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We study Berry connections for supersymmetric ground states of 2d N = (2,2) GLSMs 
quantised on a circle, which are generalised periodic monopoles. Periodic monopole so
lutions may be encoded into difference modules, as shown by Mochizuki, or into an 
alternative algebraic construction given in terms of vector bundles endowed with filtra
tions. By studying the ground states in terms of a one–parameter family of supercharges, 
we relate these two different kinds of spectral data to the physics of the GLSMs. From 
the difference modules we derive novel difference equations for brane amplitudes, which 
in the conformal limit yield novel difference equations for hemisphere or vortex partition 
functions. When the GLSM flows to a nonlinear sigma model with Kähler target X , we 
show that the two kinds of spectral data are related to different (generalised) cohomology 
theories: the difference modules are related to the equivariant quantum cohomology of X , 
whereas the vector bundles with filtrations are related to its equivariant K–theory.
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1. Introduction

Supersymmetric gauge theories in low dimensions have been an inexhaustible source of deep mathematical constructions 
and problems. This is undoubtedly the case for 2d N = (2,2) GLSMs, which represent, amongst other things, a physical 
arena for the study of homological mirror symmetry. In this paper we revisit some physical phenomena related to the 
supersymmetric ground states of 2d (2,2) GLSMs quantised on a circle, either in a cylindrical or cigar geometry, expanding 
upon them and demonstrating that this particular source still has much to give.

The starting, fundamental observation is that moduli spaces of solutions to supersymmetric Berry connections over 
a twisted mass deformation and associated holonomy for an abelian flavour symmetry correspond to moduli spaces of 
periodic monopoles. This allows us to relate supersymmetric ground states in the cohomology of a one–parameter family of 
supercharges to mathematical constructions that have recently received significant attention, namely the difference modules 
representing monopole solutions of Mochizuki [58,59] as well as a Riemann–Hilbert correspondence between these and 
holomorphic vector bundles endowed with filtrations [54]. These can be thought of as encoding different kinds of spectral 
data for the monopole. As a result of the relation between Berry connections and difference modules, we derive novel 
difference equations satified by brane amplitudes and hemisphere and vortex partition functions. Moreover, in the case 
of a GLSM that flows to an NLSM with (GKM) target X , we relate the different algebraic representations entering the 
Riemann–Hilbert correspondence to a quantisation of a certain action on the equivariant quantum cohomology of X and 
the equivariant K–theory of X , respectively. To the best of our knowledge, this connection has also not appeared so far in 
the literature.

1.1. Overview

We now provide a narrative overview of our results. In Section 2 we describe the setup for this work. We consider a 2d 
N = (2,2) GLSM with an abelian flavour symmetry T on R× S1 and cigar geometries, highlighting aspects of the Hilbert 
space of the theory on the spatial S1. We first identify a P 1 (twistor) family of N = 2 Supersymmetric Quantum Mechanics 
(SQMs) along the non–compact direction R, labelled by a local coordinate λ on P 1. The SQMs contain a distinguished 
supercharge Q λ , and our conventions are such that

Q λ|λ=0 = Q A, Q λ|λ=1 = Q . (1.1)

Here Q A is the A–model supercharge whose cohomology is the twisted chiral ring and therefore, when the GLSM flows 
to an NLSM with target X , it is known to reproduce the equivariant quantum cohomology of the target Q H•

T (X). Q is a 
dimensional reduction of the 3d N = 2 supercharge whose cohomology is related to the equivariant elliptic cohomology 
[6,25]; in this 2d setting we obtain equivariant K–theory KT (X). See Fig. 1 for a pictorial representation of the twistor 
sphere.

For simplicity, in this overview let us consider a GLSM with a T = U (1) flavour symmetry. This is the main focus of the 
mathematical literature [58,59]. However, our results can naturally be generalised to an abelian flavour symmetry T = U (1)n , 
n > 1, and much of our discussions in the main body will be devoted to the study of these higher–rank cases.

We can deform the theory by introducing a holonomy t for T on the circle as well as a complex mass w , so that the pair 
(t, w) takes values in M = S1 ×R2. It will be useful for us to understand t as an R-valued variable in the first place and 
then quotient by a Z-action. The space of supersymmetric ground states of a theory with N vacua forms a rank-N vector 
bundle E → M endowed with a Berry connection. The Berry connection is determined via (by now standard) considerations 
in tt∗ geometry, and it can be shown to correspond to a periodic monopole solution on M , solving the Bogomolny equations 
F = �Dφ, where φ as an adjoint Higgs field. Under some physical assumptions, the monopole we obtain is of generalised 
Cherkis–Kapustin type [18,19], that is (approximately speaking) it has only Dirac singularities (corresponding to parameters 
where the theory is no longer gapped) and asymptotically approaches in w a direct sum of Dirac monopoles. In particular, 
the asymptotics of the Berry connection can be related to physical data, in the form of the effective twisted superpotential:
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Fig. 1. The twistor sphere of supercharges and related constructions for a GLSM with Higgs branch X , or equivalently an NLSM with smooth target X . At 
λ= 0, operators in Q λ-cohomology reproduce the equivariant quantum cohomology ring of the target X . The Cherkis–Kapustin spectral variety of the Berry 
connection encodes properties of this ring. Away from it, the spectral variety is quantised. At |λ| = 1 an alternative twistorial description of the spectral 
data emerges that is related to the equivariant K-theory of X .

Aα
t + iφα ∼−2i∂w W (α)

eff
Aw ∼ O ( 1 

w )
as |w| →∞, (1.2)

where α = 1, . . . , N label isolated massive vacua, and W (α)

eff is the effective twisted superpotential evaluated on these vacua.
Our twistor family of supercharges can naturally be thought of as a family of mini–complex structures on the space M

(thus justifying the name). These correspond to collections of open charts R ×C, glued in a way that it makes sense to 
speak of functions locally constant along R and holomorphic along C.1 Adapted to a certain mini–complex structure on M
we have mini–complex coordinates (t1(λ),β1(λ)) such that (t1(λ= 0), β1(λ= 0))= (t, w). To emphasise this structure, we 
sometimes write Mλ . Moreover, the vector bundle E → Mλ is mini–holomorphic, in a suitable sense. In particular, when 
restricted to t1 it is naturally holomorphic with Dolbeault operator ∂E,β1 . The Bogomolny (monopole) equations imply a 
complex equation

[∂E,t1 , ∂E,β1 ] = 0 (1.3)

that holds at all values of λ, where ∂E,t1 = Dt1 − iφ is the covariant derivative operator in the t1 direction complexfied 
by the Higgs field. We review these facts in greater detail at the beginning of Section 4. Following Mochizuki [58], we can 
encode the monopole solutions in terms of Hitchin–Kobayashi correspondences that arise from the above complex equation, 
and which encode the other, real equations into stability conditions.

Product case, Cherkis–Kapustin spectral curve & quantum cohomology Consider the case λ= 0 case first (the so–called product 
case), which we investigate in Section 4.2. In this case, as mini–complex manifolds, we have

Mλ=0 ∼ = S1 ×C. (1.4)

The vector bundle of supersymmetric ground states restricted at t = 0, E0 := E|t=0, is holomorphic with respect to ∂E,w and 
we can loosely denote the space of meromorphic sections by V . Along the locus D ∈Cw where monopole singularities are 
located, the sections may acquire some poles, so one naïve definition would be2

V := H0(Cw ,E0(�D))⊗C[w] C(w), (1.5)

where we are allowing for these poles. In fact, V is a more rfined version of this, as we will review. These technicalities 
aside, we can parallel transport the holomorphic sections around a full circle by means of the operator ∂E,t . By (1.3) we 
then get an automorphism

F (w) : V → V , (1.6)

which endows V with the structure of a 0-difference C(w)-module. Mochizuki showed in [58], following work of 
Charbonneau–Hurtubise [16], that by keeping track of some additional structure of the module (related to the afore
mentioned stability, as well as to the behaviour of the monopole at ifinity and at the singularities) one gets a 1:1 
correspondence between monopoles of GCK type and these modules. Moreover, one can consider the curve spanned by the 
eigenvalues of this automorphism, which essentially corresponds to the Cherkis–Kapustin spectral curve L for the monopole

L= {(p, w)  |  det(p1− F (w))= 0}. (1.7)

1 It may help the reader to keep in mind that a mini–complex structure can be understood in terms of a dimensional reduction of complex structures 
from R4. Our twistor sphere is a direct descendant of the sphere of complex structures of this hyperkähler manifold.

2 Here and below, C(w) denotes the ring of rational functions in w .
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Fig. 2. The mini–holomorphic coordinates (t1, β1) at different λ. The purple and red points are identfied in the underlying smooth manifold M ∼ = S1 ×R2. 
In the product case (λ = 0, left), moving along the real coordinate brings one back to the same point in M . In the non–product case (λ �= 0, right), an 
additional shift by 2iλ is necessary. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

We demonstrate that the pair (V , F ) has a neat physical interpretation. The module V can be generated by states 
obtained via the A–twisted topological path integral on a cigar, by inserting operators in Q A -cohomology at the tip. The 
automorphism arises from the insertion of an operator p that acts on this module. It can be interpreted as a defect operator 
inserting flux for T , whose eigenvalues can be efficiently computed. We find that they correspond to e−2i∂w W (α)

eff . In other 
words, they can be obtained from the equations

e−2i
∂Weff(σ ,w)

∂w = p, e
∂Weff(σ ,w)

∂σa = 1, a= 1 . . . r. (1.8)

In the above σa are scalars parametrising the Cartan of the gauge group, lying in abelian vector multiplets in the IR. For non
abelian gauge groups, one most quotient the set of solutions by the Weyl group. Once eliminated from the above equations, 
one recovers the spectral curve (1.7).

In the case of a GLSM that flows to a target X , the Q A -cohomology ring is known to correspond to the quantum 
equivariant cohomology Q H•

T (X) [75]. Thus, the module V may be identfied with Q H•
T (X). The set of equations on the 

right of (1.8), are known to precisely describe this ring [61,62]. From the above observations, the module (V , F ) describes 
the action of the algebra of functions on C ×C∗ generated by (w, p) on Q H•

T (X). This dfines a sheaf on C ×C∗ with 
support on the solutions in (p, w) to the whole set of equations (1.8).3 In upcoming work, we will interpret this action by 
coupling the 2d theory to a bulk–boundary 3d theory, relating it to work of Teleman [74].

Branes, difference modules & curve quantisation In Section 4.3, we consider the case λ �= 0. We obtain a similar structure as 
before, namely the bundle E t1 still has a holomorphic structure, but now parallel transport with respect to t1 needs to be 
composed with a 2iλ shift in order to obtain an automorphism of its sheaf of meromorphic sections. In turn, we no longer 
get a 0-difference module, but a 2iλ-difference module instead. See Fig. 2.

In this paper, we propose that supersymmetric ground states viewed as elements in Q λ cohomology are holomorphic 
with respect to ∂E,β̄1

, and are natural candidates for a physical representation of the elements of Mochizuki’s modules 
encoding the Berry connection. We denote a suitable basis for the holomorphic sections as {|aλ〉}. In the λ→ 0 limit, such 
a basis can be generated by chiral ring insertions Oa at the tip of an adjoining cigar. Moreover, we consider what we call 
brane states |D〉, generated by appropriate D-branes preserving Q λ, as well as their projections onto the ground state sector 
	[D]. The latter can be expanded in a selected basis

	[D] :=
∑
aλ

	[D,aλ]ηab |bλ〉 . (1.9)

In the above, 	[D,aλ] = 〈aλ|D〉 are known as brane amplitudes, and ηab is the inverse of the non–degenerate pairing ηab =
〈aλ|bλ〉. Notice that overlaps 〈a|D〉 can be generated by a path integral on a cigar geometry with Oa inserted at the tip, and 
a B-brane D at the boundary S1 (see Fig. 6).

The detailed properties of D-brane states are difficult to understand, however, we can show on general grounds that they 
must be annihilated by both ∂E,t1 and ∂E,β̄1

. This is because of the well–known fact that the D-branes are flat sections of 
the Lax connection. From this, we derive remarkable difference equations satified by brane amplitudes 〈b|Dα 〉. These take 
the form

(�∗
1)
−1〈aλ|D〉 = G b

a (β1)〈bλ|D〉 (1.10)

where Gb
a is a matrix of holomorphic functions of β1, and �∗

1 is the automorphism given by a 2iλ-shift β1 �→ β1 + 2iλ. To 
our knowledge, these difference equations are novel.

There is a distinguished basis of flat sections of the tt∗ Lax connection given by a class of branes known as thimbles. 
For GLSMs which flow in the IR to NLSMs, they are supported on the holomorphic Lagrangian submanifolds of the Higgs 

3 (This set of equations can naiv̈ely be viewed as a ‘momentum space’ representation of the quantum equivariant cohomology relations.)
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Fig. 3. The types of spectral data considered in Section 4 and their relation via limits. 

branch X corresponding to attracting submanifolds of fixed points of T . Such boundary conditions were analysed explicitly 
for massive (2,2) theories in [35,50] and for 3d N = 4 theories in [6,8,11,23]. The asymptotic behaviour of these brane 
amplitudes is known:

〈bλ|Dα〉 ∼ e
W (α)

eff
λ Ob|α, as λ→ 0. (1.11)

Utilising the asymptotic behaviour of this basis, we show that the difference equations (1.10) must reduce in the λ→ 0
limit to the defining equation of the Cherkis–Kapustin spectral curve of the monopole. In particular:

lim 
λ→0

L(w, G)= 0, (1.12)

where L is the Cherkis–Kapustin spectral curve (1.7). That is, the difference equations quantise the Cherkis-Kapustin spectral 
curve. In the case of a GLSM that flows to an NLSM with target X , the difference equations are therefore related to a 
quantisation of the aforementioned action on Q H•

T (X). The situation is represented in Fig. 1.

Hemisphere partition functions & difference equations Although having novel difference equations satified by physical D-brane 
amplitudes is already satisfying, it is of course difficult to compute these observables and in particular to check our result 
beyond the free chiral case, as the brane amplitudes are not supersymmetric. Thus, in Section 4.4, we move on to inspect 
a particular limiting case, investigated previously in [15,50]. We take the conformal limit: λ→ 0 and L → 0, where L is the 
length of the S1 on which the theory is quantised, but take λ/L := ε constant. In this limit, the amplitudes are expected 
to reduce to hemisphere, or vortex partition functions, which can be exactly computed via localisation [32,45,47,71]. The 
parameter ε is identfied with the 
-deformation parameter in the vortex partition function, or the inverse radius for the 
hemisphere partition function.

Our arguments then imply that these partition functions must satisfy novel difference equations that themselves re
duce in the ε → 0 limit to the Cherkis–Kapustin spectral curve. The relations are schematically illustrated in Fig. 3. In the 
conformal limit we are actually able to show a bit more than (1.10) and (1.12), namely:

p̂ ZD [Oa,m] = G̃ab(m, ε)ZD [Ob,m], lim 
ε→0

G̃ = F , (1.13)

where p̂ is a difference operator which shifts the complex mass appearing in the hemisphere partition functions by m �→
m+ ε . Thus, the difference equations provide a quantisation of the action of the operators p, w on Q H•

T (X). In particular, 
we obtain difference equations that quantise the spectral curve and are solved by hemisphere partition functions. Since we 
are in the calculable realm of supersymmetric partition functions, these assertions are eminently verfiable.

Pleasingly, as hemisphere and vortex partition functions admit direct calculation via localisation, this yields a recipe to 
construct solutions to difference equations which arise as quantisations of the spectral varieties. These objects naturally 
involve hypergeometric functions, and coincide with equivariant Gromov–Witten invariants of the Higgs branches [5]. We 
stress again that all of these constructions generalise to n > 1. In particular, we present the examples of the free chiral 
(X =C), SQED[2] (X =CP 1) and in appendix A, SQED[3] (X =CP 2). The latter is of course an example for n = 2.

Holomorphic filtrations and equivariant K–theory Finally, in Section 5 we proceed to describe the second algebraic description 
encoding aspects of the monopole solution that emerges when |λ| = 1, as well as its consequences. For simplicity, we fix 
λ= 1, but the same reasoning goes through for |λ| = 1. As mini–complex manifolds, we now have

Mλ=1 ∼ = R×C∗ (1.14)

where the real direction can be parameterised by an alternative local mini–complex coordinate t0 = Im(w̄), accompanied 
by a complex one β0. (These can be thought of as alternative coordinates to (t1, β1) on the same mini–complex manifold). 
We can then consider scattering along the real, non–compact line dfined by t0, as in Fig. 4.

5 



A.E.V. Ferrari and D. Zhang Journal of Geometry and Physics 210 (2025) 105425 

Fig. 4. The spectral data considered in Section 5 for λ= 1 (left) and its relation to equivariant K–theory (right). On the left, the red line supports sections 
of the vector bundles Et0 →C∗ that decay in both t0 →±∞ directions (bound states). This is a twistor–like spectral data. The support of the line on C∗
corresponds to the point where the sheets of the equivariant K–theory variety are glued together, as shown on the right.

Sections of the holomorphic bundle E t0 → C∗ that decay at t0 → ±∞ can be filtered by their fall–off rate, which 
is determined by the twisted superpotential. Bound states (that is, sections that demonstrate exponential decay in both 
directions) can only be supported on a codimension–one locus � ∈C∗ . This locus is the equivalent of the Hitchin or twistor 
spectral curve for monopoles in R3 (see [17]). The last contribution of this paper is to show that in the case of an NLSM 
with target X , this locus is precisely the one where C∗ sheets glue together to form the equivariant K–theory variety of X , 
which in this simple, rank 1 example (with N = 2 vacua) takes the form:

Spec(KT (X))= (C∗ �C∗)/� (1.15)

This constitutes a direct dimensional reduction of the physical construction of elliptic cohomology provided by one of the 
authors [6], as well as Dedushenko–Nekrasov [25].

We conclude this overview by remarking that the fact that two algebraic descriptions of Berry connections related to 
two different spectral curves is a remarkable physical incarnation of the announced Riemann–Hilbert correspondence of 
Kontsevich and Soibelman [53,54]. To the best of our knowledge, the fact that in theories with a target space interpretation 
this results in a relation between two generalised cohomology theories has not previously appeared in the literature.

1.2. Further research

It is convenient to already offer here some directions for future research.

Two dimensions Firstly, it is not clear to the authors whether all generalised periodic monopoles of GCK–type can be 
engineered as the supersymmetric Berry connection of a 2d GLSM, and therefore can be interpreted in light of the results 
established in this work. It would be interesting to explore this further.

It would also be interesting to explore the action of T–duality, and the gauging of global symmetries (corresponding 
to the Nahm transform on the Berry connection), on the structures we have uncovered. The former would necessitate a 
deeper study of Landau–Ginzburg models in this framework. On the side of the difference modules investigated in Sec
tion 4.3, it should prove enlightening to investigate D-brane amplitudes and vortex partition functions with insertions of 
twisted chiral ring elements in a different basis. Mathematically, there is a well–known and natural basis in the hierarchy 
of (quantum) equivariant cohomology, K–theory and elliptic cohomology known as the stable envelopes [1,56]. They have 
been investigated physically from a variety of perspectives in [6,25,41,51,73]. In our context, we expect that working in 
these bases will be convenient for the matrix difference equations we uncover. On the side of spectral data provided by 
holomorphic filtrations of vector bundles investigated in Section 5.2, it is natural to ask how the constructions extend to 
non–GKM varieties.

Three dimensions Finally, all of the structures should lift to interesting counterparts in 3d N = 2 theories, from which our 
results should be obtainable via dimensional reduction. We aim to develop this further in upcoming work. Berry connections 
for 3d theories have been studied in [6,15,24,25], and localisation techniques for the computation of partition functions in 
[10,30,80], which also have interesting enumerative interpretations. Of course, in three dimensions there is also the added 
element of 3d mirror symmetry, manifesting mathematically as symplectic duality, to explore.

In particular, the so–called A-polynomial for 3d N = 2 theories [27,28,30], which is a Lagrangian submanifold of (C∗)2N , 
where N is the number of flavour symmetries, corresponds to the analogue of the Cherkis–Kapustin spectral variety consid
ered in this work. This is clear from their determination by the effective twisted superpotential. This gives an interpretation 
of this previously studied object in terms of the supersymmetric ground states of the 3d N = 2 theory on T 2. The 3d lift 
of the main results of this paper would imply a linear, matrix q-difference equation for 3d brane amplitudes, which in the 
conformal limit imply a linear matrix q-difference equation for holomorphic blocks [3] or alternatively 3d vortex partition 
functions in an Omega background. By taking the determinant of this linear matrix difference equation, one would obtain 
a set of difference equations obeyed by each holomorphic block, resulting in the polynomial difference identities studied in 
[3], and yielding a quantisation of the A–polynomial/Cherkis--Kapustin spectral variety.
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The polynomial difference equations studied in e.g. [3] also have an interpretation as line operator identities obeyed by 
holomorphic blocks. Along these lines, in 2d, it would be interesting to derive our results from the setup considered in [9], 
i.e. as Ward identities of monopole operators in 3d N = 4 theories sandwiched between (2,2) boundary conditions.

Geometrically, the 3d hemisphere partition functions correspond [23,26] to the vertex functions in enumerative geome
try of [63]. The aforementioned q-difference equations are the qKZ equations for those theories with an integrable system 
interpretation, in the sense of Nekrasov–Shatashvili [61,62]. Our difference equations in the 2d setting can be interpreted 
as a dimensional reduction thereof. In [2], a physical origin of these difference equations is provided via various compacti
fications of little string theory. Our results give another physical perspective, which is a purely two (or three) dimensional 
construction via the Berry connection, tt∗ geometry and D-branes of these theories. They therefore also apply to theories 
which are not obtainable via such compactfications. Further, it would be interesting to explore connections to geometric 
representation–theoretic considerations of the above references from our constructions.

Finally, we also expect that the lift of the interpretation of the Riemann–Hilbert correspondence between constructions 
related to Q H•

T (X) and KT (X) will lift to one between the equivariant quantum K–theory Q KT (X) and the equivariant 
elliptic cohomology EllT (X).

2. Preliminaries

In this work, we will be interested in 2d (2,2) gauged linear sigma models quantised on the Euclidean cylinder R× S1. 
To set up our notation, we first consider such theories on the Minkowski x0 − x1 plane. The supersymmetry algebra is then 
given by:

q2+ = q2− = q̄2+ = q̄2− = 0,

{q±, q̄±} = P0 ± P1,

{q̄+, q̄−} = Z , {q+,q−} = Z∗,
{q−, q̄+} = Z̃ , {q+, q̄−} = Z̃∗

(2.1)

where we are denoting complex conjugation by ∗. We will also generically be interested in the A–twist of such theories, and 
thus set chiral parameters to zero, so that Z = 0. This allows us to preserve the vector R–symmetry R V , which is necessary 
for the A–twist. The twisted central charge is given by

Z̃ =−i(σ1 + iσ2) · J G (2.2)

where (σ1, σ2) are real scalars, and J G is the generator of the gauge symmetry G . In the combination above they form the 
complex scalar in a N = (2,2) vector multiplet.

We will henceforth Wick–rotate to Euclidean space, setting x0 =−ix2, and compactify this direction to an S1 of length 
L. Thus, we obtain coordinates (x1, x2) on R× S1, and

P0 = D0 = ∂0 − i A0 = i(∂2 − i A2)= i P2. (2.3)

We will use the complex coordinate z = x1 + ix2, and dfine conjugation with respect to time evolution in the x1 direction, 
so that the Hamiltonian is H = P1. This implies [25]

q†
± =±q̄± . (2.4)

Thus, when we Wick–rotate we must replace Z̃∗ �→ − Z̃∗ in (2.1). From the point of view of the quantum mechanics, P2 is 
a central charge.

We will consider theories with an abelian flavour symmetry T ∼ = U (1)n , for which turning on a generic (complex) twisted 
mass deformation w1 + iw2 ∈ tC leaves only isolated, topologically trivial vacua. The complex mass arises as a non–zero 
vacuum expectation value for a complex scalar in a background vector multiplet for T , and turning it on shifts Z̃ by an 
extra contribution −i(w1+ iw2) · J T , where J T is the generator for T . Doing so breaks the axial R A symmetry. We may also 
turn on a flat connection, with holonomy t , for T around the S1, which simply shifts A2 in (2.3). Thus, as a real manifold, 
the space of deformation parameters T × tC will be diffeomorphic to

M := (S1 ×R2)n, (2.5)

with the S1 parametrising holonomies and R2 complex masses.

2.1. A family of N = (2,2) quantum mechanics

One of the main themes of this work is that by giving different representations of the ground states of a 2d (2,2) model 
in terms of the ground states of a one–parameter family of 1d (2,2) SQMs (or the cohomology of one of its supercharges), 
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one obtains interesting relations between algebraic structures characterising Berry connections for these spaces of ground 
states. In the case of GLSMs which flow to NLSMs, the cohomologies can be related to the geometry of the target.

The one–parameter family that we are interested in will contain the following supercharges:

Q A := q̄+ + q−, Q := 1

2
(q̄+ + q− + q+ + q̄−). (2.6)

Here, Q A is the A–type supercharge, whose cohomology corresponds to the twisted chiral ring. Therefore, in a GLSM it 
encodes the quantum cohomology of the target. The supercharge Q is the one obtained via dimensional reduction from 
the supercharge used in 3d in [6,25], whose cohomology can be described in terms of the equivariant elliptic cohomology 
ET (X) of the Higgs branch X of the corresponding GLSM. As we shall see in Section 5.3.1, in this 2d context we will recover 
from its cohomology the equivariant K–theory of the target.

We now identify an appropriate one–parameter family of 1d (2,2) SQMs. To do so, let us first consider a basis of 
supercharges of an SQM that contains the supercharge Q A . This is

Q A = q̄+ + q−, Q̄ A = q+ + q̄−,

Q †
A = q+ − q̄−, Q̄ †

A = q̄+ − q−,
(2.7)

satisfying:

{Q A, Q †
A} = {Q̄ A, Q̄ †

A} = 2H,

{Q A, Q̄ A} = Z̃t,

Q 2
A = Z̃ w , Q̄ 2

A =− Z̃∗w ,

(2.8)

with all other anti–commutators vanishing. Here we are assuming we are acting on gauge–invariant states and operators 
(and thus have dropped σ , A2 from this expression), and have introduced

Z̃ w =−iw · J T (2.9)

where w = w1 + iw2 is the complex mass. Moreover,

Z̃t = 2i∂2 + 2t · J T , (2.10)

where t is the holonomy for T around the circle.
With this basis as a starting point, we can introduce the following twistor family of supercharges (cf. [33], appendix B)

Q λ = 1 √
1+ |λ|2 (Q A + λQ̄ A), Q̄ λ = 1 √

1+ |λ|2 (Q̄ A − λ̄Q A),

Q †
λ =

1 √
1+ |λ|2 (Q †

A + λ̄Q̄ †
A), Q̄ †

λ =
1 √

1+ |λ|2 (Q̄ †
A − λQ †

A)

(2.11)

depending on a parameter λ. This family satifies

{Q λ, Q †
λ} = {Q̄ λ, Q̄ †

λ} = 2H

{Q λ, Q̄ λ} = Z̃t0

Q 2
λ = Z̃β0 , Q̄ 2

λ =− Z̃∗β0
.

(2.12)

Here we have introduced

Z̃t0 =
1− |λ|2
1+ |λ|2 (2i∂2)+ 2t0 · J T

Z̃β0 =
2iλ∂2

1+ |λ|2 − iβ0 · J T

(2.13)

with

(t0, β0)= 1 
1+ |λ|2

(
(1− |λ|2)t + 2Im(λw̄), w + λ2 w̄ + 2iλt)

)
. (2.14)

Notice that at any given λ, this corresponds to the algebra of a 1d (2,2) SQM. We will be interested in the space of 
supersymmetric ground states, dfined as follows. First, we require the vanishing of the central charges on the space of 
ground stats
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Z̃t0 = Z̃β0 = 0. (2.15)

This will generically imply that ground states are uncharged under J T , and have no KK modes along the circle. Then, on the 
states satisfying this condition, we can further impose

{Q λ, Q †
λ} = 2H = 0. (2.16)

Consider fixed values of deformation parameters (t, w) and denote the vector space of supersymmetric ground states by E
as a subspace of the states of the theory S . Whenever the system is gapped we have a cohomological description

E ∼ = H0(S| Z̃t0= Z̃β0=0, Q λ). (2.17)

As desired, Q λ interpolates between the supercharges Q A and Q

Q λ=0 = Q A, Q λ=1 = Q . (2.18)

2.2. Mini–complex structures

In the n = 1 case, the parameters (t0, β0) precisely correspond to the first one–parameter family of coordinates on S1 ×
R2 introduced by Mochizuki [58] in his study of monopoles. As we now explain, they determine a so–called mini–complex 
structure on the parameter space of deformations M = S1 ×R2 introduced in (2.5). For n > 1 each copy of (S1 ×R2) will 
simply be endowed with the same mini–complex structure.

What is meant by a mini–complex structure on a three–manifold (cf. [58]) is a maximal collection of local charts Uλ :
M →R×C for M such that

• M is covered by these charts.
• transition functions (Ft(t, w), F w(t, w)) are so that ∂t Ft > 0 (preserve the orientation of the real coordinate) and F w is 

constant in t and holomorphic in w .

This ensures that one can dfine mini–holomorphic functions, which are smooth functions locally constant along R and 
holomorphic along C.

The simplest case to understand is λ= 0, so that (t0, β0)= (t, w). It will be useful to think of t as an R-valued variable 
first (by taking a lift and abusing notation slightly) and then take a quotient to enforce its periodicity. If t is valued in R, 
then clearly the pair (t, w) are coordinates on R×C, which is the prototypical mini–complex manifold. Therefore, so is

Mλ=0 := (R×C)/� (2.19)

where � is the Z-action

�λ=0 : (t, w) �→ (t + L, w) (2.20)

because this action does not change the vector fields ∂t and ∂w̄ . In (2.19) as well as below the superscript in Mλ simply 
denotes the chosen mini–complex structure on M .

The same reasoning applies at different values of λ, but with an important qualitative difference. We again start from 
the obvious mini–complex manifold R×C now parameterised by (t0, β0), but the quotient by the same Z-action shifts β0

as well

�λ : (t0, β0) �→ (t0, β0)+ L 
1+ |λ|2

(
1− |λ|2,2iλ

)
. (2.21)

As a result, as a mini–complex manifold we in general no longer have Mλ ∼ = S1 ×C. The most dramatic change happens at 
|λ| = 1, where the action of � degenerates in the t0 direction and we get

Mλ ∼ = R×C∗, |λ| = 1. (2.22)

For instance, at λ= 1 we have the coordinates

1

2
(−Im(w̄),2Re(w)+ 2it). (2.23)

Thus, we will qualitatively distinguish between two cases:

• The first case, also known as the product case, is characterised by λ= 0 so that �⊂R× {0} ⊂ (Rt0 ,Cβ0 ). There is an 
isometry Mλ=0 ∼ = S1

L ×C.
• The second case, also known as the non–product case, is characterised by λ �= 0 so that the � action shifts the β0

coordinate by 2iλL/(1+ |λ|2).
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Within the non–product case, the locus |λ| = 1 is precisely the locus at which we will discuss the emergence of two kinds 
of algebraic for monopoles on Mλ , which are expected to be related to a Riemann–Hilbert correspondence.

Finally, we remark that although the explicit expressions for (t0, β0) might appear a little contrived at first sight, these 
can be illuminated by considering S1 ×R as a quotient of R4 by the group R×Z acting on the first and second copy 
of R by translations and shifts by L, respectively [58]. The manifold R4 ∼ = C2 ×C2 is hyperkähler and therefore enjoys a 
P 1-family of complex structures with holomorphic coordinates. What we have here is a dimensional reduction of this more 
familiar setup.4

Mochizuki also introduces a second set of mini–complex coordinates that are closely related to (t0, β0). For later conve
nience, we report them here

(t1, β1)= (t0 + Im(λ̄β0), (1+ |λ|2)β0)= (t + Im(λw̄), w + 2iλt + λ2 w̄). (2.26)

One has:

∂t1 = ∂t0

∂β̄1
= λ 

1+ |λ|2
1 
2i

∂t0 +
1 

1+ |λ|2 ∂β̄0
.

(2.27)

It is easy to see that the map (t1(t0, β0), t1(t0, β0)) is a mini–holomorphic transition function as dfined above. In particular, 
functions are mini–holomorphic in these mini–complex coordinates if and only if they are in the other. This is therefore 
simply an additional coordinate system on the same mini–complex manifold Mλ . However, these mini–complex coordinates 
have the additional feature that the induced action of � on the respective R×C does not degenerate at |λ| = 1. We will 
rely upon this fact later on.

3. Berry connections & asymptotics

In this section, we introduce the vector bundle of supersymmetric ground states

E → M (3.1)

over the space of deformation parameters M . We first review the features of tt∗ geometry for a twisted mass deformation 
that we utilise throughout the remainder of this work. In particular, we review the fact that Berry connections and the 
adjoint Higgs field satisfy the Bogomolny equations. We also identify the asymptotic behaviour of the Berry connection and 
the adjoint Higgs field with the values of the twisted central charge in each of the massive vacua of the theory, which is 
computed for the GLSMs of our interest in terms of the effective twisted superpotential.

For simplicity, we will henceforth take the circle on which the theory is quantised to have length L = 1, re–introducing 
it where necessary. We will work with coordinates x= (t, w) and dfine xi = (ti, wi), i = 1, . . . ,n.

3.1. tt∗ geometry

For theories with N vacua, there is a U (N) Berry connection on the rank-N vector bundle of supersymmetric ground 
states over the parameter space M . This is the Berry connection for a twisted mass deformation and accompanying holon
omy, as studied in [15]. The connection itself is dfined in the usual way, where if |α(x)〉 denotes an orthonormal basis of 
ground states at parameter value x

∂

∂xi
|α(x)〉 = (Ai)α

β |β(x)〉 . (3.2)

The tt∗ equations obeyed by the Berry connection are then [13]

4 In greater detail, on R4 we can take complex coordinates

(ξ,η)= (z+ λw̄, w − λz̄), (2.24)

where (z, w) are the standard complex parameters on C2. The parameters (t0, β0) can be obtained from a suitable combination of (ξ,η) that behaves 
conveniently with the quotient. Set

(α0, β0)= 1 
1+ |λ|2 (ξ − λ̄η,η+ λξ), (2.25)

so that by construction the transitive R-action on the first factor of R1 ×R3 only shifts α0. Then we have a family of mini–complex coordinate systems 
on R3 ∼ = (Rt ×Cw ), denoted (Rt ×Cw )λ that agree with the ones we obtained above: (t0, β0)= (Im(α0), β0).
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D̄i, C j

]= 0= [Di, C̄ j
]

(3.3)[
Di, D j

]= 0= [D̄i, D̄ j
]

(3.4)[
Di, C j

]= [D j, Ci
]
, 
[

D̄i, C̄ j
]= [D̄ j, C̄i

]
(3.5)[

Di, D̄ j
]=− [Ci, C̄ j

]
(3.6)

where

Di = ∂wi − Awi , D̄i = ∂̄w̄i − Ā w̄i , (3.7)

but now the structure constants of the (twisted chiral) ring are replaced by [15]

Ci = Dti − iφi, C̄i =−Dti − iφi, (3.8)

where φi is an anti–Hermitian adjoint Higgs field.
For the case of a rank one flavour symmetry, the tt∗ equations may be equivalently written as:

[D̄ w̄ , Dt − iφ] = 0= [D w , Dt + iφ]
2[D w , D̄ w̄ ] = i[Dt, φ] ,

(3.9)

which are simply the Bogomolny equations on R2 × S1

F (D)= �Dφ (3.10)

where F (D) is the curvature of the connection. That the Berry connection satifies Bogomolny equations was also derived 
as a consequence of a theory reducing to a 1d N = (2,2) quantum mechanics in [65,69,70,79]. The higher–rank equations 
can be viewed as generalised Bogomolny equations on (R2 × S1)n .

In summary, the structure of the supersymmetric ground states over a twisted mass deformation and accompanying 
holonomy can be packaged into a tuple (E,h, D, φ) consisting of a vector bundle E of ground states, with Hermitian metric 
h determined by the inner product, a connection D that is unitary with respect to h and an anti–Hermitian endomorphism 
φ of (E,h). The tuple satifies the Bogomolny equation (3.10). For n = 1 the solutions may literally be regarded as periodic 
monopoles over R3.

3.2. Asymptotics

In this work, we will be concerned only with periodic monopoles of generalised Cherkis–Kapustin (from now on, GCK) 
type [18,19], as coined in [58]. It is shown therein that they are in one–to--one correspondence with certain difference 
modules, which will play a central role in our work.

A monopole is of GCK–type if it has Dirac–type singularities at a discrete finite subset Z ⊂ M and satifies the following 
conditions

|φx| = O (log(d(x, x0))),  |F (D)x|→ 0 (3.11)

for some reference point x0 as x goes to ifinite distance.
Such conditions are satified for the basic Dirac monopole [18] of charge k, for which the Higgs field φ satifies the 

Laplace equation, and

φ =−ic1 − iγ k

2 
− ik

2 

′ ∑
n∈Z

[
1 √|w|2 + (t − n)2

− 1 
|n|

]
→−ic1 − ik log

∣∣∣∣ iw

2 

∣∣∣∣+ o(1), (3.12)

At → ic2 + ik arg

(
iw

2 

)
+ o(1), Aw → b 

w
+ o(1/w)

as |w| →∞. Here γ is the Euler constant, and the prime on the sum means that for n = 0 the second term in the summand 
is omitted. Further, b, c1 and c2 are real constants. For b = − 1

4 and c1 = c2 = 0 this is the Berry connection for the free 
N = (2,2) chiral [15], over the parameter space for its U (1) flavour symmetry.

The GCK conditions (3.11) are further satified for the Berry connections of the theories we consider in this work. 
This is because we have made the assumption that as w →∞ in a generic direction in tC ∼ = Cn , the theory is fully 
gapped with massive topologically trivial vacua. Further, the theory will fail to be gapped only at a discrete finite subset 
of points in the parameter space, which corresponds to Z above. Thus, asymptotically in w , the U (N) vector bundle E
splits (as a real vector bundle) into a direct sum of U (1) bundles 

⊕
α Eα , each corresponding to a decoupled sector for 

the effective theory of massive chiral multiplets parametrising perturbations around a massive vacuum. It follows that the 

11 



A.E.V. Ferrari and D. Zhang Journal of Geometry and Physics 210 (2025) 105425 

solution is asymptotically gauge-equivalent to an abelian solution (Aα,φα) of Dirac monopole solutions with particular 
moduli determined by the theory.

The asymptotic value of Aα
ti
+ iφα

i is determined by the dependence of the twisted central charge Z̃α in the vacuum α
on wi . For a GLSM, this can be evaluated as the effective (twisted) superpotential Weff , which is the twisted superpotential 
appearing in the low–energy theory in the Coulomb branch [78], in the vacuum α

Aα
ti
+ iφα

i ∼−2i∂wi W (α)

eff as |w| →∞. (3.13)

This was demonstrated for LG theories in [15], where W (α)

eff can be evaluated as just the usual superpotential at the crit
ical point α. The statement for GLSMs is simply the mirror dual of this. This was also demonstrated in for N = (2,2)

supersymmetric quantum mechanics where the twisted central charge is given by VEVs of the moment map for the cor
responding flavour symmetry [70]. In 2d, these receive quantum corrections, and hence one must consider the effective 
(twisted) superpotential.

3.2.1. Example: free chiral
For the free chiral, one has an effective twisted superpotential

Weff =m

(
log

m

μ 
− 1

)
(3.14)

in the unique vacuum, where m = iw/2, and μ is the RG scale. Thus

−2i∂w Weff = ∂m Weff = log(m/μ), (3.15)

matching the asymptotics of the charge–one Dirac monopole solution (3.12).

3.2.2. Example: supersymmetric QED & CP1 σ -model
As a running example throughout this work, we will take supersymmetric QED with two chiral multiplets, which engi

neers the CP 1 σ -model in the IR. This is a U (1) GLSM with two chiral multiplets �1, �2 of charges (+1,+1) and (+1,−1)

under G × T , where G is the gauge group and T the flavour symmetry. We will turn on a mass m = iw/2 for T , and study 
the Berry connection over m and the associated holonomy t . It is a smooth SU (2) monopole solution [15].

The effective twisted superpotential of the theory is given by

Weff =−2π iτ (μ)σ + (σ +m)

(
log

(
σ +m

μ 

)
− 1

)
+ (σ −m)

(
log

(
σ −m

μ 

)
− 1

)
(3.16)

Here τ (μ) is the renormalised complex FI parameter

τ (μ)= τ0 + 2 
2π i

log(�0/μ), (3.17)

where �0 is some fixed UV energy scale, μ is the RG scale and τ0 is the bare complexfied FI parameter

τ0 = θ

2π
+ ir0, (3.18)

where θ is the instanton angle and r is the bare real FI parameter. For convenience, we will dfine the renormalisation 
invariant quantity

q =�2
0 e2π iτ0 . (3.19)

The vacuum (Bethe) equations are

1= e
∂W
∂σ = q−1(σ +m)(σ −m), (3.20)

which yield solutions σ =±√m2 + q corresponding to the two vacua. These can be substituted into 2i∂w Weff = ∂m Weff to 
obtain:

∂Weff

∂m 
= log

(
σ +m

σ −m

)
= log

(
±m+√m2 + q

∓m+√m2 + q

)
. (3.21)

Labelling the vacua as above requires a choice of branch cut for the square root, so we will find it instructive to instead 
label the vacua by α = 1,2 where
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As q → 0 : 
(1) : σ =+m+ q 

2m
+ O

(
1 

m2

)
,

(2) : σ =−m− q 
2m

+ O

(
1 

m2

)
.

(3.22)

These correspond to the two fixed points of the CP 1 sigma model, which to leading order in q are the classical values σ
must take in order for �1 or �2 to acquire a VEV.

We therefore have:

As |m| →∞ : ∂m W (1)

eff →+2 log(2m/�0)− 2π iτ0 + O (m−2),

∂m W (2)

eff →−2 log(2m/�0)+ 2π iτ0 + O (m−2).
(3.23)

The asymptotics are those of two Dirac monopoles with charges k = ±2 and c1 + ic2 = ∓2π i(τ0 + 2 
2π i log �0), where the 

argument of the log is now twice m. This is no surprise because, for large mass, the vacua of the theory correspond to the 
north (1) and south (2) pole of the CP 1. The effective theory in the neighbourhood of either vacuum is that of a chiral of 
effective mass ±2m and charge ±2 parametrising the tangent spaces T(1)CP 1 and T(2)CP 1.

4. Spectral data I -- difference modules

In this section we explain how one can extract certain difference modules from the bundles of supersymmetric ground 
states in the cohomology of Q λ . In the case of a U (1) flavour symmetry (n = 1), these modules correspond those that 
Mochizuki [58] used to construct a Hitchin–Kobayashi correspondence between GCK monopole solutions and so–called 
polystable, parabolic and filtered difference modules. In this work, we mainly ignore the additional structures (represented 
by the additional adjectives) that make the correspondence work. Instead, we focus on difference modules that can be 
obtained from a solution of the (generalised) Bogomolny equations for all n ≥ 1, relate them to the physical data of the 
theories, and draw interesting consequences.

As we reviewed in Section 2.2, the parameter space of deformations Mλ is endowed with a certain mini–complex struc
ture parameterised by λ. In Section 4.1 we show that the vector bundle of supersymmetric ground states E

E → Mλ, (4.1)

viewed as states in the cohomology of Q λ , acquires what is called a mini–holomorphic structure as well as a collection of 
complexfied flat connections. This will be the main starting point to dfine the difference modules, which we do in subse
quent sections. We treat the cases λ= 0 and λ �= 0 in Sections 4.2 and 4.3 respectively, where we also relate the modules to 
the Cherkis–Kapustin spectral varieties and quantisations thereof. The quantisations are represented by difference equations 
satified by brane amplitudes. Since brane amplitudes are not easy to explicitly write down, in Section 4.4 we inspect the 
so–called conformal limit and derive difference equations for exactly calculable hemisphere partition functions, which arise 
from the brane amplitudes in this limit. Throughout the section we will comment on the meaning of these structures in the 
case of a GLSM that flows to a Kähler target X : difference modules will be related to the quantum equivariant cohomology 
of X (λ= 0) and a quantisation thereof (λ �= 0).

4.1. Mini–holomorphic vector bundles and complexfied flat connections

One fundamental question for the bundle of supersymmetric ground states is how the supercharges behave with respect 
to changes in deformation parameters. In the language of [33], Q λ is a B–type supercharge with respect to β0 and A–type 
with respect to t0. This means that the supercharges Q λ have the following explicit dependencies

∂β̄0,i Q λ = 0, ∂t0,i Q λ − i[φi, Q λ] = 0, (4.2)

where φi is the Higgs field. The above follow from the dependencies of Q A, Q̄ A on (w, t), which are simply the above 
equations evaluated at λ = 1 and λ =∞. This is equivalent to saying that for the A–supercharge basis (2.7), the twisted 
mass deformation is of BAA–type.5

The first equation in (4.2) implies that the anti–holomorphic derivatives commute with the supercharge and thus descend 
to a holomorphic Berry connection ∂E,β̄0

on supersymmetric ground states, with components

∂
(i)
E,β̄0

:= 1 
1+ |λ|2

(
λiDti + λ2 D wi + D̄ w̄i

)
. (4.3)

At a fixed value t∗0 of the real parameter, this operator endows the bundle E|t0=t∗0 with the structure of a holomorphic vector 
bundle.

5 See appendix B.2 of [33] for further details. Concretely, Q 1, Q 2 there are mapped to Q A and Q̄ A here.
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The second equation implies the existence of complexfied flat connections

∂
(i)
E,t0

:= Dt0,i − iφi (4.4)

for supersymmetric ground states, where

Dt0,i =
1 

1+ |λ|2
(
(1− |λ|2)Dti − 2iλD wi + 2iλ̄D̄ w̄i

)
, (4.5)

which also commutes with Q λ . The tt∗ equations (3.3)--(3.6) imply that these operators commute[
∂

(i)
E,t0

, ∂
( j)
E,t0

]
=
[
∂

(i)
E,β̄0

, ∂
( j)
E,β̄0

]
= 0,[

∂
(i)
E,t0

, ∂
( j)
E,β̄0

]
= 0.

(4.6)

These equations imply that the bundle has a mini–holomorphic structure in the sense of [58].
Identical statements hold if we work with the mini–complex coordinates (t1, β1) for Mλ instead. More concretely, Q λ is 

still B–type with respect to β1 and A–type with respect to t1, as can be easily checked. Moreover, the operators

∂
(i)
E,t1

= ∂
(i)
E,t0

= Dt0,i − iφ,

∂
(i)
E,β̄1

= λ 
1+ |λ|2

1 
2i

∂
(i)
E,t0

+ 1 
1+ |λ|2 ∂

(i)
E,β̄0

,
(4.7)

commute due to (4.6)[
∂

(i)
E,t1

, ∂
( j)
E,t1

]
=
[
∂

(i)
E,β̄1

, ∂
( j)
E,β̄1

]
= 0,[

∂
(i)
E,t1

, ∂
( j)
E,β̄1

]
= 0.

(4.8)

Thus, ground states are annihilated by the operators ∂(i)
E,t0

and ∂(i)
E,β0

if and only if they are annihilated by ∂(i)
E,t1

and ∂(i)
E,β1

. 
Further, all of these operators are well–defined on Q λ-cohomology.

To make contact with the difference module constructions, we will work with the local coordinates (t1, β1).

4.2. λ= 0: product case & Cherkis–Kapustin spectral variety

We now consider the product (λ= 0) case and explain how we can obtain certain 0-difference modules from the space of 
supersymmetric ground states in Q A -cohomology. Given that λ= 0, we will be working with the respective mini–complex 
coordinates (t, w). For expository purposes, we first set n= 1, and return to n > 1 in due course.

More precisely, what we shall obtain in the n = 1 case is a 0-difference C(w)-module. This is a finite–dimensional 
C(w)-module V together a C(w)-linear automorphism

F : V → V . (4.9)

Here, C(w) denotes the field of rational functions of w . The construction of this module forms the initial part of the 
remarkable Hitchin–Kobayashi correspondence established by Mochizuki [58], which we can approximately state as follows 
(see Corollary 9.1.4 in [58]). There is a bijective correspondence between isomorphism classes of:

• Periodic monopoles of GCK–type on S1
L ×C.

• Polystable, parabolic, filtered 0-difference modules.

In particular, the modules arising from monopole solutions of GCK–type have additional properties --polystability, a parabolic 
structure, and filtrations-- that turn out to be sufficient to establish a bijective correspondence between isomorphism classes. 
The roles of these properties are:

• Polystability: this is an instance of replacements of real equations with stability conditions of algebraic objects as is 
usual in Hitchin–Kobayashi correspondences.

• Parabolic structure: this encodes the information concerning the allowed Dirac singularities at finite distance in Cw .
• Filtrations: these represent the allowed behaviour at ifinity in Cw .

In the following, we will touch upon these properties only supeficially, as they are not crucial to our discussion. It is 
however relevant to keep in mind the remarkable fact that monopole solutions, and therefore Berry connections, can in principle 
be uniquely parameterised by such modules.
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For simplicity, we start by discussing the case of smooth monopoles. Consider the differential operators (4.7) at λ= 0:

∂E,t := Dt − iφ,

∂E,w̄ := D̄ w̄ .
(4.10)

As we mentioned in the previous section, for each 0≤ t∗ ≤ L we can dfine a holomorphic vector bundle E t∗ on {t∗} ×Cw

determined by the operator ∂E,w̄ , which we will denote as follows

Et∗ := (E|{t∗}×Cw , ∂E,w̄). (4.11)

By definition, the holomorphic sections |α〉 of this bundle satisfy

∂E,w̄ |α(t = t∗, w)〉 = 0. (4.12)

Our first approximation for the module will be the space of holomorphic sections at t = 0, that is

V := H0(Cw ,E0)⊗C[w] C(w). (4.13)

Notice that above we emphasise the parametrisation by w of C, by writing Cw .
Our next goal is to dfine an automorphism of this sheaf of holomorphic sections that determines a 0-difference C(w)

module structure. As usual in the context of a Hitchin–Kobayashi correspondence, the strategy to assign algebraic data 
to solutions of the tt∗ equations (3.3)-(3.6) is to first consider equations (3.3)-(3.5) (thus neglecting the real, ‘D–term’ 
equation (3.6)) for the complexfied gauge group GL(N,C). The remaining equations imply the key, complex equation

[∂E,t, ∂E,w̄ ] = 0. (4.14)

This equation is the only one we consider. As rigorously demonstrated (for n = 1) by Mochizuki [58], the real equation (3.6)
can be traded by polystability conditions imposed on solutions to (4.14).

The complex equation (4.14) implies the parallel transport of a state |α〉 along the S1
L direction can be performed whilst 

preserving holomorphicity of the section. In particular, by parallel transporting around the full circle (from 0 to L) we can 
dfine the desired C(w)-automorphism of V

F : V → V . (4.15)

In other words, the automorphism comes from considering the holonomy of the connection ∂E,t around S1
L . In local coordi

nates, we may write

F (w)= exp
∮
S1

L

dt (At + iφ). (4.16)

Note that F (w) is holomorphic in w , as follows from equation (4.14), and so it dfines (in particular) a C(w)-module 
structure.

The pair (V , F ) is the first candidate for our 0-difference module. It however suffers from the dficiency that it is not 
an acceptable, well–defined algebraic object. In particular, we have not yet prescribed the behaviour at large w; this makes 
these objects transcendental rather than algebraic. As demonstrated in [58], this dficiency can be amended by considering 
compactfications of Cw and filtering the space of section by their growth at ifinity.6

Let us now briefly describe how the presence of singularities affects the representations of the solutions. Since we dealing 
with GCK monopoles, these are all of Dirac type and therefore supported at a discrete set of points Z ⊂ M ∼ = S1

L ×Cw . Let D
be the projection of Z on Cw . Given Q ∈ D , we can assign a set of ‘times’ ta

Q , Q ∈ D at which the singularities are located 
(see Fig. 5). The modules are then modfied as follows.

6 To prescribe the behaviour at ifinity compatible with the GCK condition, one can consider a compactfication Rt × P 1
w of Rt ×Cw . The �-action 

extends to this compactfication, and we obtain a manifold S1
t ×P 1

w that inherits the mini–complex structure from the quotient. Notice that the compact
ification adds the set S1

L × {∞}. We can then filter holomorphic sections based on their behaviour around {∞} ∈ P 1. That is, for an open neighbourhood 
U ⊂P 1 such that {w} ∈ U , set

PaE t(U ) := {s ∈ E t(U \ {∞})  |  |s|h = O (|w|a+ε )  ∀ε > 0}, (4.17)

(here we are abusing notation and denoting by Et the sheaf of sections of Et , and we are allowing poles at U {∞}). This is an increasing sequence of 
OP1 -modules, and one can consider

P∗E t =
⋃

a∈R
PaE t . (4.18)

It is a non–trivial result that this is also a sheaf of OP1 -modules. The automorphism F induces an automorphism of P∗E0.
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Fig. 5. Dirac singularities of the Berry connection in an open subset U × I ⊂Cw × S1
L , where U is a small open subset U ⊂Cw , and I ⊂ S1

L a small interval. 
The module V is constructed by considering sections of the bundle of supersymmetric ground states restricted to Cw × {0} (which intersects U × I in 
the shaded area) that are meromorphic, with poles located along the projections (in the t direction, dashed lines) of the Dirac singularities to Cw × {0}. 
In particular, two of the Dirac singularities (located at (Q , t Q ,1), (Q , t Q ,2)) may result in poles at Q ∈Cw in the elements of V . The locations t Q ,1, t Q ,2

enter the parabolic data of the module.

• We consider sections meromorphic along D . To emphasise this, we sometimes denoted E(�D) the sheaf of sections.
• The modules are endowed with lattices La,Q of EQ encoding the modfications of the spaces of meromorphic sections 

due to the Dirac singularities (Hecke modfications).

The pair (V , F ) where V is endowed with a polystability condition, filtration at ifinity and lattices is the 0-difference 
module that [58] proves to be in bijective correspondence with smooth monopoles. As we mentioned above, we will not 
describe these structures, which are not crucial for our purposes, in any further detail.

If n > 1 the fundamental ideas that lead to a difference module can be easily generalised. Recall that the deformation 
space corresponds to n copies of S1 ×R2, each endowed with a mini–complex structure that identfies it with S1 ×C2 as a 
mini–complex manifold. The vector bundle of supersymmetric ground states restricted to fixed values of the real coordinates 
still has the structure of a holomorphic bundle on C2n

w , with the holomorphic structure induced by the Dolbeault operator 
∂E,w̄ with components D̄ w̄i . In principle, we can similarly consider the space of meromorphic sections with prescribed 
behaviour at the singularities as well as at ifinity. Although formulating these conditions precisely is beyond the scope of 
this paper, let us denote by V the space of such sections. There are then n complexfied flat connections ∂(i)

E,t dfined in 
(4.7) that we can consider the parallel transport by. By the generalised Bogomolny (or tt∗) equations (3.3)-(3.6), the parallel 
transport operations preserve meromorphicity and moreover commute with each other. We therefore have n commuting 
automorphisms

F (i)(w) : V → V , (4.19)

which turn V into a C(wi) modules for all i.

4.2.1. Cherkis–Kapustin spectral variety
For the difference module (V , {F (i)}), the associated spectral variety (see e.g. [15]) is the Lagrangian submanifold of 

(C∗)n ×Cn dfined by the simultaneous eigenvalues of the automorphisms F (i)(w) given in (4.19)

L=
{
(p1, . . . , pn, w1, . . . wn) ∈ (C∗)n ×Cn | ∃ v ∈CN\{0} s.t. F (i)(w)v = pv

}
. (4.20)

It is Lagrangian with respect to the holomorphic symplectic form 
∑

i
dpi
pi
∧ dwi . For n= 1 this reduces to

L= {(p, w) | det(p1− F (w))= 0} , (4.21)

which is the spectral curve first dfined by Cherkis and Kapustin [18,19]. We therefore refer to the variety (4.20) for n ≥ 1
as the Cherkis–Kapustin spectral variety.

The spectral variety L is an N-sheeted cover of tC ∼ = Cn (which is spanned by wi ). It is equipped further with a coherent 
sheaf M, whose stalks are the eigenspaces spanned by v . The pushforward of M under the projection π :L→ tC is a rank 
N holomorphic vector bundle, and coincides with the space of supersymmetric ground states restricted at t = 0 (E0, ∂E,w̄). 
The corresponding values of pi on L encode the parallel transport with respect to the complexfied connection Dti − iφi .

4.2.2. Physical construction of difference modules and spectral varieties
We now describe specifically how one may recover the above structures (the 0-difference module and associated spectral 

variety) physically, for a GCK monopole arising as the supersymmetric Berry connection for a GLSM.
Let us consider the states |a〉 obtained on the boundary S1 of an A–twisted cigar, by inserting an operator Oa in Q A

cohomology (an element of the twisted chiral ring). These states are in Q A -cohomology, and can be projected onto ground 
states via stretching the topological path integral, implementing a Euclidean time evolution e−βH with β →∞. One can 
generate a basis for the space of ground states via a basis of the twisted chiral ring in this way, and working with respect 
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to such a basis is often called working in topological gauge [15]. In particular, it is a standard result [13] of tt∗ that in this 
basis ( Ā w̄i )a

b = 0 and thus

∂
(i)
E,w̄ |a(w)〉 = 0. (4.22)

Thus, such states can be identfied as generating a basis of the module V .
The automorphisms F (i) also admit a clean interpretation. Recall the origin of Ati + iφi in the tt∗ equations as the chiral 

ring matrix, describing the action of the tt∗-dual operator to wi (the operator to which wi couples in the action) on the 
ground states. As wi is the complex scalar component of a background vector multiplet for U (1)i ≤ T , this is the defect 
operator inserting a unit of flux for the U (1)i gauge field, or alternatively winding the corresponding holonomy. The action 
of F (i) on V corresponds precisely to the action of such defects, which due to topological invariance can be localised to a 
local operator.

There is another way of seeing this, which further allows an explicit computation of F (i)(w). Consider an effective 
description of the theory as an abelian theory in the IR after integrating out all the chiral multiplets [78]. This theory is 
determined by Weff(σ , w), the effective twisted superpotential, with σa parametrising the Cartan of the complex scalar in 
the vector multiplet of the GLSM. In this description, the twisted chiral ring is represented by gauge–invariant polynomials 
in σa , subject to the ring relations exp∂σa Weff = 1. From this perspective, the dual operator to wi is simply −2i∂wi Weff, 
and from the form of the effective action, see e.g. section 7.1.2 of [22], the operator

pi = e
−2i

∂Weff(σ ,w)

∂ wi (4.23)

corresponds precisely to the insertion of a unit of flux for U (1)i ≤ T in the path integral.
In more details, the field strength f (i)

zz̄ in a background vector multiplet with scalar component wi appears in the effective 
action in a term:

−2i

∫
d2x

√
g f (i)

zz̄

∂Weff

∂ wi
. (4.24)

Here, the integral is over the cigar, and the background field strength obeys GNO quantisation:∫
d2x

√
g f (i)

zz̄ ∈Z (4.25)

It is thus clear that an insertion of (4.23) corresponds to an insertion of unit flux.
To compute F (i) using this description, write |a〉 =Oa |1〉, where |1〉 is the state generated by the A--twisted cigar path 

integral with no insertions, and Oa is a polynomial in σ . This notation makes sense because in the twist Oa may be brought 
to act on the boundary. We suppress the w-dependence for clarity. The action of F (i) may now be derived by multiplying 
Oa by pi in (4.23). This naively yields an operator rational in σ , but by consistency must be able to be brought back into 
the {Oa} basis by identfications using the vacuum equations exp ∂σa Weff = 1. Performing these, we have

pi Oa |1〉 = (F (i))a
b Ob |1〉 , (4.26)

yielding the automorphism F (w) in the basis |a〉 generated by twisted chiral ring elements Oa . We see an example of 
this below. Note that the above arguments can also be made also via Coulomb branch localisation, where the chiral ring 
insertions concretely take the form of polynomial insertions in a contour integral over σ .

Let us now show how to derive the spectral variety in terms of the physical data, which does not require performing 
the above substitutions. We in particular describe the eigenvalues of the automorphisms F (i) . We first note that (4.14) is 
independent of the radius L on which the theory is quantised, which simply rescales Dt j − iφ j . Thus, the eigenvalues of 
F (i)(w) can be computed in the L →∞, i.e. flat space limit. There, outside of codimension-1 loci in w space, the ground 
states are simply the massive vacua of the theory. In this basis, Ati + iφi is given by the VEVs of the aforementioned defect 
operator for the flavour symmetry U (1)i ≤ T in the massive vacua {α}, which may in turn be expressed via the low energy 
effective twisted superpotential:

Ati + iφi = diag{α}
(
−2iL∂wi W (α)

eff

)
= diag{α}

(
L−1∂mi W (α)

eff

)
. (4.27)

Here we have introduced the redfined coordinates mi = iwi/2L2.7 Notice that this was also demonstrated for LG models 
in [15]. Thus in the L →∞ limit

F (i)(w)= diag{α}
(

e∂mi W (α)

eff

)
. (4.28)

7 Note that m has length dimension −1 as usual for a mass in 2d, because w has dimension +1, as can be seen from consistency for the formulae for 
β0 or β1 in section 2.2.
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Therefore, in the case of GLSMs, the spectral variety equations can be written as:

e
∂Weff(σ ,m)

∂mi = pi, i = 1 . . .n,

e
∂Weff(σ ,m)

∂σa = 1, a= 1 . . . r.

(4.29)

For non-abelian gauge groups, one most quotient the set of solutions by the Weyl group. Eliminating σ from the combined 
system (4.29) yields the variety L. The spectral curve has been studied for LG models [15] and in a different context for 3d 
theories [7,27,29].

4.2.3. Relation to equivariant quantum cohomology
The chiral ring, which appears in (4.26), is known to reproduce the quantum equivariant cohomology ring Q H•

T (X) of 
the Higgs branch X of the GLSM [75]. This is a quantisation of the normal cohomology ring via the contribution of higher 
degree pseudo–holomorphic curves to correlation functions.

In the description of the theory as an IR effective abelian theory, the twisted chiral ring operators are gauge–invariant 
combinations of complex scalars σ in the Cartan of the gauge group. They are subject to the relations in the first line 
of (4.29) involving the effective twisted superpotential, which are the vacuum equations. Since the twisted chiral ring is 
protected under renormalisation, these relations coincide with the relations in Q H•

T (X) [61,62].
Our analysis above therefore shows that the difference module (V , {F (i)}) endows Q H•

T (X), via (4.26), with the structure 
of a module for the action of the algebra of functions C[p±1

i , wi] on TC × tC
∼ = (C∗

p ×Cw)n . Geometrically, the module 
dfines a sheaf over (C∗

p ×Cw)n with holomorphic Lagrangian support L precisely given by (4.29), the Cherkis–Kapustin 
spectral variety. We expect that this result is related to work by Teleman [74], realising 3d Coulomb branch algebras via their 
actions on quantum cohomologies of Kähler targets, which we will return to in upcoming work. Thus, we can summarise 
our main results of these sections as follows.

Suppose that a monopole arises as the Berry connection of a GLSM with Higgs branch X , or an NLSM with target 
X (and in particular it is of GCK–type). Then the 0-difference module (V , F ) can be interpreted as describing the 
action of defect operators for the flavour symmetry on the space of states generated by inserting operators in the 
twisted chiral ring on an A–twisted cigar. Identifying the twisted chiral ring with Q H•

T (X), this endows Q H•
T (X) with 

the structure of a module over the algebra of functions on TC × tC . The Cherkis–Kapustin spectral variety of the 
monopole corresponds to the Lagrangian support of a sheaf over TC × tC determined by this action.

We will see momentarily that the 2iλ-difference modules provide a quantisation of the above action, and that the 
Cherkis–Kapustin spectral variety is quantised by difference equations solved by D–brane amplitudes and hemisphere or 
vortex partition functions. In the latter case, the quantisation coincides with the insertion of an Omega background. Before 
we move on, we spell out the above remarks for our two main examples.

4.2.4. Examples
We now compute the spectral curve for our two examples, taking L = 1 for simplicity.

Free chiral For the free chiral one has Weff =m(log m
μ − 1), so that the spectral curve is simply

p − m

μ 
= 0. (4.30)

This is Q H•
T (C), the quantum equivariant cohomology of C. This clearly reproduces the spectral curve for a Dirac monopole 

of charge 1 centred at the origin [18,19].

CP 1 σ -model For supersymmetric QED with 2 chirals, from (3.16), the vacuum equations are:

1= e
∂Weff

∂σ = q−1(σ +m)(σ −m), (4.31)

where m≡ iw/2. This describes the quantum equivariant cohomology Q H•
T (CP 1).

To obtain the automorphism F (w) on a basis of V , {|1〉 , σ |1〉} generated by the twisted chiral ring basis {1, σ }, note

p = e
∂Weff

∂m = σ +m

σ −m
⇒ p

(
1
σ

)
= F (m)

(
1
σ

)
(4.32)

where

F (m)=
(

1+ 2m2q−1 2mq−1

2m(1+m2q−1) 1+ 2m2q−1

)
. (4.33)
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The equality in the second equation in (4.32) should be considered up to the ring relation (4.31).
To derive the spectral curve, one can simply take the characteristic polynomial of the above, or alternatively solving for 

σ in p = e
∂Weff

∂m gives

σ = m(p + 1)

p − 1 
, (4.34)

and substituting into (4.31) we obtain

L(m, p) := p2 − 2(1+ 2m2q−1)p + 1= 0. (4.35)

It is easy to check the action of p on V (i.e. Q H•
T (CP 1)) dfined by (4.32) obeys (4.35).

4.3. λ �= 0: branes, difference equations & variety quantisation

We now move on to consider the λ �= 0 case. In physical terms, this corresponds to viewing the space of supersymmetric 
ground states as classes in Q λ cohomology, where we recall from (2.11) that

Q λ = 1 √
1+ |λ|2 (Q A + λQ̄ A). (4.36)

We first review how, in the work of Mochizuki [58], the 0-difference modules we discussed in the previous section are 
replaced at generic λ by genuine, 2iλ-difference modules. In the context of our paper, this corresponds to a single rank 
U (1) flavour symmetry. We return to n≥ 1 momentarily. We also continue to set L = 1 in this subsection.

Recall that λ parametrises mini–complex structures on S1 ×R, and that these can be constructed by means of some 
λ-dependent mini–complex structures on a lift R×C. It follows from the above remarks, and in particular equation (4.2), 
that the operators ∂β̄1

, ∂t1 descend to Berry connections ∂E,β̄1
, ∂E,t1 on the space of supersymmetric ground states, as given 

in equation (4.7). By restricting to a constant value t1 = t∗1, we can then dfine the holomorphic vector bundle on Cβ1

Et∗1 := (E|{t∗1}×Cβ1
, ∂E,β̄1

). (4.37)

We can then consider the complex Bogomolny equation in these variables (cf. (4.14) for the analogous key equation in the 
λ= 0 case)

[∂E,t1 , ∂E,β̄1
] = 0. (4.38)

The difference operator of Mochizuki is now dfined as:

�∗
V =�∗

1 ◦ F (4.39)

where

F : E0 → E1 (4.40)

is, as before, the endomorphism given by parallel transport with respect to ∂E,t1 , and

�∗
1(E1)∼ = E0 (4.41)

is the pullback induced by the automorphism �1 :Cβ1 →Cβ1 given by �1(β)= β1 + 2iλ. This pullback is necessary due to 
the coordinate identfications (t1, β1)= (t1 + 1, β1 + 2iλ).

Let V be the C(β1)-module of holomorphic sections of E0, which in the smooth case we can schematically as in (4.13):

V := H0(Cβ1 ,E0)⊗C[β1] C(β1). (4.42)

As before, this can be turned into a rigorous algebraic object provided one considers the behaviour of the sections at ifinity. 
It is a highly non–trivial result of [58] that if one does so, the space of sections becomes an acceptable algebraic object. 
In the presence of singularities, we must in general allow for meromorphic sections with poles along D and prescribe 
a corresponding parabolic structure. We will not review this here, but instead emphasise that the existence of a finite--
dimensional, polystable parabolic C(β1)-module V has been proven by Mochizuki in [58].

The pair (V ,�∗
1) of a C(β1)-module V together with the automorphism �∗

1 constitutes a 2iλ-difference module. This 
means that if we have f ∈C(β1) and s ∈ V , we must have:

�∗
V ( f s)=�∗

1( f )�∗
V (s). (4.43)

This follows from the commutativity of the operators ∂E,t1 and ∂E,β̄1
due to the Bogomolny equations, see (4.8).
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Fig. 6. The D–brane amplitude given by the overlap between the state |D〉 generated by the brane, and the state 〈a| generated by the path integral with an 
insertion of a (twisted) chiral ring operator at the tip.

In the rest of the paper we will consider generalisations of the above modules to n > 1, which can be obtained precisely 
as outlined at the end of Section 4.2. In particular, we may naïvely dfine E0 as in (4.37), where the Dolbeault operator 
∂E,β̄1

inducing the holomorphic structure has components ∂(i)
E,β̄1

given in (4.7), but now for a generalised periodic monopole 

on a compactfication of C2n . We now have n parallel transport operators F (i) from t1,i �→ t1,i +1. We may similarly dfine 
the pullback �∗

1,i , which is simply pre–composition with β1,i → β1,i + 2iλ, and therefore also the automorphisms �∗
V ,i :=

�∗
1,i ◦ F (i) for i = 1, . . .n. Taking V together with �∗

V (we have suppressed indices here), yields a natural generalisation 
of the equation (4.43) and thus the difference modules of Mochizuki. Such generalisations are under active study in the 
mathematical community, see e.g. [53,54].

4.3.1. Branes & states
We now turn to the relation between ground states of the SQM along R of a cigar geometry and the 2iλ-difference 

modules of Mochizuki. In the next few sections we will derive from these states and the module action, novel difference 
equations for D–brane amplitudes, and by taking a suitable limit, hemisphere and vortex partition functions. These difference 
equations can be viewed as providing a quantisation of the spectral variety and thus, by the discussion in section 4.2.3, an 
action of an algebra of functions on TC × tC on Q H•

T (X) where X is the target of the GLSM.
Consider a cigar cofiguration that is A–twisted in the bulk. We want to consider states generated by D–branes. For our 

purposes, a D–brane is a half–BPS boundary condition for this cofiguration preserving R V , and two supercharges:

q̄+ + λq̄−, q+ + λ̄q−. (4.44)

In the above, λ lies initially on the unit circle. We note that by taking linear combinations, such branes also preserve the 
supercharges Q λ and Q̄ †

λ , and thus in particular generate a harmonic, albeit not necessarily normalisable representative of 
a state in Q λ cohomology. Note that when λ= 1, the first supercharge in (4.44) is precisely the usual B–type supercharge, 
and the corresponding D–branes are usually referred to as B–branes.

We denote by 	[D] the projection of |D〉 onto the space of supersymmetric ground states. This can be done by taking 
inner products (via computing the path integral on the ifinite cigar), yielding brane amplitudes. For example, we can 
consider the overlap

	[D,a] = 〈a|D〉 (4.45)

where |a〉 is the ground state generated by the path integral for the topologically twisted theory on an indefinitely long 
cigar, with a (twisted) chiral ring operator Oa labelled by a inserted at the tip. This is shown in Fig. 6. The path integral 
implements a Euclidean time evolution e−βH with β →∞ and it generates a ground state at the boundary; the states |a〉
generated in this way will by construction be holomorphic with respect to ∂E,w̄ [15].

As functions of λ, it is known that the brane amplitudes can then be analytically continued to the whole of C\{0,∞}
[14,34]. Further, it is a classic result in the context of tt∗ equations that they are flat sections of the Lax connection, which 
in the twisted chiral ring basis means(

D wi +
i 

2λ
(Dti − iφi)

) b
a 	[D,b] = 0, 

(
D̄ w̄i +

iλ

2 
(Dti + iφi)

) b
a 	[D,b] = 0. (4.46)

We could however expand this in any basis we like.
The Lax equations can straightforwardly be related to the defining equations of the difference modules for n = 1, and to 

a generalisation thereof to n > 1. To show this, we will dfine L(i)
w,t := D wi + i 

2λ
(Dti − iφi) and L(i)

w̄,t := D̄ w̄i + iλ
2 (Dti + iφi). 

The tt∗ equations are equivalent to:

[L(i)
w,t, L( j)

w,t] = [L(i)
w,t, L( j)

w̄,t] = [L(i)
w̄,t, L( j)

w̄,t] = 0. (4.47)

The key insight is then the following: one may rewrite the generalisation to n ≥ 1 of the holomorphic covariant derivative, 
and parallel transport operator associated with the difference modules as

∂
(i)
E,t1

= 2i 
1+ |λ|2

(
λ̄L̄(i)

w̄,t − λL(i)
w,t

)
,

∂
(i)
E,β̄1

= 1 
1+ |λ|2 L̄(i)

w̄,t .

(4.48)
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Thus, holomorphic sections that are parallel transported correspond to flat sections of the Lax connection.
Although the expansion in the basis |a〉 is quite natural from the point of view of the tt∗ geometry (see e.g. [64]), in the 

following it will be useful to introduce a basis |aλ〉 such that

• |aλ(t1 = 0, β1)〉 is a holomorphic section of E0

• limλ→0 |aλ〉 = |a〉.

Locally, we can always find a basis holomorphic sections, and so a basis |aλ〉 satisfying the first bullet point. We also know 
that as λ→ 0, the chiral ring basis is holomorphic. Therefore, without loss of generality, we can assume that the second 
bullet point holds.

We can then dfine states

	[D] :=	[D,b]ηab |aλ〉 , (4.49)

where ηab is the inverse matrix of ηab = 〈aλ|bλ〉 and the sum over |aλ〉, |bλ〉 is understood. 	[D] can be understood as the 
projection of the state |D〉 generated by the D–brane onto a holomorphic basis for the ground states subspace.

Then, whenever they are well–defined, the flatness of the D–brane amplitudes under the Lax connection (4.46) imply 
that restricting to t1 = 0, 	[D]|t1=0 is holomorphic in β1, and thus 	[D]|t1=0 can in principle be identfied with elements 
of the difference modules V .8 Moreover, recall that we also know that

∂
(i)
E,t1

	[D] = 0. (4.50)

Thus, at least formally, we see that these brane states are solutions to the parallel transport equations. This means that one 
can implement the automorphism F (i) simply by evaluating 	[D] at t1,i = 1. Therefore, the automorphism �∗

V ,i :=�∗
1,i ◦ F (i)

is implemented on the brane amplitudes by a shift

�∗
V ,i :	[D](t1, β1, β̄1)→	[D](t1 + ei, β1 + 2iλei, β̄1 − 2iλ̄ei), (4.51)

where we have suppressed indices and ei is the ith unit vector in Rn .
Suppose now that brane amplitudes are globally dfined functions of t (that is, they are periodic). This seems to be a 

reasonable assumption. It was shown to hold for the free chiral, as well as general LG theories in [15]. More generally, any 
non–trivial behaviour under shifting t by an element of Zn will arise due to ’t Hooft anomalies involving the corresponding 
symmetry T . For the GLSMs we consider, the only such anomalies are mixed T − R A anomalies where R A is the axial 
R–symmetry. Since there is no non–trivial background for R A , the shift in t cannot produce any non–trivial phase in the 
partition function/brane amplitude. Then, in terms of the original coordinates (t, w, w̄), we can see from (2.26) that this 
becomes simply

�∗
V ,i :	[D](t, w, w̄)→	[D](t + ei, w, w̄)=	[D](t, w, w̄). (4.52)

This means that the D–brane states are invariants of the module action. Therefore, under these assumptions (that the D--
brane states are genuine elements of the difference modules, and that they are global functions of t) computing a basis 
of brane amplitudes would be equivalent to determining the module associated to the monopole representing the Berry 
connection. In fact, if we were able to find a basis of brane amplitudes for V , a general section s of E0 could be expanded 
in terms of a C(β1) linear combination of the brane amplitudes, then the action of the automorphism(s) �∗

V ,i on would be 
trivial to compute.

The problem is of course that it is in general very difficult to compute the brane amplitudes (and therefore brane 
states) explicitly and to evaluate their properties. This is because they are non–supersymmetric: they are A–twisted in the 
bulk yet preserve Q λ, Q̄ †

λ at the boundary. An exception is represented by Calabi–Yau GLSMs and NLSMs, where the brane 
amplitudes coincide with the hemisphere partition functions (an argument is presented in e.g. [46]), which can be computed 
exactly using localisation techniques. For more general Kähler GLSMs, such as the ones of interest in this paper vortex, or 
hemisphere, partition functions are expected to be recovered in the so–called conformal limit.

There is, however, something that we know about them, namely their asymptotic behaviour at λ → 0. In this limit we 
would expect to recover the 0-difference modules, and therefore the Cherkis–Kapustin spectral variety. Our strategy to in
spect the expected behaviour for D–brane states is then the following: in the next section, we demonstrate that (4.52)
implies certain novel difference equations for D–brane amplitudes, and explain how these recover the spectral variety equa
tions in the λ → 0 limit. In Section 4.4 we further corroborate this claim by taking the conformal limit and deriving 
difference equations that are explicitly solved by hemisphere partition functions.

8 A subtle point is admittedly the behaviour at β1 →∞: in order to be a genuine element of the module as dfined by Mochizuki, the growth must be 
at most polynomial, and we are assuming this for the (twisted) chiral ring basis.
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4.3.2. Difference equations for brane amplitudes & variety quantisation
In this section we derive, from our previous considerations, difference equations for brane amplitudes. We further 

demonstrate that in the λ→ 0 limit we can recover from these equations the Cherkis–Kapustin spectral variety discussed 
in Section 4.2.

Note that the automorphism �∗
V sends an element of V , i.e. a holomorphic section of E0, to another element of V . 

Therefore we can expand the action of �∗
V on the basis {|bλ〉}, the twisted chiral ring, by:

�∗
V ,i |aλ(0, β1)〉 = M(i),b

a (β1) |bλ(0, β1)〉 (4.53)

where M(i)
ab must be holomorphic in β1. There is an implicit sum over b. Using equation (4.52), we have:

〈bλ|D〉ηab |aλ〉 =�∗
V ,i

[
〈bλ|D〉ηab |aλ〉

]
= (�∗

1,i 〈bλ|D〉ηab)�∗
V |aλ〉

=�∗
1,i(〈bλ|D〉ηab)M(i),c

a |cλ〉
(4.54)

where in the above, all objects are evaluated at t1 = 0 and arbitrary (β1, β̄1). We conclude that:

(�∗
1,i)

−1 〈aλ|D〉 = G(i),b
a 〈bλ|D〉 (4.55)

where for convenience we have dfined

G(i),b
a := (�∗

1,i)
−1
(
ηad M(i),d

c

)
ηcb. (4.56)

Note that this holds for any D–brane, not just the thimble branes we have used here. Also in the above and in the following, 
the brane amplitudes are computed at t1 = 0. The above equation is a matrix difference equation: if we regard 〈·|D〉 as an 
N-vector with components 〈aλ|D〉 we can write this as

(�∗
1,i)

−1 〈·|D〉 = G(i) 〈·|D〉 . (4.57)

To the best of our knowledge, this difference equation is novel.9

We will now show that the difference equations provide a quantisation of the Cherkis–Kapustin spectral variety (we will 
be able to derive stronger results more directly for hemisphere partition functions in the next subsection). First of all, notice 
that the operators (�∗

1,i)
−1 and the operators acting as multiplication by β1,i satisfy

[(�∗
1, j)

−1, β1,i] = −2iλδi j(�
∗
1, j), (4.58)

and that limλ→0 β1 = w . Thus, these operators can genuinely be viewed as quantisations of the operators p and w , respec
tively.

To investigate the limit as λ → 0 of G(i) , we make use of a particularly nice set of brane amplitudes, namely thimble 
branes Dα , whose boundary amplitudes give a fundamental basis of flat sections for the tt∗ Lax connection [14,34]. For 
LG models, they are Lagrangian submanifolds projecting to straight lines in the W -plane beginning at critical points α of 
W . For GLSMs which flow in the IR to NLSMs, they are the holomorphic Lagrangian submanifolds of X corresponding to 
attracting submanifolds of fixed points (i.e. vacua {α}) for the Morse flow generated by w2. Such boundary conditions were 
analysed explicitly for massive (2,2) theories in [35,50] and for 3d N = 4 theories in [6,8,11,23].

Note that the difference equation (4.55) holding for any B–brane D is equivalent to it holding for each of the thimble 
branes. This is because any brane amplitude can be written as a Z-linear combination of the {Da} amplitudes

	[D] =
∑
α

nα	[Dα] (4.59)

where nα are the framed BPS degeneracies [34].
A key fact we will make extensive use of is that the asymptotic behaviour in λ of the thimble brane amplitudes is 

known:

〈bλ|Dα〉 ∼ 〈b|Dα〉 ∼ e
W

(α)
eff
λ Ob|α, as λ→ 0. (4.60)

In the above, the effective twisted superpotential is computed at an RG scale μ = λ. Here, the effective twisted superpoten
tial W (α)

eff is evaluated at the vacuum solution for σ specfied by requiring that in the limit where the (exponential of) the FI 

9 To date, it seems as though only differential equations, often known as Pichard–Fuchs equations, arising from the tt∗ geometry associated with the 
Kähler (Fayet–Iliopoulos) parameter have been studied, see e.g. [4,12,55,60].
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parameters go to zero it reduces to its value in the classical vacuum cofiguration α. This is discussed for supersymmetric 
QED in Section 3.2.2.

Let us now see in what sense this provides a quantisation of the λ= 0 spectral variety. If we denote 〈1|Dα〉 the thimble 
brane amplitude with the trivial (no) operator insertion, then from (4.60) we note that:

lim 
λ→0

(�∗
1,i)

−1 〈aλ|Dα〉
〈1|Dα〉 = e

−2i
∂W

(α)
eff

∂ wi Oa|α. (4.61)

In the above, we have traded (�∗
1,i)

−1 for a shift wi → wi − 2iλ, which is valid in the λ→ 0 limit due to the coordinate 
definitions (2.26). Here Oa|α denotes the evaluation of the operator Oa in the vacuum α. Note that exp−2i∂wi W (α)

eff for 
α = 1, . . . , N are precisely the solutions for pi in the spectral variety (4.20).

In an abuse of notation let Li be the n holomorphic functions on (C ×C∗)n such that

Li(w, p)= 0 (4.62)

cuts out the spectral variety (4.20), found by eliminating σ from the combined system (4.29). We therefore know that

lim 
λ→0

Li(w, (�∗
1, j)

−1) 〈·|Dα〉
〈1|Dα〉 = 0. (4.63)

Using (4.57), this allows to conclude that

lim 
λ→0

Li(w, {G( j)}) 〈·|Dα〉
〈1|Dα〉 = 0 (4.64)

Since this holds for the basis of thimble amplitudes 〈·|Dα〉, we conclude that:

lim 
λ→0

Li(w, G)= 0. (4.65)

Thus, by Cayley–Hamilton, as λ→ 0 the eigenvalues of G(i) tend to exp−2i∂wi W (α)

eff for α = 1, . . . , N .

In conclusion, we can view the operators �∗
V ,i, (�

∗
V ,i)

−1 and multiplication by β1,i as quantisations of the generators 
p±i , wi . The module (V , F ) dfines a module for the algebra of these quantised operators. Moreover, we have derived 
novel difference equations for brane amplitudes, which provide a quantisation (parameterised by λ) of the spectral 
variety of the monopole associated to 0-difference modules.

4.4. Difference equations for hemisphere partition functions

We have remarked above that D–brane amplitudes are difficult to compute in general. This is because they are not BPS 
objects, as the supercharges Q λ , Q̄ †

λ preserved at the boundary of the cigar and the Q A supercharge preserved in the bulk 
due to the topological twist differ. However, we have also remarked that in the so–called conformal limit these are expected 
to degenerate into hemisphere partition functions [15]. The conformal limit corresponds to taking

limc : λ→ 0, L → 0, 
λ

L 
= ε. (4.66)

Here ε is an arbitrary constant, and L is the radius of the circle of the cylinder on which our system is quantised. Thus, we 
will explicitly re–introduce this length scale L in this section.

With L made explicit, we dfine the complex mass m and normalised holonomy x (with period 1) such that w =−2iL2m
and t = Lx. This ensures the dimensions of the summands in

β1 =−2iL2m+ 2iλLx+ 2iλ2L2m̄ (4.67)

t1 = Lx+ Im(2iλL2m̄) (4.68)

are consistent. Thus, the conformal limit of the brane amplitudes is:

limc 	[D,a](t1 = 0, β1, β̄1)=ZD [Oa,m− εx]. (4.69)

Here ZD [Oa] denotes the hemisphere partition function with boundary condition D on S1 = ∂ H S2, and a twisted chiral 
ring operator Oa inserted at the tip of the hemisphere. The radius of the hemisphere is given by ε−1. For a certain choice of 
boundary condition (all chiral multiplets equipped with Neumann boundary conditions on ∂ H S2), they are also equivalent 
to the vortex partition functions on R2

ε computed in an Omega background [32], with the Omega deformation parameter ε .
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In our conventions, m − εx appears in place of the usual complex mass deformation m in the hemisphere partition 
function of [45], as we shall see in our examples. We will replace this combination simply by m in the following. The 
hemisphere partition functions are BPS objects that can in fact be computed explicitly using localisation techniques [45,47, 
71], and are holomorphic in the parameter m.

Let us briefly recap why the D–brane amplitudes are expected to degenerate into the hemisphere partition functions in 
this limit. In the conformal limit, the Lax operators become

Lw,t → D w + i 
2ε

(Dt − iφ), L̄ w̄,t → ∂w̄ . (4.70)

In the second limit we have used the fact we are working in topological gauge (Aw̄ )a
b = 0.10 This is consistent with the 

holomorphy of hemisphere partition functions in the complex mass. For LG models, the solutions to such equations are 
given by period integrals [50], which have been shown to equal the results of localisation for their mirror dual GLSMs [31]. 
Later in this section we also compute the hemisphere (vortex) partition functions for some examples, and verify they satisfy 
the conformal limit of the difference equations noted above for D–brane amplitudes. This gives further support for the claim 
that D–brane amplitudes reduce to the hemisphere partition functions in the conformal limit. We refer the reader to [15] 
for further evidence, in particular the explicit example of the free chiral.

4.4.1. Finite–difference equations for hemisphere partition functions
We now write out explicitly difference equations that are obeyed by hemisphere or vortex partition functions, which 

emerge by taking the conformal limit of (4.55). Analogously to the brane amplitudes case, to the best of our knowledge 
these difference equations are also novel. Let us substitute m − εx→m, which is the usual complex mass appearing in the 
Lagrangian, superpotential etc. Denoting

p̂i = eε∂mi , m̂i =×mi, (4.71)

one has

[p̂i,m̂ j] = εδi j p̂ j ⇒ p̂i :mi →mi + ε. (4.72)

That is, p̂i is a difference operator for mi . We see that (p̂,m̂) provide a quantisation of the algebra of functions on TC × tC .
Note that p̂i coincides with the operator (�∗

1,i)
−1 : β1 → β1 − 2iλL in the conformal limit. Therefore

p̂i ZD [Oa,m] =ZD [Oa,m+ εei] = G̃(i)
ab (m, ε)ZD [Ob,m]. (4.73)

Here, G̃(i) = limc G(i) , where G(i) is the matrix appearing in the difference equations for brane amplitudes (4.57).
It is straightforward to show that an equation similar to (4.65) (but with λ replaced by ε) must hold for hemisphere 

partition functions, and so that also in the conformal limit we obtain equations quantising the Cherkis-Kapustin spectral 
variety. Due to (4.59), the difference equations (4.73) hold for any B–type boundary condition or brane D if and only 
if it holds for the hemisphere partition functions equipped with each of the thimble branes. The ε → 0 behaviour of 
the hemisphere partition functions equipped with the thimble brane boundary conditions {Dα} can be derived from the 
asymptotic behaviour of the respective thimble brane amplitudes (4.60):

ZDα [Ob,m] ∼ e
W

(α)
eff
ε Ob, as ε → 0. (4.74)

This is consistent with the limit for thimble brane amplitudes as upon reintroducing the circle length L the superpotential 
is rescaled W → LW . Thus, the same arguments as before lead to:

lim 
ε→0

Li(m̂, p̂) ZDα [ · ,m]
ZDα [1,m] = 0. (4.75)

In the above we have substituted w = −2iL2m and replaced m and p with the difference operators (4.71), and we recall 
that the equations Li(w, p) = 0 for i = 1, . . .n cut out the Cherkis-Kapustin spectral variety. This implies, similarly as for 
the brane amplitudes, that:

lim 
ε→0

Li({m j}, {G̃( j)})= 0, (4.76)

10 This follows via the usual argument, as (Aw̄ )a
b = 〈a| ∂w̄ |b〉, where |a〉 are the states generated on a circle represented by a path–integral on a right 

cigar, with the insertion of Oa . In the mirror (T–dual) picture, acting with ∂w̄ brings down insertions of d2 θ̄ integrals of periodic twisted chiral fields Yi

(integrals of twisted chiral ring operators over half the odd part of superspace). Thus in the GLSM frame, it brings down integrals of the supersymmetric 
completion of twist operators for the winding of the phase of chiral multiplets. These insertions are Q A -exact, and the Q A can then be brought to act on 
〈a|, which is generated by a left cigar path–integral. 〈a| is a ground state and thus annihilated by Q A , so we conclude that (Aw̄ )a

b = 0.
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and by Cayley–Hamilton that G̃(i) has eigenvalues exp ∂mi W (α)

eff .
In the present case of hemisphere partition functions, we can however derive more stringent, basis–dependent results. 

This is because we can import localisation formulae [45,47,71] that express ZD [Oa,m] as a contour integral over the 
Coulomb branch scalars σ , and Oa is represented by a polynomial in σ . The integrand scales as ε → 0 as eWeff[σ ,m]/ε , 
and so in the integral and in the limit, p̂i acts precisely as multiplication by e∂mi Weff[σ ,m] , recovering its action in the 
0-difference module case, as described in section 4.2.2. In fact, we can verify that:

lim 
ε→0

G̃(i)(m, ε)= F (i)(m) (4.77)

where F is the automorphism appearing in the 0-difference module (4.26). Thus (4.73) exhibits Q H•
T (X) as a module for 

the quantised algebra of functions C[p̂±1, ŵ]. In summary:

The hemisphere (vortex) partition functions obey difference equations, which demonstrate that the insertions of 
twisted chiral ring elements i.e. elements of Q H•

T (X), in these partition functions, furnish a module for the quan
tised algebra of functions on TC × tC . The difference equations provide a quantisation of the spectral variety.

Beautifully, due to the calculable nature of hemisphere and vortex partition functions, this gives a recipe, arising from 2d 
GLSMs, to construct solutions (often involving hypergeometric functions) to difference equations arising as deformed spectral 
varieties (which in turn also correspond to quantum equivariant cohomologies of Kähler varieties). Note that hemisphere 
partition functions can be interpreted as equivariant Gromov–Witten invariants of the Higgs branches [5].

We now exhibit examples of the constructions above. In the main body, in the interest of brevity, we include the exam
ples of the free hyper and SQED[2] for which the Higgs branches are C and CP 1 respectively. In appendix A, we present 
the example of SQED[3], for which X =CP 2. This is notably a rank-2 example: the Berry connection is an connection for 
an SU (3) bundle solving the generalised Bogomolny equations over (C × S1)2, and there are two difference equations the 
hemisphere partition functions satisfy.

4.4.2. Example: free chiral
We start with the simplest example of the free chiral multiplet, i.e. an NLSM with target C. As usual we introduce 

a mass m for the single U (1) flavour symmetry rotating the chiral. There is a single vacuum 0 at the origin of C, with 
effective twisted superpotential given by (3.14). We set the energy scale μ= ε .

For the vacuum 0, there are two possible thimble branes corresponding to the attracting Lagrangians for a choice of 
chamber of Re(m)=−w2/2:

C+ = {m > 0}, C− = {m < 0}. (4.78)

These are either the whole of C, or just the origin. As boundary conditions these correspond to either Neumann (N) or 
Dirichlet (D) boundary conditions for the chiral. The only twisted chiral ring operator is simply the identity.

The hemisphere partition functions for these boundary conditions can be found in [45]:

ZN = �
[m

ε

]
, ZD = −2π ie

iπm
ε

�
[
1− m

ε

] , (4.79)

where � is Gamma function. Using the identity �(x+ 1)= x�(x), it is easy to see that:(
p̂ − m

ε

)
ZN [m] = 0, 

(
p̂ − m

ε

)
ZD [m] = 0. (4.80)

Thus the hemisphere partition function (in either chamber) provides a quantisation of the Cherkis–Kapustin spectral variety 
(4.30).

4.4.3. Example: CP 1

We now turn to supersymmetric QED with two chirals, which flows to a non–linear sigma model to CP 1 in the IR. For 
the sake of brevity, we work in a fixed chamber for the real part of the mass parameter: Re(m) > 0. We will denote the 
vacua v1 and v2, for which the thimble branes should be supported (in the NLSM) on:

D1 : CP 1 − {v2}, D2 : {v2}. (4.81)

These are illustrated in Fig. 7.
If we denote the two chirals �1 and �2, which have charges (+1,+1) and (+1,−1) under G × G F respectively, only �1

obtains a VEV in vacuum v1, and �2 in v2. In the UV GLSM, the thimble branes are engineered by assigning the following 
boundary conditions to the chirals:
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Fig. 7. The support of the thimble boundary conditions for vacua v1 and v2 for supersymmetric QED with two chirals, i.e. the CP 1 sigma model. The arrow 
indicates the direction of Morse flow.

D1 : �1,�2 Neumann, D2 : �1 Dirichlet,�2 Neumann. (4.82)

In the opposite chamber, boundary conditions are the same but with 1 ↔ 2 in the above. The twisted chiral ring of super
symmetric QED is generated by {1, σ } and is subject to the relation (4.31).

We now proceed to compute the hemisphere partition functions equipped with these boundary conditions, and demon
strate the quantisation (4.73) -- (4.76) of the spectral curve (4.35). Hemisphere partition functions were computed via 
localisation in [45,47,71]. We primarily use [45], as it includes the case with Dirichlet boundary conditions for chiral multi
plets.

Vacuum 1 We start with the vacuum v1, for which:

ZD1 [1] =
∮
C1

dσ

2π iε
e−

2π iστ
ε �

[
σ +m

ε

]
�

[
σ −m

ε

]
,

ZD1 [σ ] =
∮
C1

dσ

2π iε
e−

2π iστ
ε �

[
σ +m

ε

]
�

[
σ −m

ε

]
σ .

(4.83)

The contour C1 encloses the poles of �[ σ+m
ε ] at σ = −εk −m, where k ∈N0. Here, τ = τ (ε) = τ0 + 2 

2π i log(�0/ε) is the 
renormalised FI parameter at energy μ = ε . Note that the first line in (4.83) coincides with the vortex partition function 
computed on the Omega background on R2

ε [32].
To compute these integrals we change variables using x= σ+m

ε , and use the fact that∮
dx 

2π i
�[x] f (x)=

∞ ∑
k=0 

(−1)k

k! f (−k), (4.84)

where the contour encloses all of the poles of �[x], at x=−k where k ∈N0. We further use the definition of the generalised 
hypergeometric function

0 F1[a; z] =
∞ ∑

k=0 

zk

(a)kk! , (4.85)

where (a)k := (a)(a+ 1) . . . (a+ k− 1). Then it is easy to see that

ZD1 [1] = e
2π imτ

ε �

[
−2m

ε

]
0 F1

[
1+ 2m

ε
; e2π iτ

]
,

ZD1 [σ ] = −mZD1 [1] + ε e2π iτ e
2π imτ

ε �

[
−1− 2m

ε

]
0 F1

[
2+ 2m

ε
; e2π iτ

]
.

(4.86)

Using the standard identity

0 F1(b, z)= 0 F1(b+ 1, z)+ z

b(b+ 1)
0 F1(b+ 2, z), (4.87)

it is not hard to check that, after some algebra

p̂

(
ZD1 [1]
ZD1 [σ ]

)
= G̃(m, ε)

(
ZD1 [1]
ZD1 [σ ]

)
(4.88)
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where

G̃(m, ε)=
(

1+m(2m+ ε)q−1 (2m+ ε)q−1

(2m+ ε)(1+m(m+ ε)q−1) 1+ (m+ ε)(2m+ ε)q−1

)
. (4.89)

We have dfined as before q = ε2e2π iτ .

Vacuum 2 For the second vacuum, recall that �1 is now assigned a Dirichlet boundary condition. The hemisphere partition 
functions are given by:

ZD2 [1] =
∮
C2

dσ

2π iε
e−

2π iστ
ε

(−2π i)e
π i(σ+m)

ε

�
[
1− σ+m

ε

] �

[
σ −m

ε

]
,

ZD2 [σ ] =
∮
C2

dσ

2π iε
e−

2π iστ
ε

(−2π i)e
π i(σ+m)

ε

�
[
1− σ+m

ε

] �

[
σ −m

ε

]
σ ,

(4.90)

where the contour C2 encloses the poles at σ = −εk + m. Note that �[z]−1 is an entire function, and that as long as 
σ+m

ε / ∈Z, which is true on C2 for generic m, one can use the Euler rflection formula to write

(−2π i)e
π i(σ+m)

ε

�
[
1− σ+m

ε

] =
(

1− e
2π i(σ+m)

ε

)
�

[
σ +m

ε

]
. (4.91)

The factor 1− e
2π i(σ+m)

ε evaluates to 1− e
4π im

ε on all of the poles, which is itself invariant under ε-shifts of m. The remaining 
integrand is then identical to the one for D1 in (4.83) but with m→−m in the choice of contour. Thus:

ZD2 [1] =
(

1− e
4π im

ε

)
ZD1 [1]|m→−m

=
(

1− e
4π im

ε

)
e−

2π imτ
ε �

(
2m

ε

)
0 F1

[
1− 2m

ε
, e2π iτ

]
.

(4.92)

The same holds for ZD2 [σ ], which after an application of (4.87) can be expressed as

ZD2 [σ ] =mZD2 [1] +
(

1− e
4π im

ε

)
εe2π iτ e−

2π imτ
ε �

[
2m

ε
− 1

]
0 F1

[
2− 2m

ε
; e2π iτ

]
. (4.93)

Acting with p̂ and further extensive use of (4.87), one finds that

p̂

(
ZD2 [1]
ZD2 [σ ]

)
= G̃(m, ε)

(
ZD2 [1]
ZD2 [σ ]

)
(4.94)

where G̃(m, ε) is the same matrix as (4.89), as predicted in Section 4.4.1.

Spectral curve quantisation Notice that G̃(m,0)= F (m) where F (m) is the corresponding automorphism in the 0-difference 
case (4.33). Thus (4.88) and (4.94) provide a quantisation of the corresponding action on Q HT (CP 1). Notice also that

lim 
ε→0

L(m, G̃(m, ε))= 0 (4.95)

where L dfines the monopole spectral curve (4.35).
Additionally one can check by acting twice with p̂ , and eliminating ZD1 [σ ] for p̂ZD1 [1] and ZD1 [1], that e.g.:[

p̂2 + 2

(
1+ ε

2m

1+ ε
2m

+ (2m+ 3ε)(m+ ε)q−1
)

p̂ + 1+ 3ε
2m

1+ ε
2m

]
ZD1 [1] = 0, (4.96)

which is an explicit quantisation of the spectral curve. This can be written more symmetrically via acting on the left with 
p̂−1

Lε(m̂, p̂)ZD1 [1] = 0 (4.97)

where

Lε(m̂, p̂)=
(

1− ε

2m

)
p̂ − 2

(
1+ 2m2e−2π iτ0

(
1− ε2

4m2

))
+
(

1+ ε

2m

)
p̂−1. (4.98)
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5. Spectral data II -- filtrations

Consider a monopole solution occurring as the Berry connection of some 2d (2,2) GLSM with Higgs branch X , or NLSM 
with target X . In the previous section we discussed how the solution can be encoded into difference modules, and how 
the modules can be constructed physically in terms of supersymmetric ground states in Q λ cohomology. We have further 
described how for λ = 0 these modules can be identfied with the quantum equivariant cohomology Q H•

T (X) of X as a 
module for a certain algebra of functions. We have described how the Cherkis-Kapustin spectral variety coincides with the 
support of this module. Moreover, we have discussed how this structure is deformed at λ �= 0. The aim of this section is 
to describe yet another algebraic object encoding aspects of the monopole solution that emerges whenever |λ| = 1, and to 
relate it to another generalised cohomology theory of X : the equivariant K–theory KT (X).

For example, suppose that λ = 1, n = 1 and N = 2. Then we have Mλ=1 ∼ = R ×C∗ as a mini–complex manifold. One 
considers the space of supersymmetric ground states at each fixed real value as a vector bundle on C∗ . The fall off rate of 
the sections of these bundles as we scatter towards at ±∞ determine two filtrations. The support of sections falling with 
exponential rate in both directions (that is, matching these filtrations) carves out a set of points � ⊂ C∗ which are the 
analogue of the twistor spectral curve of Hitchin for monopoles in R3 (but this time considering only lines parallel to the 
real direction). In this section, we show how these filtrations are determined by physical data, and show that in the case of 
a GLSM with target space X , the locus corresponds to the gluing points of the equivariant K–theory variety of X , which in 
this looks like

KT (X)∼ = 
(
C∗ �C∗)/�. (5.1)

In principle, we expect to be able to reconstruct the monopole from a rfined version of this algebraic data.11

5.1. Note on Riemann–Hilbert correspondences

What we have claimed above is that whenever |λ| = 1 a periodic monopole solution possesses two distinct algebraic 
descriptions, which must therefore encode the same data. There is a natural mathematical context for the phenomenon 
we are observing, namely a Riemann–Hilbert correspondence that holds in the more general case λ �= 0. Although we have 
not yet found a detailed published account of this correspondence for periodic monopoles (see [58] for some preliminary 
remarks, and [54] for an unpublished account), in the case of doubly periodic monopoles such correspondences have been 
established in a series of works, whose results are worth briefly recalling.

In [59], Mochizuki constructs from a doubly periodic monopole on R×� where � is an elliptic curve, a qλ′ -difference 
module with parabolic structure. Here λ′ is again a twistor parameter. When |qλ′ | �= 1, by work of van der Put & Reversat 
[76] and Ramis, Sauloy & Zhang [66], and in the global case by Kontsevich & Soibelman [53,54], there exists a Riemann--
Hilbert correspondence that relates these difference modules (the so–called ``de Rahm'' objects) to a locally free sheaf with 
some filtrations on the elliptic curve obtained from C∗ by quotienting by the action of (qλ)Z (the so–called ``Betti'' object). 
The lift of our setup to 3d appears to be an interesting physical arena where to study this Riemann–Hilbert correspondence 
arising from doubly periodic monopoles, and we leave the study of these fascinating aspects to future work. Similarly, we 
hope that the results of this section, combined with our results presented in Section 4, present a natural and fruitful physical 
setup where the Riemann–Hilbert correspondence for periodic monopoles can be embedded. For example, to the best of 
our knowledge, the fact that in an NLSM with target X this correspondence leads to a relation between a quantisation of an 
action on the equivariant quantum cohomology of X and the equivariant K–theory of X has not appeared in the literature. 
We expect this fact to lift in three dimensions to relations between elliptic cohomology and quantum K–theory.

5.2. Filtrations

We now demonstrate how to recover some of the algebraic structures mentioned above via physical constructions in 2d 
(2,2) gauged linear sigma models. We first describe how the vacuum structure of the theory assigns holomorphic filtrations 
to vector bundles on (C∗)n , recovering aspects of the Betti–type spectral data, which is a higher rank generalisation of 
the spectral data described by Mochizuki [59] in the doubly periodic monopole case.12 In the next subsection, we then 
demonstrate how to build the equivariant K–theory variety of the Higgs branch of the GLSM from an incidence variety for 
this set of filtrations for the Berry connection.13

Let us work in a theory with a rank n abelian flavour symmetry T ∼ = U (1)n , indexed by i = 1, . . . ,n. Recall that for 
|λ| = 1, the parameter space splits as:

11 In particular, one ought to compactify C∗ ⊂ Mλ=1 to P 1 and pay attention to the behaviour of the sections at {0,∞} ∈ P 1, which in similarity to the 
spectral data at λ= 0 discussed in Section 4.2 will also lead to pairs of filtrations. We will ignore these subtleties in this work.
12 Such monopoles are in fact supersymmetric Berry connections for 3d N = 2 theories, which we will explore in future work.
13 This construction is quite similar to that of the elliptic cohomology variety of the Higgs branches of 3d theories as in [6].
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(t0, β0)=
(

1

2
(sin θ w1 − cos θ w2), eiθ (cos θ w1 + sin θ w2 + it)

)
, (5.2)

where λ := eiθ . The parameter space can thus be regarded as (R×C∗)n . Concretely, each C in the original product space Cn

spanned by the w coordinates is separated into two orthogonal coordinates, (sin θ w1−cos θ w2)i and (cos θ w1+ sin θ w2)i . 
The latter is paired with the coordinate t on (S1)n to form (after exponentiation) a (C∗)n parameter.

Notation In the interest of clarity, we will set λ= 1 from now on, although it is not difficult to see how analogous results 
hold for an arbitrary phase θ , which simply correspond to a choice of real and imaginary axis on C. The compactfication 
circle length is set to L = 1 in the interest of clarity. We set mR + imI = iw

2 and denote t = Rn with coordinate so 
mR =− w2

2 . We also set z = β0 = 2mI+ it for convenience. We let T := (C∗)n be the complexfication of T , with coordinate 
x := e2π z . In the following, to obtain the results for an arbitrary phase λ= eiθ , simply replace (mR, z) by their counterparts 
in (5.2).

5.2.1. Geometric preliminaries
We will be interested in the asymptotic form (as |w| →∞) of the central charges, which is determined by the asymptotic 

form of the effective twisted superpotential. In order to describe this, we will find it useful to first introduce some objects 
in the Higgs branch geometry of the GLSM. In this work, we will make the assumption that the Higgs branch X is Goresky--
Kottwitz--MacPherson (GKM) variety for the Hamiltonian T -action [39]. This means:

• If �α denotes the collection of T -weights in the weight decomposition of Tα X , the elements of �α are pairwise linearly 
independent for all fixed points i.e. vacua α.

• Equivalently, for every two fixed points α,β in X T , there is no more than one T -equivariant curve (which must be a 
CP 1, labelled by a weight ν corresponding to Tα�ν ⊂ Tα X) connecting them.

This assumption is satified for many theories, such as general abelian theories where X is toric, or quiver gauge theories 
where X is a partial flag (this includes the Grassmannian and hence supersymmetric QCD), or a cotangent bundle thereof 
in the eight supercharge case. We have hyperplanes in t

Wν = {ν ·mR = 0}. (5.3)

Let Tν be the codimension-1 subtorus of T generated by kerν . From the above description of GKM manifolds, the hyper
planes Wν lie where X Tν no longer has isolated fixed points, but some extended locus opens up (which may be regarded as 
an extended moduli space of supersymmetric vacua). We denote the various chambers of the complement of the above hy
perplanes by C. We will be particularly interested in those hyperplanes for weights ν labelling CP 1 fixed locus connecting 
vacua α and β as described above. These label the internal edges of a GKM diagram [39,40].

We also have a decomposition of weights for a fixed choice of chamber C:

�α =�+
α ��−

α ,

�+
α = {ν ∈�α | ν ·mR > 0}, �−

α = {ν ∈�α | ν ·mR < 0}. (5.4)

The decomposition changes precisely when one crosses a hyperplane as in equation (5.3).
We will also be interested in the following bilinear pairing between FI parameters and masses

κα(m, r)= hmR(α) (5.5)

which arises from evaluating the moment map hmR =mR ·μT for the T -action at the various fixed points. Here, r is the 
real FI parameter appearing in the complexfied FI parameter as τ0 := θ

2π + ir. The values of this moment map induce 
the same ordering as that by the Morse flow generated by the masses. This ordering changes precisely as one crosses the 
hyperplanes (5.3) corresponding to equivariant curves connecting vacua, with the two vacua corresponding to ν switched 
when the hyperplane is crossed.

5.2.2. Asymptotic central charges & filtrations
With these details in hand, we can finally state the asymptotic behaviour of the effective twisted superpotential (at 

energy scale μ) in terms of the geometry of the Higgs branch (i.e. from the perspective of the non–linear sigma model to 
which the GLSM flows)

∂W (α)

eff

∂ �m →−2π iκα(τ (μ), · )+
∑

ν∈�α

ν log

(
ν ·m
μ 

)
(5.6)

in which ∂W (α)

eff
∂ �m is considered an element of Hom(tC,C). Here, τa is the FI parameter, dfined for each component of
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Hom(π1(G), U (1))= U (1)r, a= 1, . . . , r (5.7)

where G is the gauge group. It is given by:

τa = θa

2π
+ ir0,a + ba

2π i
log(�0/μ) (5.8)

where r0,a and θa are the bare FI parameter and instanton angle. Additionally, �0 is some fixed UV energy scale, μ the RG 
scale, and ba =∑i Q i

a where Q i
a is the charge of the ith chiral under U (1)a .

In particular, from the asymptotic form of the Berry connection (3.13), the adjoint Higgs field is given by the real part of 
the above

iφ(α) → 2πκα(r, · )+
∑

ν∈�α

ν log

∣∣∣∣ν ·mμ 

∣∣∣∣ , (5.9)

where φ(α) represents the vector {φ(α)
i }i=1,...,n . Here ra = r0,a − ba

2π log(�0/μ) is simply the imaginary part of τa , and is the 
FI parameter at scale μ.

We consider the scattering problem specfied by a ray v ∈ C the real mass parameter space, in a given chamber C

vi (DmR,i − iφi
)
ψ = 0, (5.10)

off to ifinity. Recall that the Bogomolny equations now imply that

[DmR , D̄ z̄] = 0, (5.11)

and thus the Berry connection D̄ z̄ determines the structure of a rank N (where N is the number of ground states) holomor
phic vector bundle

EmR
:= E|{mR}×T ,D̄ z̄

(5.12)

on each slice {mR} ×T , varying covariantly with respect to mR .
Due to the GCK condition (3.11), the adjoint Higgs field dominates the parallel transport problem. As mentioned above, 

it coincides asymptotically with the real part of the effective twisted superpotential. The asymptotics (5.9) then imply that 
in a given chamber C, the holomorphic vector bundle E := EmR admits a holomorphic filtration:

FC : 0⊂ Eα1 ⊂ Eα2 ⊂ . . .⊂ EαN = E , (5.13)

where Eαi is a rank-i holomorphic subbundle labelled by a vacuum αi . They are generated precisely by those sections of E
which decay at a rate fixed by φ(αi) as in (5.9). The ordering on the vacua αi is the same as the one induced by the Morse 
flow in the chamber C. This follows from two facts. First, κα is given precisely by the moment map (5.5). Second, in the 
one–loop correction from �α , x log |x| is a monotonic function for large |x|. For a fixed value of mI , the contribution to (5.9)
from mR dominates asymptotically.

The set of chambers and holomorphic filtrations {(C, FC)} form a set of spectral data for the supersymmetric Berry 
connection.

5.2.3. Example: CP N−1 σ -model
Recall that the CP N−1 σ -model can be engineered as the IR limit of a UV U (1) gauged linear sigma model with N chiral 

multiplets �i transforming in the fundamental of a P SU (N) flavour symmetry G F . We will be interested in the Cartan T of 
the flavour symmetry, for which we can introduce mass parameters mR,i and xi , for i = 1, . . . N . These are constrained to 
satisfy 

∑
i mR,i = 0 and 

∏
i xi = 1 as they are P SU (N) fugacities.

We denote the Higgs branch X =CP N−1, which is described as a quotient{
N∑

i=1 
|�i|2 = r

}/
U (1) (5.14)

in the GLSM. Here r = r(μ) is the real FI at the RG scale μ. The fixed points or massive vacua are labelled by α = 1, . . . , N , 
are given by |�2

α | = r with all other chirals vanishing. The flavour moment map is given by

hmR =
∑

i 
mR,i|�i|2, hmR(α)=mR,αr (5.15)

where the second equation shows the evaluation at the fixed points.
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It will be convenient to coflate weight spaces with characters and denote

T X =
N∑

i=1 
sxi − 1 (5.16)

to be the equivariant K–theory class, which, upon evaluating the Chern roots at the fixed points sxα = 1, yields the tangent 
space characters Tα X

Tα X =
∑
i �=α

xi

xα
. (5.17)

The sum in (5.16) can be regarded as the representation of G × T corresponding to the N chiral multiplets, and the −1 as 
arising from the gauge group quotient. Therefore

�α = {ei − eα}i �=α, (5.18)

where ei are the fundamental weights of P SU (N). Note that we have used multiplicative notation, and in the sequel we 
will identify xi = e2π zi .

Now, the effective twisted superpotential of SQED[N] is

Weff =−2π iτ (μ)σ +
N∑

i=1 
(σ +mi)

(
log

(
σ +mi

μ 

)
− 1

)
(5.19)

where τ (μ) is the renormalised complex FI parameter

τ (μ)= τ0 + N

2π i
log(�0/μ). (5.20)

The Bethe vacua correspond to solutions of

1= e
∂Weff

∂σ = q−1
N∏

i=1 
(σ +mi), (5.21)

where

q =�N
0 e−2π iτ0 (5.22)

is the RG–invariant FI parameter. The solutions can be labelled by α, corresponding to the fixed points on X where |�α |2 =
r. These can be expanded as

σ ∼−mα + q ∏
i �=α(mi −mα)

(5.23)

as q → 0, or equivalently as |m| →∞.
Evaluating

∂Weff

∂mi
= log

(
σ +mi

μ 

)
(5.24)

at the Bethe vacua asymptotically in m gives:

∂W (α)

eff

∂mi
∼
⎧⎨⎩2π iτ (μ)−∑ j �=α log

(
m j−mα

μ 
)

if i = α

log
(

mi−mα
μ 
)

if i �= α
(5.25)

where ∼ indicates dropping higher order terms in q and m−1. This can be matched to the expected asymptotics of the 
effective twisted superpotential (5.6), using the moment map (5.15) and tangent space weights (5.18). We discuss the 
holomorphic filtrations and vacuum ordering for this example in the next subsection.

5.3. Physical constructions: equivariant K–theory

We now describe how the holomorphic filtrations above allow one to construct a related type of spectral data to the 
supersymmetric Berry connection of a sigma model, which we show coincides with the equivariant K–theory variety of 
the Higgs branch X . This construction is the analogue of the twistorial or Hitchin spectral curve [44], but for periodic 
monopoles.
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5.3.1. Equivariant K–theory of GKM varieties
Let us first briefly recap the GKM construction of the equivariant K–theory scheme. General references and further 

details for equivariant K–theory can be found in e.g. [21,67,68], here we simply state the main results we need. Our physical 
assumptions translate into supposing that X is a Kähler quotient, by some gauge group G , of a G × T representation space 
R . We will assume that T is an n-dimensional torus, and that X has isolated fixed points X T under the T action labelled 
by α = 1, . . . , N .

Equivariant localisation in K–theory tells us that there is an injection:

KT (X)→ KT (X T )=
⊕
α

KT (α)=
⊕
α

C[x±1
1 , . . . , x±n ]. (5.26)

For a GKM variety, the image of this injection can be described cleanly. An N-tuple of Laurent polynomials { fα} on the 
right–hand side is in the image of the localisation map if, for all ν labelling a T -equivariant CP 1 connecting two vacua α
(as described in Section 5.2.1):

( fα − fβ)|e2πν·z=1 = 0, ν ∈�α and − ν ∈�β or vice versa. (5.27)

We have used the notation x= e2π z . We will shortly identify z with the coordinate dfined previously z = 2mI + it .
Recall that the ν above label internal edges of the GKM diagram. For non–GKM varieties, the idea is similar but the 

identfications across components are more complicated, and we do not deal with them here.
By taking the spectrum, one can equivalently describe:

SpecKT (X)=
(�

α∈X T

Tα

)/
� (5.28)

where Tα
∼ = KT (pt) = T = (C∗)n and � denotes a glueing of these abelian varieties which may be described as follows. 

For each compact curve labelled by a weight ν connecting two fixed points α and β , glue the copies Tα and Tβ along the 
common hyperplane

Tα ⊃ {ν · z ∈ iZ} ⊂Tβ. (5.29)

In the case where X is compact [43,52], and in certain other cases where the result has been proven (e.g. hyper–toric 
varieties [42] and Nakajima quiver varieties [57]), the equivariant K–theory admits an ``off–shell'' description as follows. 
Suppose that G =∏i U (Ni) is the product of unitary groups. Due to the G-quotient, there is a natural principal G-bundle 
over X and associated T -equivariant tautological bundles Vi . Kirwan surjectivity implies that KT (X) is generated by the Schur 
functors of the tautological bundle Vi . In other words, there is a surjection

KT (pt)⊗C[{s±1}]G → KT (X) (5.30)

where {s} are collectively the equivariant Chern roots of tautological bundles Vi , and G=∏i SNi where SNi is the symmetric 
group. Combined with equivariant localisation (5.26), one therefore has the explicit description:

KT (X)∼ = C[x±1
1 , . . . , x±n ] ⊗C[{s±1}]G/I, (5.31)

where I is the ideal of polynomials vanishing when the Chern roots {s} are evaluated at any of the fixed points (i.e. when s
are fixed to the T -weights of the tautological bundles at {α}). Thus there is an embedding

SpecKT (X) ↪→ T ×
∏

i 
S NiC∗. (5.32)

Example: CP N−1 For CP N−1 we have R =CN transforming with charge +1 under the U (1) action, subject to the moment 
map constraint (5.14). Let s be the equivariant Chern root corresponding to the tautological bundle O(−1). Let x1, . . . , xN

be the coordinates on T , or equivalently the Chern roots of the trivial T -equivariant bundle descended from CN . Then the 
Chern root evaluation at the fixed points is given by s = x−1

α . Therefore, we have that

KT (CP N−1)=C[s±1, x±1
1 , . . . , x±1

N ]/
{∏

i 
(1− sxi)

}
, (5.33)

and so

Spec (KT (X))=
{∏

i 
(1− sxi)= 0

}
⊂T ×C∗

s . (5.34)

Alternatively:
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Spec (KT (X))=
(�

α∈X T

Tα

)/
� (5.35)

where � glues pairs Tα,Tβ along the loci xα = xβ for all distinct pairs α < β .

5.3.2. Supersymmetric ground states
We will now pass to an effective description of the theory on R × S1 as an ifinite dimensional quantum mechanics 

along R, with the 1d N = (2,2) supersymmetry algebra (2.12). In the absence of parameters (mR, z) for T , the theory 
flows to a sigma model on the Higgs branch. It can then alternatively be described as an N = (2,2) quantum mechanics 
with target

X = L X =Map(S1 → X) (5.36)

which is the space of smooth maps from S1 to X , and is an infinite–dimensional Kähler manifold. The kinetic terms involv
ing derivatives along S1 reduce to a background vector multiplet for the U (1) symmetry of X induced by translations along 
S1. Now, turning on (mR, z), these couple via background vector multiplets for the induced T action on X .

Since we assume the spectrum is gapped, we pass to a cohomological description of supersymmetric ground states in 
the usual way, by taking the supercharge

Q = Q λ=1 := 1

2
(q̄+ + q− + q+ + q̄−), (5.37)

or for the case when λ= eiθ , Q λ as dfined in equation (2.11). Let us reproduce the supersymmetry algebra (2.12) for this 
choice of λ:

{Q , Q †} = 2H, {Q̄ , Q̄ †} = 2H

{Q , Q̄ } = Z , Q 2 = P .
(5.38)

We have made some notation simplfications, and denoted

P := i(∂2 − z · J T ), Z := 2mR · J T . (5.39)

Thus by restricting to the states in the supersymmetric quantum mechanics annihilated by Z and P

mR · γT = 0, n− iz · γT = 0, (5.40)

where γT ∈ �∨T is the T -charge of the state and n ∈Z the KK momentum along S1, the supercharge Q becomes a differential 
and its cohomology gives a description of the ground states.

In the description of the theory as a (2,2) quantum mechanical σ -model to X , the supercharge Q has the form

Q = e−hmR (d+ ιV z )ehmR (5.41)

where in an abuse of notation hmR denotes also the moment map for the T action on X generated by mR , and V z is the 
sum of the vector field ∂2 generating the natural S1 action on the loop space, and the vector field corresponding to the 
induced U (1) ⊂ T action on X generated by the C∗ parameter z. Supercharges of this type were introduced in [77], and 
have been studied from the context of quiver quantum mechanics recently in [36--38].

From this viewpoint, the ground states can be analysed by applying the classic arguments of Witten [77] to this infinite--
dimensional model. The superpotential or moment map hmR can be scaled, localising ground states around Crit(hmR )⊂X . 
The supersymmetric ground states can then be obtained as

Hd+ιV z
(Crit(hmR)), (5.42)

i.e. the cohomology of the equivariant differential d + ιV z on Crit(hmR ). This is simply the equivariant cohomology of 
Crit(hmR ) localised at the equivariant parameter z.

This description of ground states clearly depends intricately on the values of mR , and we consider some cases in turn.

Generic mass We consider first the mass mR lying in a chamber C, i.e. in the complement of all the hyperplanes Wν =
{ν ·mR = 0}. The conditions (5.40) imply that the ground states have γT = 0 (are uncharged under the flavour symmetry), 
and have 0 KK momentum.

In the σ -model to X , the critical loci of hmR are the constant maps S1 → α. As usual, one can scale the coefficient in 
front of the moment map to ifinity in the supercharge (5.41), and the normalisable perturbative ground states are Gaussian 
wavefunctions localised at these constant maps, which may be chosen to be orthonormal. The perturbative description is 
exact because hmR is a moment map for a Hamiltonian isometry of the Kähler X , see e.g. [48]. From the perspective of the 
2d path integral, one has the description of the ground states in a given chamber C as
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• |α〉C is the supersymmetric ground state obtained from performing the path integral on S1 ×R≥0 with vacuum α at 
x1 →+∞.

• 〈α|C is the supersymmetric ground state obtained from performing the path integral on S1 ×R≤0 with vacuum α at 
x1 →−∞.

These states are orthonormal

〈α|β〉C = δαβ, (5.43)

rflecting the values of the path integral on the ifinitely long cylinder with vacua α and β at ±∞.
Additionally, these states can be generated in Q -cohomology by finite distance boundary conditions, which are the 

thimble boundary conditions discussed in Section 4.3. In particular, in the 2d σ -model description

• |α〉C is generated by a B–brane supported on the attracting Lagrangian L−α for Morse flow with respect to hmR .
• 〈α|C is generated by a B–brane supported on the repelling Lagrangian L+α for Morse flow with respect to hmR .

Such boundary conditions can be engineered by UV boundary conditions which flow to the B–branes in the IR, see e.g. [6,8].

Mass on a wall We now move on to discuss the case where mR lies on a wall Wν = {ν ·mR = 0} labelled by a weight 
ν ∈�α . As we shall see, for the purposes of our discussion we will be interested only in the case where ν is as described 
in Section 5.2.1 describing hyperplanes where a �ν

∼ = CP 1 of vacua open up between two fixed points α and β .
Suppose ν ∈�α ∩−�β . Then

Crit(hmR)= {γ �= α,β} ∪ L�ν, (5.44)

where L�ν :=Map(S1,�ν). One still has N − 2 vacua as described in the previous section corresponding to constant maps 
to fixed points S1 → γ . For the ground states associated to α and β , we must consider the d+ ιV z cohomology of L�ν .

Provided ν · z / ∈ iZ, V z still has isolated fixed points in L�ν , corresponding to the constant maps. However, there is now 
ambiguity in the normalisation as unitarity is lost in the cohomological description of ground states. The natural choice [9] 
is to dfine the state |α〉 as the Poincaré dual of the equivariant fundamental class of the constant map S1 → α inside L�ν .

〈α|α〉 =
∏
n∈Z

(n− iν · z)

= eπν·z − e−πν·z

= 2 sinh(πν · z),

(5.45)

where the first line is the equivariant Euler class of the normal bundle to the constant map inside L�ν . We have used the 
usual regularisation of the ifinite product, familiar from one–loop determinants in supersymmetric quantum mechanics 
[49], and 2d N = (2,2) theories on a cylinder [72]. Similarly:

〈β|β〉 =
∏
n∈Z

(n+ iν · z)

=−2 sinh(πν · z),

(5.46)

and

〈α|β〉 = 〈β|α〉 = 0. (5.47)

When ν · z ∈ iZ, the fixed locus of V z is no longer isolated and the above supersymmetric ground states are not linearly 
independent. One can pass to linear combinations of the above which extends across this locus, but we will not need them 
here.

Zero mass We can continue the above process by considering ground states on the intersection of loci Wν ,Wν ′ . . .. Instead, 
we turn to the extreme case of vanishing mR , or equivalently the intersection of all such hyperplanes.

The ground states now correspond to equivariant cohomology (localised at z) of the entirety of X . Repeating the same 
arguments as before, if z is generic, meaning that it lies in the complement of all hyperplanes Wν , then the vector field V z

has only isolated fixed point corresponding to the constant maps S1 → α. Thus there are N supersymmetric ground states 
which are normalised as

〈α|β〉 = δαβ

∏
ν∈�α

2 sinh(πν · z), (5.48)
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which are the equivariant fundamental classes of the constant maps S1 → α inside X . If z is not generic but lies on a 
hyperplane Wν , then if ν is an internal edge of the GKM diagram we must pass to linear combinations as mentioned 
briefly above, and if ν is an external (non–internal) edge the quantum mechanics is not gapped and the construction breaks 
down.

These states can also be generated at a finite distance by B–branes, which are simply supported solely on the fixed points 
α, with all other chiral multiplets assigned Dirichlet boundary conditions (i.e. forced to vanish). This is compatible with the 
normalisations (5.48): the overlaps of two such B–branes as a partition function on I × S1 are given by the component 
of the 2d chiral multiplets with Dirichlet boundary conditions corresponding to 1d Fermi multiplets, which remain after 
colliding the two boundaries [72].

It will be important for us to discuss the relationship between ground states |α〉C in a given chamber C and those at the 
origin of the mR parameter space, |α〉. In the limit as mR → 0, we know that |α〉C is no longer appropriate. However, we 
claim that

|α〉C
∏

ν∈�−
α

2 sinh(πν · z)→ |α〉

〈α|C
∏

ν∈�+
α

2 sinh(πν · z)→〈α|
(5.49)

where these limits are understood as holding for computations of Q -closed observables. This is clearly compatible with 
(5.43) and (5.48) and is consistent with our description of boundary conditions. That is, the relative normalisations in (5.49)
are precisely those one would obtain from computing overlaps 〈B|α〉C and 〈B|α〉, where 〈B| is a state generated by an 
arbitrary B–brane, as partition functions on I × S1. This is due to the fact that the boundary condition for |α〉C assigns 
Neumann–type boundary conditions for fluctuations in L−α , versus Dirichlet in |α〉. See [6] for further details in the 3d case.

We will often consider (5.49) as equalities, because computations involving supersymmetric ground states on I × S1

are independent of mR . More properly, one should say that the sets of ground states are related by the action of a Janus 
interface for mR , interpolating between C and the origin [6,25].

5.3.3. Incidence variety
We are now finally in a position to explain how the equivariant K–theory variety is related to an incidence variety for 

the filtrations described in Section 5.2. Recall that in a chamber C, one obtains a filtration FC of E (a holomorphic vector 
bundle over T ), determined by the ordering on vacua induced by the Morse function hmR (5.13).

One can take the associated graded bundle

G(E )=
⊕
α∈X T

Lα (5.50)

which by construction splits holomorphically as the sum of holomorphic line bundles:

Lαi := Eαi /Eαi−1 . (5.51)

By construction, these line bundles are generated by the supersymmetric ground states |αi〉C described above, since the 
decay of sections of these line bundles is determined by the central charges in the vacua αi . The associated graded and the 
constituent line bundles change as we go from chamber to chamber.

We can now build the incidence variety as follows. For each weight ν ∈�α labelling an equivariant curve �ν connecting 
vacua α and β , let C and C′ denote the chambers on either side of the hyperplane Wν . The filtrations FC and FC′ have the 
roles of α and β (which are adjacent in the ordering) switched:

FC : 0⊂ Eα1 ⊂ . . .Eα ⊂ Eβ ⊂ . . .⊂ EαN = E ,

FC′ : 0⊂ E ′
α1
⊂ . . .E ′

β ⊂ E ′α ⊂ . . .⊂ E ′αN
= E ,

(5.52)

where the prime and absence of a prime indicates the chamber.
We compare the holomorphic line bundles Lα and L′α (or equivalently Lα and L′β ) over T . Recall that they are gener

ated by:

|α〉C =
∏

μ∈�
C,−
α

(2 sinh(πμ · z))−1 |α〉 , |α〉C′ =
∏

μ∈�
C′,−
α

(2 sinh(πμ · z))−1 |α〉 ,

|β〉C =
∏

μ∈�
C,−
β

(2 sinh(πμ · z))−1 |β〉 , |β〉C′ =
∏

μ∈�
C′,−
β

(2 sinh(πμ · z))−1 |β〉 . (5.53)

We therefore have, without loss of generality
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|α〉C = 2 sinh(πν · z) |α〉C′ ,
|β〉C′ = 2 sinh(−πν · z) |β〉C .

(5.54)

This relative normalisation vanishes (or diverges, depending on convention), when ν · z ∈ iZ, or alternatively when

e2πν·z = 1. (5.55)

The crossing of the holomorphic filtrations FC is therefore encoded in the following data. Take N copies Tα of T . The 
copies Tα and Tβ are identfied along the hyperplanes (5.55) for ν ∈�α ∪−�β the tangent weight of a T -equivariant CP 1

connecting α and β . Thus, by matching to Section 5.3.1, clearly:

Consider the sets {C, FC} of the holomorphic vector bundle E given by restricting E|mR,D̄ z̄
, which compromises a form 

of spectral data for the supersymmetric Berry connection. The incidence variety built from comparing the holomorphic 
filtrations in neighbouring chambers coincides precisely with SpecKT (X), the equivariant K–theory scheme of the 
Higgs branch X .

Example: SQED[N] & CP N−1 For the case of SQED[N] there are N! chambers Cσ labelled by a permutation σ ∈ SN

Cσ : {mR,σ (1) > mR,σ (2) > . . . > mR,σ (N)}, (5.56)

separated by 
(N

2 
)

hyperplanes

Wα,β = {(eα − eβ) ·mR =mR,α −mR,β = 0} (5.57)

labelled by a pair (α,β), where without loss of generality α < β . Two chambers Cσ and Cσ ′ are adjacent if σ ′ = τ ◦σ where 
τ is the transposition swapping σ(i) and σ(i + 1) for some i ∈ {1, . . . , N − 1}, and are separated by the wall Wσ(i),σ (i+1) .

Following the above, the crossing of the filtrations

FCσ : 0⊂ Eσ (1) ⊂ . . .Eσ (i) ⊂ Eσ (i+1) ⊂ . . .⊂ Eσ (N) = E

FCσ ; : 0⊂ Eσ (1) ⊂ . . .Eσ (i+1) ⊂ Eσ (i) ⊂ . . .⊂ Eσ (N) = E
(5.58)

occurs at

e2π(zσ (i)−zσ (i+1)) = 1. (5.59)

We thus build the incidence variety by repeating this for all adjacent chambers, or equivalently all hyperplanes Wα,β . Thus 
we take N copies Tα of T := (C∗)N and identifying all pairs Tα,Tβ along the loci zα − zβ ∈ iZ. This clearly matches the 
equivariant K–theory scheme for CP N−1 as described in equation (5.35).

5.4. Example: SQED[2] & CP1 σ -model

Let us review the constructions of this section in greater detail for our running example of the CP 1 σ -model, in a way 
which will help elucidate the connection to the Hitchin spectral curve [44] for monopoles in R3.

For this example, there is only one flavour symmetry and we study the scattering problem

(DmR − iφ)ψ = 0. (5.60)

In this example, there are only two chambers: mR > 0 and mR < 0. We will therefore consider the scattering problem as 
mR →±∞. Let EmR

:= E|{mR}×T ,D̄ z̄
be the rank-2 holomorphic vector bundle on C∗ (parameterised by e2π z) as before. 

Then

• We first choose a solution ψ− to (5.60), which decays ψ− → 0 as mR →−∞, and is holomorphic D̄ z̄ψ
− = 0. This is a 

consistent requirement due to the Bogomolny equations (5.11). By parallel transport with respect to DmR , ψ− generates 
a holomorphic line sub–bundle L− ⊂ EmR for any value of mR , and we denote E := EmR .

• We may similarly dfine a solution ψ+ and line sub–bundle L+ ⊂ E which decays ψ+ →∞ as mR →+∞.

There is a natural isomorphism L− ∼ = E/L+ given by the following. Let ψ be some section of E which naturally induces 
the generating section of E/L+ , then we must have:

ψ−(mR, z, z̄)= f (z)ψ(mR, z, z̄)+ g(z)ψ+(mR, z, z̄) (5.61)

where f (z) is a meromorphic function in z. The function f (z) depends on a choice of ψ and ψ− , but its zeros are indepen
dent of this choice [20]. The zeros of f (z) describe the spectral points or incidence variety, at which there is a normalisable 
solution of (5.61) along mR .
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Let us see how this coincides with the equivariant K–theory variety of CP 1. The section ψ− corresponds to ground 
states which decay the fastest as they are parallel transported along mR →−∞. As Aw ∝ 1/w as |w| → ∞, AmR + iφ
is dominated by the adjoint Higgs field, and the fastest decaying state will simply be the largest eigenvalue of iφ, which 
via Section 3.2.2 corresponds to vacuum (1), the north pole of CP 1. Thus ψ− = |1〉mR<0 where |1〉mR<0 is the state in 
the sigma model corresponding to placing a supersymmetric vacuum at ∞ with parameter mR < 0 (i.e. in this chamber). 
Analogously ψ+ = |2〉mR>0. We identify ψ as the section of E which induces |1〉mR>0 (which is a section of E/L+).

The incidence variety can therefore be recovered by looking at the relative normalisations of |1〉mR<0, and |1〉mR>0
(without loss of generality), which are the vacuum states corresponding to the north pole. Via the arguments in 5.3.2 (and 
[6]), |1〉mR>0 is related to a reference state |1〉 (which is a vacuum state at mR = 0), by the K–theory class associated to the 
attracting weights in the tangent space, with respect to the action generated by mR > 0, and similarly for the other state. 
Thus

|1〉mR<0 = sinh(π z) |1〉 , |1〉mR>0 = |1〉 ⇒ |1〉mR<0 = sinh(π z) |1〉mR>0 (5.62)

and similarly

|2〉mR<0 = |2〉 , |2〉mR>0 = sinh(−π z) |2〉 ⇒ |2〉mR<0 = sinh(−π z) |2〉mR<0 . (5.63)

Thus we can identify f (z)= sinh(π z), and the incidence variety is just given by the zeros of this, which can be characterised 
in a way which takes into account the periodicity of z by

x= e2π z = 1. (5.64)

Clearly, this coincides with the loci where the two sheets KT ({i})∼ = C∗
x = SpecC[x±1] of the equivariant K–theory scheme 

of CP 1:

SpecKT (CP 1)= (KT ({1}) � KT ({2}))/� (5.65)

are glued, as indicated by �. This is illustrated in Fig. 4.
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Appendix A. Difference equations for SQED[3] & CP 2 σ -model

In this appendix, we demonstrate the results of Section 4.4 for supersymmetric QED with 3 chiral multiplets of charge 
+1, which flows in the IR to an NLSM to CP 2. Namely, we show that (a basis of) hemisphere partition functions obey 
difference equations of the form (4.73), which realise a quantisation of the Cherkis–Kapustin spectral variety as in (4.76)
and consequently of an action on Q HT (CP 2).

Spectral variety Before proceeding, let us first write down the Cherkis–Kapustin spectral variety. We take the charges of 
�1,2,3 under T = U (1)2 to be (1,0), (0,1), (−1,−1) respectively, and introduce complex masses m1,2 for T . The effective 
twisted superpotential is then

Weff = (σ +m1)

(
log

(
σ +m1

ε

)
− 1

)
+ (σ +m2)

(
log

(
σ +m2

ε

)
− 1

)
+ (σ −m1 −m2)

(
log

(
σ −m1 −m2

ε

)
− 1

)
− 2π iτ (ε)σ .

(A.1)

Here, τ (ε) is the renormalised complex FI parameter at scale ε (5.20). The vacua are determined by

e
∂Weff

∂σ = q−1(σ +m1)(σ +m2)(σ −m1 −m2)= 1, (A.2)

which is equivalently Spec Q HT (CP 2). Here, q = ε3e2π iτ (ε) is the RG–invariant combination (5.22).
We may pass to the Cherkis–Kapustin spectral variety, or alternatively the momentum space representation of 

Spec Q HT (CP 2), by appending the equations
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Table 1
B--branes for SQED[3].

Dirichlet Neumann 
D1 �1,�2,�3

D2 �1 �2,�3

D3 �1,�2 �3

p1 = e
∂Weff
∂m1 , p2 = e

∂Weff
∂m2 . (A.3)

Eliminating σ gives the following two equations for the generalised (rank-2) Cherkis–Kapustin spectral variety

L1(p,m) := q(p1 − 1)3 − (2m1 +m2)
2 p1(m1 −m2 +m1 p1 + 2m2 p1)= 0,

L2(p,m) := q(p2 − 1)3 − (2m2 +m1)
2 p2(m2 −m1 +m2 p2 + 2m1 p2)= 0.

(A.4)

These cut out a middle–dimensional Lagrangian subvariety in (C∗)2 ×C2 # (p,m).

The result We claim that there is a basis of B–branes, {D1, D2, D3}, such that the corresponding hemisphere partition 
functions ZDα [Oa,m] (where Oa indicates an element of a basis of twisted chiral ring elements inserted at the tip of the 
hemisphere) obey the difference equations

p̂1ZDα [Oa,m1,m2] =ZDα [Oa,m1 + ε,m2] = G̃(1)

ab (m, ε)ZDα [Ob,m1,m2],
p̂2ZDα [Oa,m1,m2] =ZDα [Oa,m1,m2 + ε] = G̃(2)

ab (m, ε)ZDα [Ob,m1,m2],
(A.5)

where:

G̃(1)(m1,m2, ε)=

⎛⎜⎜⎝
1+ m1m2(2m1+m2+ε)

q . . .

(2m1 +m2 + ε)
(

1+ m1m2(m1+m2+ε)
q 

)
. . .

(m1 +m2 + ε) (2m1 +m2 + ε)
(

1+ m1m2(m1+m2+ε)
q 

)
. . .

. . .
(m1+m2)(2m1+m2+ε)

q . . .

. . . 1+ (m1+m2)(m1+m2+ε)(2m1+m2+ε)
q . . .

. . . (2m1 +m2 + ε)
(

1+ (m1+m2)(m1+m2+ε)2

q 
)

. . .

. . . 2m1+m2+ε
q 

. . .
(m1+m2+ε)(2m1+m2+ε)

q 
. . . 1+ (2m1+m2+ε)(m1+m2+ε)2

q 

⎞⎟⎠ ,

(A.6)

G̃(2)(m1,m2, ε)= G̃(1)(m2,m1, ε). (A.7)

Notice that these equations are independent of the boundary condition. It will follow easily from our arguments that such 
a result holds for any choice of boundary condition on the chiral multiplets.

Furthermore, we claim that:

L1(G̃,m)|ε=0 = L2(G̃,m)|ε=0 = 0 (A.8)

where L1 and L2 are given in (A.4). Thus the hemisphere partition functions provide a quantisation of the spectral variety. 
This can be checked by computing the characteristic polynomials of the matrices above and showing that they coincide 
with L1 and L2.

Proof We choose the B–branes given in Table 1, and a basis of twisted chiral ring insertions O0 = 1, O1 = σ and O2 = σ 2. 
The corresponding hemisphere partition functions are given by:

ZD1 [Oa,m] =
∮
C1

dσ

2π iε
e−

2π iστ
ε �

[σ+m1
ε

]
�
[σ+m2

ε

]
�
[σ−m1−m2

ε

]
Oa,

ZD2 [Oa,m] =
∮
C2

dσ

2π iε
e−

2π iστ
ε

(−2π i)e
π i(σ+m1)

ε

�
[

1− σ+m1
ε

] �
[σ+m2

ε

]
�
[σ−m1−m2

ε

]
Oa,

ZD3 [Oa,m] =
∮
C3

dσ

2π iε
e−

2π iστ
ε

(−2π i)e
π i(σ+m1)

ε

�
[

1− σ+m1
ε

] (−2π i)e
π i(σ+m2)

ε

�
[

1− σ+m2
ε

] �
[σ−m1−m2

ε

]
Oa.

(A.9)

38 



A.E.V. Ferrari and D. Zhang Journal of Geometry and Physics 210 (2025) 105425 

In the above, the contours enclose the poles at:

C1 : σ =−εk−m1

C2 : σ =−εk−m2 for k ∈N0.

C3 : σ =−εk+m1 +m2

(A.10)

It will suffice to focus on ZD1 , for reasons which will become clear. Performing the contour integral yields

ZD1 [1] = e
2π im1τ

ε � [1− x]� [1− y] 0 F2
[
x, y;−e2π iτ

]
,

ZD1 [σ ] =−m1e
2π im1τ

ε � [1− x]� [1− y] 0 F2

[
x, y;−e2π iτ

]
+ εe2π iτ e

2π im1τ
ε � [−x] � [−y] 0 F2

[
x+ 1, y + 1;−e2π iτ

]
,

ZD1 [σ 2] =m2
1e

2π im1τ
ε � [1− x]� [1− y] 0 F2

[
x, y;−e2π iτ

]
− (2m1 + ε)εe2π iτ e

2π im1τ
ε � [−x] � [−y] 0 F2

[
x+ 1, y + 1;−e2π iτ

]
+ ε2e4π iτ e

2π im1τ
ε � [−x− 1]� [−y − 1] 0 F2

[
x+ 2, y + 2;−e2π iτ

]
,

(A.11)

where:

x := 1− m2 −m1

ε
, y := 1+ 2m1 +m2

ε
, (A.12)

and 0 F2 is the generalised hypergeometric function

0 F2[a,b; z] :=
∞ ∑

n=0 

zn

(a)n(b)nn! . (A.13)

We begin with the action of p̂1 on ZD1 [·]. We note that p̂1 : x �→ x + 1, p̂1 : y �→ y + 2, and that ZD1 [·] are 
linear combinations of 0 F2

[
x+ n, y + n;−e2π iτ

]
, n = 0,1,2. We therefore look for identities relating the above to 

0 F2
[
x+ 1+ n, y + 2+ n;−e2π iτ

]
, n = 0,1,2. The required identities may be found by using the standard differentiation 

formula for generalised hypergeometric functions, from which it follows that any three of 0 F2 [x, y;λ], 0 F2 [x− 1, y;λ], 
0 F2 [x, y − 1;λ] and 0 F2 [x+ 1, y + 1;λ] are linearly dependent. We require:

0 F2 [x− 1, y;λ]− 0 F2 [x, y;λ]− λ 
x(x− 1)y

0 F2 [x+ 1, y + 1;λ]= 0,

0 F2 [x, y − 1;λ]− 0 F2 [x, y;λ]− λ 
xy(y − 1)

0 F2 [x+ 1, y + 1;λ]= 0,

(x− y)0 F2 [x, y;λ]+ (y − 1)0 F2 [x, y − 1;λ]− (x− 1)0 F2 [x− 1, y;λ]= 0.

(A.14)

Applying these identities successively, it is a simple but tedious exercise to find:⎛⎝0 F2 [x+ 1, y + 2;λ]
0 F2 [x+ 2, y + 3;λ]
0 F2 [x+ 3, y + 4;λ]

⎞⎠= M(x, y, λ)

⎛⎝ 0 F2 [x, y;λ]
0 F2 [x+ 1, y + 1;λ]
0 F2 [x+ 2, y + 2;λ]

⎞⎠ (A.15)

where

M(x, y, λ)=
⎛⎜⎝

xy(y+1)
λ − xy(y+1)

λ 
− x(x+1)y(y+1)2(y+2)

λ2
(x+1)(y+1)(y+2)

λ 
(

1+ xy(y+1)
λ 

)
x(x+1)(x+2)y(y+1)2(y+2)2(y+3)

λ3 − (x+1)(x+2)(y+1)(y+2)2(y+3)

λ2

(
1+ xy(y+1)

λ 
)

. . . − y 
x+1

. . .
y(y+1)(y+2)

λ 
. . .

(x+2)(y+2)(y+3)
λ 

(
1− y(y+1)(y+2)

λ 
)
⎞⎟⎠ .

(A.16)

Now, rewriting Z[Oa,m] = A[m, ε;τ ]ab 0 F2[x+ b, y + b;−e2π iτ ], then we can see immediately that

G̃(1) = (p̂1 A)M A−1, (A.17)

39 



A.E.V. Ferrari and D. Zhang Journal of Geometry and Physics 210 (2025) 105425 

and it is a simple but tedious exercise to check that G̃(1) is of the form (A.6).
For p̂2, which shifts p̂2 : x �→ x− 1, p̂2 : y �→ y + 1, we need the identities:⎛⎝0 F2 [x− 1, y + 1;λ]

0 F2 [x, y + 2;λ]
0 F2 [x+ 1, y + 3;λ]

⎞⎠= N(x, y, λ)

⎛⎝ 0 F2 [x, y;λ]
0 F2 [x+ 1, y + 1;λ]
0 F2 [x+ 2, y + 2;λ]

⎞⎠ (A.18)

where

N(x, y, λ)=
⎛⎜⎝

y 
x−1

x−y−1
x−1 

y(y+1)(x−y−1)
λ 

y+1
x 
(

1− xy(x−y−1)
λ 

)
− xy(y+1)2(y+2)(x−y−1)

λ2
(y+1)(y+2)(x−y−1)

λ 
(

1+ xy(y+1)
λ 

)
. . .

λ(x−y−1) 
(x−1)x(x+1)(y+1)

. . . − y(x−y−1)
x(x+1) 

. . .
y+2
x+1 

(
1+ y(y+1)(x−y−1)

λ 
)
⎞⎟⎠ .

(A.19)

So similarly we can read off

G̃(2) = (p̂2 A)N A−1 (A.20)

and check that indeed G̃(2)(m1,m2)= G̃(1)(m2,m1).
We must now verify that the same difference equations (A.5) hold for the remaining thimble basis elements. Instead of 

computing the action explicitly, we can use the following arguments based on symmetry. Note that the Gamma function 
obeys the Euler rflection formula (4.91). Applying this to the contour integral for ZD2 [Oa,m] in (A.9), and noting that the 
resulting integrand is the same as that for ZD1 [Oa,m] but with m1 ↔m2 in the contour, we have:

ZD2 [Oa] = C21ZD1 [Oa,m2,m1]. (A.21)

Note that the prefactor C21 := 1− e
2π i(m1−m2)

ε is invariant under p̂. Thus:

p̂1ZD2 [Oa,m1,m2] = C21

(
G̃(2)

ab (m1,m2)ZD1 [Ob,m1,m2]
) ∣∣∣

m1↔m2

= G̃(1)

ab (m1,m2)ZD2 [Oa,m1,m2]
(A.22)

using the symmetry (A.7). Similarly, it is easy to show that

p̂2ZD2 [Oa,m1,m2] = G̃(2)

ab (m1,m2)ZD2 [Oa,m1,m2]. (A.23)

Finally, we move on to the third thimble D3. Using the Euler rflection formula and the contour prescription (A.10) as 
above, we can also show that:

ZD3 [Oa,m1,m2] = C31ZD1 [Oa,−m1 −m2,m2]. (A.24)

The prefactor C31 :=
(

1− e
2π i(2m1+m2)

ε

)(
1− e

2π i(2m2+m1)

ε

)
is also p̂-invariant. Then:

p̂1ZD3 [Oa,m1,m2] = C31ZD1 [Oa,−m1 −m2 − ε,m2]
= C31

(
G̃(1)(m1 − ε,m2)

−1
ab ZD1 [Ob,m1,m2]

) ∣∣∣
m1→−m1−m2

= G̃(1)(−m1 −m2 − ε,m2)
−1
ab ZD3 [Ob,m1,m2].

(A.25)

It is then easily checked that:

G̃(1)(−m1 −m2 − ε,m2)
−1
ab = G̃(1)(m1,m2)ab, (A.26)

which is a non–trivial check on the matrix difference equation, and which implies that:

p̂1ZD3 [Oa,m1,m2] = G̃(1)(m1,m2)abZD3 [Ob,m1,m2], (A.27)

as desired. Similarly, we have:
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p̂2ZD3 [Oa,m1,m2] = C31
(

p̂2ZD1 [Oa,m1 − ε,m2]
) ∣∣∣

m1→−m1−m2

= C31

(
G̃(1)(m2,m1 − ε)abZD1 [Ob,m1 − ε,m2]

) ∣∣∣
m1→−m1−m2

(A.28)

=
(

G̃(1)(m2,m1 − ε)abG̃(1)(m1 − ε,m2)
−1
bc

) ∣∣∣
m1→−m1−m2

ZD3 [Oc,m1,m2].
Using that

G̃(1)(m2,−m1 −m2 − ε)= G̃(1)(m2,m1)G̃(1)(−m1 −m2 − ε,m2), (A.29)

which can be checked easily from (A.6), and (A.7), it follows that

p̂2ZD3 [Oa,m1,m2] = G̃(2)(m1,m1)abZD3 [Ob,m1,m2] (A.30)

as expected.
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