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Dynamics of a helical vortex ring
interacting with a vortex line
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Helical vortex rings are intriguing flow phenomena observed in both classical and quantum fluids,
playing a crucial role in the examination of turbulence. Despite significant research dedicated to
understanding their dynamics, studies on the interaction between vortex lines and vortex rings remain
limited. Here, we show the dynamics of a helical vortex ring interacting with a vortex line. Through
manipulation of the polarity and magnitude of the topological charge along the axis of the vortex ring,
we show a change in the translational speed and angular rotation of the vortex ring. To gain deeper
insights into the dynamics of intricate vortex structures in the presence of a vortex line, we analyse the
evolution of the moment of inertia tensor during this evolution. The results provide insights into the
dynamicsof helical vortex rings, contributing to adeeper comprehension of turbulencegeneration and
dissipation.

Vortices are a fascinating and extensively studied phenomenon in various
classical and quantum systems, such as water1–3, air4,5, optics6,7, and
Bose–Einstein condensates (BECs)8–10. They can take the form of vortex
lines, vortex knots, and vortex links in three-dimensional (3D) space11–14.
Among these, vortex rings, the simplest knots in topology, have attracted
significant attention due to their association with exotic phenomena15–17.
BECs offer an ideal platform for investigating the quantum dynamics of
topological excitations due to their clean and controllable properties. In
contrast, in a classical medium, phenomena such as emission and recon-
nection are significantly affected by environmental noise, posing significant
challenges in understanding the fundamental mechanisms. Moreover,
stable vortex rings have been successfully produced in two-component
BECs through the disintegration of dark solitons18. Furthermore, individual
vortex rings display periodic oscillations in confined BECs19.

Helical vortex rings are commonly considered to be perturbed vortex
rings influenced by Kelvin waves, which cause the vortex core to deviate
from its ideal rotationally symmetric shape and take on a helical displace-
ment. The movement of a helical vortex ring can be broken down into
translation and rotation. While there has been extensive research on the
translational speed, the properties of the rotation remain uncertain. Gen-
erally, the presence of helical waves inhibits the translational speed of vortex
rings and may result in a reversal of their direction of motion20,21. This
phenomenon is associated with the conservation of angular momentum
within the flow surrounding the axis of the ring. Experimental studies have
observed the rotation of vortex rings in water using fluorescent dye visua-
lization to observe the illumination pattern22. The inherent angular speed

can be analytically calculated by taking the partial derivative of the vortex
ring’s energy with respect to the angular momentum along the ring axis21.
Kelvin waves can induce perturbations that enable the connection of vortex
rings to form intricate vortex structures, including knots and links23.

The interaction between vortex rings and vortex lines is a fascinating
and engaging problem in the field of vortex dynamics. Their mutual
influence gives rise to intriguing phenomena, such as the formation of
vortex hopfions, in which the vortex line typically lies on the axis of the
vortex ring. The stability of hopfions is significantly influenced by their
interaction24–27. Additionally, the interaction and reconnection of vortex
rings and vortex lines play a critical role in the dissipation of vortex tangles,
making them a focal point in the study of turbulence. The decay of Kol-
mogorov quantum turbulence proceeds through the Kelvin wave cascade
process, involving the nonlinear interactions of Kelvin waves along quan-
tized vortex lines. This cascade leads to the generation of progressively
shorter Kelvin wave wavelengths until they are capable of effectively emit-
ting sound28. In contrast, ultra-quantum turbulence decay can occur in
regions of high curvature on vortex lines, where vortex reconnection is
triggeredwhen local curvature surpasses a critical threshold, resulting in the
release of vortex rings29–31. Understanding the dynamics and behavior of
vortex rings and vortex lines is of utmost importance in unraveling the
complexities of turbulence32–35.

In this study, we explore the dynamics of helical vortex rings in trapped
BECs by numerically solving the Gross–Pitaevskii (GP) equation. Our
investigation revealed that both the translational and rotational dynamics of
a helical vortex ring are influenced not only by helical waves but also by a
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central vortex line. We observe that the increase in translational speed is
modulated by the topological charge of the vortex line. Additionally, we
expand our analysis to include more complex vortex structures, such as
trivial links and trefoil knots, in order to investigate their dynamic behavior.
Furthermore, we find that certain aspects of vortex dynamics can be accu-
rately characterized by calculating the moment of inertia tensor, which
offers additional insights into their behavior.

Results and discussion
Model
At sufficiently low temperatures, the dynamics of 3DBECs can be described
by the time-dependent GP equation,

i_
∂ψ

∂t
¼ � _2

2m
∇2 þ V trap þ g∣ψ∣2

� �
ψ , ð1Þ

whereψ represents the complexwave function, andVtrap is a cylindrical box
potential (see Eq. (5) in Method). Here, g = 4πℏ2as/m is the coupling con-
stant,withasbeing the s-wave scattering length. For convenience, all units in
the following are dimensionless (see “Methods” for dimensionless process
and initial state construction). The intrinsic translational speed of an ideal
vortex ring moving within a homogeneous condensate can be described by
vr ¼ _= 2mRr

�� �
ln 8Rr=ξ
� �� 0:615

� �
, where ξ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
8πρas

p
represents

the healing length and Rr represents the radius of the ring
36. However, in

practical scenarios, vortex rings are rarely circular due to the influence of
Kelvin waves, which play a crucial role in understanding turbulence
mechanisms37. In such cases, a more comprehensive characterization of the
dynamics of vortex rings can be achieved by calculating the z-component of

the center of mass of the ring38

zcm ¼
R
Vz ρth � jψj2� �

H½ρth � jψj2�dVR
V ρth � jψj2� �

H½ρth � jψj2�dV ; ð2Þ

whereH[. . . ] represents theHeaviside step function, and ρth corresponds to
a threshold value of density isosurface. In addition to themethodmentioned
above for calculating the center of mass, the center of mass can also be
determined using the “plaquette" technique, which involves identifying the
vortex core position by detecting the 2π phase winding39.

Vortex ring translational speed
In Fig. 1a, we illustrate the density isosurface of a vortex ring combined with
an s= 4 vortex line (the green tube). The gray ring shows the original
position. The corresponding speed field is shown in Fig. 1b. The translational
speed of the vortex ring in the presence and absence of a central vortex line is
represented by vrl and vr0 , respectively. The increase in the relative speed,
denoted by vrl=vr0 as a function of the topological charge s, can be observed
in Fig. 1d with respect to different radiiRr of the vortex ring. Importantly, the
direction of the circulation field induced by the vortex rings remains per-
pendicular to the direction of the speed field induced by the vortex line,
regardless of the sign of the topological charge (for example s= ±1).
Therefore, vrl does not change with the sign of the topological charge. The
key parameters in this scenario are the radius of the vortex ring Rr and the
absolute value of the topological charge |s| carried by the vortex line. In
Fig. 1e, vrl=vr0 is shown as a function of Rr for different s. It is evident that a
larger topological charge of the vortex line combined with a smaller radius of
the vortex ring can lead to a higher translational speed of the vortex ring.

Fig. 1 | Translational dynamics of vortex rings. a The gray ring indicates the
density isosurface of the vortex ring with the radius Rr = 3 at time t = 0 for all cases.
The green tube is the density isosurface of the vortex ring with the topological charge
s = 4. The blue tube and pink tube are the density isosurfaces of the density hole
created by the Gaussian impurities with the half-width c = 10 and c = 30, respec-
tively. The green ring is the position of the vortex ringmoving along the vortex line at
t = 8. The blue ring and the pink ring indicate the positions of the vortex rings
moving along the corresponding Gaussian impurities at t = 8, respectively. b, c The
corresponding speed fields are shown for the vortex ring in the presence of a vortex
line with s = 4 and for the vortex ring in the presence of a Gaussian impurity with

c = 10, respectively. d Relative translational speed vrl=vr0 as a function of the topo-
logical charge of the central vortex line s. vr0 is the self-induced speed of a vortex ring
withRr = 3. eRelative translational speed vrl/vr as a function of the vortex ring radius
Rr. vr is the self-induced speed of a vortex ring with different radius Rr. f The initial
Density cross sections along x for the three cases shown in (a). gThe relative speed of
the vortex ring as a function of the peak density of the system with respect to
s = 0, 1, …, 4, c = 0, 10,…, 40, and the number of atoms N0 = 5.0 × 105, 5.1 ×
105,…, 5.4 × 105. In d, e, and g, dashed lines connectmarkers via linear interpolation
to show velocity trends.
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To gain further insights into the underlying cause of the increase in the
translational speed, we compare the dynamics of the vortex ring under three
distinct scenarios: a simple ring, a ring combined with a central vortex line,
and a ring with a central Gaussian impurity. The Gaussian impurity Vg ¼
B expf½�ðxÞ2 � ðyÞ2��=2c2g sitting at the center of the region enclosed by
the vortex creates a void at the center of the condensate, whereB = 1000 and
care the amplitude and thehalf-widthof theGaussian function, respectively.
In Fig. 1a, we also present the density isosurfaces of the vortex structurewith
Gaussian impurities of c = 10 in green and c = 30 in pink. The initial posi-
tions of the vortex rings combined with Gaussian impurities align with the
gray-colored vortex ring that contains a central vortex line. The corre-
sponding speed field of the vortex ring with a c = 10 Gaussian impurity is
shown in Fig. 1c, which is quite different from the speed field shown in
Fig. 1b. The density distributions across the cross-section along the x-axis of
the three scenarios are shown inFig. 1f. InFig. 1a,we can see clearly thatwith
the same initial position, at t = 8, the translational speed of the vortex ring
with a vortex line is larger than that of the vortex ring with Gaussian
impurities.We see that the backgrounddensity of the condensate undergoes
changes in thepresenceof a vortex lineor aGaussian impuritywhile keeping
the total number of atoms a constant. In Fig. 1g, we demonstrate the relative
speed of the vortex ring as a function of the peak density ρ0 of the con-
densate. Moreover, the presence of a Gaussian well can also lead to an
increase in the speed of the vortex ring.However, we observe that to achieve
the same increase in speed, the cavity created by the Gaussian potential (red
dotted line in Fig. 1f) should be larger than the counterpart created by the
correspondent vortex line. This indicates that the increase in the speedof the
vortex ring depends on the shape of the density dip of the condensate, which
subsequently alters the distribution of the speed field associated with the
vortex ring. Moreover, in many experimental scenarios, highly charged
vortex lines exhibit instability within the condensate40,41. Nevertheless, the
splitting of these vortex lines has little effect on the influence of their
topological charge on the speed of the vortex ring (further details are pro-
vided in Fig. S1). Moreover, the introduction of multiple randomly posi-
tioned vortex lines can lead to a heightened speed of the vortex ring, with the
extent of the speed enhancement contingent upon the arrangement of the
vortex lines (detailed information is available in Fig. S2).

Helical vortex ring translational speed
We know that Kelvin waves can reduce the translational speed of a vortex
ring42,43. Now, we apply helical Kelvin waves on a vortex ring with radius Rr
and initially positioned at z0 in the z-axis. Then, a central vortex line is
applied to see the combined effect of Kelvin waves and the line on the
translational speed of the vortex ring. In Fig. 2a, we display the density
isosurfaces of the vortex ring with wave number n = 3 and amplitude A = 3
Kelvin waves. Figure 2b displays the introduction of a central vortex line at
the center of the area enclosed by the helical vortex ring. As the vortex ring
encounters distortion from the Kelvin waves, the speed field surrounding
the vortex ring no longer aligns perpendicularly with that surrounding the
vortex line.The combination of the two speedfields can significantly change
themotion of the vortex ring. The corresponding speedfield distributions in
the (x, y)-plane of the helical vortex ring without and with an s = ±1 vortex
line are shown in Fig. 2c–e, where the influence of the vortex line on theflow
speedfield is prominentlydisplayed.Theflowspeedfield exhibits changes in
both along the vortex line and around the vortex ring, which can be inter-
preted as twisting of the vortex44. Helicity is a crucial conserved quantity in
3D ideal fluids (more details can be found in Eq. (S1)). However, due to the
lack of internal structure in quantumvortex lines, the twisting component, a
significant aspect of helicity, cannot be directly measured. As a result,
exploring the twisting induced by the interaction between vortex lines and
vortex rings presents an intriguing research opportunity45–48.

Figure 2f–i demonstrates the significance of the topological charge
polarity of the vortex line in this scenario. When A and n are small, the
reduction in the vortex ring’s speed caused by theKelvinwaves isminor and
might be counterbalanced by the increase in speed due to the vortex line.
Conversely, for larger values of A and n, a vortex line with a positive
topological charge mitigates the reduction in speed, while a negative topo-
logical charge amplifies this effect.Themitigating effect of s = 1 surpasses the
amplifying effect of s =−1 on the reduction in the vortex ring’s speed.
Considering a fixed Kelvin wave number n, the relative translational speed
between the helical vortex ring with a central vortex line and the simple
helical vortex ringdecreaseswith an increase in theKelvinwaves’ amplitude.
Increased A values result in a more significant impact on either amplifying
or alleviating the reduction in speed. Likewise, with a fixed amplitude A of

Fig. 2 | Translational dynamics of helical vortex rings. aThe density isosurface of a
helical vortex ring with the Kelvin wave number n = 3, and amplitude A = 3. The
subplot is the top view of the helical vortex ring. b The density isosurface of the
helical vortex ring in a with a s = ±1 vortex line at the center of the area enclosed by
the ring. The initial speed field distributions on the (x, y)-plane of the helical ring
cwithout vortex line, dwith a topological charge s = 1 vortex line, and ewith a s =−1

vortex line. f The ratio between the translational speed vrl of the helical ring and the
translational speed vr0 of the corresponding circular ring as a function of the Kelvin
wave amplitude A for f n = 3, g n = 6. The relative speed vrl=vr0 as a function of the
Kelvin wave number n h for A = 3, and i A = 6. In f–i, dashed lines connect the
markers to indicate velocity trends.
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Kelvinwaves, the relative translational speed diminisheswith escalatingn. It
is noted that formore substantial perturbations, theremay be a possibility of
connection between the vortex line and the vortex ring27.

Helical vortex ring angular rotation
Now,wewill explore the impact of Kelvinwaves on the rotationalmotion of
a vortex ring. Figure 3a exhibits sequential snapshots of a helical vortex ring
at various time intervals in a homogeneous background (refer to Supple-
mentary Movie 1). The ring maintains a relatively consistent shape
throughout its evolution, enabling its treatment as a rigid structure. The
vortex ring uniformly moves in the z-direction while rotating clockwise in
the (x, y)-plane at a constant angular speed. In Fig. 3b–d, we illustrate the
rotational dynamics of a helical vortex ring both without and with a central
vortex line. From t = 0 to t = 10, the single helical vortex ring, without a
central vortex line, undergoes a clockwise rotation around the z-axis by
approximately π. However, the presence of a central vortex line alters the
rotational motion of the vortex ring around the z-axis. In contrast to
translational speed of a circular vortex ring, which is influenced solely by the
absolute value of the topological charge of the vortex line, the rotation of the
helical vortex ring is impacted by both the sign and strength of the topo-
logical charge of the vortex line. With a topological charge of s = 1, the
rotational effect is weakened because theflow induced by the vortex line and
the projection of the flow generated by the vortex ring onto the (x, y)-plane
are in opposing directions. Conversely, when s =−1, the rotational effect is
enhanced as the directions of the two flows align. For a more intricate
structure like a trefoil, the rotationalmotion is also identifiable. However, its

shape undergoes variation due to self-interactions between different parts.
Figure 3e depicts three snapshots illustrating the dynamics of a trefoil.

Thehelical vortex ring intersects the (y, z)-plane at twodifferent points,
which corresponds to two two-dimensional (2D)point vortices on the (y, z)-
plane38. The rotational behavior of the helical vortex ring, given its rigid
characteristics, can be equivalently described as the oscillation of a 2D point
vortex (marked by the yellow star on the (y, z)-plane in Fig. 3f) within the
comoving frame. This frame moves in the −z direction at a speed equal to
the intrinsic translational speed of the vortex ring. In Fig. 3g,we illustrate the
oscillatory nature of the 2D point vortex, denoted by the green dashed line.
This representation is derived by tracking its movement (red solid line) and
subsequently deducting the center-of-massmotion of the vortex ring (black
dotted line). Additionally, we display the oscillatory patterns of a 2D point
vortex in scenarios both with and without a central vortex line in Fig. 3h.
Moreover, all the numerical findings align closely with sine functions. The
frequency of oscillation of the 2D point vortex serves as an efficient method
for determining the rotation frequency of the vortex ring ω = 2πωv/n. The
observation that the oscillation frequency of the 2D point vortex in the
presence of a vortex line with s =−1 surpasses that of the 2D point vortex
accompanied by a vortex line with s = 1 aligns with the earlier conclusion
depicted in Fig. 3c, d.

The oscillation frequencyωof the 2Dpoint vortex can be influenced by
factors such as thewavenumbern and amplitudeAof theKelvinwaves, and
the topological charge s of the central vortex line. Figure 3i presents ω as a
function of n for various combinations ofA and s. WhenA is much smaller
than the vortex ring radius Rr, we can use the canonical relation of the

Fig. 3 |Rotational dynamics of helical vortices with theKelvinwave numbern= 3
and amplitudeA= 3. a Snapshots of the time evolution of the helical vortex ring in a
cylindrical trap. The original helical vortex ring is represented in green, while the
subsequent dynamics in the series are depicted in purple. The circulation direction
around the vortex is indicated by orange arrows. The density isosurfaces of the
helical vortex ring at t = 0 (green) and t = 10 (blue) b without a central vortex line,
cwith a s = 1 central vortex line, anddwith a s =−1 central vortex line. The light blue
arrowmarks the rotational direction of the helical vortex ring. The black pentagram
and arrow mark the position of a point on the helical vortex ring at t = 0 and its
corresponding position at t = 10, respectively. e The density isosurfaces of a trefoil at

t = 0, 2, and 4. fMain view of a helical vortex ring with the yellow star indicating a 2D
point vortex on the (y, z)-plane. g The z-component of the center of mass of the ring
zcm (black dotted line) and the position of the star in the z-direction zstar (red solid
line) as a function of time t. The oscillatory behavior of the 2D point vortex δz (green
dots) is obtained by subtracting zcm from zstar, and then fitting it with a sine function
(green dashed line). h The positional oscillation of the 2D point vortex in the z-
direction with vortex lines carrying different topological charges. The dashed line is
obtained by fitting the oscillatory behavior with a sine function. i The rotation
frequency of the vortex ring, ω = 2πωv/n, as a function of the Kelvin wave number n,
where ANAL denotes the analytical result.
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Hamiltonian equations of motion to analytically obtain the rotational fre-
quency of the helical vortex ring in the local-induction approximation21:

ω ¼ 2πνn=ðR2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2ðA=RrÞ2

q
Þ, where ν ¼ κ lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
r þ n2A2

p
=nrcÞ=4π

represents the line tension parameter, κ = h/m signifies the circulation
quantum, and rc denotes the core radius. When the wave number of Kelvin
waves is small, bothnumerical and analytical results suggest that the effect of
Aonω canbedisregarded.Ournumericalfindings illustrate thatω increases
with rising n, while the analytical results suggest a decrease in ω for large n.
We posit that the analytical results may not be applicable for large n. We
noticed that both helical and straight vortex lines exert a comparable
influence on the dynamics of circular vortex rings and helical vortex rings
(detailed information is available in Fig. S3).

In our study, we aimed to evaluate the dynamic stability of the system
by introducing 5% randomperturbations into the initial wave function.Our
results indicate that the helical vortex ring can keep its shape for small wave
number of Kelvin waves within the time period studied. For high wave
numbers of Kelvin waves, significant distortion occurs on both the vortex
ring and the vortex line, leading to their connection. This disrupts the
hopfion structure and extends the system beyond the scope of our study.

Vortex structure dynamics with vortex lines
We further examine the impact of a vortex line on the dynamics of more
complex topological configurations, such as vortex trefoils and vortex links.
The characteristics of these vortices can be measured through the assess-
ment of their length, energy, and helicity2,23. When the vortex formation
loses its rigidity, additional characterization can be provided by themoment
of inertia tensor. The ratio of transverse-to-vertical dimensions of the vortex
structure can be deduced by computing the moment of inertia tensor ele-
ments. For this purpose, we introduce relative coordinates as r1 = x− xcm,
r2 = y− ycm, r3 = z− zcm, where (xcm, ycm, zcm) is the center of mass coor-
dinate of the vortex structure. The relative moment of inertia tensor I is
defined as49

Iij ¼ δij

Z
Mr2dr�

Z
Mrirjdr; i; j ¼ 1; 2; 3 ð3Þ

where M ¼ ρth � jψj2� �
H ρth � jψj2� �

. By diagonalizing the matrix I
through an orthogonal transformation represented by U, we obtain
UIUT = diag(I1, I2, I3). Specifically, in our current setup, I3 = I33 with
I3 > I1 = I2. The ratio I3/I1 serves as an indicationof the transverse-to-vertical

ratio of the vortex structure. For ellipsoids, the scenario where I3 > I1 = I2
corresponds to an oblate ellipsoid, while the special case I3/2 = I1 = I2
characterizes a flat disk without thickness.

In Fig. 4, we illustrate the temporal evolution of the transverse-to-
vertical ratio, I3/I1, for different vortex configurations. Figure 4a depicts the
real-time transverse-to-vertical ratio for a simple vortex ring (the gray solid
line), two coaxial vortex rings (the blue solid line), and a vertical vortex line
encircled by two vortex rings (the red dashed line). It can be observed that
the transverse-to-vertical ratio remains constant throughout the evolution
of a single ideal vortex ring. Conversely, in the scenario of two coaxial vortex
rings, the transverse-to-vertical ratio exhibits periodic oscillations, indica-
tive of a traditional leapfrogmotion. Thismotion initiates with the rear ring
contracting radially and increasing in speed, while the front ring expands
and decreases in speed simultaneously15. As the rear ring precisely transits
through the leading ring, the two rings align in the same plane, resulting in
identical transverse-to-vertical ratios for both the coaxial rings and the single
ring. Furthermore, it is worth noting that the central vortex line exerts a
slight influence on the leapfrog motion.

The vortex trefoil stands as the most elementary non-trivial knot. In
Fig. 4b, the blue solid line portrays the temporal progression of the
transverse-to-vertical ratio for a vortex trefoil. While the trefoil structure is
intact, the transverse-to-vertical ratio undergoes slight oscillations. Intro-
ducing a vortex line decelerates the motion of the trefoil and amplifies the
amplitude variation of the transverse-to-vertical ratio due to the significant
deformation of the trefoil in the z-direction, as shownby the red dashed line.
Additionally, considering that a trefoil can be formed by connecting two
perturbed coaxial vortex rings converging towards each other23, and the
reverse process has been observed in both superfluids and normal fluids1,2,50,
we investigate the temporal evolution of the transverse-to-vertical ratio
initiated by two helical vortex rings in Fig. 4c. The ratio increases until the
two rings unite to form a trefoil through reconnection. Upon reaching a
minimum ratio, the trefoil disintegrates back into two separate rings. The
presence of a vortex line accentuates the deformation of the vortex structure
in the z-direction, leading to a further reduction in the speed of the vortex
motion.

In conclusion, our study delves into the dynamics of helical vortex
rings.Our investigations reveal the ability to influence both the translational
and rotationalmotion of a helical vortex ring through the incorporation of a
vortex line. In the absence of Kelvin waves, the inclusion of a vortex line
results in an increase in speed of a pristine vortex ring, disregarding the
topological charge polarity of the line. Concerning helical vortex rings, the

Fig. 4 | Time evolution of the transverse-to-vertical ratio of the vortex structures.
a The transverse-to-vertical ratio as a function of time for a vortex ring (gray solid
line), two coaxial vortex rings initially in the same plane (blue solid line), and the two
vortex rings with a s = 1 central vortex line (red dashed line). During the dynamic
process, the shape of the single ring remains unchanged, while the double rings
undergo leapfroggingmotion. For two vortex rings, the initial radii and the minimal
distance of the upper and lower ring are Ru = 2.0, Rl = 2.3, and dmin ¼ 1:5, respec-
tively. b The time evolution of the transverse-to-vertical ratio of a trefoil initially
generated by phase imprinting with (red dashed line) and without (blue solid line) a
s = 1 central vortex line. The toroidal and poloidal radii of the trefoil are Rt = 2.0 and

Rp = 0.4, respectively. During the dynamic process, the trefoil structure is well pre-
served. c Time evolution of the transverse-to-vertical ratio of two initial helical
vortex rings with (red dashed line) and without (blue solid line) a s = 1 central vortex
line. During the dynamic process, the two helical rings reconnect into a trefoil, which
then breaks into two helical rings again. For two perturbed rings, the initial radii and
the minimal distance of the upper and lower ring are Ru = 2.0, Rl = 2.3, and
dmin ¼ 1:0, respectively. The radial and axial amplitudes of the Kelvin waves of the
upper ring are Axyu = 0.8 and Azu = 0.3 and that of the lower ring are Axyl = 0.4 and
Azl = 0.2, respectively. The initial relative angle and wave number of the rings are
α = π/3 and n = 3.
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reduction in speed caused by Kelvin wave perturbations can be augmented
or diminished by the vortex line, contingent upon the topological charge
polarity carried by the line. By leveraging the topological charge of the vortex
line, along with the wave number and amplitude of the Kelvin waves, one
can influence the translational dynamics of a vortex ring. Intriguingly, an
alteration in the translational speed of the ring can be achieved by creating a
cavitywithin the region enclosedby the vortex ring. The configurationof the
aperture influences the translational motion, underscoring the significance
of the speed field distribution surrounding a vortex ring on its movement.

Our analysis extends to the examination of the rotational behavior of
helical vortex rings prompted by Kelvin waves. We discover that helical
wave disturbances can induce rotation in the vortex ring, analogous to a
similar phenomenon observed in a trefoil knot. The rotation frequency of a
vortex ring can be deduced from the oscillation frequency of 2D point
vortices along the ring. Moreover, we illustrate that the rotational motion
can be influenced by adjusting the topological charge of a vortex line.When
the flow direction of the vortex line aligns with that of the vortex ring, the
rotational effect is enhanced; conversely, when they are in opposition, the
rotational effect is diminished. These results enhance comprehension of the
interplay among different vortex structures, aiding in the understanding of
quantum turbulence within intricate systems. For instance, the random
emission and collision of vortex rings can initiate a localized vortex tangle
within the condensate, dynamically releasing vortex rings as part of the
turbulence decay51. Furthermore, the interaction between vortex rings and
vortex lines can cause deflections and changes in speed of vortex rings, as
well as the generation of Kelvin waves and phonon excitations52. A com-
prehensive understanding of vortex ring dynamics and their interactions
withvortex lines is imperative.To further elucidate thedynamics of complex
vortex structures, we calculated the moment of inertia tensor to represent
the transverse-to-vertical ratio of these structures. This provides a potential
tool for analyzing the dynamics of complex vortices. We note that the
density and phase of the superfluid wave function can be readily correlated
with the density and speed in classical hydrodynamic fluids through the
Madelung transform.Thedynamics of vortex rings showsimilarities in both
BECs andwater1,37,53. Consequently, ourfindings are valuable for elucidating
phenomena in classical fluids.

Methods
Dimensionless process
To ensure both convenience and accuracy, we work with dimensionless
parameters throughout our calculations. Vortex structures are created
within the homogeneous background of the condensate using phase
imprinting and imaginary time evolution techniques. Our simulations are
conducted in a uniformly discrete computational domain with grid points
Nx ×Ny ×Nz = 151 × 151 × 151, spatial resolution Δx ¼ Δy ¼ Δz ¼ffiffiffi
2

p
a0=10, and reflective boundary conditions. To ensure the precision

of solving the dimensionless GP equations, we employ both the
Crank-Nicolsonmethod and the fourth-orderRunge–Kuttamethod,which
consistently produce reliable results.

It is customary to scale the GP equation to a dimensionless form by
using units of length, time, and energy are a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=2mω0

p
, t0 = 1/ω0, and

E0 = ℏω0, respectively, where we choose ω0 = 2π × 75Hz as the reference
frequency. The dimensionless GP equation then becomes

i
∂ψ

∂t
¼ �∇2 þ V trap x; y; z

� �þ U0jψj2
h i

ψ ð4Þ

whereU0 ¼ 8πas
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mω0=_

p
is the dimensionless interaction constant. The

s-wave scattering length isas = 5.4 nmand themassm = 1.443 × 10−25 kg for
87Rb BECs. The system is trapped in a cylindrical box potential Vtrap as

V trapðx; y; zÞ ¼
0; r < 7 and � 7⩽ z⩽ 7

V0; otherwise

	
ð5Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and V0 = 300 is the potential height.

Initial state construction
The initial states are constructed by introducing a lying vortex ring and a
vertical straight vortex line that pierces through the center of the ring. The
vortex rings can be perturbed by Kelvin waves characterized by different
wave numbers and amplitudes. In experimental setups, initial vortices are
typically created using phase imprinting techniques. In numerical simula-
tions, the initial state is achieved by evolving the GP equation in imaginary
time with the initial wave function. A reasonable assumption for the initial
wave function of a helical vortex ring and a vortex line is given by38

ψ3D x; y; z
� � ¼ψ2Dr r � Rr � A sin½nθ x; y

� ��;

z � z0 � A cos½nθðx; yÞ��×
ψ�
2Dr r þ Rr � A sin½nθð�x;�yÞ�;

z � z0 � A cos½nθð�x;�yÞ��×
ψ2Dl x; y


 �
ð6Þ

where ψ2Drðr; zÞ ¼
ffiffiffiffiffiffi
N0

p
exp½iθðr; zÞ�, ψ2Dlðx; yÞ ¼

ffiffiffiffiffiffi
N0

p
exp½isθðx; yÞ�,

θ x; y
� � ¼ atan2 y; x

� �
, N0 is the total number of atoms, s is the topological

charge of the vortex line, z0 is the initial position of the center of mass of the
helical ring along the z-axis,A andn are the amplitude and thewavenumber
of Kelvin waves, respectively. The initial wave function provides a phase θ,
from which the speed field of the condensate can be determined as
v = ℏ/m∇ θ. The helical vortex rings generated in the main text rotate
clockwise, whereas the initial wave function of counterclockwise rotating
vortex rings can be found in Fig. S4 and Eq. (S2).

In our plots, we define iso-surfaces by selecting a threshold density
based on a constant value proportional to themaximumdensity. Specifically,
we choose a threshold density value that is about 20% of the peak density
within the system, consistent with the approach in ref. 38. This guarantees
that the iso-surfaces accurately represent the essential structural character-
istics of the vortex, excluding low-density areas that have minimal impact on
the overall dynamics. To study the influence of a central vortex line on the
dynamics of a vortex ring, it is necessary to maintain the hopfion structure
by employing two key strategies. These strategies are designed to preserve the
geometric integrity necessary for analyzing how the central vortex line affects
the behavior of the vortex ring. Firstly, wemeticulously positioned the vortex
line along the axis of the vortex ring. Secondly, we ensure that the size of the
background condensate, determined by the radius of the cylindrical trap, is
at least double the radius of the vortex ring. This approach effectively
maintains a sufficient distance between the vortex line, vortex ring, and the
boundary of the system. Improper selection of initial parameters, as illu-
strated in Figs. S1 and S2, may result in the splitting of the vortex line, tilting
of the vortex ring, or even the reconnection of the vortex line with the vortex
ring. Such deviationsmay significantly impact the influence of the vortex line
on the velocity of the vortex ring.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The code used in this study is available from the corresponding author upon
reasonable request.
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