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Abstract: Compressive Sensing (CS) is a transformative signal processing framework that
enables sparse signal acquisition at rates below the Nyquist limit, offering substantial ad-
vantages in data efficiency and reconstruction accuracy. This survey explores the theoretical
foundations of CS, including sensing matrices, sparse bases, and recovery algorithms, with
a focus on its applications in power engineering. CS has demonstrated significant potential
in enhancing key areas such as state estimation (SE), fault detection, fault localization,
outage identification, harmonic source identification (HSI), Power Quality Detection condi-
tion monitoring, and so on. Furthermore, CS addresses challenges in data compression,
real-time grid monitoring, and efficient resource utilization. A case study on smart meter
data recovery demonstrates the practical application of CS in real-world power systems.
By bridging CS theory and its application, this survey underscores its potential to drive
innovation, efficiency, and sustainability in power engineering and beyond.

Keywords: compressive sensing; sparse signal recovery; sensing matrices; power engineering;
smart grid

1. Introduction
In the era of big data and the Internet of Things (IoT), the ability to efficiently acquire,

process, and analyze vast amounts of information has become increasingly critical. This
need is especially pronounced in power engineering, where modern electrical grids are
characterized by bidirectional flows of electricity and information. With the proliferation
of smart meters, phasor measurement units (PMUs), and distributed renewable energy
systems, power grids generate massive amounts of data every second. For instance,
Advanced Metering Infrastructure (AMI) alone generates petabytes of data annually, with
a single smart meter producing between 0.25 TB to 250 TB per year [1]. Similarly, PMUs
deployed in Wide-Area Measurement Systems (WAMSs) continuously transmit synchro
phasor data at rates of 10–120 samples per second, creating significant data transmission and
storage demands [2,3]. Managing such high-dimensional data efficiently for applications
like real-time state estimation, fault detection, energy management, and load forecasting
remains a key challenge due to bandwidth limitations, communication overhead, and
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computational constraints. Several key challenges must be addressed for efficient sensor
data handling and communication, particularly in large-scale smart grid applications [1–3]:

i. High-Volume Data Transmission: Traditional data acquisition and transmission
techniques require full Nyquist-rate sampling, leading to excessive bandwidth
usage, high storage requirements, and communication congestion in smart grids.

ii. Bandwidth and Latency Constraints: Many power system applications, such as fault
detection, real-time state estimation, and condition monitoring, require low-latency
and high-fidelity data transmission. However, conventional compression methods
introduce computational delays, making them unsuitable for real-time processing.

iii. Energy-Efficient Data Processing: In large-scale sensor networks, such as PMUs
and IoT-based smart grid sensors, the energy cost of continuous data transmission
is high. Efficient data acquisition strategies are needed to reduce transmission
overhead while ensuring robust monitoring capabilities.

iv. Scalability and Resource Constraints: As smart grids expand, the increasing number
of sensors and IoT devices exacerbates the problem of real-time data management,
requiring lightweight, scalable solutions for sensor data acquisition.

Compressive Sensing as a Solution
One promising solution to these challenges is Compressive Sensing (CS), a revolution-

ary signal processing paradigm that enables the reconstruction of sparse signals using far
fewer measurements than traditionally required. By exploiting sparsity, CS sidesteps the
limitations of the Nyquist–Shannon theorem, making it possible to acquire and process data
at sub-Nyquist rates [4–7]. Unlike conventional methods that first sample data exhaustively
and then compress it, CS integrates data acquisition and compression, enabling efficient
signal reconstruction with lower resource requirements. Sparse representations encompass
various techniques, but CS specifically extends this concept by enabling reconstruction
from limited or incomplete measurements, making it highly suited for fault-tolerant acqui-
sition systems. However, not all sparse representations involve CS. Unlike generic sparse
coding methods used in machine learning for feature extraction, CS extends sparsity by
enabling signal reconstruction from limited or incomplete measurements, making it ideal
for fault-tolerant acquisition systems [8].

Advancements and Practical Benefits of CS in Power Engineering
Recent studies have validated the benefits of CS-based compression and reconstruction

across multiple power engineering domains. For example, low-power CS architectures
have demonstrated up to 6× improvements in energy efficiency compared to that of tradi-
tional Nyquist-rate analog-to-digital converters (ADCs) [9]. CS-based Analog Information
Conversion (AIC) systems have achieved a Figure of Merit (FOM) of a 10.2 fJ/conversion
step, highlighting their suitability for energy-efficient wideband signal acquisition [10]. In
Advanced Metering Infrastructure (AMI), CS enables low-latency smart meter data trans-
mission while minimizing bandwidth and storage overhead [11–13]. Similarly, CS-driven
PMU data compression has been proposed to address the scalability limitations of WAMS,
reducing transmission latency and enhancing grid observability [2,3,14]. In state estima-
tion and topology identification (SE & TI), CS techniques have been applied to optimize
measurement redundancy and improve real-time monitoring accuracy. Furthermore, CS-
based frameworks for fault detection, outage identification, harmonic source identification,
and condition monitoring have demonstrated superior accuracy in reconstructing grid
disturbances while reducing sensor data transmission costs [15–19].

These advantages make CS indispensable for modern power grids, addressing data-
intensive power system applications by reducing communication bottlenecks, enhancing
storage efficiency, and enabling real-time signal acquisition.

Comparing CS with Traditional Compression Methods
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Compressive Sensing (CS) is fundamentally different from traditional compression
methods, which are generally categorized into lossy and lossless techniques [1]:

• Lossy Compression: Techniques like Singular Value Decomposition (SVD), Principal
Component Analysis (PCA), and Symbolic Aggregate Approximation (SAX) reduce
data size by discarding less significant information. These are suitable for appli-
cations where a trade-off between size and quality is acceptable, such as image or
video compression.

• Lossless Compression: Methods like Huffman coding and LZ algorithms preserve all
original data, ensuring perfect reconstruction but often requiring extensive computa-
tional resources.

CS integrates data acquisition and compression at the hardware level by directly
capturing the most critical information through random projections. Unlike traditional
methods that operate post-acquisition, CS relies on the following:

• Sparsity: Signals with many near-zero coefficients in a transform domain (e.g., wavelet
or Fourier domain).

• Random Projections: Encoding sparse signals through measurement matrices that
satisfy the Restricted Isometry Property (RIP).

• Efficient Recovery Algorithms: Reconstruction of the original signal using techniques
like ℓ1-minimization.

While CS and traditional compression methods are distinct, they are not mutually
exclusive. Hybrid approaches are emerging where traditional compression serves as a pre-
processing step for CS by reducing dimensionality. CS recovery outputs are further optimized
using traditional compression for applications like storage reduction in cloud systems.

2. Motivation and Contributions
The rapid transformation of power systems—driven by smart grids, renewable energy

integration, and the shift toward digitalized infrastructure—has created an unprecedented
demand for handling large-scale, complex datasets. Conventional data management
and analysis methods often face challenges with data’s sheer scale and inherent sparsity,
particularly in critical applications such as advanced metering, fault detection, and wide-
area monitoring. In power systems, data compression has traditionally depended on well-
established sparsity techniques [1]. Compressive Sensing (CS) presents a promising solution
by facilitating efficient data acquisition, transmission, and recovery using minimal samples.
While numerous reviews of CS focus on fields like medical imaging, communications,
and general sparse signal recovery [20–31], a gap remains in the literature connecting CS
theory with power engineering applications. This study aims to bridge the gap between CS
theory and its practical applications in power engineering, addressing how CS helps resolve
challenges like the high-dimensional data generated, resource-constrained environments,
noisy, sparse, or incomplete measurements, etc., in power engineering applications. The
main contributions of this work are as follows:

(a) A Comprehensive Theoretical Overview: We present a robust foundation of CS princi-
ples, covering key aspects like sensing matrices, measurement bases, and recovery
algorithms. This theoretical grounding aids in understanding how CS can be strategi-
cally applied to real-world grid applications.

(b) Applications in Power Engineering: We examine major applications of CS across
power engineering scenarios, including Advanced Metering Infrastructure, state es-
timation, fault detection, fault localization, outage identification, harmonic sources
identification, power quality detection, condition monitoring, and IoT-based smart
grid monitoring. By detailing these use cases, we highlight how CS addresses spe-
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cific challenges such as data sparsity, transmission efficiency, and communication
constraints, ultimately offering new pathways for efficient grid operation.

(c) A Case Study: We evaluate the effectiveness of various sparse bases and measurement
matrices for smart meter data recovery under different compression ratios and noise
conditions. This study systematically examines the impact of compression ratios
on reconstruction accuracy in both noise-free and noisy environments, providing
practical insights into designing robust CS-based compression techniques for power
grid data. The findings contribute to optimizing data acquisition and transmission
strategies, enhancing efficiency in power system monitoring and operation.

3. Compressive Sensing Paradigm
Candes et al.’s groundbreaking work [4–6] revolutionized signal processing by intro-

ducing Compressive Sensing. This approach challenges the standard Nyquist–Shannon
requirement (N samples) by using fewer measurements (M), opening new possibilities for
signal acquisition and reconstruction [7].

Figure 1 outlines the general framework of the CS, encompassing the processes of
data acquisition and reconstruction. Given a signal x ∈ RN, the conventional sensing
paradigm requires the number of measurements M to be at least equal to N to ensure
accurate reconstruction. However, CS enables accurate or approximate reconstruction with
significantly fewer measurements (M < N), provided the signal is sparse or compressible in
its original domain or a transformed domain. In CS, fewer measurements are obtained by
linearly projecting the high-dimensional signal x onto a lower-dimensional space using a
carefully designed sensing matrix Φ ∈ RMxN, resulting in a measurement vector y ∈ RM.
Mathematically, this is expressed as in Equation (1) [4–7]:

y = Φx (1)

Here, Φ is the measurement matrix/ sensing matrix.
The measurement matrices and sparse matrices play pivotal roles in the CS framework:

• Measurement Matrix/Sensing Matrix (Φ):
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In CS, the measurement matrix is designed to preserve the essential information of
the sparse or compressible signal, ensuring that it can be reconstructed using nonlinear
optimization techniques. The matrix Φ is applied to the high-dimensional signal to obtain
a set of compressed measurements, commonly referred to as “compressive measurements”
or “observations.” These measurements are a linear combination of the original signal’s
elements. This approach drastically reduces the number of measurements needed compared
to traditional sampling, making CS highly efficient for applications where data acquisition
or storage is resource-constrained.

• Sparse Basis/Dictionary Matrix (Ψ):

Sometimes, x may not be sparse by itself. To address this, a transformation matrix
Ψ, known as the sparse basis or dictionary matrix, is applied to represent the signal in
a domain where it is sparse or compressible. For example, if the signal is sparse in the
frequency domain, Ψ could be a Fourier transform matrix. Mathematically, the signal in
the sparse domain is represented as in Equation (2):

x = Ψs (2)

where s∈ RN is a K-sparse vector.
Using this transformed representation, compressed measurement is given as in Equation (3):

y = ΦΨs (3)

The sparse basis matrix plays a pivotal role in transforming the signal into a repre-
sentation where a majority of coefficients are zero or near zero, making it sparse. This
transformed representation is crucial for efficient signal recovery.

• Reconstruction Matrix (Θ = ΦΨ):

The reconstruction matrix Θ combines the measurement matrix (Φ) and the sparse
basis (Ψ) to represent the overall linear transformation from the sparse representation of
the signal to its compressed measurements.

The challenge in CS is to recover the original signal x. This is an underdetermined
system due to M < N. A nonlinear reconstruction algorithm, often simplified to a linear
form, is employed to rebuild the initial signal. This algorithm operates on the principle
that it must be aware of a specific representation basis, either the original or a transformed
one—where the signal exhibits sparsity for precise recovery or compressibility for an
approximate one. The compressed sensing reconstruction algorithm yields an estimated
sparse representation of a signal, denoted as ŝ. From this, an estimate of the original signal,
represented as x̂, can be derived by inversely transforming or closely approximating the
reverse of ŝ. Reconstruction algorithms in compressive sensing address the problem of
reconstructing a sparse signal from an underdetermined measurement, Equation (1). These
algorithms exploit sparsity by solving optimization problems involving l0, l1, or l2 norms.
The different norm minimization approaches and problem formulations are as follows:

(i) l0 Norm Minimization:

The objective is to minimize the number of non-zero coefficients in the reconstructed
signal ‘x’, as shown in Equations (4) and (5)

for a case without noise

min ||x||0 subject to y = Φx (4)
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and for a case with noise:

min||x||0 subject to ||y − Φx|| 2
2 ≤ e (5)

||x||0 = ∑i 1 (xi = 0) (6)

Here, e is a small tolerance parameter accounting for measurement noise. Equation (6)
shows the l0, norm of ‘x’.

(ii) l1 Norm Minimization:

The objective is to minimize the sum of absolute values of coefficients in the recon-
structed signal ‘x’, as shown in Equations (7) and (9)

for a case without noise,

min ||x||1 subject to y = Φx (7)

||x||1 = ∑i|xi| (8)

and for a case with noise,
min ||x||1 + λ||y − Φx || 2

2 (9)

Here, Equation (8) shows the l1 norm of ‘x’, where λ is the regularization parameter
balancing sparsity and data fidelity. A higher value of λ encourages sparsity by penalizing
large coefficients in the reconstructed signal.

(iii) l2 Norm Minimization:

The objective is to minimize the magnitude of coefficients in the reconstructed signal
‘x’, as shown in Equations (10) and (12)

for a case without noise,

min ||x||2 subject to y = Φx(without noise) (10)

||x||2 =
√

∑i xi
2 (11)

and for a case with noise,

min ||x||2 + λ||y − Φx|| 2
2 (with noise) (12)

Here, Equation (11) shows the l2 norm of ‘x’.
The following conditions must be met for perfect sparse signal reconstruction [4–7,21–31].

(i) Sparsity: For CS techniques to be effective, signals need to be sparse or nearly sparse.
Sparsity refers to having few non-zero coefficients, while near sparsity means that the
coefficients are close to zero. A signal x is said to be k-sparse in the Ψ domain if it can
be represented with only k non-zero coefficients when transformed by Ψ.

(ii) Incoherence: This broadens the time–frequency relationship, suggesting that objects
with a sparse representation in one domain, symbolized by Ψ, are distributed over the
domain of acquisition, just as a singular pulse or spike in the time domain disperses
across the frequency domain [4]. Incoherence is a measure of the dissimilarity between
the measurement basis ϕ and the sparsity basis ψ. For precise reconstruction in CS,
these bases must be incoherent with each other. The mutual coherence µ is a statistic
that quantifies the maximum correlation between the elements of these two matrices
and is given by Equation (13) [20]:
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µ(ϕ,ψ) =
√

N max
0≤i,j≤N

∣∣∣〈ϕi,ψj

〉∣∣∣ (13)

The scalar product (inner product) of two vectors ϕ and ψ is given by Equation (14).

⟨ϕ,ψ⟩ = ∑N
i=1ϕi ψi (14)

The range of coherence is [1,
√

N]. A lower value of µ is desirable as it implies a
higher degree of incoherence between the bases, facilitating accurate signal reconstruction
with fewer measurements. The measurement requirement for different sensing matrices is
shown in Table 1.

Table 1. Sensing matrices and compressive measurements requirements.

Sensing Matrix Number of Measurements

Bernoulli or Gaussian M ≥ ϕk log N/K
Partial Fourier M ≥ ϕµk (log N)4

Random (any other) M = O (k log N)
Deterministic M = O (k2 log N)

(i) Restricted Isometry Property (RIP): The reconstruction matrix Θ must satisfy the RIP
condition to ensure the preservation of the geometric properties of a sparse signal
during transformation and measurement. RIP maintains the distances (Euclidian or
l2 norm) between sparse signals, preventing them from being too closely mapped,
which facilitates accurate reconstruction. Formally, a matrix obeys the RIP of order ‘k’
if the restricted isometry constant δk satisfies Equation (15) [22],

(1 − δk)||x||2
2 ≤ ||Θx|| 2

2 ≤ (1 + δk)||x||2
2 (15)

for all k-sparse vectors ‘x’. The RIP ensures that all subsets of ‘k’ columns taken
from the matrix are nearly orthogonal. RIP enables compressive sensing algorithms
to embed sufficient information within a reduced number of samples, allowing for
accurate reconstruction and robustness against noise. It provides a deterministic
guarantee for the accurate reconstruction of sparse signals, even in the presence of
noise interference.

l0 norm minimization can exactly recover sparse signals when the sparsity, coherence,
and RIP are met. But it is computationally expensive and NP-hard. Greedy algorithms
are commonly used for l0 minimization. In practice, l1-minimization is often used due to
its convex nature, robustness to noise, and computational tractability. l2 minimization is
commonly used in applications with well-behaved and Gaussian noise. l2-regularized least
squares or ridge regressions are commonly used for l2 minimization. lp norm minimization
becomes non-convex for 0 < p < 1, which can lead to multiple local minima. The values of p
between 0 and 1 are less common but can be used to enforce stronger sparsity.

4. Measurement Matrix and Sparse Basis Matrix
4.1. Measurement Matrices

Measurement matrices are crucial for ensuring efficient sampling and signal recon-
struction. They must satisfy the Restricted Isometry Property (RIP) to guarantee accurate
reconstruction. Various types of measurement matrices have been studied in the literature,
classified as in Figure 2, focusing on hardware compatibility, computational efficiency, and
suitability for large-scale, real-time applications.
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4.1.1. Random Matrices

Random Gaussian Matrices (RGMs): Universally incoherent with most sparse bases,
RGMs satisfy the RIP criteria but pose challenges in terms of storage and reproducibil-
ity [23].

Sparse Binary Matrices (SBMs): These offer energy-efficient solutions compared to
conventional data compression techniques, though their reconstruction performance may
be slightly inferior to that of RGMs [23].

4.1.2. Deterministic and Structured Matrices

Toeplitz, Circulant, and Quasi-Cyclic Array Code (QCAC)-Based Binary Matrices:
Being computationally efficient, they reduce memory requirements and are suitable for
real-time applications, such as power grid monitoring and fault detection [21,32].

The move toward deterministic matrices stems from the need for low complexity, fast
computation, and real-time compatibility, making them ideal for power engineering appli-
cations [23]. Performance analysis of deterministic and random matrices has highlighted
their practical applications in domains like grid state estimation, harmonic analysis, and
fault detection.

4.1.3. Chaotic Matrix

The chaotic matrix is derived from chaotic systems like logistic maps; these matrices
balance deterministic and random properties. They are noise-resilient, satisfy RIP under
specific conditions, and are suitable for robust applications [23].

4.2. Sparse Basis Matrices

Sparse basis matrices are essential for transforming signals into sparse representa-
tions, enabling efficient reconstruction. The choice of the basis depends on the signal’s
characteristics and application requirements. Sparse bases can be broadly classified into
fixed dictionaries, over-complete dictionaries, and data-driven dictionaries, each catering
to specific scenarios and computational needs.

4.2.1. Fixed Sparse Basis Matrices

Fixed dictionaries are predefined mathematical constructs that are widely used in CS
applications. These dictionaries are effective when their mathematical properties align well
with the characteristics of the data.

Fourier transform (FT) is widely used for stationary signals, providing an efficient
representation in the frequency domain. However, it is unsuitable for non-stationary signals
due to its inability to offer time-frequency resolution [33].

Short-Time Fourier Transform (STFT) partitions the signal into segments using a fixed-
size window, enabling localized time–frequency analysis. While it resolves some limitations



J. Sens. Actuator Netw. 2025, 14, 28 9 of 46

of FT, its performance depends heavily on the chosen window size, leading to trade-offs
between time and frequency resolution [34,35].

Wavelet Transform (WT) provides superior time–frequency resolution compared to FT
and STFT by employing variable window sizes. It is particularly effective for identifying
transient signals, fundamental frequencies, and harmonics. WT has been extensively used
in CS for power system applications due to its ability to represent signals sparsely in
localized time–frequency domains [34,36–38]. Discrete Wavelet Transform (DWT) requires
fewer resources compared to Continuous Wavelet Transform (CWT) and is ideal for large-
scale applications [35]. Wavelet Packet Transform (WPT) extends DWT by decomposing
both approximation and detail components, allowing for a more refined sparse represen-
tation [37]. Wavelet Multi-Resolution (WMR) employs a combination of high-pass and
low-pass filters to process high- and low-frequency components, respectively, making it
effective for detecting transients in power systems [11,38].

Discrete Cosine Transform (DCT), Hilbert Transform (HT), Gabor Transform (GT),
Wigner Distribution Function (WDF), S-Transform (ST), Gabor–Wigner Transform (GWT),
Hilbert–Huang Transform (HHT), and other hybrid transform methods are also used [33,39].
Discrete Sine Transform (DST) [40] and Lapped Transform (LT) [41] are the other built-in
(predefined dictionaries) transforms.

WT [11,38], DCT [12], FT [13], ST, STFT [35] and others can be used for 1D signals.
For 2D signals like images, options like 2D Wavelets [34,36,37], Gabor [42], Curvelets [43],
Contourlets [44,45], and Ridgelet Transform [46], shearlet transform [47], etc., can be used.

4.2.2. Over-Complete Dictionaries

Over-complete dictionaries combine multiple deterministic bases to create a richer repre-
sentation. These dictionaries are highly redundant, allowing them to capture diverse signal
features, but at the cost of higher computational complexity. Combinations of Haar, DCT,
Toeplitz, and Hankel matrices have been successfully applied in imaging and power system
applications, enabling better sparse representation and feature extraction [34,42–44,48].

4.2.3. Data-Driven Dictionaries

Data-driven dictionaries adaptively learn the sparse basis from the dataset, enabling
superior performance for real-world signals. Adaptively learned dictionaries excel in
non-stationary signals and applications requiring precise feature extraction, such as power
system diagnostics and medical imaging [49–51]. Algorithms like K-Singular Value Decom-
position (K-SVD) [52], Non-Negative Matrix Factorization (NMF) [53], and Deep Learning
models (e.g., CNNs, RNNs, Autoencoders) [49–51] train the dictionary to capture unique
data features.

For complex and high-dimensional signals, over-complete dictionaries and adaptive meth-
ods are preferred. These approaches provide enhanced flexibility and adaptability, particularly
in applications where signals exhibit intricate structures or non-stationary characteristics.

5. Signal Reconstruction Algorithms
Signal reconstruction algorithms are pivotal in the Compressive Sensing (CS) frame-

work, as they enable the recovery of sparse signals from compressed measurements. Table 2
provides a comprehensive classification of CS signal recovery algorithms, highlighting
the features, advantages, and trade-offs of various approaches. These algorithms can be
broadly categorized into several distinct classes as shown in Figure 3, each characterized
by its unique approach and inherent trade-offs.
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Table 2. CS-based algorithms highlighting the features.

Approach Ref. Algorithms Features, Pros (+) and Cons (−)

Convex
optimization

[54] Basis Pursuit (BP)

Solves the ℓ1-minimization.
Complexity: O(N3), minimum measurement: O (k log N)
+ Utilizes simplex or interior point methods for solving.
+ Effective when measurements are noise-free.
− Sensitive to noise, may not recover accurately in noisy
conditions.

[54] Basis Pursuit
De-Noising (BPDN)

Seeks a solution with minimum ℓ1-norm while relaxing constraint
conditions.
+ Useful when dealing with noise.
+ Incorporates quadratic inequality constraints.

[55] Dantzig Selector (DS) Uses ℓ1 and ℓ∞ norms to find a sparse solution.
+ Provides a robust sparse solution.

[56]
Least Absolute
Shrinkage and Selection
Operator (LASSO)

Employs ℓ1 regularization for simultaneous variable selection and
regularization
+ Handles variable selection and regularization in one step
− Can introduce bias in high-dimensional data.

[57] Total variation (TV)
denoising

Is suitable for piecewise constant signals, denoising, and image
reconstruction as a measurement technique.
+ Preserves edges and fine details.
+ Effective in minimizing total variation while considering signal
statistics.
− Can lead to blocky reconstructions.

[58] Least angle regression
(LARS) + Identifies a subset of relevant features.

Non-Convex

[59]
Focal Understanding
System Solution
(FOCUSS)

Performs dictionary learning through gradient descent and directly
targets sparsity.
+ Emphasizes sparsity.
− NP-hard, computationally intensive.
− Used for limited data scenarios.

[60] Iterative Reweighted
least Squares (IRLS)

+ Adapts weights in each iteration for better sparsity.
− Convergence can be slow.

[45,60] Bregman iterative Type
(BIT)

Solves by transforming a constrained (ℓ1-minimization) problem
into a series of unconstrained problems.
+ Gives a faster and stable solution.

Iterative
/Thresholding

[61] Iterative Soft
Thresholding (IST)

Performs element-wise soft thresholding, which is a smooth
approximation to the ℓ0-norm.
+ Smooth approximation to ℓ0-norm encourages sparsity.
− Introduces bias.

[62] Iterative hard
Thresholding (IHT)

Belongs to a class of low computational complexity algorithms and
uses a nonlinear thresholding operator.
+ Less complex.
− Sensitive to noise.

[37]
Iterative Shrink-
age/Thresholding
Algorithm (ISTA)

Variant of IST that involves linearization or preconditioning.
− Performance depends on the choice of parameters and
preconditioning.

[61] Fast iterative soft
thresholding (FISTA)

+ Variant of IST designed to obtain global convergence and
accelerate convergence.
− Complexity may be higher due to the additional linear
combinations of previous points.

[63]
Approximate Message
Passing Algorithm
(AMP)

Iterative algorithm known for performing well with deterministic
and highly structured measurement matrices (e.g., partial Fourier,
Toeplitz, circulant matrices).
+ Demonstrates regular structure, fast convergence, and low
storage requirements.
+ Hardware-friendly.
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Table 2. Cont.

Approach Ref. Algorithms Features, Pros (+) and Cons (−)

Greedy

[64] Matching Pursuit (MP)

Associates basic variables (messages) with directed graph edges
and performs exhaustive search.
(+) Fast and simple implementation.
(−) May not be optimal for highly correlated dictionaries.

[65] Gradient Pursuit (GP) Relaxation algorithm that uses the ℓ2 norm to smooth the ℓ0 norm.
(+) Offers relaxation for the ℓ0 norm, which can be beneficial.

[22,66] Orthogonal Matching
Pursuit (OMP)

Orthogonally projects the residuals and selects columns of the
sensing matrix.
Complexity: O(kMN); minimum measurement: O (k log N).
(+) Orthogonalizes the residuals.
+ Efficient for sparse signal recovery.
(−) Computationally intensive for large dictionaries.

[22,66] Regularized OMP
(ROMP)

Extension of OMP that selects multiple vectors at each iteration.
Complexity: O(kMN); minimum measurement: O (k log2 N)
(+) Suitable for recovering sparse signals based on the Restricted
Isometry Property (RIP).

[22,67] Compressive sampling
OMP (CoSAmP)

Combines RIP and pruning technique
Complexity: O(MN); minimum measurement: O (k log N)
+ Effective for noisy samples.

[22,32]
Stagewise orthogonal
matching pursuit
(StOMP)

Combines thresholding, selecting, and projection
Complexity: O (N log N); minimum measurement: O(N log N)

[22,68] Subspace Pursuit (SP)
SP samples signal to satisfy the constraints of the RIP with a
constant parameter.
Complexity: O (k MN); minimum measurement: O (k log N/k)

[22,69] Expander Matching
Pursuit (EMP)

Based on sparse random (or pseudo-random) matrices.
Complexity: O (n log n/k); minimum measurement: O (k log N/k)
+ Efficient for large-scale problems.
+ Resilient to noise.
− Need more measurement than LP-based sparse recovery
algorithms.

[22,70] Sparse Matching Pursuit
(SMP)

Variant of EMP.
Complexity: O ((N log N/k) log R); minimum measurement: O (k
log N/k)
+ Efficient in terms of measurement count compared to EMP.
− Run time higher than that of EMP.

Probabilistic

[71] Markov Chain Monte
Carlo (MCMC)

Relies on stochastic sampling techniques.
Generates a Markov chain of samples from the posterior
distribution and leverages these samples to compute expectations
and make inferences.
(+) Can handle large-scale problems effectively.
(−) Requires multiple random samples, which can be
computationally expensive.

[72] Bayesian Compressive
Sensing (BCS)

+ Incorporates prior information into the recovery process.
+ Considers the time correlation of signals, which can be valuable
for time-series data.
(−) Requires careful choice of prior distributions, which may be
challenging.

[73]
Sparse Bayesian
Learning Algorithms
(SBLA)

Uses Bayesian methods to handle sparse signals.
+ Incorporates prior information.
+ Considers the time correlation of signals
− Requires careful choice of priors.

[74] Expectation
Maximization (EM)

Assumes a statistical distribution for the sparse signal and the
measurement process.
(+) Can be used when there is prior knowledge about the signal
distribution.
(−) May require a good initial guess for model parameters.

[75] Gaussian Mixture
Models (GMM)

Is used to model the statistical distribution of signals and
measurements.
Represents the signal as a mixture of Gaussian components and use
the EM algorithm for parameter estimation.
(+) Suitable for modeling complex and multimodal signal
distributions.
Can capture dependencies between signal components.
(−) Requires careful parameter estimation and may not work well
for highly non-Gaussian data.
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Table 2. Cont.

Approach Ref. Algorithms Features, Pros (+) and Cons (−)

Combinatorial/
Sublinear

[22,57] Chaining Pursuit (CP)

+Efficient for large dictionaries.
Complexity: O (k log2 N log2 k); minimum measurement: O (k
log2 N).
− Might miss some sparse components.
− Can result in suboptimal solutions

[22,76] Heavy Hitters on
Steroids (HSS)

+ Fast detection of significant coefficients/heavy hitters.
Complexity: O (k poly log N); minimum measurement: O(poly(k,
log N))
− Requires careful parameter tuning.

Deep Learning

[77,78] Learned ISTA (LISTA)

Mimics ISTA for sparse coding.
+ Uses a deep encoder architecture, trained using stochastic
gradient descent; has faster execution.
−Only finds the sparse representation of a given signal in a given
dictionary

[50]

Iterative
shrinkage-thresholding
algorithm based
deep-network
(ISTA-Net)

Mimics ISTA for CS reconstruction.
+ Reduces the reconstruction complexity by more than 100 times
compared to traditional ISTA.

[79] TISTA
Sparse signal recovery algorithm inspired by ISTA.
+ Uses an error variance estimator which improves the speed of
convergence.

[80] Learned D-AMP
(LDAMP)

Deep unfolded D-AMP (Approximate Message Passing)
implementation.
+ Designed as CNNs; eliminates block-like artifacts in image
reconstruction.

[81] RecoNet

Employs CNN for compressive sensing.
+ Superior reconstruction quality, faster than traditional algorithms
for image application.
− Uses a blocky measurement matrix.

[82] ADMM CSNet

+ Is a reconstruction approach that does not mimic a known
iterative algorithm.
+ Has the highest recovery accuracy in terms of PSNR (Peak
Signal-to-Noise Ratio) and SSIM (Structural Similarity Index
Measure).
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i. Convex optimization methods: These are foundational approaches for solving l1-
minimization problems, offering robust solutions in noise-free scenarios but often
struggling with computational intensity and sensitivity to noise [54–58]., e.g., Ba-
sis Pursuit.
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ii. Nonconvex Method: This targets sparsity more aggressively than convex approaches
do but faces challenges like computational intensity and potential instability in noisy
environments [59,60]. (e.g., FOCUSS, IRLS).

iii. Iterative/Thresholding Algorithms: These methods iteratively refine the solution
through thresholding to promote sparsity and are computationally efficient and suit-
able for large-scale problems, but their performance depends on parameter selection
and preconditioning [37,61–63] (e.g., ISTA, FISTA).

iv. Greedy Algorithms: These methods iteratively build the sparse solution by selecting
the best atom (column of the dictionary) at each step, but are sometimes less effective
with highly correlated dictionaries [22,64–70] (e.g., OMP, CoSaMP).

v. Probabilistic Models: These leverage prior information for robust recovery in noisy
or uncertain conditions, though they require careful parameter selection and may be
computationally demanding [71–74] (e.g., Bayesian Compressive Sensing).

vi. Combinatorial and Sublinear Methods: These focus on discrete and combinatorial
optimization (e.g., HSS) [22,57,75].

vii. Deep Learning Approaches: These represent the latest advancements in CS reconstruction,
offering unparalleled speed and accuracy by learning data-driven features [50,76–81] (e.g.,
ISTA-Net, LDAMP).

CS algorithm selection hinges on balancing sample complexity, computational de-
mands, resilience to noise, and uncertainties. For noise-free scenarios, convex optimization
methods such as Basis Pursuit are highly effective, offering precise solutions by leverag-
ing ℓ1-minimization techniques [54]. In contrast, for noisy measurements, methods like
Basis Pursuit Denoising (BPDN) and Bayesian Compressive Sensing (BCS) provide robust
recovery by incorporating noise tolerance and leveraging prior information [54,72]. For
real-time applications, iterative thresholding algorithms like FISTA and greedy approaches
such as OMP and CoSaMP strike a balance between speed and accuracy, making them
suitable for dynamic and resource-constrained environments [61,77]. When dealing with
complex data structures, deep learning-based methods, including ISTA-Net and RecoNet,
excel by learning intricate data-driven features, delivering superior performance, par-
ticularly in applications such as imaging and video reconstruction [50,80]. Probabilistic
models and Bayesian approaches can handle uncertainties in dynamic environments, such
as time-series data from power grids, but require optimization for large-scale applica-
tions [72]. Research efforts continue to refine algorithms, striving for excellence in these
critical dimensions [21,22].

6. Performance Metrics for Evaluation
Many evaluation matrices are proposed in the literature [23,34,83], which is helpful in

evaluating CS’s performance. The most commonly used metrics are as follows:
The coherence metric, defined in Equation (10), assesses the measurement matrix’s

effectiveness and ensures the reconstruction process’s success. It measures the highest
correlation between two normalized columns of the measurement matrix. A low coherence
level means fewer measurements are needed for the original signal’s reconstruction. Essen-
tially, the lower the coherence, the more efficiently the reconstruction algorithm operates.
The other metrics are as follows:

(a) Sparsity: For a signal x with N samples, if it is k-sparse in a sparse basis, then k
represents the count of non-zero coefficients, which is significantly less than N. This
means N−k coefficients can be discarded with minimal impact on the signal’s critical
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information. The percentage sparsity (fraction of non-zero coefficients) is given as in
Equation (16):

% Sparsity =
k
N

× 100 (16)

(b) Compression Ratio (CR)

CR is determined by dividing the number of measurements M by the number of
samples in the original input signals N, as given in Equation (17):

CR =
M
N

(17)

(c) Error Metrics: RE, MSE, RMSE, NMSE, MAE, INAE

i. Reconstruction error (RE), also known as recovery error, is the ratio of the
norm of the difference between the original signal and the reconstructed signal
x̂ divided by the norm of the original signal. RE is given in Equation (18):

RE =
||x − x̂||
||x|| (18)

ii. Mean square error (MSE) measures the average magnitude of the squared
difference between the original signal and the recovered signal. MSE given as
in Equation (19) is a widely used metric to assess the quality of reconstruction:

MSE =
∑N [x(N)− x̂(N)]2

N
(19)

iii. Root Mean Square (RMSE) measures the square root of the MSE and is given
as in Equation (20):

RMSE =
√

MSE (20)

iv. Normalized Mean Squared Error (NMSE) is given as in Equation (21):

NMSE =
∑N [x(N)− x̂(N)]2

∑N [x(N)− x(N)]2
(21)

v. Mean Absolute Error (MAE) measures the average absolute difference between
the original signal and the reconstructed signal and is given as in Equation (22):

MAE =
1
N

N

∑
i=1

|xi − x̂i| (22)

vi. Integrated Normalized Absolute Error (INAE) evaluates the normalized cu-
mulative reconstruction error over all elements of the signal and is given as in
Equation (23):

INAE =
∑N

i=1|xi − x̂i|
∑N

i=1|xi|
(23)

(d) Signal-to-Noise Ratio (SNR)

SNR measures the ratio of the signal power to the noise power as given in
Equation (24). It is often used in CS to quantify the quality of reconstruction in the presence
of noise.

SNR = 10log10
∑N [x(N)]2

∑N [x(N)− x̂(N)]2
(24)
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Peak Signal-to-Noise Ratio (PSNR) is a measure of the fidelity of the reconstructed
signal, as given in Equation (25). It is often used in image compression applications. The
maximum possible signal value of x (maxx), in the case of an image, is the maximum valid
value of a pixel.

PNSR = 10 log10
maxx

2

MSE
(25)

(e) Computation Time (CT)

Computation time encompasses all the computational steps involved in CS, including
measurement acquisition, data processing, solving optimization problems, and any other
algorithmic tasks.

(f) Recovery Time (RT)

This is a subset of computation time and focuses solely on the reconstruction phase of
CS. Recovery time specifically measures the time taken to solve the optimization problem
and recover the original signal once the compressed measurements are acquired. Eventually,
it depends on the complexity level of the reconstruction algorithms.

(g) Reconstruction/Recovery Success Rate (RSR) and Failure Rate

RSR measures the percentage of successfully reconstructed signals as given in
Equation (26). It is often used in scenarios where the exact reconstruction of every signal is
not necessary.

RSR =
Number of successful reconstructed signals

Total number of signals
× 100% (26)

A successful recovery is typically defined as when the recovered signal is highly
similar (e.g., 90% similarity) to the original signal for different values for the sparsity
level, number of samples, and number of measurements. Failure Rate, FR, is essentially
a complement of the RSR (FR = 1 − RSR). It represents how often the recovery algorithm
fails to reconstruct the original signal. It is calculated as the reciprocal of the Success Rate.

(h) Complexity

Complexity measures the computational resources required to perform signal recon-
struction from compressed measurements. It quantifies the computational burden of CS
algorithms and is crucial for assessing their practical feasibility, especially in real-time
applications or resource-constrained environments. Complexity reflects how efficiently
an algorithm performs with a large amount of data, and complexity can be measured in
computational time or hardware resources. It is important to note that, in CS, the degree
of complexity depends upon the sparsity, the number of samples, and the number of
measurements.

Percentage bandwidth saving (PBWS) is measured using Equation (27):

PBSW =
n.m − (p.k + n.p)

n.m
× 100 (27)

n is the number of features, m is the number of samples taken from each feature, and p
is the number of principal components.

(i) Correlation
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Correlation measures the similarities between the recovered signal and the original
signal. The correlation coefficient, c, is given as in Equation (28):

c = ∑N(x(N)− x(N)) (x̂(N)− x̂(N))√
∑ (x(N)− x(N))2 ∑ (x̂(N)− x̂(N))

2
(28)

x and x̂ are the averages of the actual and reconstructed signals.

7. Compressive Sensing in Power Engineering
In Power engineering, compressed Sensing (CS) has become a pivotal technology

for enhancing the efficiency and reliability of Smart Grid Communication Infrastructure.
Its implementation spans several critical areas: Advanced Metering Infrastructure (AMI)
and Wide-Area Measurement Systems (WAMSs), where CS aids in managing the massive
data influx from smart meters and synchro-phasor data transmission, respectively; state
estimation (SE) and Topology Identification (TI), which benefit from CS in accurate grid
state analysis and in understanding network topology amidst the complexities introduced
by renewable energy integration; fault detection (FD), fault localization (FL), and outage
identification (OI) in power grids, where CS’s sparse data processing capability is cru-
cial for pinpointing faults and outages efficiently; harmonic source identification (HSI)
and Power Quality Detection (PQD), where CS assists in identifying harmonic sources
to maintain power quality in decentralized grids; and condition monitoring (CM) of ma-
chinery, where CS significantly reduces data volume and enhances real-time monitoring
effectiveness. Across these domains, CS stands out for its ability to handle large datasets
and sparse scenarios, positioning it as a transformative tool in the evolving landscape of
power engineering.

Smart Grid (SG) Communication infrastructure integrates technologies for efficient elec-
tricity distribution monitoring, control, and management. Key components include Advanced
Metering Infrastructure (AMI), phasor measurement units (PMUs), control centers, Commu-
nication networks, data management systems, and grid sensors [84]. Compressive Sensing
(CS) optimizes data handling and enhances SG communication infrastructure efficiency.

7.1. Advanced Metering Infrastructure (AMI)

Compressive Sensing (CS) plays a crucial role in AMI, particularly with smart meters,
aiding efficient data transmission and management. The widespread adoption of Advanced
Metering Infrastructure (AMI), highlighted by India’s initiative to replace 250 million
traditional meters with smart ones [85], has led to a massive increase in data generation.
Smart meters produce between 0.25 and 250 TB of data yearly, with a collective output
of 2920 TB from a undred million meters, as reported in [1]. This growth in data volume
brings bandwidth and storage challenges, spurring research into efficient data compression
and storage reduction strategies. Studies like [11–13,85–90] emphasize the potential of CS
in AMI, with applications in compression and authentication [12], low-voltage customer
data reconstruction [87], and deep blind compressive sensing for appliance monitoring [88].
Table 3 shows the CS application in AMI domain.
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Table 3. CS applications for Advanced Metering Infrastructure.

Advanced Metering Infrastructure (AMI)

Ref. Sensing Matrix Recovery Algorithm Sparse Basis Inferences/Comments

[11] Gaussian Orthogonal Matching
Pursuit (OMP)

Wavelet Transform
(WT)

CS-based compression of the aggregated
power signal for narrow-bandwidth

conditions in AMI.

[12] Gaussian Discrete Cosine
Transform (DCT)

A CS-based physical layer authentication
method is proposed.

A measurement matrix between the DCU and
a legitimate meter (LM) acts as a secret key
for both compression and authentication.

[38] Gaussian L1 Minimization Wavelet Transform
(WT)

Focuses on dynamic temporal and spatial
compression rather than spatial compression.

[86] Random
Two step iteration

threshold algorithm
(TwIST)

Wavelet Transform
(WT)

Focuses on the study of CS to minimize delay
and communication overhead.

[87] Binary random Deep Blind
Compressive Sensing

Multilayer adaptively
learning sparsifying

matrix

CS-based smart meter data transmission for
non-intrusive load monitoring applications.

[88] Toeplitz
Block Orthogonal
Matching Pursuit

(BOMP)
Block sparse basis CS-based short-term load forecasting.

[89] -
Block Orthogonal
Matching Pursuit

(BOMP)
Block sparse basis CS-based spatio-temporal wind

speed forecasting.

[90] Random Weighted Basis Pursuit
Denoising (BPDN) -- Recursive dynamic CS approaches,

addressing changing sparsity patterns.

The work in [38] proposes a dynamic framework that combines temporal compres-
sion (wavelet-based) at the meter level with spatial compression at the local data center.
This method adapts compression ratios using a novel sparsity measure, the Coefficient of
Variation (CV), ensuring 99% data variance is preserved while reducing communication
traffic to central control centers. Principal Component Analysis (PCA) is employed to
achieve efficient spatial compression by capturing the most significant data components.
The framework efficiently balances compression performance and reconstruction accuracy
by exploiting spatial correlations among neighboring nodes. Addressing the limitations of
static schemes, this framework dynamically adjusts compression ratios, reducing recon-
struction errors and optimizing data compression for large-scale applications.

The study in [12] addresses the need for efficient, low-cost authentication in Advanced
Metering Infrastructure (AMI) systems, where smart meters continuously transmit power
consumption data to a Data Concentrator Unit (DCU). Traditional cryptographic methods
often incur high computational costs, making them impractical for low-cost smart meters.
A CS-based physical layer authentication scheme is introduced, which simultaneously
compresses and authenticates power reading signals. The shared measurement matrix
between the DCU and a legitimate meter (LM) act as a secret key for both compression and
authentication. This matrix is generated using Linear Feedback Shift Registers (LFSRs),
creating a pseudo-random sequence known only to the DCU and LM. The various steps
are as follows:

• Step 1: The initial vector required for generating the measurement matrix is securely
transmitted via a physical layer security scheme based on channel reciprocity in a
time–division duplex (TDD) mode.

• Step 2: Upon receiving the compressed signal, the DCU reconstructs it using CS and
evaluates the residual error.
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• Step 3: The residual error is used as a test statistic in hypothesis testing to distinguish
legitimate signals from intrusion attempts.

By integrating authentication directly into the compression process, this approach
offers a lightweight solution ideal for large-scale AMI networks. It provides a robust
defense against impersonation attacks, paving the way for future research in efficient and
secure data management in smart grids

This study [86] examines data compression for smart grid systems, focusing on power
consumption data from a network of 1000 smart meters. The data are transmitted to
a utility station in compressed form to minimize delay and communication overhead.
After processing with a Daubechies wavelet, data sparsity is high, with only 70 out of
1000 elements being non-zero. The data are compressed at access points using a Gaussian
measurement matrix, reducing the number of observations transmitted (“y”). Reconstruc-
tion is achieved using the Two-Step Iterative Shrinkage/Thresholding (TwIST) algorithm,
ensuring precision through iterative convergence thresholds. Higher compression rates
result in increased reconstruction errors, underlining the need to balance compression
efficiency and reconstruction accuracy.

CS facilitates energy-efficient data gathering by combining model-based prediction
and adaptive compression, reducing sampling rates and transmission frequency. While
solutions like compressive data-gathering (CDG) improve energy distribution and commu-
nication costs, their scalability in dynamic networks remains limited. Methods such as joint
sparse signal recovery minimize energy expense but may not meet application-specific
data accuracy requirements.

7.2. Wide-Area Measurement Systems (WAMSs)

Wide-Area Measurement Systems (WAMSs) rely on Phase Measurement Units (PMUs)
for monitoring power system dynamics. Table 4 shows the CS application in the WAMS
domain. Centralized approaches in SG networks face overhead challenges [14,91–93].
Integrating multiple antennas with CS in home area networks improves performance and
reduces delays. A CS and 802.15.4-based Medium Access Control (MAC) protocol for SGs
with renewable energy enhances data transmission and minimizes delay [14]. While PMU
installations are crucial for real-time monitoring, state estimation, and fault detection, they
face challenges in efficiently transmitting synchro-phasor data due to high data volumes
and noise [91–94]. CS introduces non-uniform sampling rates, requiring adaptations in
protection algorithms for efficient implementation [94].

This study [95] proposes a CS-based data compression strategy for PMU data, leverag-
ing clustering analysis and multiscale PCA (MSPCA) to address high data volumes and
noise in WAMS. In the proposed method, Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) is applied to the PMU data for preconditioning. DBSCAN
automatically identifies clusters of correlated PMU data, excluding outliers or bad data,
thus enhancing compression accuracy and avoiding data distortions. The clustered data
are then subjected to MSPCA, which decomposes the signals into frequency sub-bands
using wavelet transformation. High-frequency components are compressed through PCA,
a technique effective for spatially sparse data. This combined approach leverages both
spatial and temporal sparsity, efficiently compressing PMU data in ambient (normal) and
event (disturbance) states. The strategy offers potential for future applications in enhancing
WAMS efficiency and resilience, especially in large-scale power grids with complex data
requirements, thereby supporting improved grid stability and monitoring capabilities [95].

Distributed Compressive Sensing (DCS) offers an innovative approach to data gath-
ering in sensor networks by leveraging spatial-temporal correlations. The distributed
compressive sensing (DCS) approach presented in [96] enhances data gathering in sensor
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networks by leveraging spatial-temporal correlations to improve energy efficiency and data
reconstruction accuracy. Initially, a spatial correlation-based coalition formation algorithm
groups sensor nodes into coalitions based on the sparsity distribution of their signals. This
grouping helps localize data collection and defines a utility function that minimizes the
number of active sensor nodes, significantly reducing energy consumption. Within each
coalition, a spatial–temporal compressive sensing technique is applied. This technique
employs a block diagonal measurement matrix to generate linear combinations of sensor
node readings. The matrix is carefully structured to balance computational and communi-
cation loads across the coalitions, optimizing network performance. The compressed sensor
readings are then transmitted to a central base station. At the base station, a joint sparse
signal recovery mechanism is executed in two stages. First, a common sparsity profile is
identified across all coalitions. Next, the recovery process within each coalition ensures a
consistent sparsity profile among its sensor nodes. This dual-stage recovery enhances the
accuracy of data reconstruction while reducing the number of measurements required. By
efficiently utilizing spatial–temporal correlations, the DCS approach achieves improved
energy efficiency and scalability, making it a robust solution for large-scale sensor networks.

Table 4. CS applications for Wide-Area Measurement Systems.

Wide-Area Measurement Systems (WAMS)

Ref. Sensing /Measurement Matrix Recovery Algorithm Sparse Basis Inferences/Comments

[92] Random Modified Subspace
Pursuit Partial Fourier/DCT CS-based PMU data

recosntruction.

[93] Random Subspace Pursuit Fourier Transform CS-based PMU data
recosntruction.

[96] Random - Wavelet Transform

Adaptive compression
combining clustering

analysis with multiscale
Principal Component

Analysis (MSPCA).
Leverages both spatial and

temporal sparsity.

7.3. State Estimation (SE) and Topology Identification (TI)

State Estimation (SE) and Topology Identification (TI) are fundamental to modern
power system operations, enabling real-time monitoring, situational awareness, and grid
reliability. SE determines the grid’s operational states, such as voltage magnitudes and
angles, by processing data from smart meters, Remote Terminal Units (RTUs), and Phase
Measurement Units (PMUs) [15,16,97–101]. Table 5 shows the CS applications in the SE
and TI domain. TI identifies the physical structure and connectivity of the grid. Topology
identification in power grids has a sparse nature due to the structure of power networks,
where each node (bus) is typically connected to only a few other nodes rather than to all
other nodes. This sparse connectivity results in a nodal admittance (or Laplacian) matrix
that has mostly zero entries, reflecting the limited direct connections between nodes. Due to
this inherent sparsity, many techniques in topology identification can leverage Compressed
Sensing (CS). However, integrating renewable energy sources and distributed generation
poses challenges, such as nonlinearities, increased data volume, and dynamic variations.
Traditional SE methods struggle to address these complexities, leading to a growing interest
in advanced approaches like Compressive Sensing (CS).
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Table 5. CS applications for state estimation and topology identification.

State Estimation and Topology Identification

Ref. Sensing Matrix Recovery Algorithm Sparse Basis Inferences/Comments

[15] Gaussian ℓ1 minimization
problem

Wavelet—Spatio-
Temporal

Indirect method: Reconstructs power
values from compressed measurements
before state estimation. Provides better
accuracy but computationally expensive.
Uses compressed measurements directly
within the Newton–Raphson iteration.
Avoids full reconstruction; is potentially
faster but requires solving
underdetermined systems.
Even with only 50% compressed
measurements, both methods allow for
accurate estimation of voltage states.

[16] Gaussian

LASSO Clustered OMP
(COMP),
Band-Excluded Locally
Optimized MCOMP
(BLOMCOMP), LASSO

Laplacian sparsity

BLOMCOMP outperforms others due to
the following: (1) band exclusion for
handling high coherence, (2) local
optimization for support refinement,
(3) effective exploitation of clustered
sparsity, (4) robustness across IEEE test
systems, and (5) reduced measurement
requirements for accurate recovery.

[97] Random Direct and Indirect
State Estimation

Data-Driven
Dictionaries,
Deterministic
Dictionaries (Hankel,
Toeplitz)

Data-driven dictionaries outperform
deterministic bases (Haar, Hankel, DCT,
etc.) in reconstruction accuracy and state
estimation. Hankel and Toeplitz perform
best among the deterministic dictionaries
but are outperformed by learned
dictionaries.

[99] Impedance Matrix of
the System

ℓ1-Norm Minimization,
Regularized Least
Squares

Sparse Injection
Current Vector

The oroposed DSSE algorithm minimizes
the number of µPMUs required for
accurate state estimation; performs well
compared to conventional WLS; requires
fewer measurements but achieves
comparable accuracy in voltage phasor
estimation; is suitable for low-cost DSSE
implementation in large-scale distribution
networks with limited observability.

[100] Normalized Jacobian
Matrix

CohCoSaMP
(Coherence-Based
CoSaMP), OMP, ROMP,
CoSaMP

Sparse
Voltage-to-Power
Sensitivity Matrix

- The proposed CohCoSaMP ensures
accurate Jacobian matrix estimation by
addressing sensing matrix correlation; it
outperforms OMP, ROMP, and CoSaMP in
convergence and accuracy.
CohCoSaMP fully estimates the Jacobian
matrix with as few as 40 measurements, in
contrast to LSE, which needs more than
64 measurements.
- The proposed method achieves lower
computation times and fewer iterations
compared to other algorithms, making it
suitable for online applications.
Is effective for sparse recovery under
noisy PMU measurement conditions and
is suitable for networks with correlated
phase angle and voltage variations.
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Table 5. Cont.

State Estimation and Topology Identification

Ref. Sensing Matrix Recovery Algorithm Sparse Basis Inferences/Comments

[101] Gaussian Random
Alternating Direction
Method of Multipliers
(ADMM)

Sparse Nodal Voltage
and Current Phasors

- Proposes a distributed CS-based DSSE
for power distribution grids divided into
sub-networks using ADMM for global
convergence.
- Robust to cyber-attacks, loss of
measurements, FDI, replay, and
neighborhood attacks.
- Outperforms centralized CS in
computation time and communication
overhead (e.g., 3.85 s vs. 1.03 s for IEEE
37-bus system). Distributed CS achieves
similar accuracy to centralized CS while
reducing simulation time significantly
(e.g., 20.48 s vs. 7.28 s for an IEEE 123-bus
system).

The various challenges in SE and TI are as follows:

• Complexity of Distribution Networks: SE in distribution networks is less studied
compared to transmission systems, primarily due to its radial structure with multiple
feeders and branches, unbalanced loads, and limited measurements.

• Nonlinear Relationships: Power flow relationships between voltage states and other
grid variables are highly nonlinear, complicating traditional SE approaches.

• Impact of Renewable Integration: The variability introduced by distributed generation
(DG) creates correlated data patterns, necessitating adaptive estimation techniques.

• High Computational Costs: Traditional model-based methods rely on physical param-
eters, such as Distribution Factors (DFs) and Injection Shift Factors (ISFs), but face
high computational costs and uncertainties in real-time applications [16]. Methods
for calculating DFs include model-based, data-driven non-sparse, and data-driven
sparse estimation. Model-based methods face uncertainties and high computational
costs, while data-driven models adapt better to changing conditions [97]. However,
non-sparse methods can contribute to the curse of dimensionality.

Compressive Sensing (CS) techniques address many of these challenges by reduc-
ing the number of measurements required for accurate state estimation and topology
mapping [15]. This paper addresses challenges in state estimation for power distribution
systems, especially as Distributed Generation (DG) from renewable sources creates highly
correlated power data across both space and time. Traditional state estimation methods
require large amounts of power measurements, demanding extensive communication
bandwidth and reliability. The increase in data volume and the nonlinearity of power sys-
tems exacerbate this issue, making efficient aggregation and processing of measurements
challenging. By leveraging spatial and temporal correlations, CS eliminates redundant data,
enabling efficient information aggregation and enhancing grid security [15]. Data-driven
sparse DF estimation methods are emerging to address these issues, focusing on domi-
nant DFs while promoting result sparsity. Compressive Sensing (CS) aids in selecting and
transmitting critical information, discarding redundant data, thus enhancing situational
awareness and grid security. Two methods for SE are described in [15]: indirect state
estimation, applying the Newton–Raphson method post-reconstruction, and direct state
estimation, integrating compressed power measurements directly into Newton–Raphson
iterations. Laplacian sparsity is a common technique in SE. Both methods achieve accurate
voltage state estimation with as few as 50% of the original measurements.
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TI is modeled as a sparse recovery problem using CS and graph theory [16]. Algo-
rithms like Clustered Orthogonal Matching Pursuit (COMP) address clustered sparsity in
Laplacian matrices and Band-Excluded Locally Optimized COMP (BLOMCOMP) prevents
the loss of non-zero neighbor elements to improve SE [16]. In SGs, where interconnected
nodes often exhibit correlated measurements, OMP can fail to identify the correct support,
resulting in incomplete topology recovery. COMP extends OMP by expanding support
selection to include neighboring indices, thereby handling clustered sparsity where related
nodes appear in clusters. This is particularly useful for SG topology because interconnected
nodes naturally form clusters. However, COMP still struggles with high coherence in the
data, as it lacks a mechanism to prevent the selection of correlated columns. The BLOM-
COMP algorithm improves on both OMP and COMP by integrating a “band-exclusion”
approach, which defines a coherence band around each selected index, thus preventing
adjacent highly correlated elements from being included in the support. Simulations on
IEEE test systems (30-bus, 118-bus, and 2383-bus networks) demonstrate its effectiveness,
with measurement requirements determined by signal sparsity rather than network size.
BLOMCOMP introduces band exclusion and local optimization, addressing high coherence
in correlated measurements, and outperforms other methods) in accuracy and robustness.
OMP is straightforward, selecting the most correlated columns iteratively to build the
sparse solution, yet it suffers in high-coherence conditions.

Data-driven dictionaries [97], derived from smart meter data, outperform traditional
deterministic bases such as Haar, Hankel, and Toeplitz by achieving superior reconstruc-
tion accuracy and higher compression ratios, especially in dynamic grid conditions. These
tailored dictionaries are particularly important in the context of state estimation (SE) and
topology identification (TI) because they adapt to grids with high renewable energy penetra-
tion and dynamic scenarios, addressing the challenges posed by nonlinear and time-varying
grid conditions. By enabling accurate reconstruction of critical states and connectivity pat-
terns, data-driven methods provide a robust and adaptable framework, ensuring effective
situational awareness, operational stability, and efficient grid management in modern
power systems.

Sparse basis and sensing matrix for Distribution System State Estimation (DSSE) and
Fault Location (FL) depend on meter distribution and a mapping matrix linked to the
physical meter distribution [98].

CS estimates the three-phase current injection vector efficiently [100], with techniques
like Coherence-Based Compressive Sampling Match Pursuit improving greedy algorithm
limitations and enhancing convergence efficiency.

An Alternating Direction Method of Multipliers (ADMM)-based DSSE and its ro-
bustness against cyber-attacks, like false data injection (FDI), replay, and neighborhood
attacks, ensuring stable grid operation, are analyzed in [101]. By minimizing computational
and communication overhead, these approaches provide scalable and secure solutions for
real-time grid monitoring. Distributed CS achieves similar accuracy to centralized methods
while reducing computation time and communication overhead. For example, it reduces
simulation time significantly (e.g., 20.48 s to 7.28 s for the IEEE 123-bus system).

7.4. Fault Detection (FD), Fault Localization (FL) and Outage Identification (OI)

Line outages significantly impact smart grids (SGs), leading to potential cascade
failures. Accurate fault pinpointing using intelligent algorithms is vital for grid operators to
quickly isolate faults and restore power. Generally, except for faulty buses, current injections
remain unchanged from normal to fault conditions [17,102]. However, fault location in
expansive distribution networks is challenging due to the limited measurement devices,
necessitating effective monitoring to prevent incidents like blackouts. In power systems,
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faults typically affect only a small subset of nodes or lines, resulting in a sparse fault
vector. While this sparsity poses challenges for traditional methods, which require dense
measurement infrastructures to achieve accurate detection, it also serves as an opportunity
for Compressive Sensing (CS). CS explicitly exploits this inherent sparsity to recover fault
locations using limited data, reducing the need for extensive sensor deployment and
enabling efficient fault localization even in large-scale systems [17,18,103–113]. The various
challenges in fault detection and localization include the following:

• Limited Measurement Devices: Traditional fault detection methods require dense
measurement infrastructures, which are costly and impractical for large-scale net-
works [17,18].

• High Coherence in Sensing Matrices: The sensing matrix derived from nodal admit-
tance matrices can exhibit high pairwise correlation, reducing the accuracy of sparse
recovery algorithms [108–110].

• Noise and Perturbations: Real-world measurement data are often noisy, which can
distort sparse recovery and impact fault localization accuracy [104,112].

• Dynamic Range and Clustered Sparsity: Variations in fault signal magnitudes and
clustered outage patterns complicate recovery, requiring advanced algorithms to
handle these structured sparsity challenges [110].

Table 6 shows the CS application in the fault detection, fault localization and outage
identification domain. CS models for fault localization use pre and during-fault voltage
measurements [17,18,103–113]. The CS methods in the works [17,18,106] focus on detecting
grid node faults by observing current injection changes but struggle with branch faults.
Block-wise compressive sensing (BW-CS) improves multiple-line outage detection [106],
offering better fault detection, robustness, and reduced complexity. Algorithms like Modi-
fied Block–Sparse Bayesian Learning (BSBL) and Bayesian CS maintain high accuracy even
in noisy conditions, ensuring reliable fault localization [104,112]. Advanced solvers like
Band-Exclusion Locally Optimized OMP (BLOOMP) and BLOMCOMP (Clustered version
of BLOOMP) mitigate high-coherence issues and exploit clustered sparsity patterns for
accurate recovery [110]. Event-triggered mechanisms and adaptive stopping criteria reduce
computational overhead, making CS approaches suitable for real-time applications in large
grids [112]. Combining CS with machine learning techniques like fuzzy clustering and
CNNs enhances performance in fault diagnosis and localization [101,114].

CS applications span fault detection, fault location, and power network localization,
utilizing system-specific frameworks and edge devices [114]. A CS-CNN-based method
converts 1D PV inverter fault signals into 2D feature maps for edge computing [114]. CS
simplifies on-site hardware by transferring computational tasks to central monitoring sta-
tions, reducing power demands. Other applications include fault classification [114,115],
power swing detection [116], leakage current identification [117], partial discharge detec-
tion [118], and fault localization [119]. CS minimizes sample size for three-phase voltage
signal analysis, reducing runtime [115], and is compared across BP, MP, and OMP for
fault signal restoration. It also prevents distance relay maloperation in power swing
scenarios [116].



J. Sens. Actuator Netw. 2025, 14, 28 24 of 46

Table 6. Fault detection, fault localization and outage identification.

Fault Detection (FD), Fault Localization (FL) and Outage Identification (OI)

Ref. Sensing Matrix Recovery Algorithm Sparse Basis Inferences/Comments/Limitations

[17] Reduced Impedance
Matrix from ∆V

Primal–dual linear
programming (PDIP) Fault Current Vector

Robust to noise and capable of locating
single, double, and triple faults with
minimal measurement infrastructure.
Effective in noisy environments (using ℓ1s
for stability). Less accurate for triple faults
compared to double faults.

[18]

Positive-sequence
impedance matrix
derived from measured
voltage sags

Primal–dual linear
programming (PDIP)
and Log Barrier
Algorithm (LBA)

Fault current vector

Robust to noise, fault types, and fault
resistances. Does not require load data
updates, unlike other methods. Works
with limited smart meters. Handles
single-, double-, and three-phase faults
effectively. Computationally efficient.

[103]
Impedance matrix and
PMU measurements for
positive sequence data

Structured Matching
Pursuit (StructMP)
with alternating
minimization

Fault current vectors
subjected to structural
constraints

Effective for single and simultaneous
faults. Utilizes non-convex constraints for
improved fault location. Requires fewer
PMUs but is sensitive to sensor placement.
Computationally efficient and robust at
higher SNRs. Handles various fault types
including line-to-ground, disconnected
lines, and line-to-line faults.

[104]

Derived from the Kron
reduction in the
admittance matrix,
capturing the block
structure for balanced
and unbalanced
systems

Modified Block-Sparse
Bayesian Learning
(BSBL) algorithm using
bound optimization

Block-sparse fault
injection currents at
adjacent nodes

Provides accurate fault location in ADNs
with limited µPMUs. Considers DG
integration and intra-block amplitude
correlation for improved performance.
Satisfactory results in noisy conditions
with success rates > 86% at 1% noise.
Sensitive to noise and block structure
consistency but robust against fault
resistance variations.

[105]

Positive-sequence
impedance matrix
modified based on
meter allocation and
network parameters

Bayesian Compressive
Sensing (BCS)
algorithm

Sparse voltage
magnitude differences

BCS algorithm improves sparse fault
current solution accuracy compared to
other algorithms. Limited accuracy in
noisy conditions and bipower supply
mode. Performance drops with DGs
access but remains acceptable.

[106]
Modified reactance
equations with
block-wise sparsity

Block-Wise
Compressive Sensing
(BW-CS)

Block-sparse structure
of line outages

BW-CS method outperforms QR
decomposition and conventional OMP in
detecting multiple line outages with high
recovery accuracy and computational
efficiency. Extended to three-phase
systems for better spatial correlation
utilization. Robust to noise. Assumes no
islanding due to outages.

[107] Positive sequence
impedance matrix

Bayesian Compressive
Sensing (BCS) +
Dempster–Shafer
Evidence Theory

Integrates multiple data sources for fault
location using CS for signal
reconstruction, Bayesian networks for
switching fault analysis, and DS evidence
theory for fusion. Handles low-resistance
grounded networks.

[108]

Constructed using the
inverse of the
nodal-admittance
matrix and incidence
matrix.

- OMP
- Binary POD-SRP
(BPOD-SRP)
- BLOOMP
(Bound-exclusion
Locally Optimized
Matching Pursuit)
- BLOMCOMP
(Clustered version of
BLOOMP).

Sparse Outage Vector
(SOV)

- Efficient for large-scale, multiple outages.
- Binary POD-SRP resolves dynamic range
issues, improving recovery.
- High coherence in sensing matrices
requires techniques like
BLOOMP/BLOMCOMP.
- Recovery is sensitive to perturbations in
power and noise.
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Table 6. Cont.

Fault Detection (FD), Fault Localization (FL) and Outage Identification (OI)

Ref. Sensing Matrix Recovery Algorithm Sparse Basis Inferences/Comments/Limitations

[109]

Constructed using the
inverse
nodal-admittance
matrix and incidence
matrix.

- OMP
- Modified COMP
(MCOMP) for
structured outages.
- LASSO (Least
Absolute Shrinkage
and Selection
Operator).

Sparse Outage Vector
(SOV)

High coherence in sensing matrices affects
recovery performance.
- QR decomposition reduces average
coherence but may not always lower
coherence.
- MCOMP outperforms traditional OMP
in structured sparse cases.
Performance declines with higher noise or
sparsity levels.

[110]

Constructed using the
inverse
nodal-admittance
matrix and incidence
matrix.

- OMP
- Band-exclusion
Locally Optimized
OMP (BLOOMP)
- Modified Clustered
OMP (MCOMP)
- LASSO for structured
outages.

Sparse Outage Vector
(SOV): Represents
power line outages.
Clustered Sparse
Outage Vector (C-SOV):
Models structured
outages with
cluster-like sparsity
patterns.

- High coherence and signal dynamic
range issues in sensing matrices affect
recovery performance.
- Binary POD-SRP formulation addresses
the dynamic range issue effectively.
- BLOOMP outperforms OMP in handling
high coherence for large-scale outages.
- BPOD-SRP and BLOOMP combination is
efficient for multiple large-scale outages.
- Performance declines with increased
perturbation or noise levels.
- Structured outage scenarios require
additional modifications like MCOMP.

[111] Laplacian matrix

-Symmetric
Reweighting of
Modified Clustered
OMP (SRwMCOMP)
- Orthogonal Matching
Pursuit (OMP)
- LASSO method for
comparison.

Sparse outage vector,
Sparse structural
matrix

- Integrates SG-specific features
(symmetry, diagonal, cluster) to improve
topology reconstruction.
- QR decomposition reduces coherence,
enhancing power line outage
identification.
- Superior performance compared to
state-of-the-art methods like LASSO and
MCOMP.
- Time-consuming for large-scale
networks.
- Assumes transient stable state
post-outage.

[112]

Constructed using
transient dynamic
model with DC and AC
approximations.

- Adaptive Stopping
Criterion OMP
(ASOMP).
- Orthogonal Matching
Pursuit (OMP), LASSO
method for
comparison.

Sparse outage vector

- Utilizes transient data for real-time line
outage detection.
- Adaptive threshold improves
performance under varying noise
intensities.
- Effective for single-, double-, and
triple-line outages.
- Event-triggered mechanism reduces
computation overhead.
- Performance degrades with violent
phase angle fluctuations and non-smooth
data.
- Requires full PMU observability for
dynamic data.
- Limited accuracy under DC model for
multiple outages.
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Table 6. Cont.

Fault Detection (FD), Fault Localization (FL) and Outage Identification (OI)

Ref. Sensing Matrix Recovery Algorithm Sparse Basis Inferences/Comments/Limitations

[113]

Formulated from
transient data with
QRP decomposition to
reduce coherence.

- Improved Binary
Matching Pursuit
(IBMPDC) with dice
coefficient.
- Binary Matching
Pursuit (BMP),
Orthogonal Matching
Pursuit (OMP) for
comparison.

Binary outage vector

- The IBMPDC algorithm improves atom
selection accuracy and avoids repeated
atom selection.
- Utilizes binary constraints for faster
computations and higher efficiency.
- Is Resilient to noise and less sensitive to
sample size.
- QRP decomposition enhances sensing
matrix orthogonality, improving detection
accuracy.
- Is Effective for single-, double-, and
triple-line outages.
- Has an accuracy that degrades with high
Gaussian noise or insufficient sampling.
- Has a Slightly higher execution time than
BMP but significantly better accuracy.

[115] Random
Alternating Direction
Optimization Method
(ADOM)

Sparse coefficient
vector with non-zero
entries corresponding
to fault type.

Incorporates correlation and sparsity
properties for higher accuracy.

7.5. Harmonic Source Identification (HSI) and Power Quality Detection (PQD)

In increasingly decentralized distribution grids, maintaining power quality (PQ) ne-
cessitates accurately identifying harmonic sources. While the harmonic behavior of these
systems remains ambiguous due to sparse field measurements, primarily at HV to MV
stations, and few grid-connected PQ-meters, the reality is that a substantial portion of
the grid remains unmonitored for harmonic pollution. This underscores the anticipated
need for more advanced monitoring in the imminent future. Notably, many grids contain
only a small fraction of harmonic-polluting loads relative to the total, indicating a sparse
nature in harmonic source identification. Compressive Sensing (CS) effectively addresses
this sparsity challenge. CS can address this sparsity challenge. Table 7 shows the CS
application in the harmonic source identification and power quality detection domain.
Through its measurement matrix, CS discerns the relationship between measurements and
source parameters, and its sparse basis matrix captures the unique patterns of harmonic
sources. Thus, CS emerges as a pivotal tool for efficient and precise harmonic source
identification in grids, especially as we look to future upgrades in monitoring systems. CS
aids in single [120] and multiple harmonic source identification [121–123], enhancing grid
stability and reducing the impact of harmonic pollution. The identification and recovery of
harmonic signals from a single source using CS has been mentioned in the work [124–128].
The CS-based power quality classifier is mentioned in [129–131]. Overcomplete dictionar-
ies offer flexibility but increase computational complexity, risk overfitting, and demand
storage. A training-free high-dimensional convex hull approximation combined with a CS
framework to reduce the time cost is proposed in [129].

Table 7. CS applications in harmonic source identification and power quality detection.

Harmonic Source Identification (HSI) and Power Quality Detection

Ref. Sensing Matrix Recovery Algorithm Sparse Basis Inferences/Comments/Limitations

[120]
Block Orthogonal
Matching Pursuit
(BOMP)

Sparse harmonic
current injections

- Achieves reliable harmonic detection in
loads L3 and L5 with higher accuracy for
loads with direct current measurements.
- Sensitive to noise and measurement
uncertainty in lower accuracy classes.
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Table 7. Cont.

Harmonic Source Identification (HSI) and Power Quality Detection

Ref. Sensing Matrix Recovery Algorithm Sparse Basis Inferences/Comments/Limitations

[121]
Local Block Orthogonal
Matching Pursuit
(LBOMP)

Harmonic current
sources, block-sparse,
grouped by load.

- Identifies and estimates primary
harmonic sources efficiently with sparse
phasor measurements.
Outperforms WLS and single-harmonic
BOMP methods in detection and
estimation accuracy.
- Requires synchronized, high-quality
harmonic phasor measurements for
accurate results.
- Sensitive to network model inaccuracies
and measurement uncertainties, though
detection robustness is retained.

[122]

Block Orthogonal
Matching Pursuit
(BOMP),
ℓ1-minimization

Harmonic current
sources, block-sparse,
grouped by load.

- BOMP: Sensitive to phase angle
measurement errors, decreasing accuracy
significantly at higher errors (e.g., 62%
detection in challenging cases).
- ℓ1: More robust, achieving ≥85%
detection in noisy scenarios.
- Both methods require accurate
uncertainty modeling and weighting.

[123]

- ℓ1-minimization with
quadratic constraint
(P2)
- Traditional
ℓ1-minimization (P1)
- Weighted Least
Squares (WLS)

Harmonic current
sources, modeled as
sparse/compressible
vectors.

- P2 outperforms P1 and WLS due to error
energy modeling and better uncertainty
handling.
- Incorporates a novel whitening matrix
for recovering error distributions,
improving bounds.

[124] Random Basis Pursuit (BP) Discrete Cosine
Transform (DCT)

- Random sampling introduces variability
in error
- Performance is sensitive to dictionary
selection.

[125] Deterministic Orthogonal Matching
Pursuit (OMP)

Fast Fourier Transform
(FFT)

- Deterministic sampling: Overcomes
hardware limitations of random sampling
in traditional CS.
- Fewer samples required: Demonstrates
feasibility with prime-number constraints,
reducing Nyquist rate dependency.
- Limitations: Recovery success probability
decreases with higher sparsity, especially
when structural sparsity is unexploited.

[126] Random Bernoulli Expectation
Maximization (EM)

Radon Transform (RT),
Discrete Radon
Transform (DRT)

Reconstruction accuracy decreases with
high amplitude disparities or noise.

[127] Binary Sparse Random

SPG-FF Algorithm:
Combines Spectral
Projected Gradient with
Fundamental Filter to
enhance reconstruction
precision.

Discrete Fourier
Transform (DFT) Basis:
Better sparsity
compared to DCT and
DWT.

Reduces data storage and sampling
complexity by leveraging the binary
sparse matrix.
The method requires filtering
fundamental components to achieve
optimal sparsity.
Double-spectral-line interpolation
mitigates leakage effects but adds
computational steps.
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Table 7. Cont.

Harmonic Source Identification (HSI) and Power Quality Detection

Ref. Sensing Matrix Recovery Algorithm Sparse Basis Inferences/Comments/Limitations

[128] Binary Sparse

Homotopy
Optimization with
Fundamental Filter
(HO-FF)

Short-Time Fourier
Transform (STFT) with
Hanning Window)

Performance is sensitive to rapid changes
in harmonics; computational load
increases with more data frames.
HO-FF iteratively solves along the
homotopy path, avoiding repeated
recovery and enhancing real-time
performance.

[129] Gaussian Orthogonal Matching
Pursuit (OMP)

Low-Dimensional
Subspace via SVD and
Feature Selection

- Training-free, fast, and adaptable to
changes.
- Handles single and combined PQ events
effectively.
- May require convex hull approximation
for high-dimensional feature space, which
is computationally intensive.
- Performance may degrade with fewer
informative samples for complex events.

[130] Random
Orthogonal Matching
Pursuit (OMP),
Soft-thresholding

Sparse coefficients
derived from training
samples, representing
PQD signals in a
low-dimensional
subspace.

- Handles both single and combined
PQDs effectively.

[131] DCT-based
Observation Matrix

Orthogonal Matching
Pursuit (OMP), Sparsity
Adaptive Matching
Pursuit (SAMP)

DCT Sparse Basis: - Combines compressed sensing (CS) with
1D-DCNN for direct PQD classification.

[132] Orthogonal Matching
Pursuit (OMP)

DCT (Discrete Cosine
Transform), DST
(Discrete Sine
Transform), and
Impulse Dictionary

DCT and DST: Perform well for low
sparsity, with lower MSE and better
reconstruction accuracy.
Impulse Dictionary: Excels for extremely
low sparsity, providing close-to-original
signal reconstruction.
Combinations (overcomplete hybrid
dictionaries): Adding the Impulse
dictionary to a combination dominates the
sparse representation, rendering the
contribution of other dictionaries
negligible.

The framework proposed in [128] leverages IoT-enabled edge nodes and dynamic CS
for real-time PQ monitoring. Key features include the following:

• Continuous Sampling and Compression: Signals are compressed using sparse random
matrices to reduce data volume.

• Dynamic Signal Recovery: Homotopy Optimization with Fundamental Filter (HO-FF)
iteratively updates sparse solutions without re-solving the entire problem, enhancing
computational efficiency.

• Harmonic Spectrum Correction: Single-peak spectral interpolation mitigates spectral
leakage and phase errors, ensuring accurate recovery.

• Feedback Mechanism: Dynamically adjusts the compressed sampling ratio to adapt to
fluctuating harmonic conditions.
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This IoT-CS framework provides an efficient and scalable solution for real-time PQ
monitoring, enabling grid operators to tackle the increasing complexity of modern power
systems with distributed energy resources and electric vehicle integration.

7.6. Condition Monitoring (CM) of Machines

CS is applied in condition monitoring systems to address data volume, loss issues,
noisy data, and multichannel data recovery. Table 8 shows the CS application in the
condition monitoring domain. For example, in the remote condition monitoring of wind
turbines, a CS-based missing-data-tolerant fault detection method is used [19]. The CS-
based fault detection framework for remote wind turbine monitoring includes four modules:
signal conditioning, CS-based sampling, signal reconstruction, and fault detection. Using a
Wireless Sensor Network (WSN), vibration and generator current signals are collected by
a V-Link-LXRS sensor node at a sampling rate of 1000 Hz, recording 15,000 samples over
15 s. These nonstationary signals, affected by noise and low sparsity due to fluctuating
wind conditions, are processed to enhance sparsity through thresholding techniques. The
conditioned signals are compressed via CS-based sampling and transmitted wirelessly to a
WSDA-1500-LXRS gateway, and then uploaded to a Sensor Cloud™ server. A remote lab
computer retrieves and reconstructs the compressed data using CS-based algorithms to
recover signal envelopes, which are analyzed for fault detection. This framework efficiently
handles missing data and nonstationary signals, making it robust for monitoring wind
turbine health in harsh and variable conditions while reducing transmission and storage
requirements. The reconstruction error remained below 0.3 with data loss rates up to
95% [19].

Table 8. CS application for condition monitoring.

Condition Monitoring

Ref. Sensing Matrix Recovery Algorithm Sparse Basis Inferences/Comments/Limitations

[19] Gaussian Random OMP STFT

Relies on signal sparsity achieved through
signal conditioning, including
synchronous resampling and
demodulation.
- Reconstruction error increases
significantly beyond 95% data loss.

[133] Sparse Random OMP

K-SVD Trained
Dictionary (Adaptive,
based on Discrete
Cosine Transform
(DCT))

- Achieved compression ratio of 1/8 with
an average reconstruction error of 0.06%.

[134] Random Gaussian

Compressed Sensing
Reconstruction +
Stacked
Multi-Granularity
Convolution Denoising
Auto-Encoder
(SMGCDAE)

- Combines CS with deep learning for
fault diagnosis in rolling bearings.

[135]
Random Gaussian
Matrix or Bernoulli
Matrix

CoSaMP FFT

Compressed data are directly used for
feature extraction without full signal
recovery; the focus is on dimensionality
reduction and classification;
Feature learning via PCA, LDA, and CCA
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Table 8. Cont.

Condition Monitoring

Ref. Sensing Matrix Recovery Algorithm Sparse Basis Inferences/Comments/Limitations

[136] Random Gaussian,
Bernoulli, Unit Sphere

Image data created
from 1D signal

Only single-channel vibration signals are
considered.

[137]

Random Sensing
Matrices (e.g.,
Walsh–Hadamard,
Uniform Spherical
Ensemble)

Convex Optimization Fourier dictionary
1. Extracts fault features directly from
compressive measurements, avoiding full
signal recovery.

[138] Stochastic Sampling OMP

Variational Mode
Decomposition (VMD)
Frequency spectrum
signals

Retains critical fault features in
low-dimensional space via transfer
learning.

[139] Gaussian Random

Particle Swarm
Optimization (PSO)
with Deep Kernel
Extreme Learning
Machine (DKELM)

DCT
Maintains 99% accuracy with CR ≤ 80%,
balancing efficiency and fault
classification precision.

[140] Gaussian Random DCT Directly uses compressed signals for fault
classification

[141] Random Thermal Image is
sparse

CS transforms the high-dimensional
sparse data (thermal and modulation
signal bispectrum images) into
lower-dimensional compressed data.
Compression achieves a compression
ratio (CR) of 324, reducing image size
from 1080 × 14,401,080 pixels to
60 × 8060 pixels.

[142] Random ADMM,
Soft-thresholding

Wavelet, Gradient
Norm Ratio

Accurate blur kernel estimation with
GNR; improves infrared image quality
and diagnosis accuracy; computationally
intensive.

[143] Gaussian

Weighted Distributed
Compressed
Sensing-Synchronized
Orthogonal Matching
Pursuit (WDCS-SOMP)

Shift-Invariant
Dictionary

- Efficiently reconstructs fault features
from multi-channel compressed signals at
ultra-low compression rates (10%).
- Leverages correlations across channels
for improved accuracy.

[144] Gaussian and Bernoulli CoSaMP DCT
- Gaussian matrix ensures RIP compliance;
Bernoulli matrix adds randomness,
simplifying implementation and storage.

In the case of power transformers, vibration signals are traditionally collected at high
sampling frequencies, leading to significant data volume [133]. To address this challenge
and ensure data interoperability and real-time capabilities for the Ubiquitous Electric
Internet of Things (UEIOF), the KSVD algorithm is employed to construct dictionaries of
vibration signals, reducing data volume while preserving vital information [133].

A bearing fault diagnosis framework combines Compressive Sensing (CS) with ad-
vanced methods to address efficiency and data storage challenges. A bearing fault diagnosis
framework combines CS with a stacked multi-granularity convolution denoising auto-
encoder (SMGCDAE) method to reduce data storage requirements [134]. This paper [135]
introduces CS with correlated principal and discriminant components (CS-CPDCs), a hy-
brid method combining CS, PCA, Linear Discriminant Analysis (LDA), and Canonical
Correlation Analysis (CCA) for efficient bearing fault diagnosis, reducing storage and
processing requirements. Another study uses CS, the Laplacian Score (LS), and the Multi-
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Class Support Vector Machine (MSVM) for bearing fault classification in, evaluating its
efficiency with experimental vibration data [136]. A sensing matrix is derived from the
Walsh–Hadamard ensemble, leading to a low-dimensional feature dictionary based on
the Fourier dictionary [137]. For sparse signal recovery, especially in sizable or structured
datasets, the L1 norm minimization problem is efficiently tackled using ADMM. This
method is prized for scalability and speed, especially with structured sensing matrices.
Traditional fault diagnosis methods have limitations in efficiency, feature extraction, and
sensitivity to sparse signals. To address these, a method integrating CS and DKELM was
introduced [139]. This method offers two key benefits: firstly, being a classic machine
learning algorithm, it has reduced model and computational complexities compared to
deep learning approaches, making it apt for industrial embedded systems; secondly, it
is optimized for sparse signals post-compressed-sampling, ensuring quicker diagnostics
while retaining high accuracy. CS and deep learning-based CBMs are proposed in [140,141].
The Weighted Distributed Compressed Sensing–Synchronous Orthogonal Matching Pur-
suit (WDCS-SOMP) approach for fault feature extraction in gear transmission systems
effectively extracts fault features from multi-channel signals at ultra-low compression rates,
achieving a compression ratio as low as 10%. This method employs a fault prominence
index to identify a reference channel and utilizes a sliding window inner product strat-
egy to align signals with a shift-invariant dictionary. By leveraging correlations between
multi-channel signals, the framework achieves better reconstruction accuracy compared
to single-channel methods, demonstrating resilience to noise and low compression rates.
The feasibility of CS-based image reconstruction for thermal imaging for equipment fault
identification is discussed in [142].

7.7. Compressive Sensing for IoT-Based Smartgrid Monitoring

The work in [145] presents a three-tier IoT-based smart grid network leveraging Com-
pressive Sensing (CS) and Fog Computing to optimize data acquisition, transmission,
security, and recovery while reducing communication and storage costs. The architecture
consists of IoT-based smart meters (sensing layer), fog devices (edge layer), and cloud
servers (processing layer), designed to address sensing bottlenecks, high transmission
overhead, and security challenges in large-scale smart grid applications. CS-based data
compression is applied at the smart meter level, where sampled data are compressed
and encrypted before transmission to fog nodes. Fog devices aggregate and validate the
compressed data, using XOR-based authentication and encrypted key mechanisms, before
forwarding them to the cloud. The cloud executes data extraction, reconstruction, and
verification, ensuring accurate recovery with reduced data overhead. Performance evalua-
tions confirm that the proposed mechanism reduces communication costs by nearly 50%,
minimizes storage requirements by up to 50% compared to existing methods, and opti-
mizes transmission efficiency (0.713 transmission ratio for 65 IoT devices) [145]. Figure 4
presents a block diagram for a possible scalable and generalized framework for real-time
compressive sensing-based monitoring for smart grids, developed based on insights from
the existing literature and incorporating compressive sensing integrated with IoT-enabled
platforms. The framework is divided into three distinct layers, ensuring the seamless
acquisition, processing, and utilization of data for monitoring and decision-making. The
IoT layer collects data from various sensors (voltage, current, and camera-based) and can
leverage dynamic CS with adjustable sampling rates and weighted sampling techniques
(assigns different measurement weights to different sensor types) to optimize data acqui-
sition based on signal sparsity and system conditions [24,40,90,128]. The Edge Layer is
conceptualized to process compressed data using sparse representation and dynamic CS
recovery algorithms, ensuring accurate signal reconstruction with minimal bandwidth and
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energy usage. It minimizes latency by reducing the need to transmit data to distant cloud
servers. Edge devices include microcontrollers, embedded systems, FPGAs, local PCs, and
mobile devices that process raw data before sending them to fog or cloud servers. Fog
nodes aggregate CS-compressed data from multiple meters, ensuring efficient bandwidth
utilization and reduced transmission costs. Fog-assisted encryption mechanisms can be
used to protect grid data privacy [145]. The application layer aims to provide real-time mon-
itoring dashboards and predictive analytics and maintenance alerts for actionable insights.
A hybrid cloud-edge processing approach can be employed to optimize computational
efficiency, wherein non-critical tasks such as historical data analysis, load forecasting, and
long-term trend identification can be offloaded to the cloud. Meanwhile, time-sensitive op-
erations like fault detection, power fluctuations, and real-time grid stability monitoring can
be processed within the edge-fog layers to reduce latency and ensure faster response times.
To optimize data storage and retrieval, CS-based data compression in cloud storage can be
utilized. Instead of storing vast amounts of raw sensor measurements, the cloud maintains
feature-extracted CS data, significantly reducing storage requirements while preserving
the critical information necessary for grid analysis, event detection, and decision-making.
This approach enhances the efficiency of querying, retrieving, and processing data, making
large-scale power system monitoring more practical and scalable.
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8. Case Study: Performance Analysis of Compressive Sensing in
Data Recovery

This study explores the application of Compressive Sensing (CS) techniques for en-
ergy monitoring and signal reconstruction in power engineering, with a focus on data
aggregation in smart grids through data compression to optimize grid resource utiliza-
tion. Using the UK Domestic Appliance-Level Electricity (UK-DALE-2017) dataset [146], a
public benchmark for energy monitoring and disaggregation research, the study evaluates
the effectiveness of various sparse bases, measurement matrices, and compression ratios
(CRs) in compressing and reconstructing active power signals sampled at a 6 s interval.
A random signal segment from one day’s power data was selected for analysis, with
evaluations conducted across compression ratios ranging from 20% to 90% under both
noise-free and noisy conditions (Gaussian noise at an SNR of 20 dB). The study examines
the reconstruction quality using key metrics such as Mean Absolute Error (MAE) and
Integral Normalized Absolute Error (INAE). To ensure uniform analysis and manageable
data processing, raw power data were segmented into 256-sample non-overlapping win-
dows. This segmentation enabled the efficient and systematic analysis of the dataset’s rich
temporal information. Sparse bases such as Wavelet, DCT, Hadamard, Hankel, and Toeplitz
were employed to compress and reconstruct the signals, leveraging the sparsity inherent in
power data for efficient representation. Measurement matrices like Gaussian and Bernoulli
random matrices project the sparse signals onto a lower-dimensional space. In this study,
we employed Orthogonal Matching Pursuit (OMP) for signal reconstruction due to its
lower computational overhead (O(kMN)) and suitability for real-time applications. All
analyses were performed using MATLAB 2024 on a PC with 16GB RAM running a 64-bit
Windows OS. Tables 9 and 10 compare the performance of various sparse transformation
bases—Hadamard, Hankel, Toeplitz, DCT, and Wavelet—under Gaussian and Bernoulli
measurement matrices. The OMP algorithm was efficiently executed on this hardware
configuration without significant processing delays, making it a feasible choice for power
signal reconstruction. Table 9 presents the results for random data segments under varying
compression ratios (CRs), whereas Table 10 provides the averaged performances over a
month. Both tables consider scenarios with and without noise, evaluating MAE and INAE
as metrics. The CS methodology was extended to the entire one-month dataset with CR
40–70% to evaluate its generalizability. Figure 5 shows the INAE for one month’s dataset
with CR 50%.

Table 9. MAE and INAE for random data segment for different transformation bases.

CR(%)
Data Re-
tained

(%)
Sparse
Basis

Gaussian,
No

Noise—
MAE

Gaussian,
No

Noise—
INAE

Bernoulli,
No

Noise—
MAE

Bernoulli,
No

Noise—
INAE

Gaussian,
with

Noise—
MAE

Gaussian,
with

Noise—
INAE

Bernoulli,
with

Noise—
MAE

Bernoulli,
with

Noise—
INAE

80 20

Hadamard 30.416 22.8888 35.1873 26.4793 34.3322 25.8358 36.5633 27.5148

Hankel 8.1615 6.1417 8.1282 6.1167 195.204 146.8959 197.3912 148.5418

Toeplitz 1.3407 1.0089 1.3333 1.0033 7.1333 5.368 6.779 5.1014

DCT 2.0953 1.5767 2.7271 2.0522 4.2666 3.2107 5.3506 4.0264

Wavelet 1.7153 1.2908 1.7416 1.3106 2.6157 1.9684 2.9959 2.2545

70 30

Hadamard 34.2501 25.7741 36.5804 27.5276 38.3564 28.8641 44.032 33.1352

Hankel 7.6092 5.7261 4.4709 3.3645 139.5385 105.0062 161.6916 121.677

Toeplitz 1.3295 1.0005 1.3309 1.0016 2.7952 2.1034 1.8024 1.3563

DCT 2.6746 2.0127 2.4513 1.8446 3.6306 2.7321 4.6323 3.4859

Wavelet 1.2489 0.9399 1.2861 0.9679 2.7445 2.0653 2.3165 1.7433
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Table 9. Cont.

CR(%)
Data Re-
tained

(%)
Sparse
Basis

Gaussian,
No

Noise—
MAE

Gaussian,
No

Noise—
INAE

Bernoulli,
No

Noise—
MAE

Bernoulli,
No

Noise—
INAE

Gaussian,
with

Noise—
MAE

Gaussian,
with

Noise—
INAE

Bernoulli,
with

Noise—
MAE

Bernoulli,
with

Noise—
INAE

60 40

Hadamard 27.5924 20.764 32.0597 24.1257 26.8761 20.225 32.2582 24.2751

Hankel 8.1214 6.1116 5.5709 4.1923 226.9955 170.8198 118.757 89.3676

Toeplitz 1.33 1.0009 1.3293 1.0003 3.0443 2.2909 8.0426 6.0522

DCT 2.2639 1.7036 2.5299 1.9038 3.6603 2.7545 5.0455 3.7969

Wavelet 1.1717 0.8818 0.992 0.7465 2.5834 1.944 2.491 1.8746

50 50

Hadamard 31.1382 23.4323 29.3679 22.1001 26.8215 20.1839 32.6096 24.5395

Hankel 6.2747 4.7219 5.1071 3.8432 123.7921 93.1567 139.8015 105.2041

Toeplitz 1.3291 1.0002 1.3304 1.0011 1.5795 1.1886 10.7515 8.0908

DCT 2.4238 1.824 2.3074 1.7363 4.7006 3.5373 3.7953 2.856

Wavelet 0.9271 0.6976 1.0616 0.7989 2.8074 2.1127 2.7778 2.0904

40 60

Hadamard 35.3691 26.6161 29.895 22.4967 35.4208 26.655 28.8486 21.7093

Hankel 5.1359 3.8649 4.0463 3.0449 111.0571 83.5733 147.2666 110.8218

Toeplitz 1.3278 0.9992 1.3328 1.0029 2.8989 2.1815 2.6751 2.0131

DCT 2.3167 1.7434 2.1247 1.5989 4.16 3.1305 3.5728 2.6886

Wavelet 1.0256 0.7718 1.0697 0.805 2.5337 1.9067 2.2672 1.7061

30 70

Hadamard 25.8871 19.4807 26.464 19.9148 26.4131 19.8765 25.8141 19.4257

Hankel 4.2955 3.2325 3.8284 2.881 135.0848 101.6547 75.1401 56.5448

Toeplitz 1.3274 0.9989 1.3293 1.0003 4.4159 3.3231 2.8291 2.129

DCT 1.8114 1.3631 2.0055 1.5092 3.2414 2.4392 3.3822 2.5452

Wavelet 0.977 0.7352 0.9379 0.7058 2.1448 1.614 1.8547 1.3957

20 80

Hadamard 23.7002 17.835 28.4695 21.424 23.3644 17.5823 27.6016 20.7709

Hankel 4.1713 3.139 4.1768 3.1431 121.8134 91.6676 142.2333 107.0341

Toeplitz 1.3296 1.0006 1.3347 1.0044 4.0669 3.0605 3.2064 2.4129

DCT 1.9242 1.448 1.8334 1.3797 2.4519 1.8451 3.064 2.3057

Wavelet 0.9799 0.7374 0.9792 0.7369 1.7518 1.3183 1.9356 1.4566

10 90

Hadamard 26.5948 20.0132 28.9333 21.773 26.5829 20.0043 28.9887 21.8147

Hankel 3.5974 2.7071 5.1319 3.8619 101.241 76.1864 87.9752 66.2035

Toeplitz 1.3311 1.0017 1.3289 1 3.5383 2.6627 2.6663 2.0065

DCT 1.747 1.3147 1.8797 1.4145 3.0726 2.3122 3.0399 2.2876

Wavelet 0.9501 0.715 0.8936 0.6724 2.071 1.5585 1.7319 1.3033

Table 10. Averaged MAE and INAE for one month.

CR Noise Metric
Hadamard DCT Wavelet Hankel Toeplitz Hadamard DCT Wavelet Hankel Toeplitz

INAE MAE

40%
No

Gaussian 16.699 1.2799 1.1203 1.8468 1.0003 243.02 18.19 14.659 16.566 14.335

Bernoulli 16.938 1.2955 1.1217 1.8728 1.0003 245.19 18.599 14.665 16.643 14.334

Yes
Gaussian 16.735 2.0563 1.6047 74.501 2.1387 244.71 29.925 22.619 1076.8 31.634

Bernoulli 17.127 2.1071 1.6189 74.074 2.0507 246.63 30.641 22.944 1148.8 30.721

50%
No

Gaussian 17.531 1.3393 1.1217 1.9152 1.0004 251.98 19.1 14.662 16.74 14.334

Bernoulli 17.955 1.3647 1.1234 1.9254 1.0003 260.7 18.782 14.665 16.806 14.335

Yes
Gaussian 17.7 2.2342 1.6649 79.647 2.1485 252.26 31.37 23.403 1250.7 29.364

Bernoulli 17.998 2.2657 1.7016 80.967 2.2299 259.22 32.879 23.801 1096.9 29.897
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Table 10. Cont.

CR Noise Metric
Hadamard DCT Wavelet Hankel Toeplitz Hadamard DCT Wavelet Hankel Toeplitz

INAE MAE

60%
No

Gaussian 18.615 1.4264 1.1249 2.0532 1.0005 266.55 20.893 14.667 17.137 14.335

Bernoulli 19.15 1.4396 1.1254 2.0752 1.0004 277.67 20.701 14.67 17.211 14.334

Yes
Gaussian 18.604 2.3731 1.7433 86.062 2.3814 266.47 33.557 24.484 1259.4 38.581

Bernoulli 19.062 2.4589 1.7647 90.469 2.4349 271.21 35.155 24.795 1309 36.613

70%
No

Gaussian 20.465 1.5501 1.1333 2.297 1.0008 307.31 22.01 14.688 17.849 14.335

Bernoulli 21.428 1.5785 1.1323 2.3457 1.0004 307.81 23.644 14.693 17.951 14.334

Yes
Gaussian 20.442 2.7422 1.8455 99.634 2.6698 297.69 39.901 26.806 1402.7 38.751

Bernoulli 21.692 2.7072 1.8817 100.21 2.7588 319.04 39.518 26.652 1487.4 38.694
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The key observations that can be made based on the analysis of Tables 9 and 10, and
Figures 5 and 6 reveal significant insights into the impact of compression ratios, measure-
ment metrics, and sparse transformation bases on reconstruction quality, specifically in
terms of MAE and INAE, under both noise-free and noisy conditions.
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8.1. Effect of Compression Ratio (CR)

Figure 6 shows the MAE versus compression ratio plot for different sparse bases
and measurement matrices. With noise-free conditions, as CR increases (data retained
decreases), MAE and INAE improve consistently across most sparse bases. This is more
evident in Table 10, where aggregated results over a month showcase the trend. For
instance, at CR = 40%, the Toeplitz basis achieves Gaussian INAE = 1.00 and MAE = 14.33,
reflecting its ability to preserve data integrity during higher compression levels. At higher
CRs (e.g., 80%), Wavelet and Toeplitz maintain low error values under noise-free conditions.
Wavelet records Gaussian INAE = 1.31 and MAE = 14.67, even at lower CRs (e.g., 60%),
highlighting its consistent performance.

In noisy conditions, at higher CRs (e.g., 80%), bases like Hankel exhibit significant error
inflation, as observed in Table 9 (Gaussian INAE = 146.89, MAE = 195.20). However, Wavelet
and Toeplitz show remarkable resilience under noisy conditions. For instance, at CR = 50%
in Table 5, Wavelet achieves Gaussian INAE = 2.11 and MAE = 2.77, demonstrating its
robustness to noise, even under high compression. Compression ratios between 40% and
60% offer the best trade-off between data compression and reconstruction accuracy.

8.2. Sparse Basis Performance

Toeplitz consistently outperforms other bases across all scenarios in terms of both
MAE and INAE. Its stability under noisy conditions is evident in Table 10, where it achieves
Gaussian INAE = 1.00 and MAE = 14.33 at CR = 40%. This reliability makes it ideal for
applications demanding high compression and noise resilience.

Across both tables, Wavelet emerges as the most robust transformation basis, partic-
ularly in noise-free environments. In Table 10, it achieves low Gaussian INAE and MAE
values across multiple CRs, such as INAE = 1.31 and MAE = 14.67 at CR = 60%. This
underscores its adaptability to both high compression and noisy environments.

Hadamard shows good performance only in noise-free scenarios at higher CRs, such
as CR = 80% in Table 10, where Gaussian INAE = 22.88. However, its sensitivity to noise
becomes evident at lower CRs, with errors increasing significantly in Table 9, especially
under noisy conditions.

Hankel performs moderately in noise-free conditions but is highly vulnerable to noise,
as highlighted in Table 10. At CR = 60%, it records Gaussian INAE = 170.81 under noisy
conditions, making it less suitable for robust applications.
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DCT strikes a balance between robustness and performance across all CRs and con-
ditions. For instance, in Table 10 at CR = 70%, it achieves Gaussian INAE = 2.73 and
MAE = 26.80 under noisy conditions, making it a reliable choice for mixed environments.

8.3. Choice of Measurement Matrices

The choice of measurement matrix has a noticeable impact on performance.
Gaussian matrices consistently outperform Bernoulli matrices in noisy environments

across both tables. In Table 5, at CR = 50%, Gaussian matrices paired with Wavelet achieve
INAE = 2.11 and MAE = 2.77, whereas Bernoulli matrices result in slightly higher values,
with INAE = 2.23 and MAE = 2.78. This trend highlights Gaussian matrices’ superior noise
suppression capabilities.

In noise-free conditions, the differences between Gaussian and Bernoulli matrices are
less significant. For example, in Table 5, at CR = 40%, both matrices exhibit comparable
trends across sparse bases like Toeplitz and Wavelet.

9. Conclusion and Emerging Research Opportunities in
Compressive Sensing

Compressive Sensing (CS) has gained significant attention in power engineering for
its ability to efficiently acquire and reconstruct signals using fewer measurements, thereby
minimizing data transmission overhead and reducing storage requirements while preserv-
ing critical information. However, existing research is often fragmented across different
applications, making it challenging to identify the full scope of CS’s impact. This review
consolidates recent advancements, providing a structured overview of CS methodologies
and their applications in power systems. By critically analyzing measurement matrices,
sparse bases, and recovery algorithms, this paper highlights the key benefits and challenges
of CS, making it a valuable resource for researchers and practitioners in the field.

In power engineering, CS has shown effectiveness in applications like Advanced Me-
tering Infrastructure (AMI), Wide-Area Measurement Systems (WAMSs), state estimation
(SE), fault detection (FD), Harmonic Source Identification (HSI), power quality detection
(PQD) and condition monitoring (CM), where it addresses issues of data sparsity, real-time
constraints, and resource limitations.

The effectiveness of measurement matrices and sparse bases for data recovery was
evaluated using the UK DALE dataset. Results indicate that for robust recovery in noisy
environments, Gaussian matrices paired with transformation bases like Wavelet or Toeplitz
perform well. Compression ratios between 40% and 60% provide the best balance even
in noisy conditions, achieving significant data compression while maintaining low errors,
making this approach suitable for temporal data aggregation and data compression in smart
grids to optimize resource utilization. The Toeplitz and Wavelet bases demonstrate superior
performance, maintaining low error rates across both noise-free and noisy conditions,
making them suitable for high-compression, high-accuracy applications.

Recent advancements in CS research have primarily focused on enhancing measure-
ment matrix design, improving sparse recovery algorithms, and integrating CS with emerg-
ing technologies such as deep learning and cloud computing. Studies are increasingly
exploring hybrid CS models that combine adaptive sensing with AI-driven reconstruction
techniques to enhance accuracy and efficiency in large-scale power systems. Addition-
ally, energy-efficient CS frameworks optimized for edge devices and IoT networks are
becoming a focal point in smart grid applications. However, despite these achievements,
real-world deployment of CS remains challenging due to issues such as signal correlation,
scalability constraints, and high computational demands for large datasets. These chal-
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lenges highlight the need for further advancements in both theoretical models and practical
implementations to fully realize the potential of CS in power engineering.

Future research and implementation of CS can focus on the following specific applica-
tions and advancements, leveraging its capabilities across diverse domains:

i. Measurement Matrix Design and Optimization: Adaptive and weighted measure-
ment strategies can achieve this by focusing on the most informative aspects of the
signal. Utilizing machine learning techniques, such as genetic algorithms, to design
measurement matrices offers adaptive solutions tailored to dynamic signal behav-
iors [147,148].

ii. Adaptive and Optimal Basis Selection: Developing algorithms that dynamically select
the optimal sparsity basis is crucial for adapting to fluctuating system conditions.
Data-driven and tensor-based methods can tailor the sparsity basis by analyzing inher-
ent system characteristics, ensuring efficient signal representation and reconstruction.
Incorporating advanced preprocessing techniques, such as noise filtering and decorre-
lation, into CS workflows can significantly enhance signal quality without compro-
mising essential features required for accurate analysis and reconstruction [15,149].
The combination of CS with techniques like the Discrete Cosine Transform (DCT) and
Amended Intrinsic Chirp Separation (AIChirS) to precisely reconstruct overlapping
non-stationary signals can be explored [150].

iii. Recovery algorithms: Research efforts should continue to refine recovery algorithms,
striving for excellence in terms of speed, efficiency, robustness, handling structured
and non-sparse signals.

iv. Scalability and Energy Efficiency studies in Large-Scale Systems: As the number
of connected devices increases, scalability becomes paramount [145,148]. CS can
enhance data storage efficiency in large-scale frameworks like China’s UPIoT and
the emerging energy internet [150]. By effectively compressing data, CS reduces
storage requirements and facilitates seamless data management. Shifting computa-
tional demands from resource-constrained IoT devices to robust gateways can lead
to significant energy savings. In smart grids, joint sparse recovery techniques miti-
gate communication network burdens by simultaneously recovering multiple sparse
vectors, thereby optimizing energy consumption [151,152]. Designing lightweight
CS solutions optimized for resource-constrained devices, such as IoT nodes and
smart sensors, is essential [153–155]. Employing fixed-point arithmetic on FPGAs and
optimizing GPU kernels can achieve a balance between performance and power con-
sumption, ensuring efficient CS operations on edge devices [156]. In asset monitoring
and vegetation management, employing CS-based image processing with fewer UAV
sensors minimizes energy usage and extends the operational lifespan of deployed
devices, contributing to sustainable and cost-effective monitoring solutions [157].
Block Compressed Sensing (BCS), which segments large datasets into smaller blocks,
enhances processing speed and system efficiency, making it feasible for large-scale
power systems.

v. Spatio-Temporal Models: Developing hierarchical CS frameworks by integrating Dis-
tributed Compressive Sensing (DCS) and Dynamic Distributed Compressive Sensing
(DDCS) can improve data handling from complex sources such as multi-bus grids,
UAV networks, and smart cities [149,158]. These models enhance data reconstruction
accuracy and efficiency in large-scale power systems. Investigating spatio-temporal
CS techniques can enhance large-scale monitoring systems by exploiting spatial corre-
lations to reduce data redundancy while maintaining high reconstruction accuracy in
geographically distributed networks [149].
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vi. CS integration with Cloud and Edge Computing: Integrating compressive data gath-
ering with link scheduling can further reduce energy consumption and network traffic
in applications like Advanced Metering Infrastructure (AMI) and Smart Grids by
focusing on data reduction and security. Hybrid Cloud-Edge Architectures enhances
the scalability and responsiveness of CS applications in power engineering, balancing
computational loads between local devices and centralized cloud resources.

vii. CS fusion with Deep Neural Networks: Combining CS with deep learning can create
adaptive and intelligent systems capable of simultaneous classification, forecasting,
and reconstruction [87,88]. Such systems hold significant promise for applications
like fault detection (FD) and Power Quality Detection (PQD), leveraging the strengths
of both CS and deep learning for more robust and accurate monitoring solutions.

viii. Security and Privacy Enhancements: Advancing CS-based encryption methods, where
sensing matrices also serve as encryption keys, can enhance data security in critical
applications such as AMI and sensitive fields like medical data systems [159,160]. This
dual purpose use of sensing matrices offers a novel approach to securing transmitted
data without additional encryption overhead. Expanding federated CS frameworks
to process sensitive data locally while incorporating robust security protocols, such
as Quantum Key Distribution (QKD), can safeguard distributed systems against
sophisticated cyber threats [161].

ix. Quantum Computing Integration: Employing quantum algorithms, such as the Quan-
tum Fourier Transform (QFT) and Harrow–Hassidim–Lloyd (HHL) algorithm, can
significantly accelerate sparse recovery and matrix operations [162]. This is particu-
larly promising for real-time grid monitoring and renewable energy forecasting in
resource-intensive applications. Exploring parallel computing, distributed algorithms,
and hardware acceleration can address the computational demands of CS-based state
estimations in expansive grids.
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