 
the artificial viscosity in our scheme helps smooth perturbations below the resolution scale that can otherwise lead to emerging 
anisotropic particle structures.

15 𝑃𝑖 becomes 𝑃𝑖 +𝑄𝑖𝑗 and 𝑃𝑗 becomes 𝑃𝑗 +𝑄𝑗𝑖 .
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3.6. Artificial diffusion

Artificial diffusion of internal energy, or “artificial conduction16”, is frequently used to smooth accumulated noise in particle 
internal energies [71] or entropies [72], and to improve the treatment of density discontinuities in ideal gas-only simulations [23]. 
As with artificial viscosity, a targeted approach is desirable to avoid artificial diffusion playing a dominant role in the thermodynamic 
evolution, instead of acting as a correction on the particle scale [61].

In some SPH schemes, relatively strong artificial conduction is used to address kernel smoothing at density discontinuities by 
smoothing particle internal energies over kernel length scales [54]. For a single equation of state, with no phase transitions, this leads 
to a smooth pressure field in the continuous limit. However, this is not an appropriate treatment in simulations with multiple and/or 
complex materials, where smooth density and internal energy fields do not necessarily lead to smooth pressures. Additionally, even in 
ideal gas-only simulations, this does not completely solve the issue, since (1) artificial conduction becomes a less effective correction 
at large density discontinuities; (2) in simulations with gravity, strong diffusion will disturb a system’s hydrostatic equilibrium; (3) 
artificial conduction does not attempt to address the source of kernel smoothing error directly, instead it alters the physical system 
itself to one without discontinuities.

In simulations that use an evolved density estimate (Eqn. (6)), a similar artificial diffusion term can be used in the evolution of 
densities, for example, in the 𝛿-SPH formulation, used predominantly for engineering applications [52,73,74].

In REMIX, we include artificial diffusion of specific internal energy and of density, both to improve the treatment of shocks and to 
smooth accumulated noise on the particle scale, using reconstruction to particle midpoints [22,52]. Similarly to the phase dependence 
in the diffusion schemes of Sun et al. [74] and Pearl et al. [31], we only allow diffusion between particles of the same material type. 
Without this distinction, artificial diffusion of internal energy between different materials would cause unphysical evolution, since 
smoothing would be based on internal energy and not temperature. Diffusing density between different materials would lead to density 
discontinuities at material interfaces returning to a similar, smoothed state as in simulations with smoothing error in the density 
estimate.

The diffusion terms in the equations of motion take the form(
𝑑𝑢𝑖
𝑑𝑡 

)
difn

=
∑
𝑗

𝜅𝑖𝑗

(
𝑎𝑢 + 𝑏𝑢difn

𝑖𝑗

)
𝑣sig,𝑖𝑗 (�̃�𝑗 − �̃�𝑖)

𝑚𝑗

𝜌𝑖𝑗

1
2

|||||𝑑̃𝑑𝐫 ||||𝑖𝑗 − 𝑑̃
𝑑𝐫 

||||𝑗𝑖||||| , (42)

(
𝑑𝜌𝑖
𝑑𝑡 

)
difn

=
∑
𝑗

𝜅𝑖𝑗

(
𝑎𝜌 + 𝑏𝜌difn

𝑖𝑗

)
𝑣sig,𝑖𝑗 (�̃�𝑗 − �̃�𝑖)

𝜌𝑖
𝜌𝑗

𝑚𝑗

𝜌𝑖𝑗

1
2

|||||𝑑̃𝑑𝐫 ||||𝑖𝑗 − 𝑑̃
𝑑𝐫 

||||𝑗𝑖||||| , (43)

where 𝜅𝑖𝑗 = 1 for particles of the same material and 𝜅𝑖𝑗 = 0 otherwise. The average Balsara switch for each particle pair is used, 
difn
𝑖𝑗

= (𝑖 +𝑗 )∕2, for conservation. We take the signal velocity to be 𝑣sig, 𝑖𝑗 =
|||�̃�𝑖 − �̃�𝑗

||| and do not draw any distinctions between 
simulations with and without gravity (unlike some previous works [54,22]), since we aim to validate the full REMIX formulation 
independently of specific simulation properties. The parameters 𝑎𝑢 and 𝑎𝜌 set the strength of the artificial diffusion in shearing regions 
(where difn

𝑖𝑗
→ 0) and are increased to 𝑎𝑢 + 𝑏𝑢 and 𝑎𝜌 + 𝑏𝜌 in shocks. In shearing regions we choose to have low amounts of diffusion 

to avoid this strongly influencing thermodynamic evolution, and to allow for persisting and emergent discontinuities. We therefore 
use 𝑎𝑢 = 𝑎𝜌 = 0.05, similarly to Rosswog [22]. In the presence of shocks we find that we need a much larger amount of diffusion to 
prevent spikes in density and internal energy, and so we use 𝑏𝑢 = 𝑏𝜌 = 0.95. We motivate and test the sensitivity of these choices 
in Appendix F. The volume elements in Eqn. (42) are chosen to conserve energy. In Eqn. (43), they include an additional ratio of 
densities, to conserve volume in each pairwise interaction.17 Although conserving volume in a pairwise interaction between particles 
is not strictly necessary, we find that it improves the treatment of the density diffusion in shocks.

When calculating the artificial diffusion terms, internal energies and densities are reconstructed to particle midpoints similarly to 
the velocities in the artificial viscosity scheme via

�̃�𝑖 = 𝑢𝑖 +
1
2
Φ𝑢, 𝑖𝑗

(
𝑟
𝛾
𝑗
− 𝑟𝛾

𝑖

)
𝜕
𝛾
𝜅, 𝑖 �̂� , (44)

�̃�𝑖 = 𝜌𝑖 +
1
2
Φ𝜌, 𝑖𝑗

(
𝑟
𝛾
𝑗
− 𝑟𝛾

𝑖

)
𝜕
𝛾
𝜅, 𝑖 �̂� . (45)

The derivatives are calculated using only particles of the same material species as

𝜕
𝛾
𝜅, 𝑖 �̂� =

∑
𝑗

𝜅𝑖𝑗 (𝑢𝑗 − 𝑢𝑖) 𝜕
𝛾
𝑖
�̂�𝑖𝑗

𝑚𝑗

𝜌𝑗
, (46)

𝜕
𝛾
𝜅, 𝑖 �̂� =

∑
𝑗

𝜅𝑖𝑗 (𝜌𝑗 − 𝜌𝑖) 𝜕
𝛾
𝑖
�̂�𝑖𝑗

𝑚𝑗

𝜌𝑗
. (47)

The material dependence of these gradients helps to preserve real discontinuities at material boundaries.

16 In later sections, we use “artificial diffusion” to refer to cases that include the diffusion of both density and internal energy and “artificial conduction” where there 
is only diffusion of internal energy.
17 Substituting 𝑑𝜌𝑖

𝑑𝑡 = − 𝜌2𝑖
𝑚𝑖

𝑑𝑉𝑖
𝑑𝑡 and solving for 𝑑𝑉𝑖

𝑑𝑡 gives an equation antisymmetric in the exchange of particles.
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The slope limiter is calculated in the same way as for the viscosity, Eqn. (37), but with 𝐴𝑖𝑗 =𝐴𝑢, 𝑖𝑗 and 𝐴𝑖𝑗 =𝐴𝜌, 𝑖𝑗 given by

𝐴𝑢, 𝑖𝑗 =
𝜕𝛼
𝜅, 𝑖 �̂�(𝐫𝑗 − 𝐫𝑖)𝛼

𝜕
𝛽
𝜅, 𝑗 �̂�(𝐫𝑗 − 𝐫𝑖)𝛽

, (48)

𝐴𝜌, 𝑖𝑗 =
𝜕𝛼
𝜅, 𝑖 �̂�(𝐫𝑗 − 𝐫𝑖)𝛼

𝜕
𝛽
𝜅, 𝑗 �̂�(𝐫𝑗 − 𝐫𝑖)𝛽

. (49)

Although our diffusion scheme technically includes material dependence, this is not a correction targeted at material boundaries, 
nor with any dependence on the actual EoS. Rather, we actively turn off these parts of our method for particles of different species. 
Our artificial diffusion scheme is used to improve the treatment of shocks, and to weakly smooth accumulated noise. It is not used to 
address surface tension-like effects that prevent mixing and instability growth at density discontinuities, even in our ideal gas-only 
simulations.

3.7. Normalising term

We add a normalising term to the density evolution equation. This aims to evolve densities to reflect the distribution of mass in 
nearby particles, particularly in regions where particle volume elements systematically fail to satisfy the normalisation of the kernel. 
Since error accumulates in the evolution of densities based on timescales set by the divergence operator used in the equations of 
motion, we set the normalising term to act over timescales determined by the motion of particles. This also allows particles to move 
in response to changes in density caused by the normalising term.

Particle volume elements should approximately satisfy 
∑
𝑗 𝑊𝑖𝑗𝑉𝑗 = 1 (Eqn. (12)) for a normalised kernel function. However, 

this condition will not be satisfied either if particle densities are poor estimates of the underlying field or if particle masses do not 
appropriately represent the mass distribution of the fluid. Our methods inherently conserve mass, as particle masses do not evolve 
during the simulation, and are fully Lagrangian. Therefore, we choose to maintain the simplicity and computational stability of this 
construction, and address discrepancies in volume elements through particle densities rather than through particle masses or their 
distribution. We do this by including an additional term in the density evolution, which we refer to as the “normalising term”, that 
evolves densities towards a set of volume elements that aim to appropriately build up the continuous simulation volume. We note 
that the role of this term is not to obtain volume elements that exactly satisfy normalisation for all particle kernels at any given time, 
but rather to keep volume elements loosely tied to kernel normalisation and to address regions with systematic discrepancies.

To construct our normalising term, we consider the zeroth geometric moment of the unmodified kernel,

𝑚0, 𝑖 =
∑
𝑗

𝑊𝑖𝑗𝑉𝑗 , (50)

where 𝑚0, 𝑖 = 1 if the kernel 𝑊𝑖𝑗 is normalised over the volume elements 𝑉𝑗 =𝑚𝑗∕𝜌𝑗 . For a single particle 𝑖, we could trivially satisfy 
this condition by modifying the density of the particle and all its neighbours, 𝑗, by replacing 𝜌𝑗 with 𝑚0, 𝑖 𝜌𝑗 . However, this does 
not imply that 𝑚0, 𝑗 = 1 for all 𝑗, which will all have different 𝑚0, 𝑗 and different sets of neighbours. But if there are systematic 
discrepancies in 𝑚0 for many neighbouring particles, then modifying densities in a similar way for all these particles will move them 
closer to 𝑚0, 𝑗 = 1. For instance, consider a region where particles have systematically too low density, leading to a local trend of 
𝑚0, 𝑗 > 1. Here, increasing the densities will evolve these particles towards 𝑚0, 𝑗 = 1 and towards a density field that better represents 
the local mass distribution. In practice, we capture this behaviour with a smooth evolution in time. Unlike in the initial naïve example 
of modifying the densities of all 𝑗 to satisfy 𝑚0, 𝑖 = 1 for 𝑖 only, we evolve the density of 𝑖 only, based on its own 𝑚0, 𝑖. This reduces 
the risk of emergent chaotic behaviour and still captures the desired behaviour in regions of systematic trends away from kernel 
normalisation. The normalising term in the density evolution equation takes the form(

𝑑𝜌𝑖
𝑑𝑡 

)
norm

= 𝛼norm 𝑠𝑖 (𝑚0, 𝑖 − 1) 𝜌𝑖
∑
𝑗

𝑣norm, 𝑖𝑗
𝑚𝑗

𝜌𝑖𝑗

1
2

|||||𝑑̃𝑑𝐫 ||||𝑖𝑗 − 𝑑̃
𝑑𝐫 

||||𝑗𝑖||||| , (51)

where 𝛼norm = 1 is a constant and 𝑣norm, 𝑖𝑗 =
|||𝐯𝑖 − 𝐯𝑗

||| is the effective signal velocity. Eqn. (51) aims to contribute to a weak evolution 
of 𝜌𝑖 towards 𝑚0, 𝑖 𝜌𝑖. We include the vacuum switch, 𝑠, described in §3.4, since the kernel should not be normalised by particle volume 
elements at vacuum boundaries.18 Here, we use the same volume elements and kernel gradient terms as are used in the diffusion 
of internal energy (Eqn. (42)), despite not being motivated by conservation in this term, since it does not represent the exchange of 
a quantity between particles. We use these so that the timescale of the normalising evolution is based on terms in the sum that are 
equal for both particles in each pairwise interaction. This prevents individual particles dominating in the corrective evolution. Using 
a timescale that depends on particle motion 𝑣norm, 𝑖𝑗 rather than, for example the sound speed, allows particles to react and move in 
response to changes in density caused by the normalising term. We find that using an effective signal velocity that depends on the 
sound speed, even with a small multiplication factor, can lead to spatial oscillations in density, because densities change to attempt 
to satisfy normalisation faster than particles can respond to these changes.

18 At vacuum boundaries, one would instead expect 𝑚0, 𝑖 ≈ 1∕2.
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We show the effect of this term in simulations in §4.3.2 and §4.9. In particular, we show that without this term, an example 
Jupiter-like planet in hydrostatic equilibrium will develop numerical instabilities as particles with low evolved densities, but are in 
regions of high particle number density, move from the planet’s surface towards its core (§4.9). In less extreme cases, the normalising 
term does not have a significant effect on hydrodynamics, although it does lead to particle densities that are generally closer to 
satisfying kernel normalisation, 𝑚0, 𝑖 = 1.

4. Hydrodynamic Tests

In this section, we validate REMIX in simulations to test its ability to capture physically realistic fluid behaviour. The primary 
tests are performed with particles of equal mass across the simulation, though we also include a subset of additional simulations for 
direct comparisons with past work, where particles are placed onto a regular grid but have different masses. We refer to these two 
cases as “equal mass” and “equal spacing” throughout the following sections. The choice to focus on simulations with equal mass is 
made to validate our methods for science applications where particle densities and configurations can evolve significantly from their 
initial states, so particle masses cannot be easily chosen in the initial configuration to address errors. All simulations are performed in 
3D, to account for effects that do not change predictably when increasing the number of dimensions, such as due to more freedom in 
particle configurations, or the change in scaling between neighbour number and length scale of particle interactions.19 Additionally, 
in figures showing simulation snapshots, we deliberately plot individual particles rather than the smooth, reconstructed fields shown 
in some works. It is particularly important to visualise small-scale behaviour of simulations that aim to improve the treatment of 
density discontinuities where the effects that suppress mixing act on the particle scale.

We present results for the following hydrodynamic test scenarios:

• the square test (§4.1), where we investigate the treatment of density discontinuities in static equilibrium;
• the Sod shock tube (§4.2), where we investigate the treatment of shocks;
• the Kelvin–Helmholtz instability both with an ideal gas EoS (§4.3) and between different, stiff materials set up to be representative 

of iron & rock material boundaries in an Earth-like planet (§4.4);
• the Rayleigh–Taylor instability, also both with an ideal gas EoS (§4.5) and with iron & rock (§4.6);
• the blob test (§4.7), with which we investigate the onset of turbulence due to unseeded instabilities in both subsonic and super-

sonic regimes;
• the Evrard collapse (§4.8), which is used to test the interaction of our hydrodynamic treatment with gravity and shocks;
• and finally, planets in hydrostatic equilibrium (§4.9), which we consider as a test scenario that combines gravity, complex-

material boundaries, and a vacuum boundary.

The initial conditions needed to perform these tests are included as examples in the open-source Swift code.
We include comparisons with simulations carried out both using a traditional SPH formulation (“tSPH”) and a traditional for-

mulation that includes artificial conduction of internal energy (“tSPH + cond.”), with full details in Appendix C. These are used to 
demonstrate the motivation and need for many of the improvements in REMIX. Some comparison simulations carried out using MFM 
and MFV are also included in Appendix I. We note that in most ideal gas tests, we follow the convention of past work and leave 
quantities unitless.

4.1. Square test

The “square test” is used to investigate spurious surface tension-like effects from sharp discontinuities in a system that should be 
in static equilibrium [29]. Here we test both an equal spacing scenario, i.e., with different particle masses in the two regions, and 
an equal mass scenario. The significant contributions from both smoothing and discretisation error (§2.1.3, §2.1.4) at the density 
discontinuity make the equal mass test particularly challenging for SPH.

A square (or cube) of fluid of higher density is initiated in pressure equilibrium with the surrounding region of low density fluid. 
Since the fluid experiences no gradients in pressure, other than those created by numerical errors, the shape of the square should not 
distort with time. In tSPH simulations, spurious surface tension-like effects at the density discontinuity leads to non-zero accelerations 
and a deformation of the square [5]. Typically, this test is carried out in 2D however, here we simulate a more challenging 3D cube 
with its effectively “sharper” higher-dimension corners, similarly to Rosswog [22].

First, for the equal spacing scenario, we use initial conditions set up to match those of Rosswog [22]. 403 particles are placed in a 
simple cubic lattice with spacing 1∕40 between adjacent particles. The simulation box is periodic and has length 1 in each of the 𝑥, 𝑦, 
𝑧 directions. Masses are chosen such that 𝑚𝑖 = 𝜌(𝐫𝑖)∕403, with densities 𝜌 = 4 in the region −0.25 < 𝑥,𝑦, 𝑧 < 0.25 and 𝜌 = 1 otherwise. 
An ideal gas EoS with 𝛾 = 5∕3 is used for all particles. Initial internal energies are set to give a uniform pressure20 of 𝑃 (𝜌, 𝑢) = 2.5.

The evolution of the equal spacing square test, carried out using each of tSPH; tSPH with artificial conduction; and REMIX, is 
shown in the top panels of Fig. 1. In the equal spacing scenario, the major contribution to spurious surface tension is due to the 

19 A 2D simulation will have a lower number of neighbours for a given smoothing length than the equivalent 3D simulation. Increasing 𝜂kernel to compensate for this 
would lead to kernel smoothing over a larger length scale.
20 We note the use of the unsmoothed density 𝜌 rather than the smoothed ⟨𝜌⟩ used to set the internal energies of the initial conditions. Therefore tSPH simulations 

are not initialised in pressure equilibrium, due to smoothing error in the density estimate.
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Fig. 1. Central cross-sections from 3D “square test” simulations. Snapshots of the cube are shown at three times from simulations with equal initial particle spacing 
(top full-row) and equal particle mass across the simulation (bottom full-row). Simulations were carried out using three SPH formulations: tSPH, tSPH with artificial 
conduction, and REMIX. Individual particles are plotted at their positions in the 𝑥–𝑦 plane on a grey background, and coloured by their density. Particles in a slice of 
thickness 0.1 are plotted, so the grey background is visible in regions that have maintained their grid alignment in 𝑧 from the initial conditions.

smoothing of the density field. The contribution of discretisation error is small, due to the well-ordered particle distribution and use 
of a relatively high-order kernel. With tSPH, the cube quickly deforms to a more stable, spherical shape, as illustrated by the upper, 
top-left panels of Fig. 1. Artificial conduction reduces the effects of smoothing error and so a square shape persists for longer, although 
the sharpness of the discontinuity is not maintained (Fig. 1 lower, top-left panels). With REMIX, particle motion is negligible, relative 
to the particle separation, and the cube retains its shape (Fig. 1 top-right panels). This is in large part due to the use of the evolved 
density estimate, which prevents density smoothing – and therefore spurious pressures – at the discontinuities. Our choice of the free 
functions in the equations of motion and kernel construction also helps in reducing discretisation error to achieve these results.

Next, we consider the more challenging case for SPH: the use of equal mass particles, which leads to particles set up in considerably 
different grid-spacings interacting at the density discontinuity. Particles in the low density region are placed in the same configuration 
as in the equal spacing scenario. Then, instead of increasing particle masses in the high density region, the particle spacing is decreased 
and masses are kept the same as in the low density region. To satisfy these conditions while closely matching the density ratio in 
the equal spacing test, the high density region is given a grid-spacing of a factor 0.625 finer than the grid-spacing of the low density 
region. This corresponds to a density of 4.096. The new spacing of high density particles is chosen such that the layers of particles 
on either side of discontinuities are separated by the mean of the two grid-spacings, for all cube faces.

The evolution of this square test with equal mass particles is shown in the bottom panels of Fig. 1. There is now a large contri-
bution of both smoothing and discretisation error in both of the traditional SPH formalisms. As such, the cube quickly deforms, even 
with conduction acting to reduce smoothing error. In the REMIX formulation, some minor deformation can be observed over these 
timescales. However, the general shape is maintained (Fig. 1 bottom-right panels). We note that although past work typically shows 
2D square test evolution over longer timescales than those of our plotted snapshots, our plots show times later than the compara-
ble 3D tests in Rosswog [22], beyond the time at which their equal spacing cubes have deformed. Reducing the effects of artificial 
surface tension requires all of (1) a density estimate that does not smooth density discontinuities, (2) our choice of equations of 
motion, and (3) improved gradient estimates. In the REMIX simulation, artificial diffusion is not the dominant source of correction, 
as discontinuities in both density and internal energy remain sharp.

If the linear-order reproducing kernels are used in the equations of motion without the antisymmetrisation, which is needed to 
enforce conservation, the square will remain undisturbed over much longer timescales, even in the equal mass case. The difference 
in outcome between using the conservative, antisymmetric construction and the exactly linear reproducing construction is sensitive 
to the kernel function used to construct the linear reproducing kernel. Therefore, reducing the additional error introduced in anti-
symmetrisation becomes an important consideration when choosing the form of the kernel from which the linear-order reproducing 
kernels are constructed. This can be seen in Appendix E, where we present sensitivities in these results to different elements of the 
REMIX construction.

4.2. Sod shock tube

The “Sod shock tube” [75] is used to assess the shock capturing capabilities of our hydrodynamic scheme. This is a classic Riemann 
problem with a known analytic solution. Since the inclusion of artificial viscosity and diffusion are necessary to deal with shocks in 
the REMIX scheme, we also use this test to motivate choices made in the artificial viscosity and diffusion formulations, as detailed in 
Appendix F. The choices made in the viscosity scheme relating to this test focus on reducing ringing oscillations behind the shock. 
The diffusion scheme focuses on reducing the size of spikes in density and internal energy at the discontinuity.

Ideal gas, 𝛾 = 5∕3, particles of equal mass are placed in a periodic 3D domain with size 2 in each of 𝑥, 𝑦, 𝑧 directions, centred at 
(0, 0, 0). We use two glass configurations, scaled appropriately for the two regions of different initial density: 𝜌1 = 1 in the region 
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Fig. 2. 3D Sod shock tube at time 𝑡 = 0.2 simulated using tSPH and REMIX. Plots show velocity in the 𝑥-direction, 𝑣𝑥 , density, 𝜌, specific internal energy, 𝑢, and 
pressure, 𝑃 , of individual particles plotted against their 𝑥-position for tSPH (a–d) and REMIX (e–h) respectively. The red, dashed line shows a reference solution, 
solved for directly by using a Riemann solver. All particles are plotted.

𝑥 < 0 and 𝜌2 = 1∕8 in the region 𝑥 > 0. Initial internal energies are set such that 𝑃1 = 1 and 𝑃2 = 0.1. Simulations have a total of 
589,824 equal mass particles.

The particle velocities in the 𝑥-direction, densities, internal energies, and pressures at a time 𝑡 = 0.2 are shown in Fig. 2. The shock 
is captured well with REMIX, and the particles align with the reference solution. Noise in particle velocities is reduced compared with 
tSPH. The size of the spike in internal energy is also reduced. The pressure blip could be further smoothed by increasing the strength 
of our artificial diffusion scheme, through choices of the 𝑎 and 𝑏 factors. However, we choose to take a conservative approach to 
artificial diffusion to avoid deviating far from the thermodynamically consistent core equations of motion.

4.3. Kelvin–Helmholtz instability – ideal gas

The Kelvin–Helmholtz instability (KHI) is the first test we use to investigate the treatment of mixing and dynamic instability growth 
in our simulations. The KHI arises at shearing interfaces in fluids [76]. Perturbations at the interface grow to form vortices that act 
to cascade energy to shorter length scales. As such, the KHI plays a significant role in the onset of turbulence in physical systems. 
Capturing the growth of the KHI has therefore been widely adopted as a benchmarking test to assess a numerical method’s ability 
to simulate turbulence-driven mixing, as well as mixing on the particle scale. However, unlike the other tests above, an analytical 
solution does not exist for the KHI.

Here we first consider the growth of these instabilities at shearing density contrasts in an ideal gas. All simulations presented are 
carried out in 3D, with a thin 𝑧 direction depth relative to the other dimensions, similarly to Hopkins [42], Read et al. [12], and 
Rosswog [22]. We focus primarily on cases with a sharp density discontinuity and equal mass particles. This is in contrast with an 
alternative setup with which we directly compare our results with a reference solution [77], where we consider an initially smoothed 
discontinuity and equal particle spacing. Although the use of this second form of initial conditions with smooth initial densities and 
velocities is motivated by the existence of a converged solution, these choices change the physical system to one with inherently less 
smoothing and discretisation error, which are the main effects of interest that normally suppress instability growth in SPH simulations. 
These smooth initial conditions therefore do not give the full picture of an SPH scheme’s ability to capture KHI growth at sharp density 
discontinuities, where these sources of error can play a dominant role. This is particularly important at material boundaries, where 
smoothing the density discontinuity between different materials may lead to particles of both materials occupying extreme regions of 
their EoS phase space, so considering deliberately smoothed, equilibrium initial conditions would not be representative of a physical 
system.

Traditional formulations of SPH struggle to capture the KHI [14], with the growth of the instability being strongly suppressed. 
In particular, for shearing density discontinuities, smoothing in the density estimate leads to surface tension-like effects that act 
to artificially stabilise the interface. Additionally, for simulations where SPH particles in both density regions have equal mass, 
or configurations that give similarly anisotropic local particle distributions at the interface, leading-order error in the momentum 
equation will also contribute significantly to this spurious surface tension-like effect. Not only do these effects act to suppress mixing 
by hampering the large-scale evolution of naturally arising instabilities that should act to drive mixing, but they will also impede 
particles crossing interfaces, thereby suppressing mixing both indirectly and directly.

The growth of a mode of wavelength 𝜆 is characterised by the timescale [22,23]

𝜏KH =
(𝜌1 + 𝜌2)  𝜆 √
𝜌1𝜌2 |𝑣1 − 𝑣2| , (52)

where 𝜌1 and 𝜌2 are the densities in regions separated by the shearing interface and |𝑣1 − 𝑣2| is their relative speed. We use this 
parameterisation so that comparisons can be drawn at the same 𝜏KH between simulations with different initial conditions, since we 
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Fig. 3. Ideal gas Kelvin–Helmholtz instabilities with smoothed initial density and velocity profiles. Columns correspond to simulations of different resolutions, with 
the top row showing results from simulations using tSPH and the bottom row from simulations using REMIX. We plot snapshots at 𝑡= 2 𝜏KH from 3D, ideal gas KHI 
simulations. The density ratio between the two regions is 1:2. Here particles of different mass are used to match consistent initial particle spacing and volume across 
the simulation. Individual particles are plotted on a grey background and coloured by their density. Particles at all 𝑧 are plotted, so the grey background is visible in 
regions that have maintained their grid alignment in 𝑧 from the initial conditions.

consider KHIs with both smoothed and sharp interfaces, for different density ratios, and between different materials. We note that 
initial conditions with and without initial smoothing of fields at the interface are physically different systems, so we do not expect 
converged results between the two.

In the absence of stabilising influences such as physical surface tension or gravity, a shearing discontinuity is unstable to perturba-
tion modes of all wavenumbers [76]. In a realistic system satisfying these conditions, instability will always be triggered, as even the 
smallest local inhomogeneities will seed mode growth. Similarly, in a simulation, numerical error will inevitably trigger instability 
at shearing discontinuities. The wavenumbers of error-seeded modes are sensitive not only to the numerical methods used and the 
construction of initial conditions, but also to the resolution of the simulation: a higher resolution simulation will be able to resolve 
the excitation of a wider range of mode wavelengths [78]. The growth of KHIs at sharp discontinuities can therefore not be used 
reliably for convergence studies.

McNally et al. [77] and Robertson et al. [78] construct KHI initial conditions with smooth initial velocities and densities across 
the shearing interface. They show that the inclusion of a well-resolved transition region acts to stabilise the system, suppressing 
modes other than those deliberately seeded in the initial conditions. They demonstrate convergence and present a well-posed method 
to benchmark the early evolution of KHI simulations. In §4.3.1 below, we present REMIX simulations using the initial conditions 
of McNally et al. [77], including quantitative comparisons of mode growth with their converged reference solution. In §4.3.2, we 
present KHI simulations with sharp discontinuities in density and velocity across the interface. Although we cannot make quantita-
tive comparisons of this more challenging case with converged reference solutions, useful comparisons can still be drawn between 
simulations and the expected qualitative behaviour of the instability, with a motivation of reducing the clear suppression of the KHI 
observed when using traditional SPH. We additionally use equal mass particles across the simulation, making this setup particularly 
challenging for SPH schemes, but more applicable to most science applications. In §4.3.3 we present KHI simulations with a larger 
density ratio, a discontinuous interface, and equal mass particles. This system is even more challenging again for SPH schemes: both 
smoothing and discretisation errors are increased here due to the larger density-smoothing effects and the even more extreme local 
anisotropy in particle distribution at the interface. After considering these ideal gas scenarios, we present KHI simulations at interfaces 
between dissimilar, stiff materials in §4.4.

4.3.1. KHI with smooth initial conditions

McNally et al. [77] present converged, high-resolution simulations of the early linear growth of the KHI. They use initial conditions 
with smooth initial velocity and density fields across the shearing interface. Similarly to Rosswog [22], here we use these smooth 
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Fig. 4. Evolution of mode amplitude, 𝑀 , in Kelvin–Helmholtz simulations with smoothed initial density and velocity profiles. We plot mode growth for simulations 
with three different resolutions (𝑁 = 128, 256, 512) using both tSPH (grey, dashed) and REMIX (blue, dashed). Mode amplitude is normalised to the initial amplitude 
of the excited mode, 𝑀0, and time is normalised to the characteristic timescale of KHI growth, 𝜏KH. The reference solution (red, solid) corresponds to the 4096 × 4096 
simulation of McNally et al. [77] using the Pencil code. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

initial conditions, adapted to 3D, and use the mode growth of the reference solution of McNally et al. [77] to quantitatively assess 
the accuracy of our numerical methods.

Particles are initialised in a 3D cubic lattice in a periodic box with 𝑁 ×𝑁 × 18 particles in 𝑥, 𝑦, 𝑧 directions (i.e. a thin slice in 
the 𝑧 direction relative to 𝑥 and 𝑦). We run simulations with resolutions 𝑁 = 128, 256, 512. Spatial dimensions are normalised to 
the size of the simulation box length in the 𝑥 and 𝑦 directions. A low density region of 𝜌1 = 1 shears against a high density region of 
𝜌2 = 2 with speeds in the 𝑥 direction of 𝑣1 = −0.5 and 𝑣2 = 0.5 such that the relative velocity is |𝑣1 − 𝑣2| = 1. The regions are layered 
in 𝑦 and have relative velocities in 𝑥. However, both density and shearing velocity are smoothed at the shearing interface such that 
initial densities are given by

𝜌(𝑦) =

⎧⎪⎪⎨⎪⎪⎩
𝜌1 − 𝜌𝑚𝑒(𝑦−0.25)∕Δ for 0.00 ≤ 𝑦 < 0.25 ,
𝜌2 + 𝜌𝑚𝑒(0.25−𝑦)∕Δ for 0.25 ≤ 𝑦 < 0.50 ,
𝜌2 + 𝜌𝑚𝑒(𝑦−0.75)∕Δ for 0.50 ≤ 𝑦 < 0.75 ,
𝜌1 − 𝜌𝑚𝑒(0.75−𝑦)∕Δ for 0.75 ≤ 𝑦 < 1.00 ,

(53)

and initial velocities in the 𝑥 direction are given by

𝑣𝑥(𝑦) =

⎧⎪⎪⎨⎪⎪⎩
𝑣1 − 𝑣𝑚𝑒(𝑦−0.25)∕Δ for 0.00 ≤ 𝑦 < 0.25 ,
𝑣2 + 𝑣𝑚𝑒(0.25−𝑦)∕Δ for 0.25 ≤ 𝑦 < 0.50 ,
𝑣2 + 𝑣𝑚𝑒(𝑦−0.75)∕Δ for 0.50 ≤ 𝑦 < 0.75 ,
𝑣1 − 𝑣𝑚𝑒(0.75−𝑦)∕Δ for 0.75 ≤ 𝑦 < 1.00 .

(54)

Here 𝜌𝑚 = (𝜌1 −𝜌2)∕2, 𝑣𝑚 = (𝑣1 −𝑣2)∕2, and Δ= 0.025. Since particle positions are initialised in a single cubic lattice, particle masses 
are set by 𝑚𝑖 = 𝜌(𝑦𝑖)∕𝑁3. Particle internal energies are set to give a pressure of 𝑃 (𝜌, 𝑢) = 2.5 across the simulation for an ideal gas 
with 𝛾 = 5∕3. A small velocity perturbation, 𝑣𝑦 = 0.01 sin (2𝜋𝑥∕𝜆), is added in the 𝑦 direction with wavelength 𝜆 = 0.5, to seed the 
primary instability.

The simulated KHI with these initial conditions is shown in Fig. 3. We plot particle densities at particle positions for simulations 
of resolution 𝑁 = 128, 256, 512. Top row plots correspond to tSPH and bottom to REMIX. All snapshots are shown at simulation 
time 𝑡 = 2 𝜏KH. Traditional SPH struggles to capture this instability at low resolutions. In REMIX simulations the seeded mode is not 
suppressed and grows at a close to resolution-independent rate. We find, however, that at later times secondary modes will eventually 
grow and disturb the evolution of the primary mode, so we do not observe strict convergence over long timescales. For an SPH scheme 
aiming to model an inviscid fluid with realistic turbulence-driven mixing, a compromise on this is difficult to avoid.

The evolution of the amplitude of the seeded mode is shown in Fig. 4, for these simulations. This quantity, 𝑀 , is calculated 
from Eqns. 10–13 of McNally et al. [77]. We normalise the mode amplitude to 𝑀0 ≡𝑀(𝑡 = 0) to allow for more direct comparisons 
between simulations with different initial conditions, presented later. The reference solution is from the high-resolution 40962 cell 
KHI simulation performed by McNally et al. [77] using the Eulerian mesh, finite-difference code Pencil. The mode growth of the tSPH 
simulations falls significantly short of the reference solution. This result is consistent with the SPH simulations used for comparisons 
by McNally et al. [77]. In contrast, the mid- and high-resolution REMIX simulations closely match the reference solution, and even 
the lowest resolution REMIX simulation is considerably closer to the reference solution than the highest resolution tSPH simulation.
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Fig. 5. Growth of 3D Kelvin–Helmholtz instabilities in the more challenging case of discontinuous initial density and velocity profiles and equal mass particles. Columns 
show snapshots at different times, with the top rows showing results from simulations using tSPH – without and with artificial conduction – and the bottom row from 
simulations using REMIX. These simulations are both relatively low resolution, with 𝑁1 = 128. The density ratio between the two regions is 1:1.91.

4.3.2. KHI with discontinuous initial conditions

Next we consider KHI growth at an interface that is discontinuous in density and velocity. A shearing discontinuous interface 
is unstable to modes of all wavelengths, so noise- or error-seeded secondary modes will inevitably lead to a turbulent system and 
preclude numerical convergence. Although no converged reference solution exists for this problem, we use this system to qualitatively 
demonstrate the suppression in tSPH of both instability growth at, and mixing across, density discontinuities, and the effectiveness of 
REMIX in alleviating these issues. We deliberately constrain our analysis to low-resolution simulations, where the primary, intention-
ally seeded mode remains relatively undisturbed by secondary modes during the early growth of the instability (as discussed further 
in Appendix G).

Similarly to in §4.3.1, we consider shearing between a low density region of 𝜌1 = 1 and a high density region of 𝜌2 ≈ 2 with relative 
speeds of 𝑣1 = −0.5 and 𝑣2 = 0.5. Here we initialise particles with a sharp discontinuity in both density and shearing velocity. The low 
density region is set up in the same cubic lattice as in the smoothed simulations of the previous section. We use particles of equal mass 
across the simulation. We refer to the resolution of these simulations by the effective resolution of the low density region: 𝑁1 = 128, 
256, 512; if the box were filled with a cubic lattice of the low density material only, then this lattice would consist of 𝑁1 ×𝑁1 × 18
particles in 𝑥, 𝑦, 𝑧 directions. Particles in the high density region are arranged in a cubic lattice of shorter spacing. A cubic lattice 
corresponding to a density 𝜌2 = 2 is adjusted to allow a continuous grid in the 𝑥 dimension of the periodic box.21 The spacing of 
particles in 𝑧 is slightly adjusted away from a perfectly cubic lattice such that particle spacing in this dimension is also continuous 
across the boundary of the box. The regions are shifted in the 𝑦 direction such that the layers of particles across the interface from 
each other, directly adjacent to, and parallel with, the discontinuity are separated by the mean of the two grid-spacings. The size of 
the simulation box is adjusted in the 𝑦 direction to compensate for this and to maintain continuity across boundaries of the periodic 
box. The density 𝜌2 is recalculated based on these grid modifications and the use of equal mass particles. To satisfy these conditions, 
in the high density region we use 𝜌2 = 1.91 in a lattice with, for example, 𝑁2 = 160 and 22 particles in the 𝑧 direction for 𝑁1 = 128. 
Initial internal energies are calculated such that particles have a uniform initial pressure22 of 𝑃 (𝜌, 𝑢) = 2.5 by the ideal gas equation 
with 𝛾 = 5∕3. We seed a small velocity perturbation, 𝑣𝑦 = 0.01 sin (2𝜋𝑥∕𝜆), in the 𝑦 direction with 𝜆 = 0.5.

21 We also enforce that the effective resolution in this region, 𝑁2, is divisible by 4 (the number of vortices formed by the evolution of the seeded mode) to avoid 
the possibility of asymmetric evolution of individual vortices triggering an early onset of secondary modes. In practice this has no noticeable effect here, but similar 
considerations do matter for the Rayleigh–Taylor instability simulations we examine in §4.5 and §4.6.
22 We note here that the density used in these initial conditions is unsmoothed, so the tSPH simulations will not be in pressure equilibrium due to their smoothing 

of the densities at the discontinuities.
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Fig. 6. Evolution of Kelvin–Helmholtz instability mode amplitude, 𝑀 , in sharp-discontinuity, equal mass KHI simulations with (a) an ideal gas EoS (§4.3.2) and (b) 
between dissimilar, stiff EoS (§4.4). Mode growth in simulations using both tSPH (grey, dashed) and REMIX (blue, dashed) is shown for three different resolutions 
(𝑁1 = 128, 256, 512). The mode amplitude is normalised to the initial amplitude of the excited mode, 𝑀0 , and time is normalised to the characteristic timescale of 
KHI growth, 𝜏KH , which are both different for each case.

Fig. 7. The evolution of the distribution of the 𝑚0 kernel geometric moment in ideal gas KHI simulations with sharp discontinuities. 𝑚0 ≈ 1 corresponds to a local 
distribution of densities that reflects the particle configuration. Plots show results from simulations with resolution 𝑁1 = 128 using the REMIX scheme both (a) without 
and (b) with the normalising term in the density evolution.

In Fig. 5 we show the growth of these KHIs simulated using tSPH, tSPH with artificial conduction, and REMIX. We plot individual 
particles, coloured by their densities, at three times through the evolution of the instability. In the tSPH simulations, surface tension-
like effects act both to suppress the growth of the instability and to prevent mixing of particles across the interface. As noted by 
Agertz et al. [14], particles form ordered bands with large gaps at the interface, which act as barriers to mixing. Artificial conduction 
helps to enable some mixing on the particle scale, allowing the boundary to become diffuse with time. However, the evolution of 
the instability is slow, as can be seen when comparing with the similar sharp-interface KHI simulations of Hopkins [37], performed 
with their improved methods, at comparable scaled times (their Fig. 21). While we note that differences in the construction of initial 
conditions mean that we cannot make direct comparisons, the growth of the instability in both traditional cases is clearly too slow. The 
REMIX simulation shows a clear improvement: not only do the characteristic vortices of the KHI form without impedance by surface 
tension-like effects, but interfaces are maintained as sharp discontinuities as the system evolves. Particles do not align themselves in 
bands separated by gaps that would prevent mixing across the discontinuity.

The mode amplitude growth of these KHIs and equivalent higher resolution simulations are plotted in Fig. 6(a). Since this system 
is constructed differently from that in §4.3.1, we cannot draw direct comparisons between these results and the converged refer-
ence solution for a smoothed interface. For example, the instability grows more quickly in this case where the shearing velocity 
is discontinuous. However, we do observe qualitatively similar behaviour when comparing Fig. 6(a) with Fig. 4. The seeded mode 
grows more quickly in REMIX simulations than in those using tSPH. The early growth rate of modes in REMIX simulations is slightly 
steeper as resolution is increased, mirroring the behaviour of the analogous simulations in Fig. 4. The approach of the mode evolution 
of tSPH simulations towards the REMIX simulations is also similar here, and again, the lowest resolution REMIX simulation grows 
more quickly than the highest resolution tSPH simulation. Despite this behaviour with increased resolution, high-resolution tSPH 
simulations still fail to form spiralling plumes, as surface tension-like effects continue to dominate, as shown in Appendix G.

The effect of the normalising term (§3.7) in a KHI simulation with sharp discontinuities is demonstrated in Fig. 7. Without it, as 
the simulation evolves, 𝑚0 of some particles drifts away from 1, the value corresponding to normalisation of the unmodified kernel 
(see Eqn. (50)). The normalising term ties the density evolution to kernel normalisation, so as the system evolves, volume elements 



Journal of Computational Physics 532 (2025) 113907

21

T.D. Sandnes, V.R. Eke, J.A. Kegerreis et al. 

Fig. 8. Growth of Kelvin–Helmholtz instabilities between layers with a large density contrast. We plot snapshots from 3D, ideal gas KHI simulations with discontinuous 
initial density and velocity profiles. We show results from simulations carried out using tSPH, tSPH with artificial conduction, and REMIX. Snapshots are plotted at 
two times, from simulations with two resolutions. The density ratio between the two regions is 1:10.4 and particles have the same mass across the simulation. Insets 
show a magnified view of a KHI plume.

continue to accurately build up the continuum over which the kernel function is normalised. In these simulations, the drift in 𝑚0 does 
not noticeably affect the simulation outcome, however, in §4.9, we show an example where the inclusion of the normalising term is 
necessary to simulate a system in hydrostatic equilibrium.

4.3.3. KHI with a large density ratio

Capturing the KHI at interfaces in fluids with a large density jump is additionally challenging for SPH. More smoothing in the 
density estimate and larger discretisation error, in equal mass particle simulations, will make surface tension-like effects stronger at 
larger density contrasts. Additionally, using artificial conduction as a method for correcting density discontinuity is not as effective 
at larger jumps in density [23]. Our initial conditions aim to follow those of Price [23] with a density ratio of 1:10, however, we 
continue to use 3D simulations to validate our methods for more typical applications.

Here we construct initial conditions similarly to §4.3.2: sharply discontinuous in both density and shearing velocity. The low 
density region is constructed exactly equivalently with 𝜌1 = 1, while resolution is increased in the high density region, following 
the same method as outlined previously, such that this region has a density of 𝜌2 = 10.4. Speeds in the 𝑥 direction are again set to 
𝑣1 = −0.5 and 𝑣2 = 0.5, however the wavelength of the initial perturbation in the 𝑦 direction is decreased to 𝜆 = 0.128, although with 
the same amplitude of 0.01 [23]. Comparisons of resolution can not be directly drawn to the previous section, as here fewer particles 
will make up individual vortices at a given time due to the decreased perturbation wavelength.

In Fig. 8, we plot snapshots showing the evolution of these initial conditions in tSPH, tSPH with conduction, and REMIX simulations 
for two resolutions. Due to the lower wavelength of the seeded mode compared with that in previous sections, we consider simulations 
with overall higher resolutions, although this does not necessarily correspond to higher resolution in each individual vortex, which 
now occupies a smaller region in the simulation box. The instability fails to grow with tSPH and grows only slowly in the higher 
resolution simulation with conduction. However, the instability is captured successfully with REMIX, in particular at the higher-
resolution, where we capture spiralling within the plume.

4.4. Kelvin–Helmholtz instability – Earth-like iron & rock

Since the evolution of the KHI is predominantly inertial, we expect instabilities to grow similarly between shearing fluids of 
different materials, represented in our simulations as inviscid fluids only differing in the calculation of pressures and sound speeds 
through the EoS (§2.2). We construct similar initial conditions to those used in §4.3.2, but using the ANEOS Fe85Si15 (iron) and 
forsterite (rock) EoS with densities and pressures comparable with those of the Earth’s core-mantle interface [47].

We simulate the KHI at a discontinuity between low-density rock at 𝜌1 = 5000 kg m−3 and high-density iron at 𝜌2 = 9550 kg m−3. 
Particles are placed in a periodic box in a configuration exactly matching that of §4.3.2. These simulations use particles of equal mass. 
Spatial dimensions are scaled such that the box spans a length of 1 𝑅⊕ = 6371 km in the 𝑥 and 𝑦 dimensions. The velocities in 𝑥 of the 
two layers are initialised to 𝑣1 = −10−4 𝑅⊕ s−1, 𝑣2 = 10−4 𝑅⊕ s−1 and the seeded mode has the form 𝑣𝑦 = 0.01|𝑣1 − 𝑣2| sin (2𝜋𝑥∕𝜆)
with 𝜆 = 0.5 𝑅⊕. Initial internal energies are calculated through each material’s EoS such that the regions are in pressure equilibrium 
with 𝑃 (𝜌, 𝑢) = 1.2 × 1011 Pa.

In Fig. 9 we show the evolution of a KHI with these initial conditions using tSPH and REMIX. In the tSPH simulation, surface 
tension-like effects are strong. Undesired smoothing of the discontinuity in the SPH density estimate combined with the stiff equations 
of state leads to strong artificial forces at the interface, which both prevent mixing of particles of different materials and strongly 
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Fig. 9. Kelvin–Helmholtz instability growth between dissimilar, stiff materials. We plot snapshots from 3D KHI simulations with multiple, complex equations of state 
at densities and pressures representing those at material boundaries within the Earth. Columns show snapshots at different times with the top row showing results from 
simulations using tSPH and the bottom row using REMIX. The initial density and velocity profiles are discontinuous and particles have equal mass. These simulations 
are both relatively low resolution, with 𝑁1 = 128. Individual particles are plotted on a grey background and coloured by their material type and density. Particles at 
all 𝑧 are plotted, so the grey background is visible in regions that have maintained their grid alignment in 𝑧 from the initial conditions.

suppress the growth of the instability. These effects as well as their contributions from zeroth-order error in the momentum equation 
are addressed in the construction of the REMIX SPH scheme, so the instability is allowed to grow and particles of different materials 
are able to intermix in a qualitatively similar way to the ideal gas cases.

The mode amplitude growth of these simulations is plotted in Fig. 6(b). We find strong quantitative similarities between these and 
the mode growth of the ideal gas simulations potted in Fig. 6(a). Although we have no experimental or analytical predictions for the 
growth of the KHI in these conditions and with these materials, we find that: (1) spurious surface tension analogous to that in tSPH 
KHI simulations with ideal gas is also clearly visible and strong in tSPH simulations with multiple materials; (2) the construction of 
the REMIX scheme is general in, and shown to be effective in, its reduction of established sources of error in the SPH formalism; (3) 
without any tuning of the method to material-specific boundaries, improvements that alleviate surface tension-like effects in ideal 
gas KHI simulations also allow the KHI to form in a qualitatively similar manner in the multi-material case.

To achieve these improved results of the REMIX scheme demonstrated in Fig. 9, we require interplay between a combination of its 
constitutive methods (§3). We use this KHI with iron & rock to highlight the importance of individual methods included in the REMIX 
SPH scheme as, while their effects are visible in all simulations, they present particularly clearly in this case. Fig. 10 shows Earth-like 
KHI simulations that use the REMIX SPH scheme with different ones of its constituent methods removed from the construction and 
reverted to its traditional SPH analogue in each panel. We show simulations that: (a) use a more standard form of the equations of 
motion with equal-valued free functions (§3.2); (b) use the integral rather than differential form of the density estimate (§3.1); (c) 
use an unmodified Wendland 𝐶2 kernel rather than linear-order reproducing kernels (§3.3); (d) the full REMIX SPH scheme. Taking 
a more traditional approach in any one of these methods leads to much stronger surface tension-like effects, such that only the full 
scheme enables the expected spirals to form. The improvements of the REMIX scheme are in many cases due to interplay between its 
constitutive methods all together, rather than individual components solving separate issues.

4.5. Rayleigh–Taylor instability – ideal gas

We next consider the Rayleigh–Taylor instability (RTI) as an additional scenario to test the treatment of instability growth and 
mixing, which, unlike the previous tests, also includes gravity.

The RTI arises at the interface between a high density fluid being displaced by a low density fluid [76]. We simulate the gravity-
driven growth of the RTI, where a layer of high density fluid is initially positioned above a layer of low density fluid (relative to the 
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Fig. 10. Kelvin–Helmholtz instability simulations illustrating the interplay between multiple component methods of the REMIX scheme. Here we show results from 
REMIX simulations when using: (a) a more traditional form of the equations of motion; (b) the traditional, integral-form of the density estimate, instead of the evolved 
density; (c) an unmodified Wendland 𝐶2 kernel, instead of the linear-order reproducing kernels; (d) the full REMIX SPH scheme. Removing any one of these affects the 
growth of the instability significantly. We plot snapshots at 𝑡 = 2 𝜏KH from 3D simulations with multiple, stiff equations of state at densities and pressures representative 
of those at the core-mantle boundary within the Earth.

downward direction of gravity). Hydrostatic equilibrium is disturbed by a small velocity perturbation. Similarly to the KHI, surface 
tension-like effects in traditional SPH formulations strongly suppress the growth of the RTI.

Our initial conditions are based on those of Frontiere et al. [19]. However, as with the KHI tests, these simulations are carried 
out in 3D, with particles of equal mass, and without deliberate smoothing of the initial density discontinuity. Particles are placed in 
a periodic simulation domain in two cubic lattices, each a square in the 𝑥, 𝑦 dimensions and thin in 𝑧. The box has dimensions of 0.5, 
1 in the 𝑥 and 𝑦 directions, with a thin and resolution-dependent 𝑧 box size. The low density region has 𝑁1 ×𝑁1 × 18 particles with 
density 𝜌1 = 1 and occupies the bottom half of the domain. The high density region is constructed similarly to that in §4.3.2, giving 
a density of 𝜌2 = 1.91 for the upper region while also ensuring a lattice that is consistent across the periodic simulation box edges. 
Particles in the top and bottom 0.05 of the box are fixed in place throughout the course of the simulation. Initial internal energies are 
set to satisfy hydrostatic equilibrium using an ideal gas EoS with 𝛾 = 7∕5, constant gravitational acceleration 𝑔 = −0.5, and a pressure 
at the interface of 𝑃0 = 𝜌2∕𝛾 . Particles are initially at rest, other than an initial velocity perturbation that seeds the instability,

𝑣𝑦(𝑥, 𝑦) =

{
𝛿𝑦 [1 + cos (8𝜋 (𝑥+ 0.25))] [1 + cos (5𝜋 (𝑦− 0.5))] for 0.3 < 𝑦 < 0.7 ,
0 otherwise.

(55)

We use a perturbation amplitude of 𝛿𝑦 = 0.025.
In Fig. 11, we show snapshots from RTI simulations with resolution 𝑁1 = 256, simulated using tSPH, tSPH with artificial con-

duction, and REMIX. The growth of this instability is strongly suppressed, even with artificial conduction. REMIX is able to capture 
the growth of the RTI well. Additionally, we are able to maintain discontinuities as the simulation evolves. As in the KHI, these 
discontinuities are inherently unstable to perturbation modes of all wavelengths and so we see the growth of secondary, unseeded 
KHIs and RTIs that contribute to an onset of turbulent mixing. As the simulation progress, we observe turbulence driving mixing on 
the particle scale, the scale of the primary instability, and in between.
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Fig. 11. Rayleigh–Taylor instabilities in an ideal gas. The RTIs are shown at two times, in simulations using tSPH, tSPH with artificial condition, and REMIX. These 
simulations have a resolution of 𝑁1 = 256, equal mass particles, and are performed in 3D. The regions of fixed particles at the top and bottom of the simulations have 
been cropped from the figure; their positions and densities do not change.

Fig. 12. Rayleigh–Taylor instabilities between dissimilar, stiff materials. The RTIs are shown at three times, in simulations using tSPH and REMIX. These simulations 
have a resolution of 𝑁1 = 256, equal mass particles, and are performed in 3D.

4.6. Rayleigh–Taylor instability – Earth-like iron & rock

We now consider the treatment of the RTI at an interface between different materials. The stiff iron & rock EoS that we use makes 
this an even more challenging scenario for traditional SPH.

The high density iron layer is placed above the low density rock layer. The particle configuration is constructed just as in the 
ideal gas case above, since the density ratio is taken to be the same. However the box is scaled to have dimensions 0.05 𝑅⊕ and 
0.1 𝑅⊕ in the 𝑥 and 𝑦 dimensions. The velocity perturbation is similar, although scaled to the box size and with an amplitude 
𝛿𝑦 = 2.5 × 10−5 𝑅⊕ s−1. Again, particles are initially in hydrostatic equilibrium, other than due to the seeded perturbation. Internal 
energies are chosen to satisfy this for the constant gravitational acceleration 𝑔 = −9.9 m s−2 and interface pressure 𝑃0 = 120 GPa, 
representative of the gravitational acceleration and pressure at the Earth’s core-mantle boundary.

In Fig. 12 we show snapshots from RTI simulations with Earth-like materials with resolution 𝑁1 = 256, with tSPH and REMIX. The 
RTI does not grow in the tSPH simulation. In contrast, the behaviour of the REMIX simulation is similar to the equivalent ideal gas 
case: unimpeded evolution of the instability, mixing at different length scales, onset of turbulence, and growth of unseeded secondary 
modes.

4.7. Blob test

In a physical system, mixing due to fluid instabilities is typically much less controlled and isolated than in the deliberately 
seeded scenarios of the previous sections. The “blob test” [14] is used to investigate the treatment of turbulent mixing at density 
discontinuities due to unseeded instabilities.

A spherical cloud of high-density fluid, initially at rest, is placed in an uniform flow of low-density fluid. Emergent Kelvin–
Helmholtz and Rayleigh–Taylor instabilities at the interface, as well as ram-pressure stripping, should act to break up the cloud, 
driving its evolution to a well-mixed state. As with the instability tests presented in previous sections, traditional SPH schemes 
struggle to capture instability growth at density discontinuities and so the mixing of the cloud into the surrounding fluid is strongly 
suppressed. Typically, blob tests are carried out in a supersonic regime, where interactions between shock waves and the cloud can 
also be assessed, applicable to a range of astrophysical scenarios. However, here we additionally simulate blob tests in a subsonic 
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Fig. 13. REMIX simulations of a high-resolution (𝑁 = 256) 3D blob test, at time 𝑡 ≈ 5 𝑡cc . The disruption of the cloud is shown in scenarios with two different initial 
density contrasts (columns) and three Mach numbers (rows). Individual particles in a central cross-section in 𝑧 are plotted, and coloured by their density, 𝜌, relative 
to the wind density, 𝜌wind .

regime to demonstrate the ability of the REMIX SPH scheme in capturing subsonic turbulent mixing, which is even more strongly 
suppressed in the tSPH formalism [79].

Braspenning et al. [80] compare blob test simulations using seven hydrodynamical solvers, including SPH schemes and mesh-
based methods. We reproduce their initial conditions to allow direct comparisons with their simulations. Particles are placed in a 
3D periodic box with axes aligned such that the initially uniform wind flows in the 𝑥 direction. The length of the box in 𝑦 and 𝑧
is chosen to be 1 pc, and the length in the 𝑥 direction is 4 pc. Particles in the ambient wind are initially placed in a cubic lattice 
with 4𝑁 ×𝑁 ×𝑁 in the 𝑥, 𝑦, 𝑧 directions, where we parameterise the simulation resolution by 𝑁 . We carry out simulations with 
𝑁 = 16, 32, 64, 128, 256. Particles in both the cloud and surrounding wind have equal masses and so particles in the cloud are placed 
in a cubic lattice of higher number density corresponding to the chosen density contrast. We simulate blob tests with initial density 
contrasts 𝜒 = 10, 100 and the initial density of the surrounding medium is 10−4 mp cm−3, where mp is the proton mass. Clouds are 
spherical and have a radius of 𝑅cloud = 0.1 pc. Both the cloud and surrounding medium are an ideal gas with 𝛾 = 5∕3 and internal 
energies are chosen so that the cloud and surrounding medium are in pressure equilibrium with each other and the cloud has an 
initial temperature of 104 K. We carry out simulations with three wind speeds, characterised by the Mach number ≡ 𝑣wind∕𝑐wind: 
 = 1.5 for a direct comparison to the simulations of Braspenning et al. [80],  = 2.7 the value used most frequently in validating 
hydrodynamic methods [14,19], and  = 0.5 to test mixing in the subsonic regime. We use units of the cloud crushing timescale

𝑡cc =
√
𝜒 𝑅cloud

𝑣wind
, (56)

to compare simulations with different initial density contrasts and wind speeds and for direct comparisons with the results of Braspen-
ning et al. [80].

In Fig. 13 we plot particle densities from a central cross-section of REMIX blob test simulations with 𝑁 = 256. Results from 
simulations with three initial wind speeds and two initial density contrasts are shown for a time 𝑡 ≈ 5 𝑡cc. The middle row therefore 
corresponds directly to results from simulations plotted in Fig. 1 of Braspenning et al. [80]. REMIX captures disruption of the cloud in 
both a subsonic and supersonic regime. With time, the cloud reaches a well-mixed state with the surrounding medium. This contrasts 
with the Braspenning et al. [80] SPH simulations, in which clouds with 𝜒 = 100 do not fully mix (their Fig. A1). Additionally, the 
onset of turbulence does not produce a highly symmetric structure like that provoked by the use of a regular grid in simulations using 
an adaptive mesh refinement (AMR) method (seen most clearly in Figs. 5 and 6 Braspenning et al. [80]).

To facilitate direct quantitative comparisons to the simulations of Braspenning et al. [80], we consider the evolution of the mass 
of dense gas and the mass of intermediate-temperature gas. The mass of dense gas, 𝑀dense , is defined as the sum of masses of particles 
with density above a threshold of 𝜌cloud∕ 3, where 𝜌cloud is the initial cloud density. The mass of intermediate-temperature gas, 𝑀mix , 
is defined as the sum of particle masses, 𝑚𝑖, of particles whose temperature, 𝑇𝑖, lies within half the logarithmic temperature range 
between the cold cloud and the hot wind, centred on the geometric mean temperature, i.e.

𝑀mix =
∑
𝑖 
𝑚mix, 𝑖 where 𝑚mix, 𝑖 =

{
𝑚𝑖 for log(𝑇mix) −

1
4 log(𝜒) < log(𝑇𝑖) < log(𝑇mix) +

1
4 log(𝜒) ,

0 otherwise,
(57)

where 𝑇mix is the geometric mean of the cloud and wind temperatures, 𝑇mix =
√
𝑇cloud𝑇wind. We normalise both 𝑀dense and 𝑀mix to 

the initial cloud mass.
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Fig. 14. Time evolution of the mass of dense gas, 𝑀dense (a–f), and the mass of intermediate-temperature gas, 𝑀mix (g–l), in blob test simulations. These quantities are 
plotted for simulations for two different initial density contrasts (𝜒 ; columns) and three Mach numbers (; rows). Line colour corresponds to simulation resolution.

The evolution of 𝑀dense and 𝑀mix for simulations varying initial wind speed, initial density contrast, and resolution is plotted in 
Fig. 14. We find that REMIX is able to capture the disruption of the cloud in all these simulations, as shown in Fig. 14(a–f). The middle 
row corresponds directly to Figs. 2 and 3 of Braspenning et al. [80]. We see strong similarities between the behaviour of our REMIX 
simulations and the simulations of Braspenning et al. [80] with hydrodynamic solvers that they find demonstrate good mixing. The 
evolution of these quantities is well parameterised by the cloud crushing timescale for this range of Mach numbers, with features 
appearing at approximately the same scaled time for all rows. Increasing resolution results in behaviour that indicates an approach 
towards numerical convergence for both 𝑀dense and 𝑀mix, despite the scenario itself being highly turbulent with no true converged 
solution.

4.8. Evrard collapse

The Evrard collapse [81] considers the collapse of an isothermal, spherical cloud of gas under its self-gravity. A shock is formed 
and moves outwards as the cloud collapses. We use this test to investigate the coupling of gravity and hydrodynamics, with large 
transformations of energy between gravitational, kinetic and thermal forms.

Initial conditions are constructed similarly to Borrow et al. [64]. We place ∼107 equal mass particles of ideal gas with 𝛾 = 5∕3
and 𝑢 = 0.05 in a spherical cloud of density profile 𝜌(𝑟) = 1∕(2𝜋𝑟), where 𝑟 is the radial distance from the cloud centre. The total 
cloud mass and radius are given by 𝑀 = 1 and 𝑅 = 1, and the gravitational constant is set to 𝐺 = 1. Particle positions are chosen 
randomly, following Borrow et al. [64], to satisfy the initial density profile. This method of choosing positions results in particles 
quickly readjusting to a glass-like structure, therefore experiencing divergences that lead to a seeding of noise in internal energies 
and densities. Both artificial diffusion and the normalising density evolution term act to smooth this noise over time.

The Evrard collapse is captured well by REMIX, as shown in Fig. 15. We observe sharp shocks and evolution that closely follows 
the reference solution. The scatter in internal energy around the reference solution could be reduced by increasing the strength of 
artificial diffusion of internal energy, through choices of 𝑎𝑢 and 𝑏𝑢. However, we choose to maintain a conservative approach to 
artificial diffusion so as not to deviate far from the thermodynamically consistent basis of our equations of motion. We therefore 
judge this amount of scatter to be sufficiently small. There is less scatter in density than in internal energy, since the normalising 
term is also contributing to smoothing the density.

At the vacuum boundary, we see a slight upturn in density and internal energy. Since divergence estimates in the evolution 
of these quantities revert to using kernels that are normalised to the continuum at vacuum boundaries, bulk expansion at vacuum 
boundaries may be underestimated. This is because for a region of locally isotropic expanding gas, a spherically symmetric kernel 
that is sampled by diverging particles in only approximately half its volume will underestimate the local velocity divergence. We 
note however that the logarithmic scales in Fig. 15 perhaps overemphasise the upturning features in terms of their importance in a 
typical science application.

The evolution of energy in Evrard collapse simulations is shown in Fig. 16. The exchange of energy between different forms is 
closely aligned between REMIX and tSPH simulations, as demonstrated in Fig. 16(a). These curves are consistent with those shown 
in Fig. 42 of Springel [82]. The fractional deviation of the total energy from its initial value is plotted in Fig. 16(b). Both REMIX and 
tSPH are constructed to explicitly conserve energy. Fluctuations of total energy are of the same order of magnitude in both cases, 
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Fig. 15. Evrard collapse with a resolution of ∼107 SPH particles at time 𝑡 = 0.8, simulated using REMIX. Plots show (a) radial velocity, 𝑣𝑟 , (b) density, 𝜌, and (c) 
specific internal energy, 𝑢, plotted against radial distance from the cloud centre, 𝑟. Individual particles are plotted in blue, and the dashed red line shows a reference 
solution from a high-resolution grid code simulation [64].

Fig. 16. Energy evolution in the Evrard collapse. (a) Different forms of energy, and (b) fractional deviation of total energy from its initial value, are shown as functions 
of time for tSPH and REMIX simulations, both with a resolution of ∼107 particles.

with REMIX showing variations of less than 0.4% during the simulation. Small deviations of energy of this size are expected for SPH 
schemes with non-reversible timesteps, even in formulations like ours, whose governing equations are explicitly conservative.

4.9. Planets in hydrostatic equilibrium

Planets in hydrostatic equilibrium offer a test scenario to probe the interaction of our hydrodynamic methods with gravity in the 
context of a layered, multi-EoS structure with a free surface. This also acts as a useful validation test for potential science applications; 
REMIX has since been applied in high-resolution simulations of planetary giant impacts, demonstrating significant improvements 
compared with tSPH simulations [83]. We also use this test to illustrate the importance of the inclusion of both the vacuum boundary 
treatment and the density evolution kernel normalising term in the REMIX scheme.

We apply our methods to an Earth-like and a Jupiter-like planet. The Earth-like planet represents a case in which materials have 
small variations of density within layers. The Jupiter-like case represents a scenario with relatively steep gradients of densities within 
material layers. This acts to assess stability against error-driven instabilities that can form due to these density gradients. These 
are only “Earth-like” and “Jupiter-like” because they are based on initial conditions for planetary giant impact simulations, which 
resemble the present day planets after the impact [84]. However, unlike in typical pre-impact “settling” simulations, where particle 
entropy can be fixed to prevent viscous heating [85], here we use the full REMIX scheme with no modifications.

Initial hydrostatic equilibrium profiles and SPH particle placements are calculated using the publicly available code WoMa [50, 
86]. The Earth-like planet is constructed to satisfy the following conditions: two adiabatic layers consisting of a core of mass 0.27 𝑀⊕ , 
where 𝑀⊕ = 5.97×1024 kg, represented by particles with the ANEOS Fe85Si15 (iron) EoS and a mantle of mass 0.62 𝑀⊕ with ANEOS 
forsterite (rock) [47]; a surface pressure and temperature of 𝑃s = 1 × 105 Pa and 𝑇s = 2000K. The Jupiter-like planet is constructed 
to satisfy the following conditions: two adiabatic layers consisting of a core of mass 10 𝑀⊕ with the AQUA (ice) EoS [49], and a 
hydrogen–helium [48] envelope of mass 298 𝑀⊕; a surface pressure and temperature of 𝑃s = 1 × 105 Pa and 𝑇s = 165K. In all our 
simulations, planets each consist of ∼107 equal mass particles.

Fig. 17 shows radial density and pressure profiles of the two planets at a time 𝑡 = 10,000 s. We show profiles from simulations using 
both tSPH (a–d) and REMIX (e–h). The smoothing of density discontinuities in tSPH, and the corresponding pressure discontinuities, 
are clearly visible. We note that at this time particles have evolved to take up more relaxed positions, so density smoothing at 
the material interface, and in particularly at the vacuum boundary, are less extreme than in the initial condition configuration 
(Appendix H). However, these relaxed configurations typically yield large gaps between the different-density layers, so are a result of 
the surface tension rather than an indication that surface tension is reduced as the system relaxes. With REMIX, density discontinuities 
remain sharp, and pressures at the material boundaries are close to continuous.
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Fig. 17. Radial profiles from simulations of an Earth-like (a, b, e, f) and a Jupiter-like (c, d, g, h) planet at time 𝑡 = 10,000 s, simulated using tSPH (a–d) and REMIX 
(e–h). Particle densities and pressures are plotted against radial distance from the centre of the planet. REMIX corrects density discontinuities in simulations of planets 
in hydrostatic equilibrium.

Fig. 18. Identification of planetary vacuum boundaries in REMIX simulations. Plots correspond to Earth-like (a, b) and Jupiter-like (c, d) planets at time 𝑡= 10,000 s. 
We plot the quantity ℎ |𝐁| for individual particles, which is used in our vacuum boundary switch (Eqn. (33)), and the vacuum boundary switch, 𝑠, itself.

We use this test to motivate the inclusion of the vacuum boundary treatment, detailed in §3.4. The vacuum boundary switch is 
able to accurately identify free surfaces based on ℎ𝑖 |𝐁𝑖| (Eqn. (33)), as shown in Fig. 18 for the two example planets. In the Earth-
like planet the outermost particles remain in an undisturbed shell, which all get identified as the vacuum boundary and no interior 
particles are flagged. In the Jupiter-like planet, however, the envelope density drops far lower before the outer edge, leading to steep 
local changes in density near the vacuum boundary. This leads to error-driven particle motion that disturbs the initial particle shells, 
demonstrated in the identification of the vacuum boundary by the switch function, which in this case extends smoothly to particles 
near the surface that are no longer neatly ordered in shells.

In Fig. 19(a) and (d), we show a cross-section and density profile from a REMIX simulation of the Jupiter-like planet at 𝑡 = 20,000 s 
without the vacuum boundary treatment in the kernel construction, although still included in the normalising term. In this case, 
linear-order reproducing kernels are used without modification for all particles across the simulation, including particles near the 
free surface. Particles become unstable at the vacuum boundary, despite being set up to satisfy hydrostatic equilibrium, because bad 
estimates of pressure gradients lead particles to stream out from the surface. Similar behaviour is observed in equivalent simulations 
of the Earth-like planet.

In Fig. 19(b) and (e), we show similar results from a simulation with REMIX, but without the normalising term in the density 
evolution equation (§3.7). Here we see error-driven instabilities forming near the vacuum boundary. In Appendix H, we show the 
continued evolution of these instabilities to demonstrate how they continue to disturb the profile of the planet. These low density 
plumes that fall towards the planet’s centre have a high local number density of particles, so should have higher densities. This 
disconnect between the particle density and the local distribution of mass in the simulation volume leads to a positive feedback 
effect, in which the falling plumes continue to accumulate particles without the density of particles evolving to reflect this, further 
driving the discontinuity downwards. In the full REMIX scheme, for which similar plots are shown in Fig. 19(c) and (f), we re-associate 
the evolved density to the mass distribution in simulation volume by the inclusion of the kernel normalising term, which prevents 
the formation of these instabilities. We show the direct effect of the normalising term in these simulations in Fig. 20. As in the KHI 
examples in Fig. 7, here we see how the normalising term acts to tie particle volume elements to the local distribution of particle 
masses. The signal velocity of the normalising term means that correction occurs over the timescale of particle motion. Therefore, 
particles are able to readjust to react to changes in density due to this term, while it still acts as an effective correction to accumulation 
of error, accumulated over timescales set by the velocity divergence estimate in the equations of motion. In regions where densities 
represent the local distribution of particle masses well, the normalising term has little effect on the hydrodynamics.



Journal of Computational Physics 532 (2025) 113907

29

T.D. Sandnes, V.R. Eke, J.A. Kegerreis et al. 

Fig. 19. Effect of the vacuum boundary treatment and the normalising term in simulations of a Jupiter-like planet in hydrostatic equilibrium. We plot snapshots (a–c) 
and radial density profiles (d–f) at time 𝑡 = 20,000 s. Columns show simulations with: the REMIX scheme but without the inclusion of the vacuum boundary treatment 
(a, d); the REMIX scheme but without the inclusion of the normalising term in the density evolution (b, e); and the full REMIX scheme with no modification (c, f). 
Particles are coloured by material and density. The inset in (b) shows a magnified view of instabilities forming near the vacuum boundary when the normalising term 
is not included. The colour scale of the inset has been slightly tweaked to increase the contrast around the instabilities. The evolution of these instabilities, without 
tweaked colours, is shown in Fig. H.35.

Fig. 20. The evolution of the distribution of the 𝑚0 kernel geometric moment in simulations of a Jupiter-like planet. Plots show results from simulations with a 
resolution of 107 particles using the REMIX scheme both (a) without and (b) with the normalising term in the density evolution. Only particles with a vacuum 
boundary switch 𝑠𝑖 > 0.9 are plotted, to isolate particles that should have 𝑚0 ≈ 1 and filter out spikes near 𝑚0 = 0.5.

5. Conclusions

We have presented a new formulation of smoothed particle hydrodynamics (SPH), REMIX (‘Reduced Error MIXing’), that combines 
several novel and recently developed methods to address the well-known shortcomings of the traditional SPH formalism at density 
discontinuities. By directly targeting sources of kernel smoothing error and discretisation error, this scheme dramatically reduces 
numerical effects that can otherwise lead to spurious surface tension-like effects and inhibit mixing. We demonstrate its effectiveness 
using 3D hydrodynamic tests in a broad range of scenarios and regimes. In addition to standard tests, REMIX can handle boundaries 
between dissimilar, stiff materials, and the particularly challenging case of density discontinuities in simulations with equal mass 
particles – where both smoothing and discretisation errors are considerable.
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The REMIX SPH scheme is based on thermodynamically consistent, conservative equations of motion, with free functions chosen 
to limit zeroth-order error. We use an evolved density estimate to avoid the kernel smoothing error in the standard SPH integral 
density estimate. To avoid potential accumulation of error in the evolved density estimate, such that densities would be no longer 
representative of the distribution of particle masses in the simulation volume, we introduce a new “kernel normalising term”. Ad-
ditionally, artificial diffusion, which is weak outside shocks, helps to smooth out accumulated noise in both particle densities and 
internal energies. To reduce discretisation error, we use linear-order reproducing kernels in the equations of motion. Since kernel 
densities are evolved in time, particle volume elements are not instantaneously tied to simulation volume, despite the normalising term 
in the density evolution. Therefore, normalising the kernel to particle volume elements is an important step in calculating appropriate 
gradient estimates in the equations of motion. We introduce grad-ℎ terms to the kernels, adding completeness to the construction. 
Additionally, we present a method that identifies free surfaces and reverts our kernels to standard spherically symmetric functions, 
normalised to the continuum, to appropriately capture vacuum boundaries. We also use advanced artificial viscosity and diffusion 
schemes with linear reconstruction of quantities to particle midpoints, and a set of novel improvements to effectively switch between 
treatments for shock-capturing under compression and noise-smoothing in shearing regions.

REMIX shows a range of improvements compared with traditional SPH formulations, as we examined here with an extensive set of 
test cases. Our generalised error-reduction approach greatly improves the treatment of both static density discontinuities, as seen in 
the 3D square test with equal mass particles, and mixing and instability growth at evolving interfaces within a single ideal gas as well 
as between multiple materials, as demonstrated in fluid instability tests. This is achieved without a need for a material-dependent 
approach in volume elements or density estimates, and without applying targeted corrections at material boundaries or needing 
particle mass ratios to be matched to density ratios across discontinuities. REMIX is able to capture shocks with reduced particle 
noise, as seen in the Sod shock tube, and can effectively simulate a system with gravity and emerging shocks where large amounts of 
energy are exchanged between different forms, as demonstrated in the Evrard collapse. Many aspects of REMIX combine to allow us 
to improve simulations of planetary bodies, including the evolved density estimate that corrects smoothing of density discontinuities; 
the vacuum boundary treatment that extends our methods to be able to deal with free surfaces; and the density evolution normalising 
term that ensures that particle densities are tied to the local distribution of masses.

REMIX is publicly available as a component of the open-source Swift code, at www.swiftsim.com.
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Appendix A. Notation

𝐴, 𝐀 Scalar, vector

𝐴𝛼, ... , 𝜔 Elements of a vector, matrix, or higher-order tensor. Greek letter superscripts correspond to spatial dimensions (e.g. 
the x, y, and z components of a 3D vector) and like indices are summed over

𝐴𝑖, 𝐴𝑗 Quantity associated with, or sampled at the position of: a particle 𝑖; a neighbour 𝑗 of particle 𝑖
𝐴𝑖𝑗 Pairwise interaction associated with neighbour 𝑗 acting on particle 𝑖
𝐫 Position vector at which we probe the continuum fluid

𝐫′ Position vector integrated over in the continuum limit, for convolutions with a kernel function

𝐫𝑖 Position vector of particle 𝑖. When discretising the fluid, the notation changes 𝐫 ⇒ 𝐫𝑖, as we probe the fluid at 
particle positions.

𝐫𝑗 Position vector of particle 𝑗. When discretising the fluid, the notation changes 𝐫′ ⇒ 𝐫𝑗 as, instead of integrating over 
the continuum, we sum over particle neighbours.

𝐫𝑖𝑗 𝐫𝑖 − 𝐫𝑗
𝑚𝑖 Mass of particle 𝑖
𝑉𝑖 Volume element of particle 𝑖
𝐻 Kernel compact support. The radial extent from the kernel centre above which a kernel function is zero

ℎ Kernel smoothing length. We define the smoothing length as twice the standard deviation of the kernel

𝜂kernel Parameter that scales the radial extent of the kernel

𝑊𝑖𝑗 Kernel function centred at 𝐫𝑖, sampled at 𝐫𝑗 . 𝑊𝑖𝑗 ≡𝑊 (𝐫𝑖𝑗 , ℎ𝑖) ≡𝑊 (𝐫𝑖 − 𝐫𝑗 , ℎ(𝐫𝑖))
𝑊 𝑖𝑗 Symmetrised kernel: 𝑊 𝑖𝑗 ≡𝑊 (𝐫𝑖 − 𝐫𝑗 , ℎ(𝐫𝑖), ℎ(𝐫𝑗 )) ≡ 1

2

(
𝑊 (𝐫𝑖𝑗 , ℎ𝑖) + 𝑊 (𝐫𝑗𝑖, ℎ𝑗 )

)
�̂�𝑖𝑗 Kernel 𝑊𝑖𝑗 normalised to volume elements 𝑉𝑗
𝑖𝑗 Linear-order reproducing kernel, constructed using 𝑊 𝑖𝑗

̃𝑖𝑗 Linear-order reproducing kernel with vacuum boundary treatment, constructed using 𝑊 𝑖𝑗⟨𝐴𝑖⟩, 𝐴𝑖, �̂�𝑖 Quantity calculated by kernel interpolation using 𝑊𝑖𝑗 , 𝑊 𝑖𝑗 , �̂�𝑖𝑗 , respectively
𝑑𝐴

𝑑𝐫 
, 𝑑𝐴 
𝑑𝑟𝛾

Spatial derivative of 𝐴 (vector and its elements). In cases where relevant, includes grad-ℎ terms. Can be combined 
with the above notation that indicates the kernel used

∇𝐴, 𝜕𝛾𝐴 Gradient of 𝐴 (vector and its elements). In cases where relevant, does not include grad-ℎ terms

∇𝜅𝐴, 𝜕
𝛾
𝜅𝐴 Gradient of 𝐴 (vector and its elements), interpolated only based on particle neighbours of the same material. In 

cases where relevant, does not include grad-ℎ terms

Appendix B. REMIX SPH equations

𝑑𝜌𝑖
𝑑𝑡 

=
∑
𝑗

𝑚𝑗
𝜌𝑖
𝜌𝑗
𝑣𝛼𝑖𝑗

1
2

(
𝑑̃
𝑑𝑟𝛼

||||𝑖𝑗 − 𝑑̃
𝑑𝑟𝛼

||||𝑗𝑖
)

+ 
(
𝑑𝜌𝑖
𝑑𝑡 

)
difn

+ 
(
𝑑𝜌𝑖
𝑑𝑡 

)
norm

, (B.1)

𝑑𝑣𝛼
𝑖

𝑑𝑡 
= −

∑
𝑗

𝑚𝑗
𝑃𝑖 +𝑄𝑖𝑗 + 𝑃𝑗 +𝑄𝑗𝑖

𝜌𝑖𝜌𝑗

1
2

(
𝑑̃
𝑑𝑟𝛼

||||𝑖𝑗 − 𝑑̃
𝑑𝑟𝛼

||||𝑗𝑖
)
, (B.2)

𝑑𝑢𝑖
𝑑𝑡 

=
∑
𝑗

𝑚𝑗
𝑃𝑖 +𝑄𝑖𝑗
𝜌𝑖𝜌𝑗

𝑣𝛼𝑖𝑗
1
2

(
𝑑̃
𝑑𝑟𝛼

||||𝑖𝑗 − 𝑑̃
𝑑𝑟𝛼

||||𝑗𝑖
)

+ 
(
𝑑𝑢𝑖
𝑑𝑡 

)
difn

. (B.3)

B.1. Kernel gradients

𝑑̃
𝑑𝑟𝛾

||||𝑖𝑗 = 𝑠𝑖 𝑑𝑑𝑟𝛾 ||||𝑖𝑗 + (
1 − 𝑠𝑖

) 𝑑𝑊
𝑑𝑟𝛾

||||𝑖𝑗 . (B.4)

𝑑
𝑑𝑟𝛾

||||𝑖𝑗 =𝐴𝑖𝐵𝛼𝑖 𝑊 𝑖𝑗 +𝐴𝑖
(
1 +𝐵𝛼𝑖 𝑟

𝛼
𝑖𝑗

)
𝑑𝑊

𝑑𝑟𝛾

||||𝑖𝑗 +
(
1 +𝐵𝛼𝑖 𝑟

𝛼
𝑖𝑗

)
𝑊 𝑖𝑗

𝑑𝐴 
𝑑𝑟𝛾

||||𝑖 +𝐴𝑖𝑟𝛼𝑖𝑗𝑊 𝑖𝑗
𝑑𝐵𝛼

𝑑𝑟𝛾

||||𝑖 . (B.5)

B.1.1. Symmetrised kernels and their gradients

𝑊 ≡ 𝑊𝑖𝑗 +𝑊𝑗𝑖

2 
, (B.6)

𝑑𝑊

𝑑𝑟𝛾

||||𝑖𝑗 = 1
2

(
𝜕𝑊

𝜕𝑟𝛾

||||𝑖𝑗 + 𝜕𝑊

𝜕ℎ 
||||𝑖𝑗𝜕𝛾𝑖 ℎ̂− 𝜕𝑊

𝜕𝑟𝛾

||||𝑗𝑖
)
, 𝜕

𝛾
𝑖
ℎ̂ =

∑
𝑗

(ℎ𝑗 − ℎ𝑖) 𝜕
𝛾
𝑖
�̂�𝑖𝑗

𝑚𝑗

𝜌𝑗
, 𝜕

𝛾
𝑖
�̂�𝑖𝑗 ≡ 𝜕

𝛾
𝑖
𝑊𝑖𝑗

𝑚0, 𝑖
−
𝑊𝑖𝑗

𝑚2
0, 𝑖
𝜕
𝛾
𝑖
𝑚0 . (B.7)
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B.1.2. Linear-order reproducing kernel construction

𝐴𝑖 =
(
𝑚0, 𝑖 −

(
𝑚

−1
2, 𝑖

)𝛼𝛽
𝑚
𝛼
1, 𝑖 𝑚

𝛽

1, 𝑖

)−1
, 𝑑𝐴 

𝑑𝑟𝛾

||||𝑖 = −𝐴2
𝑖

(
𝑑𝑚0
𝑑𝑟𝛾

||||𝑖 − 2
(
𝑚

−1
2, 𝑖

)𝛼𝛽
𝑚
𝛽

1, 𝑖
𝑑𝑚

𝛼
1

𝑑𝑟𝛾

||||𝑖
+
(
𝑚

−1
2, 𝑖

)𝛼𝜙 𝑑𝑚𝜙𝜓2
𝑑𝑟𝛾

||||𝑖
(
𝑚

−1
2, 𝑖

)𝜓𝛽
𝑚
𝛼
1, 𝑖𝑚

𝛽

1, 𝑖

)
, (B.8)

𝐵𝛼𝑖 = −
(
𝑚

−1
2, 𝑖

)𝛼𝛽
𝑚
𝛽

1, 𝑖 , 
𝑑𝐵𝛼

𝑑𝑟𝛾

||||𝑖 = −
(
𝑚

−1
2, 𝑖

)𝛼𝛽 𝑑𝑚𝛽1
𝑑𝑟𝛾

||||𝑖 +
(
𝑚

−1
2, 𝑖

)𝛼𝜙 𝑑𝑚𝜙𝜓2
𝑑𝑟𝛾

||||𝑖
(
𝑚

−1
2, 𝑖

)𝜓𝛽
𝑚
𝛽

1, 𝑖 . (B.9)

𝑚0, 𝑖 =
∑
𝑗

𝑊 𝑖𝑗𝑉𝑗 , 
𝑑𝑚0
𝑑𝑟𝛾

||||𝑖 =∑
𝑗

𝑑𝑊

𝑑𝑟𝛾

||||𝑖𝑗𝑉𝑗 , (B.10)

𝑚
𝛼
1, 𝑖 =

∑
𝑗

𝑟𝛼𝑖𝑗𝑊 𝑖𝑗𝑉𝑗 , 
𝑑𝑚

𝛼
1

𝑑𝑟𝛾

||||𝑖 =∑
𝑗

(
𝑟𝛼𝑖𝑗
𝑑𝑊

𝑑𝑟𝛾

||||𝑖𝑗 + 𝛿𝛼𝛾𝑊 𝑖𝑗

)
𝑉𝑗 , (B.11)

𝑚
𝛼𝛽

2, 𝑖 =
∑
𝑗

𝑟𝛼𝑖𝑗 𝑟
𝛽
𝑖𝑗
𝑊 𝑖𝑗𝑉𝑗 , 

𝑑𝑚
𝛼𝛽

2
𝑑𝑟𝛾

||||𝑖 =∑
𝑗

(
𝑟𝛼𝑖𝑗𝑟

𝛽
𝑖𝑗

𝑑𝑊

𝑑𝑟𝛾

||||𝑖𝑗 +
(
𝑟𝛼𝑖𝑗𝛿

𝛽𝛾 + 𝛿𝛼𝛾 𝑟𝛽
𝑖𝑗

)
𝑊 𝑖𝑗

)
𝑉𝑗 . (B.12)

B.1.3. Vacuum boundary switch

𝑠(ℎ𝑖|𝐁𝑖|) = ⎧⎪⎨⎪⎩
exp

[
− 

(
0.8 − ℎ𝑖|𝐁𝑖|)2

0.08 

]
for ℎ𝑖|𝐁𝑖| ≥ 0.8 ,

1 otherwise .

(B.13)

B.2. Artificial viscosity and artificial diffusion

𝑄𝑖𝑗 =
1
2
(
𝑎visc + 𝑏viscvisc

𝑖

)
𝜌𝑖

(
−𝛼𝑐𝑖𝜇𝑖𝑗 + 𝛽𝜇2𝑖𝑗

)
, (B.14)

with 𝛼 = 1.5, 𝛽 = 3, 𝑎visc = 2∕3, and 𝑏visc = 1∕3.

𝜇𝑖𝑗 =
⎧⎪⎨⎪⎩

�̃�𝑖𝑗 ⋅ 𝜼𝑖𝑗
𝜼𝑖𝑗 ⋅ 𝜼𝑖𝑗 + 𝜖2

for �̃�𝑖𝑗 ⋅ 𝜼𝑖𝑗 < 0 ,

0 otherwise ,
(B.15)

with 𝜖 = 0.1 and 𝜼𝑖𝑗 ≡ (𝐫𝑖 − 𝐫𝑗 )∕ℎ𝑖.(
𝑑𝑢𝑖
𝑑𝑡 

)
difn

=
∑
𝑗

𝜅𝑖𝑗

(
𝑎𝑢 + 𝑏𝑢difn

𝑖𝑗

)
𝑣sig,𝑖𝑗 (�̃�𝑗 − �̃�𝑖)

𝑚𝑗

𝜌𝑖𝑗

1
2

|||||𝑑̃𝑑𝐫 ||||𝑖𝑗 − 𝑑̃
𝑑𝐫 

||||𝑗𝑖||||| , (B.16)

(
𝑑𝜌𝑖
𝑑𝑡 

)
difn

=
∑
𝑗

𝜅𝑖𝑗

(
𝑎𝜌 + 𝑏𝜌difn

𝑖𝑗

)
𝑣sig,𝑖𝑗 (�̃�𝑗 − �̃�𝑖)

𝜌𝑖
𝜌𝑗

𝑚𝑗

𝜌𝑖𝑗

1
2

|||||𝑑̃𝑑𝐫 ||||𝑖𝑗 − 𝑑̃
𝑑𝐫 

||||𝑗𝑖||||| , (B.17)

with 𝑎𝑢 = 𝑎𝜌 = 0.05, 𝑏𝑢 = 𝑏𝜌 = 0.95, 𝑣sig, 𝑖𝑗 =
|||�̃�𝑖 − �̃�𝑗

||| , 𝜌𝑖𝑗 ≡ (𝜌𝑖 + 𝜌𝑗 )∕2, and 𝜅𝑖𝑗 = 1 for particles of the same material and 𝜅𝑖𝑗 = 0
otherwise.

B.2.1. Quantities reconstructed to particle midpoints

�̃�𝛼𝑖𝑗 = 𝑣
𝛼
𝑖 +

1
2
(
1 −SL

𝑖

)
Φ𝑣, 𝑖𝑗

(
𝑟
𝛾
𝑗
− 𝑟𝛾

𝑖

)
𝜕
𝛾
𝑖
�̂�𝛼 , 𝜕

𝛾
𝑖
�̂�𝛼 =

∑
𝑗

(𝑣𝛼𝑗 − 𝑣
𝛼
𝑖 ) 𝜕

𝛾
𝑖
�̂�𝑖𝑗

𝑚𝑗

𝜌𝑗
, (B.18)

�̃�𝑖 = 𝑢𝑖 +
1
2
Φ𝑢, 𝑖𝑗

(
𝑟
𝛾
𝑗
− 𝑟𝛾

𝑖

)
𝜕
𝛾
𝜅, 𝑖 �̂� , 𝜕

𝛾
𝜅, 𝑖 �̂� =

∑
𝑗

𝜅𝑖𝑗 (𝑢𝑗 − 𝑢𝑖) 𝜕
𝛾
𝑖
�̂�𝑖𝑗

𝑚𝑗

𝜌𝑗
, (B.19)

�̃�𝑖 = 𝜌𝑖 +
1
2
Φ𝜌, 𝑖𝑗

(
𝑟
𝛾
𝑗
− 𝑟𝛾

𝑖

)
𝜕
𝛾
𝜅, 𝑖 �̂� , 𝜕

𝛾
𝜅, 𝑖 �̂� =

∑
𝑗

𝜅𝑖𝑗 (𝜌𝑗 − 𝜌𝑖) 𝜕
𝛾
𝑖
�̂�𝑖𝑗

𝑚𝑗

𝜌𝑗
. (B.20)
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B.2.2. Slope limiter

Φ𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 for 𝐴𝑖𝑗 < 0 ,

4𝐴𝑖𝑗
(1 +𝐴𝑖𝑗 )2

exp
⎡⎢⎢⎣−

(
𝜂min
𝑖𝑗

− 𝜂crit

0.2 

)2⎤⎥⎥⎦ for 𝜂min
𝑖𝑗

< 𝜂crit ,

4𝐴𝑖𝑗
(1 +𝐴𝑖𝑗 )2

otherwise ,

𝜂crit =
1 
ℎ𝑖

(
1 ∑
𝑗 𝑊𝑖𝑗

)1∕𝑑

≡ 1 
𝜂kernel

, (B.21)

𝐴𝑣, 𝑖𝑗 =
𝜕
𝛽
𝑖
�̂�𝛼(𝐫𝑗 − 𝐫𝑖)𝛽 (𝐫𝑗 − 𝐫𝑖)𝛼

𝜕
𝛾
𝑗
�̂�𝜙(𝐫𝑗 − 𝐫𝑖)𝛾 (𝐫𝑗 − 𝐫𝑖)𝜙

, 𝐴𝑢, 𝑖𝑗 =
𝜕𝛼
𝜅, 𝑖 �̂�(𝐫𝑗 − 𝐫𝑖)𝛼

𝜕
𝛽
𝜅, 𝑗 �̂�(𝐫𝑗 − 𝐫𝑖)𝛽

, 𝐴𝜌, 𝑖𝑗 =
𝜕𝛼
𝜅, 𝑖 �̂�(𝐫𝑗 − 𝐫𝑖)𝛼

𝜕
𝛽
𝜅, 𝑗 �̂�(𝐫𝑗 − 𝐫𝑖)𝛽

. (B.22)

B.2.3. Balsara switch

visc
𝑖 ≡SL

𝑖 ≡𝑖 =
||∇ ⋅ 𝐯𝑖||||∇ ⋅ 𝐯𝑖||+ ||∇× 𝐯𝑖||+ 0.0001𝑐𝑖∕ℎ𝑖

, difn
𝑖𝑗 =

𝑖 +𝑗
2 

. (B.23)

B.3. Normalising term

(
𝑑𝜌𝑖
𝑑𝑡 

)
norm

= 𝛼norm 𝑠𝑖 (𝑚0, 𝑖 − 1) 𝜌𝑖
∑
𝑗

𝑣norm, 𝑖𝑗
𝑚𝑗

𝜌𝑖𝑗

1
2

|||||𝑑̃𝑑𝐫 ||||𝑖𝑗 − 𝑑̃
𝑑𝐫 

||||𝑗𝑖||||| , (B.24)

with 𝛼norm = 1, 𝑣norm, 𝑖𝑗 =
|||𝐯𝑖 − 𝐯𝑗

||| , 𝜌𝑖𝑗 ≡ (𝜌𝑖 + 𝜌𝑗 )∕2, and 𝑚0, 𝑖 =
∑
𝑗 𝑊𝑖𝑗𝑉𝑗 .

Appendix C. Traditional SPH formulations used for comparison simulations

⟨𝜌𝑖⟩ =∑
𝑗

𝑚𝑗𝑊𝑖𝑗 , (C.1)

𝑑𝑣𝛼
𝑖

𝑑𝑡 
= −

∑
𝑗

𝑚𝑗

(
𝑓𝑖𝑗 𝑃𝑖⟨𝜌𝑖⟩2 𝜕𝑊𝜕𝑟𝛼 ||||𝑖𝑗 − 𝑓𝑗𝑖 𝑃𝑗⟨𝜌𝑗⟩2 𝜕𝑊𝜕𝑟𝛼 ||||𝑗𝑖

)
+ 

(
𝑑𝑣𝛼

𝑖

𝑑𝑡 

)
visc

, (C.2)

𝑑𝑢𝑖
𝑑𝑡 

=
∑
𝑗

𝑚𝑗
𝑓𝑖𝑗 𝑃𝑖⟨𝜌𝑖⟩2 𝑣𝛼𝑖𝑗 𝜕𝑊𝜕𝑟𝛼 ||||𝑖𝑗 + 

(
𝑑𝑢𝑖
𝑑𝑡 

)
visc

. (C.3)

C.1. Gradient of smoothing length factor

⟨𝑛𝑖⟩ =∑
𝑗

𝑊𝑖𝑗 , (C.4)

𝑓𝑖𝑗 = 1 − 1 
𝑚𝑗

ℎ𝑖
𝑑 ⟨𝜌𝑖⟩ 𝜕⟨𝜌⟩𝜕ℎ 

||||𝑖
(
1 +

ℎ𝑖
𝑑 ⟨𝑛𝑖⟩ 𝜕⟨𝑛⟩𝜕ℎ 

||||𝑖
)−1

, (C.5)

where 𝑑 is the number of spatial dimensions.

C.2. Artificial viscosity

(
𝑑𝑣𝛼

𝑖

𝑑𝑡 

)
visc

= −
∑
𝑗

𝑖 +𝑗
2 

(
−𝛼𝑐𝑖𝑗 𝜇𝑖𝑗 + 𝛽𝜇2𝑖𝑗

) 𝑚𝑗⟨𝜌𝑖𝑗⟩ 1
2

(
𝑓𝑖𝑗

𝜕𝑊

𝜕𝑟𝛼

||||𝑖𝑗 − 𝑓𝑗𝑖 𝜕𝑊𝜕𝑟𝛼 ||||𝑗𝑖
)
, (C.6)

(
𝑑𝑢𝑖
𝑑𝑡 

)
visc

= 1
2

∑
𝑗

𝑖 +𝑗
2 

(
−𝛼𝑐𝑖𝑗 𝜇𝑖𝑗 + 𝛽𝜇2𝑖𝑗

) 𝑚𝑗⟨𝜌𝑖𝑗⟩ 𝑓𝑖𝑗 𝑣𝛼𝑖𝑗 𝜕𝑊𝜕𝑟𝛼 ||||𝑖𝑗 , (C.7)

𝜇𝑖𝑗 =
⎧⎪⎨⎪⎩
𝐯𝑖𝑗 ⋅ 𝐫𝑖𝑗|𝐫𝑖𝑗 | for 𝐯𝑖𝑗 ⋅ 𝐫𝑖𝑗 < 0 ,

0 otherwise ,
(C.8)

with 𝛼 = 1.5, 𝛽 = 3, ⟨𝜌𝑖𝑗⟩ ≡ (⟨𝜌𝑖⟩+ ⟨𝜌𝑗⟩)∕2, 𝑐𝑖𝑗 ≡ (𝑐𝑖 + 𝑐𝑗 )∕2, 𝐯𝑖𝑗 ≡ 𝐯𝑖 − 𝐯𝑗 , and 𝐫𝑖𝑗 ≡ 𝐫𝑖 − 𝐫𝑗 .

𝑖 =
||∇ ⋅ 𝐯𝑖||||∇ ⋅ 𝐯𝑖||+ ||∇× 𝐯𝑖||+ 0.0001𝑐𝑖∕ℎ𝑖

. (C.9)
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Fig. D.21. The effect of kernel choice in square test simulations. We plot snapshots from REMIX square test simulations with equal initial particle spacing and equal 
particle mass, for 5 different kernel functions at two times. Particles are coloured by their density.

C.3. Artificial conduction

Only used where indicated. Based on the SPHENIX implementation [64].

𝑑𝑢𝑖
𝑑𝑡 

=
𝑃𝑖⟨𝜌𝑖⟩2 ∑

𝑗

𝑚𝑗 𝑣
𝛼
𝑖𝑗

𝜕𝑊

𝜕𝑟𝛼

||||𝑖𝑗 + 
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𝑑𝑢𝑖
𝑑𝑡 

)
visc
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𝑑𝑢𝑖
𝑑𝑡 

)
cond

, (C.10)

(
𝑑𝑢𝑖
𝑑𝑡 

)
cond

=
∑
𝑗

𝛼𝑐, 𝑖𝑗 𝑣𝑐, 𝑖𝑗
(
𝑢𝑖 − 𝑢𝑗

) 𝑚𝑗⟨𝜌𝑖𝑗⟩ 1
2

(
𝑓𝑖𝑗

𝜕𝑊

𝜕𝑟𝛼

||||𝑖𝑗 − 𝑓𝑗𝑖 𝜕𝑊𝜕𝑟𝛼 ||||𝑗𝑖
)
, (C.11)

𝛼𝑐, 𝑖𝑗 =
𝑃𝑖 𝛼𝑐, 𝑖 + 𝑃𝑗 𝛼𝑐, 𝑗

𝑃𝑖 + 𝑃𝑗
, 𝑣𝑐, 𝑖𝑗 =

1
2

⎛⎜⎜⎝
|𝐯𝑖𝑗 ⋅ 𝐫𝑖𝑗 ||𝐫𝑖𝑗 | +

√|𝑃𝑖 − 𝑃𝑗 |⟨𝜌𝑖𝑗⟩ 
⎞⎟⎟⎠ , (C.12)

where 𝛼𝑐, 𝑖 is evolved in time as described by Borrow et al. [64].

Appendix D. Kernel choice

Here we present results from square test (§4.1), Sod shock tube (§4.2), ideal gas KHI (§4.3.2), and KHI with Earth-like iron & 
rock (§4.4) simulations to show the effect of smoothing kernel choice in REMIX simulations. We use five different kernel functions 
with corresponding 𝜂kernel: cubic spline with 𝜂kernel = 1.292 (∼55 neighbours); quartic spline with 𝜂kernel = 1.203 (∼60 neighbours); 
Wendland 𝐶2 with 𝜂kernel = 1.487 (∼100 neighbours); Wendland 𝐶4 with 𝜂kernel = 1.643 (∼200 neighbours); Wendland 𝐶6 with 
𝜂kernel = 1.866 (∼400 neighbours) [15].

Square tests, presented in Fig. D.21, show similar behaviour in the equal spacing scenario for all of these kernels, although with 
more noise in the lower-order kernels with fewer neighbours. For the higher-order Wendland kernels, results are very similar over 
these timescales, with very little particle motion. In the equal mass scenario, however, the use of either the Wendland 𝐶4 or Wendland 
𝐶6 kernels leads to spurious behaviour at the corners. The particle noise in simulations with lower-order kernels is in fact helpful 
in disturbing the growth of these slowly evolving, error-driven features. We found that using grad-ℎ terms calculated directly from 
Eqn. (4) combined with a higher artificial viscosity helps the treatment of corners in the square tests with higher-order kernels. 
However, zeroth-order error in grad-ℎ terms calculated in that way leads to problematic behaviour in regions away from density 
discontinuities, and we choose to take a conservative artificial viscosity approach, keeping it low away from shocks. Therefore, we 
choose to calculate grad-ℎ terms as we describe in §3.3. Again, lower-order kernels show more particle noise, however, the cross-
section of the cube does not lose its square shape.

In the Sod shock (Fig. D.22) and both KHI tests (Figs. D.23 and D.24) We see a general trend of higher-order kernels reducing 
particle noise. However, these effects are minor compared with the primary improvements in all these simulations compared with 
traditional SPH equivalents.

Based on these simulations, we conclude that the Wendland 𝐶2 kernel is a good compromise between accuracy and computational 
speed, which is why we use it for all simulations other than those presented in this section. Using a higher-order kernel only leads to 
small improvements in noise reduction in these tests and, in the case of the square test, gives worse results. We stress, however, that 
the behaviour at the corners of a 3D cube is not necessarily important for many science applications, if other benefits are offered in 
more typical configurations. The lower-order kernels lead to more particle noise, however, these still show significant improvements 
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Fig. D.22. The effect of kernel choice in REMIX Sod shock tube simulations. Velocity in the 𝑥-direction, 𝑣𝑥 , density, 𝜌, specific internal energy, 𝑢, and pressure, 𝑃
plotted against 𝑥-position at time 𝑡 = 0.2. Rows correspond to the 5 different kernel functions. The reference solution is plotted in red.

Fig. D.23. The effect of kernel choice in REMIX ideal gas KHI simulation. Plotted at time 𝑡 = 2 𝜏KH , for 5 different kernel functions. Particles are coloured by their 
density. These simulations have a resolution of 𝑁1 = 128, as described in §4.3.2.

compared with traditional SPH simulations. This suggests that, for example a cubic spline kernel could be used with REMIX for 
applications where simulation run-speed is an important consideration.

Appendix E. Choices made in linear-order reproducing kernel construction

In Fig. E.25, sensitivities to subtle choices in the kernel construction (§3.3) are presented in the context of the square test with 
equal mass particles (§4.1). We include panels to show equivalent cases without artificial diffusion of density or internal energy in the 
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Fig. D.24. The effect of kernel choice in REMIX KHI simulations between Earth-like iron & rock. Plotted at time 𝑡 = 2 𝜏KH , for 5 different kernel functions. Particles 
are coloured by their material type and density. These simulations have a resolution of 𝑁1 = 128, as described in §4.3.2.

Fig. E.25. The effect of choices made in the construction of linear-order reproducing kernels in square test simulations. Plots show a central cross-section from square 
test simulations with equal mass particles, using subtly different variations of REMIX. Snapshots are at time 𝑡 = 3.0. We show the results with (top) and without 
(bottom) diffusion of density and internal energy, for the full REMIX scheme and with combinations of either no grad-ℎ terms and without using an averaged kernel 
in the construction of our linear-order reproducing kernels.

model. This isolates the effect of kernel choice from stabilising effects caused by stronger diffusion for particles with higher relative 
speeds.

We consider using 𝑊𝑖𝑗 rather than the averaged kernel 𝑊 𝑖𝑗 ≡ [𝑊 (𝐫𝑖𝑗 , ℎ𝑖) +𝑊 (𝐫𝑗𝑖, ℎ𝑗 )]∕2. This permeates through the full re-
producing kernel construction, including geometric moments and their gradients. Switching to 𝑊𝑖𝑗 also increases grad-ℎ terms by 
a factor of 2, as seen in Eqn. (29). Using 𝑊 𝑖𝑗 in the construction of the reproducing kernels is shown to be important in achieving 
good behaviour in the square test, with all 𝑊𝑖𝑗 cases showing a disruption of the cube by particle motions at the interface. This 
demonstrates how additional error introduced in kernel antisymmetrisation (for conservation) in the equations of motion is sensitive 
to the base-kernel used in the construction of the reproducing kernels. Regardless of the kernel used in the construction, the cube 
would remain undisturbed if the antisymmetrisation step was not carried out.

The inclusion of grad-ℎ terms only leads to a small effect. We note again that we include these terms primarily for completeness 
of the methods, and since they have no negative impact on run speed or any other considerations.

Appendix F. Choices made in artificial viscosity and diffusion construction

Here we show how Sod shock (§4.2) and ideal gas Kelvin–Helmholtz instability (§4.3) simulations motivate the parameters used 
in the REMIX artificial viscosity and artificial diffusion schemes. We (1) demonstrate the effectiveness of a Balsara switch in the 
viscosity slope limiter in reducing oscillations in shocks; (2) motivate our choice of the standard viscosity constants, 𝛼 and 𝛽; (3) 
motivate our choice of the parameters that distinguish between the treatment of artificial viscosity in shocks and shearing regions, 
𝑎visc and 𝑏visc; (4) motivate our choice of the parameters that distinguish between the treatment of artificial diffusion in shocks and 
shearing region, 𝑎difn ≡ 𝑎𝑢 = 𝑎𝜌 and 𝑏difn ≡ 𝑏𝑢 = 𝑏𝜌. For simplicity, we use the same parameters for the diffusion of internal energy 
and density. Our approach to these artificial terms is a conservative one, in which we deliberately keep them weak, while still strong 
enough to give noticeable improvements.

The Sod shock and KHI examples were chosen since the artificial viscosity and diffusion play different roles in these two scenarios: 
we require strong viscosity and diffusion to accurately capture shocks, whereas in shearing regions they are only required to smooth 
out accumulated noise in particle velocities, densities, and internal energies. To isolate these elements of the construction we use 
simplified versions of the REMIX construction, in which we overwrite the Balsara switches that appear in Eqns. (41)–(43), to 1 or 0 
to isolate the treatment in shocks or shearing regions respectively: In the simplified shock case, we set  = 1, such that the strength 
of viscosity or diffusion is parameterised by the respective 𝑎 + 𝑏 in Eqns. (41)–(43). In the simplified shear case, we set  = 0, such 
that the strengths are set by 𝑎 only. Therefore, we use these to select values for 𝑎 and 𝑏 parameters, based on which the full scheme 
can then switch smoothly between these two simplified versions.

We first focus on the artificial viscosity scheme. In Fig. F.26 we investigate the effect of changes in the viscosity treatment on 
Sod shock tube simulations. Rows correspond to: the simplified shock case with 𝑎visc + 𝑏visc = 1 and Balsara switches in the viscosity 
slope limiter set to SL = 1; the simplified shock case again with 𝑎visc + 𝑏visc = 1, but without fixing SL; and the final REMIX scheme. 
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Fig. F.26. The effect of artificial viscosity parameters in Sod shock tube simulations. Velocity in the 𝑥-direction, 𝑣𝑥 , plotted against 𝑥-position from Sod shock tube 
simulations at time 𝑡 = 0.2, using REMIX with variations in artificial viscosity formulation. The annotations “REMIX” and “REMIX*” correspond to panels showing the 
final REMIX scheme and the equivalent simplified shock case respectively.

Fig. F.27. The effect of artificial viscosity parameters in ideal gas KHI simulations with visc fixed to 0. Snapshots are from simulations with sharp initial discontinuities, 
at time 𝑡 = 2 𝜏KH , using REMIX with variations in artificial viscosity formulation. Particles are coloured by their density. The annotation “REMIX*” corresponds to the 
panel showing the simplified shear case that is equivalent to the final REMIX scheme. These simulations have a resolution of 𝑁1 = 128, as described in §4.3.2.

Columns correspond to different choices of 𝛼 and 𝛽, with a consistent 𝛽 = 2𝛼 in all cases here. We note that fixing this ratio leads to 
a degeneracy for 𝛼 and 𝛽 with 𝑎visc + 𝑏visc in the simplified shock case, and therefore we choose to set 𝑎visc + 𝑏visc = 1.

We first note that the Balsara switch SL is effective in dissipating oscillations in the shock. The oscillations in the case that makes 
use of SL but has the weakest viscosity (Fig. F.26(d)) are smaller than even those in F.26(c), where the 𝛼 and 𝛽 factors are twice 
as large, but SL = 1 is fixed. Using SL therefore allows us to target viscosity to shocks by more effectively switching off the linear 
reconstruction of velocities to particle midpoints. This in turn allows us to reduce the viscosity parameters so that we can construct a 
less dissipative artificial viscosity scheme. We note that Fig. F.26(c) is equivalent to the viscosity construction of Frontiere et al. [19]
and Rosswog [22], other than the latter’s use of quadratic reconstruction, which only makes a minor difference.

Next we consider how the Sod shock is sensitive to the primary viscosity parameters 𝛼 and 𝛽 for 𝑎visc + 𝑏visc = 1, as shown in 
Fig. F.26(d)–(f). Increasing 𝛼 and 𝛽 in this way uniformly increases the strength of the viscosity. With 𝛼 = 2 and 𝛽 = 4, oscillations 
are effectively removed. With 𝛼 = 1 and 𝛽 = 2, oscillations in the shock are still large compared with the particle scatter. 𝛼 = 1.5 and 
𝛽 = 3, which we eventually use in REMIX, still has some oscillations, but these are small. The bottom row of figures demonstrates that 
our simplification of this shock case with visc = 1 is appropriate as we see little difference when comparing with a full REMIX-like 
construction.

We use the ideal gas KHI in the simplified shear case, combined with the above Sod shock results, to make decisions for values of 
the REMIX viscosity parameters. In Fig. F.27 we see the effect of changing 𝛼 and 𝛽 with 𝑎visc = 1 and visc fixed to 0. Again we note 
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Fig. F.28. The effect of artificial diffusion parameters in Sod shock tube simulations with difn fixed to 1. Density, 𝜌, and specific internal energy, 𝑢, plotted against 
𝑥-position at time 𝑡= 0.2, using REMIX with variations in artificial diffusion formulation. The annotation “REMIX*” corresponds to the panels showing the simplified 
shock case that is equivalent to the final REMIX scheme.

Fig. F.29. The effect of artificial diffusion parameters in ideal gas KHI simulations with difn fixed to 0. Snapshots are from simulations with sharp initial discontinuities, 
at time 𝑡 = 2 𝜏KH , using REMIX with variations in artificial diffusion formulation. Particles are coloured by their densities. The annotation “REMIX*” corresponds to 
the panel showing the simplified shear case that is equivalent to the final REMIX scheme. These simulations have a resolution of 𝑁1 = 128, as described in §4.3.2.

Fig. F.30. REMIX Sod shock tube at time 𝑡 = 0.2 in a simulation where artificial diffusion has been disabled between particles on opposite sides of 𝑥 = 0 in the 
initial conditions, to function as if representing distinct materials. Plots show velocity in the 𝑥-direction, 𝑣𝑥 , density, 𝜌, specific internal energy, 𝑢, and pressure, 𝑃 , 
of individual particles plotted against their 𝑥-position. Particles with initial positions 𝑥 < 0 are plotted in orange and those with 𝑥 > 0 in blue. The black, dashed line 
shows a reference solution, solved for directly by using a Riemann solver. All particles are plotted.

the degeneracy in increasing 𝛼 and 𝛽, this time with increasing 𝑎visc. With increased artificial viscosity, the boundary of the spiralling 
KHI plume becomes more pronounced, with less mixing of particles across the interface. In the lowest viscosity case, the small-scale 
spirals are diffused and structure is not maintained.

For the REMIX scheme we take a conservative approach and choose a viscosity model that, with the assumptions of the simplified 
approaches considered here, switches between: F.26(e) in shocks, in which oscillations have mostly, but not fully, been removed; 
to Fig. F.27(b), in which small-scale KHI structure persists, but mixing on the particle scale is not strongly suppressed by artificial 
viscosity. We note that, in practice, the artificial viscosity will be slightly between the two cases we aim to switch between. This was 
kept in mind when making this choice. This corresponds to choices of 𝛼 = 1.5, 𝛽 = 3 and 𝑎visc = 2∕3, 𝑏visc = 1∕3.

Next we consider the artificial diffusion model. We use the same parameter values in the artificial diffusion of density and internal 
energy, for simplicity. First we consider the Sod shock in the simplified shock case, however this time applied to the diffusion equations 
(Eqns. (42) and (43)). In Fig. F.28, we demonstrate our need for artificial diffusion of both density and internal energy: in the first 
column, we see the case of no diffusion leading to sizable spikes in these quantities. As the strength of artificial diffusion is increased, 
the spikes are smoothed.
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Fig. G.31. The effect of resolution in ideal gas KHI simulations with sharp discontinuities that are unstable to perturbations of all wavelengths, carried out using tSPH, 
tSPH with conduction and REMIX. We also plot REMIX simulations without a deliberately seeded perturbation. The KHI is plotted at two times for simulations of three 
resolutions. Particles are coloured by their density.

In Fig. F.29, we show snapshots from ideal gas KHI simulations in the simplified shear case. At high diffusion, the density dis-
continuity is smoothed and a sharp interface is not maintained. However, some diffusion is helpful in stabilising the evolution of the 
instability, as we see that with little or no diffusion the structure in the inner regions of the vortex is dominated by particle noise.

Again, for the REMIX scheme we take a conservative approach and choose a diffusion model that, with the assumptions of the 
simplified approaches considered here, switches between: F.28(d) and (i) for shocks, where spikes in density and internal energy 
have mostly been removed; to Fig. F.29(c), in which diffusion helps to stabilise the small-scale structure of the instability, but density 
discontinuities are allowed to persist. We note that, in practice, the artificial diffusion will be slightly between the two cases we aim 
to switch between. This was kept in mind when making this choice. This corresponds to a choice of 𝑎difn = 0.05, 𝑏difn = 0.95. We also 
note that this can be seen as switching from a weak diffusion away from shocks with a factor of 0.05, similar to that of Rosswog [22], 
to a stronger diffusion in shocks with a factor of 1, similar to Price et al. [54].

The Sod shock tube simulations we have considered above included particles of only a single ideal gas EoS. In REMIX, we delib-
erately do not allow artificial diffusion, of either density or internal energy, between particles of different EoS. Therefore, to test the 
effectiveness of the artificial diffusion scheme at material interfaces, we consider a Sod shock tube, still consisting of only a single 
ideal gas with 𝛾 = 5∕3, but where particles on either side of 𝑥 = 0 in the initial conditions are treated as different materials by the 
artificial diffusion scheme. This choice of initial interface position leads to the largest differences with the standard “single-material” 
case. The results of this simulation at time 𝑡 = 0.2 are shown in Fig. F.30, where artificial diffusion is disabled between particles of 
different colours. The density and internal energy profiles show close similarities with the simulations plotted in Fig. F.28 for which 
artificial diffusion has been reduced globally. The 𝑣𝑥 plot shows similar results to the single-material case: without significant ringing 
and without additional artefacts at the material interface. The spike in internal energy, and the resulting effect it has in the pressure 
profile, constitute the most significant deviation from the reference solution, however, we note that the size of the internal energy 
spike is comparable with that in the tSPH scheme (Fig. 2(c)).
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Fig. G.32. The effect of resolution in Earth-like iron & rock KHI simulations. Snapshots show two times for simulations of three resolutions, carried out using tSPH 
and REMIX. Particles are coloured by their material type and density.

Appendix G. Further Kelvin–Helmholtz results and figures

As discussed in §4.3.2, a discontinuous shearing interface will be unstable to the growth of perturbations of all wavenumbers [78]. 
In simulations of Kelvin–Helmholtz instabilities, the wavenumbers of modes that are allowed to grow is limited by the numerical 
resolution; modes of wavelengths of the particle-separation scale and shorter will not be resolved. Here we demonstrate how error-
seeded secondary modes will inevitably grow in KHI simulations with higher-resolution REMIX. We note that although this means 
that it is impossible to reach a converged solution in this scenario such that we cannot quantitatively judge the accuracy of these 
results, the presence of secondary modes is still a positive sign that spurious surface tension-like effects are not dominating behaviour 
at density discontinuities.

First, we consider ideal gas KHI simulations (§4.3.2). In Fig. G.31, we show snapshots from tSPH, tSPH with conduction, and 
REMIX simulations of KHIs at different resolutions. Additionally, in the bottom row of panels, we show how the shearing interface 
evolves with REMIX if no initial velocity perturbation is applied to the system. We see strong surface tension-like effects in the tSPH 
simulations for all resolutions. Artificial conduction is helpful as resolution is increased, however, the growth of the instability is 
still slow and the discontinuity becomes diffuse. Over these timescales, the 𝑁1 = 128 and 𝑁1 = 256 REMIX simulations are largely 
undisturbed by secondary modes, both in the cases with and without the seeded mode. In contrast, in the higher-resolution 𝑁1 = 512
case, we see that secondary modes grow to greatly affect the evolution of the system, both with and without a deliberately seeded 
mode. The secondary modes grow over the same timescale in both these cases, demonstrating that these are purely seeded by error 
and noise in the numerical methods, rather than being associated with the growth of the primary mode. We note that over longer 
timescales than 𝜏KH , secondary modes will also grow in the lower-resolution simulations, although they do not greatly influence the 
early growth of the instability.

In Fig. G.32, we show similar snapshots from Earth-like KHI simulations at different resolutions with tSPH and REMIX, constructed 
equivalently to those presented in §4.4. Here surface tension-like effects are very strong in tSPH simulations at all resolutions. REMIX 
is able to deal with this challenging scenario, even at the lowest resolution simulated. Again, here we see error-seeded secondary 
modes in the 𝑁1 = 512 REMIX simulation that grow to length scales where they play a significant role in the evolution of the system. 
In the lower-resolution simulations, these modes are not resolved and so the primary mode is undisturbed over these timescales.

Next, we consider the stability of REMIX KHI simulations over longer timescales. Snapshots at 𝜏KH = 8 from ideal gas KHI simula-
tions with sharp interfaces at three different resolutions are shown in Fig. G.33. The simulations shown are stable over these longer 
integration periods, with low pressure vortices being sustained, and the densities and internal energies of particles remaining well 
behaved and not freely evolving to unphysical values.

Appendix H. Further planetary results and figures

Here we present further results regarding the planetary settling examples (§4.9) to expand on the issues faced in these simulations. 
First, in Fig. H.34, we show radial profiles, equivalent to those presented in Fig. 17, but at the start of the simulation rather than at 
a time when particles have evolved from their initial configuration. Here we notice in the tSPH case that the blips in pressure are 
even larger, and that there is also noticeable smoothing of the density field at the vacuum boundary in the Earth-like planet. At the 
later times, plotted in Fig. 17, particles have evolved to closer to equilibrium configurations where these issues do not appear to be 
extreme. However, we note that in a more kinematically interesting simulation with particles approaching the material interface, 
they will encounter the erroneous pressures that lead to surface-tension like effects. Therefore, it is not the case that as the planets 
relax, they reach a state where spurious surface tension-like forces disappear. We note that both material interfaces and the vacuum 
boundary are corrected, trivially at this initial time, by the evolved density estimate in REMIX.



Journal of Computational Physics 532 (2025) 113907

41

T.D. Sandnes, V.R. Eke, J.A. Kegerreis et al. 

Fig. G.33. Ideal gas Kelvin–Helmholtz instabilities with sharp initial density and velocity profiles, and equal mass particles, at a later time of 𝑡 = 8 𝜏KH . Columns 
correspond to simulations of different resolutions and rows show the density, 𝜌, specific internal energy, 𝑢, and pressure, 𝑃 , of individual particles. The initial density 
ratio between the two regions is 1:2.

Fig. H.34. Radial profiles of density and pressure for Earth-like (a, b, e, f) and Jupiter-like (c, d, g, h) planets at the initial time 𝑡 = 0. Plots show profiles from 
simulations using tSPH (a–d) and REMIX (e–h).

In Fig. H.35, we show the evolution of a simulation of a Jupiter-like planet with REMIX, but without the kernel normalising term. 
These demonstrate how the instabilities seen in Fig. 19 continue falling inwards at later times. As seen in Fig. 20, the densities of 
particles without the normalisation term are not tied to the distribution of mass in the simulation volume, leading to error driven 
instabilities. These grow to fully disturb the profile of the hydrogen–helium envelope, but are fully avoided in the full REMIX scheme.
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Fig. H.35. Snapshots showing the evolution of spurious instabilities in a Jupiter-like planet from a simulation without the density evolution normalising term. 

Fig. I.36. Meshless finite-mass (MFM; (a–d)) and finite-volume (MFV; (e–h)) simulations of a 3D square test (a, b, e, f) and a 3D Kelvin–Helmholtz instability with 
equal mass particles and initially sharp discontinuities (c, d, g, h). Snapshots at two times are plotted for each simulation. Individual particles are plotted and coloured 
by their densities. Kelvin–Helmholtz instability simulations have a resolution of 𝑁1 = 128, as described in §4.3.2.

Appendix I. MFM and MFV comparisons

Here we present square test and KHI simulations, with initial conditions matching those presented in §4.1 and §4.3.2, carried 
out using meshless finite-mass (MFM) and meshless finite-volume (MFV) methods [37]. We use the MFM and MFV implementations 
included in the Swift code. The main comparisons made in this study have been with traditional forms of SPH, where the primary 
aim has been to justify the choices made in the construction of the REMIX scheme and how each of these choices combine to improve 
on the more traditional approach. The aim of this section is to briefly demonstrate how these alternative methods deal with these 
particular 3D, equal-mass particle tests that focus on density discontinuities.

Both MFM and MFV are Lagrangian hydrodynamics methods that make use of Riemann solvers and improved gradient estimates 
[34,35,37]. Where MFV allows the masses of particles to change based on mass fluxes, in MFM, the velocities of the effective surfaces 
between particles for flux calculations are set to move with (and thus cancel out) the flux of mass. Therefore, MFM is more easily 
adapted to simulations with multiple materials, since particles do not exchange mass and material, and so the material type of 
individual particles can remain fixed throughout the simulation. Although taking a different approach in their derivation from SPH 
schemes, the constituent equations of MFM and MFV [37] remain similar to those of modern SPH schemes.

Fig. I.36(a–d) show results from square test and KHI simulations carried out using MFM. In both simulations, discontinuities do not 
remain sharp and the evolution of both scenarios is more similar to the tSPH simulations with artificial conduction, shown in Figs. 1
and 5, than to the equivalent REMIX simulations. With MFV (Fig. I.36(e–h)), sharper interfaces are maintained, however, there is 
still some smoothing of particle densities. In the REMIX simulations presented in §4.1 and §4.3.2 the discontinuities are sharper than 
with both these simulation methods, the cube more closely retains its original shape, and the KHI evolves over shorter timescales, 
indicating some suppression is still impactful for MFM and MFV.
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Data availability

The sizes of the simulation output files make it unfeasible for them to be made passively available, but they can be obtained from 
the corresponding author on reasonable request. Simulation initial conditions are available as part of the open-source Swift package.
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