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 a b s t r a c t

We study how the relationship between non-equivalent width
parameters changes once we restrict to some special graph class.
As width parameters we consider treewidth, clique-width, twin-
width, mim-width, sim-width and tree-independence number,
whereas as graph classes we consider Kt,t -subgraph-free graphs,
line graphs and their common superclass, for t ≥ 3, of Kt,t -free
graphs. For Kt,t -subgraph-free graphs, we extend a known result
of Gurski and Wanke (2000) and provide a complete comparison,
showing in particular that treewidth, clique-width, mim-width,
sim-width and tree-independence number are all equivalent. For
line graphs, we extend a result of Gurski and Wanke (2007)
and also provide a complete comparison, showing in particular
that clique-width, mim-width, sim-width and tree-independence
number are all equivalent, and bounded if and only if the class
of root graphs has bounded treewidth. For Kt,t -free graphs, we
provide an almost-complete comparison, leaving open only one
missing case. We show in particular that Kt,t -free graphs of
bounded mim-width have bounded tree-independence number,
and obtain structural and algorithmic consequences of this result,
such as a proof of a special case of a recent conjecture of Dallard,
Milanič and Štorgel. Finally, we consider the question of whether
boundedness of a certain width parameter is preserved under
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graph powers. We show that this question has a positive answer
for sim-width precisely in the case of odd powers.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Width parameters play an important role both in structural and algorithmic graph theory. Two 
width parameters may differ in strength. To explain this, we say that a width parameter p dominates
a width parameter q if there exists a function f  such that p(G) ≤ f (q(G)) for every graph G. If p
dominates q but q does not dominate p, then p is more powerful than q. If p dominates q and q
dominates p, then p and q are equivalent. In particular, if two equivalent parameters p and q admit 
linear functions witnessing this, we say that p and q are linearly equivalent (in other words, one is a 
constant factor approximation of the other). If neither p dominates q nor q dominates p, then p and 
q are incomparable. A width parameter p is bounded on a graph class G if there exists a constant c
such that p(G) ≤ c for every G ∈ G. Note that if p and q are two equivalent width parameters then, 
for every graph class G, the parameter p is bounded on G if and only if q is bounded on G.

We can define all the above notions with respect to special graph classes (instead of the class of 
all graphs) analogously. In particular, two width parameters p and q are equivalent for some graph 
class G if, for every subclass G′ of G, the parameter p is bounded on G′ if and only if q is bounded 
on G′. This definition leads to a natural research question:
For which graph classes does the relationship between two non-equivalent width parameters p and q
change?

For example, two width parameters p and q might be incomparable in general, but when 
restricted to some special graph class, one of them could dominate the other. Or p might be more 
powerful than q in general, but when restricted to some special graph class, p and q could become 
equivalent.

In order to explain our results and how they embed in the literature, we first need to introduce 
some terminology. For a graph H , a graph G is H-subgraph-free if G cannot be modified into H by 
a sequence of edge deletions and vertex deletions, whereas G is H-free if G cannot be modified 
into H by a sequence of vertex deletions. For a set of graphs {H1, . . . ,Hk} for some k ≥ 1, a graph 
G is (H1, . . . ,Hk)-free (or (H1, . . . ,Hk)-subgraph-free) if G is Hi-free (or Hi-subgraph-free) for every 
i ∈ {1, . . . , k}. For an integer s, we let Ks denote the complete graph on s vertices. For integers s and 
t , we let Ks,t denote the complete bipartite graph whose partition classes have size s and t . We also 
say that a complete bipartite graph is a biclique. The line graph L(G) of a graph G has vertex set E
and an edge between two vertices e1 and e2 if and only if e1 and e2 have a common endpoint in G.

Our starting point consists of two well-known results of Gurski and Wanke characterizing clique-
width on Kt,t-subgraph-free graphs [37] and line graphs [38] in terms of treewidth. The first 
result [37] asserts that clique-width and treewidth are equivalent for the class of Kt,t-subgraph-free 
graphs, for every t ≥ 2. This implies that rank-width1 and treewidth are also equivalent for this 
graph class, and an improved upper bound for treewidth which is polynomial in rank-width was 
obtained by Fomin, Oum and Thilikos [33]. The second result of Gurski and Wanke [38] asserts that, 
for any graph class G, the class of line graphs of graphs in G has bounded clique-width if and only 
if G has bounded treewidth. In particular, although clique-width and treewidth are equivalent for 
the class of Kt,t-subgraph-free graphs (one of the least restrictive classes of sparse graphs), clique-
width is more powerful than treewidth for line graphs (one of the most prominent classes of dense 
graphs).

In this paper we answer the question above (except for one open case) for the following three 
graph classes and six width parameters:

1 A parameter equivalent to clique-width for the class of all graphs (see Section 2).
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Fig. 1. Inclusion diagram of the three main graph classes considered in the paper, where t ≥ 3.

• graph classes (see Fig.  1): Kt,t-subgraph-free graphs, line graphs, and their common proper 
superclass (for t ≥ 3) of Kt,t-free graphs.

• width parameters (see Fig.  2(a)): treewidth (tw), clique-width (cw), twin-width (tww), mim-
width (mimw), sim-width (simw) and tree-independence number (tree-α).

Apart from the fact that Kt,t-free graphs (with t ≥ 3) generalize Kt,t-subgraph-free graphs and 
line graphs, our motivation for investigating Kt,t-free graphs is that large bicliques are obstructions 
to small tree-independence number. Our main results are summarized in Figs.  2(b)–2(d) and will 
be explained in detail in Section 1.1.

We also consider an extensively studied question concerning the behaviour of width parameters 
under graph powers. Given a graph G, the rth power of G is the graph Gr  whose vertex set is that 
of G and where two distinct vertices are adjacent if and only if they are at distance at most r in G.
Given a width parameter p, is boundedness of p preserved under graph powers?

The behaviour of each parameter p ∈ {tw, cw, tww,mimw, tree-α} is known [13,43,53,67], and 
we show that the question has a positive answer for p = simw precisely in the case of odd powers.

Before explaining our results in detail and analysing their consequences, we recall how the six 
parameters we consider are related to each other on the class of all graphs (we refer the reader 
to Section 2 for the definitions of these parameters and for the computable functions showing that 
one dominates another). Kang et al. [47] proved that sim-width is more powerful than mim-width, 
while Vatshelle [69] showed that mim-width is more powerful than clique-width. Courcelle and 
Olariu [21] showed that clique-width is more powerful than treewidth, whereas Bonnet et al. [13] 
proved that twin-width is more powerful than clique-width. Munaro and Yang [57] showed that 
sim-width is more powerful than tree-independence number, which in turn is more powerful than 
treewidth, as shown independently by Yolov [71] and Dallard, Milanič and Štorgel [27]. Regarding 
incomparability, it is known that complete bipartite graphs have clique-width 2, but unbounded 
tree-independence number [27]. Moreover, chordal graphs have tree-independence number 1 [27] 
but unbounded twin-width [12] and unbounded mim-width [47]. In fact, even interval graphs have 
unbounded twin-width [12], but in contrast to their superclass of chordal graphs they have bounded 
mim-width [4]. Finally, walls have bounded twin-width [13], but using a result of [47] it can be 
easily shown that they have unbounded sim-width (see Section 2 for a proof). We conclude that 
twin-width is incomparable to mim-width, sim-width and tree-independence number, and that the 
latter parameter is incomparable to mim-width and clique-width. Fig.  2(a) gives a full picture of all 
relationships between the six parameters we just described.

1.1. Our results

In the following four sections we highlight our main results. We then observe some of their 
algorithmic and structural consequences and connections with known results.
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Fig. 2. The relationships between the six different width parameters considered in the paper when restricted to different 
graph classes. A directed arrow from parameter p to parameter q indicates that p dominates q, whereas a bidirected 
arrow indicates that p and q are equivalent. Although not explicitly stated in Theorems  1, 3 and 5, all functions showing 
that a certain parameter p dominates another parameter q for a certain graph class G are computable and, as we will 
show in particular for the new results, can be obtained from the corresponding proofs.

1.1.1. Kt,t-Subgraph-free graphs
The class of Kt,t-subgraph-free graphs contains well-known sparse graph classes: for example, 

every degenerate graph class and every nowhere dense graph class is a (proper) subclass of the 
class of Kt,t-subgraph-free graphs for some t ≥ 3 (see [68] for a proof). Gurski and Wanke [37] 
proved that for every t ≥ 2, clique-width and treewidth become equivalent for the class of 
K -subgraph-free graphs. In Section 3 we generalize and extend their result as follows.
t,t
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Theorem 1.  For every s ≥ 3 and t ≥ 2, when restricted to (Ks, Kt,t )-free graphs, sim-width, mim-
width, clique-width, treewidth and tree-independence number are equivalent, whereas twin-width is 
more powerful than any of these parameters.

The relationships in Theorem  1 are displayed in Fig.  2(b). Theorem  1 shows in particular that 
treewidth, clique-width, mim-width, sim-width and tree-independence number are equivalent for 
the class of (Ks, Kt,t )-free graphs. When s ≥ 2t , the class of (Ks, Kt,t )-free graphs contains the class of 
Kt,t-subgraph-free graphs, so these parameters are also equivalent for the class of Kt,t-subgraph-free 
graphs. Thus, Theorem  1 indeed generalizes and extends the result of Gurski and Wanke [37].

Corollary 2.  For every t ≥ 2, when restricted to Kt,t-subgraph-free graphs, sim-width, mim-width, 
clique-width, treewidth and tree-independence number are equivalent, whereas twin-width is more 
powerful than any of these parameters.

The relationships in Corollary  2 are also displayed in Fig.  2(b). In Section 3 we also provide a 
counterexample to a purported result of Vatshelle [69, Lemma 4.3.9] stating that a d-degenerate 
bipartite graph with a matching of size µ has an induced matching of size at least µ/(d + 1). This 
result was used to obtain a lower bound on the mim-width of grids [69, Lemma 4.3.10] and later 
to obtain a lower bound for mim-width that is linear in treewidth for d-degenerate graphs [47,56]. 
We explain how to obtain alternative lower bounds in these situations.

1.1.2. Line graphs
We use Corollary  2 in the proof of our next theorem, which concerns line graphs. For a graph 

class G, we let L(G) denote the class of line graphs of graphs in G. Some years after [37], Gurski and 
Wanke [38] proved that a class of graphs G has bounded treewidth if and only if L(G) has bounded 
clique-width. We extend this result by proving the following theorem in Section 4.

Theorem 3.  For a graph class G, the following statements are equivalent:
1. The class G has bounded treewidth;
2. The class L(G) has bounded clique-width;
3. The class L(G) has bounded mim-width;
4. The class L(G) has bounded sim-width;
5. The class L(G) has bounded tree-independence number.

Moreover, when restricted to line graphs, sim-width, mim-width, clique-width and tree-independence 
number are equivalent; twin-width dominates each of these four parameters; and each of the four 
parameters in turn dominates treewidth.

The relationships in Theorem  3 are displayed in Fig.  2(c). The main technical contribution 
towards proving Theorem  3 is the following result (Proposition  28): There exists a non-decreasing 
unbounded function f :N → N such that, for every graph G, simw(L(G)) ≥ f (tw(G)).

Theorem  3 immediately implies that, for each parameter p ∈ {cw,mimw, simw, tree-α}, there 
is no function f  such that p(L(G)) ≤ f (p(G)) for every graph G. The same clearly holds for 
p = tw and p = tww as well [13]. Moreover, Theorem  3 shows that, for each parameter p ∈

{cw,mimw, simw, tree-α}, there exist functions f  and g such that f (tw(G)) ≤ p(L(G)) ≤ g(tw(G)), 
for every graph G. In fact, the proof shows that we can always choose g as a linear function. 
However, it is not immediately clear what order of magnitude f  should have. For p = cw, Gurski 
and Wanke [38] showed that a linear function suffices. More precisely, for any graph G, they showed 
that the following holds: 

tw(G) + 1
4

≤ cw(L(G)) ≤ 2tw(G) + 2. (1)

But what about the other cases? In Section 4, we answer this question for p = mimw. In fact, 
instead of treewidth, we consider its linearly equivalent parameter branch-width (bw) and show 
that the mim-width of a line graph equals, up to a multiplicative constant, the branch-width of the 
root graph:
5
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Theorem 4.  For any graph G, bw(G)
25 ≤ mimw(L(G)) ≤ bw(G).

We remark that a result similar in spirit to Theorem  4 and Eq.  (1) was obtained by Oum [60]: 
for any graph G, rw(L(G)) is exactly one of bw(G), bw(G) − 1, bw(G) − 2, where rank-width (rw) is 
a width parameter equivalent to clique-width.

It is in general non-trivial to determine the exact values of p(L(Kn,m)) and p(L(Kn)), for some 
width parameter p. For n ≥ 3, Lucena [55] showed that tw(L(Kn,n)) = n2/2 + n/2 − 1. This result 
was extended by Harvey and Wood [40], who showed that tw(L(Kn,m)) has order  nm. Moreover, 
Harvey and Wood [39] determined the exact value of tw(L(Kn)). We conclude Section 4 by showing 
that simw(L(Kn,m)) = ⌈n/3⌉, for any 6 < n ≤ m, and use this result to bound simw(L(Kn)).

1.1.3. Kt,t-Free graphs
In Section 5 we show the following result concerning Kt,t-free graphs.

Theorem 5.  For every t ≥ 2, when restricted to Kt,t-free graphs,

• sim-width dominates tree-independence number, tree-independence number and sim-width are 
more powerful than mim-width, and twin-width is incomparable with these three parameters;

• twin-width and mim-width are more powerful than clique-width; and
• clique-width is more powerful than treewidth.

The relationships in Theorem  5 are displayed in Fig.  2(d). We note from Figs.  2(a) and 2(d) that, 
on Kt,t-free graphs, tree-independence number becomes more powerful than mim-width. Moreover, 
the equivalences from Fig.  2(b) no longer hold, except for perhaps one possible relationship. That is, 
we do not know yet if tree-independence number dominates sim-width when restricted to Kt,t-free 
graphs. If so, then these parameters become equivalent when restricted to Kt,t-free graphs. This is 
the only missing case in Fig.  2(d) and the following remains open:

Open Problem 1.  Does tree-independence number dominate sim-width for the class of Kt,t-free graphs? 
In other words, is it true that every subclass of Kt,t-free graphs of bounded sim-width has bounded 
tree-independence number?

The main ingredient in the proof of Theorem  5 is the following result, which shows in particular 
that tree-independence number dominates mim-width on Kt,t-free graphs. Its other consequences 
will be described in Section 1.4.

Theorem 6.  Let n and m be positive integers. Let G be a Kn,m-free graph and let (T , δ) be a branch 
decomposition of G with mimwG(T , δ) < k. Then we can construct a tree decomposition of G with 
independence number less than 6(2n+k−1

+ mkn+1) in O(|V (G)|mkn+4) time. In particular, tree-α(G) <
6(2n+k−1

+ mkn+1).

1.1.4. Width parameters and graph powers
As our last main contribution, in Section 6, we address the natural question of whether bound-

edness of some width parameter is preserved under graph powers. Clearly, this cannot hold for 
treewidth. However, Suchan and Todinca [67] showed that, for every positive integer r and graph 
G, nlcw(Gr ) ≤ 2(r + 1)nlcw(G), where NLC-width (nlcw) is a parameter equivalent to clique-width. 
Jaffke et al. [43] showed that, for every positive integer r and graph G, mimw(Gr ) ≤ 2mimw(G). Lima 
et al. [53] showed that, for every odd positive integer r and graph G, tree-α(Gr ) ≤ tree-α(G) and that, 
for every fixed even positive integer r , there is no function f  such that tree-α(Gr ) ≤ f (tree-α(G)) for 
all graphs G. It follows from a result of Bonnet et al. [13, Theorem 8.1] (see also [11]) that there exists 
a function f  such that, for every positive integer r and graph G, tww(Gr ) ≤ f (tww(G), r). Moreover, it 
is not difficult to see that there cannot be any function uniformly bounding the twin-width of graph 
powers, i.e. a function f  such that, for every positive integer r and graph G, tww(Gr ) ≤ f (tww(G)). 
This follows from the fact that the class of leaf powers (induced subgraphs of powers of trees) 
contains that of interval graphs [15] and the latter class has unbounded twin-width [12].

We show that sim-width behaves similarly to tree-independence number with respect to graph 
powers:
6
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Theorem 7.  Let r ≥ 1 be an odd integer and let G be a graph. If (T , δ) is a branch decomposition of 
G with simwG(T , δ) = w, then (T , δ) is also a branch decomposition of Gr  with simwGr (T , δ) ≤ w. In 
particular, simw(Gr ) ≤ simw(G), for every odd integer r ≥ 1.

Moreover, for every fixed even positive integer r , we observe that there is no function f  such that 
simw(Gr ) ≤ f (simw(G)) for all graphs G (Proposition  39). This helps to increase our understanding 
of the currently poorly understood width parameter sim-width.

1.2. Consequences of Theorems  1 and 7

In this section we highlight some algorithmic consequences of Theorems  1 and 7. Before doing 
so, we first need to briefly review the algorithmic applications of tree-independence number and 
the more powerful sim-width.

Concerning tree-independence number, Lima et al. [53] showed that, for each even positive 
integer d, Max Weight Distance-d Packing can be solved in XP time parameterized by the 
independence number of a given tree decomposition of the input graph. This problem is a common 
generalization of Max Weight Distance-d Independent Set and Max Weight Induced Matching, 
among others. They also obtained an algorithmic meta-theorem for the problem of finding a 
maximum-weight induced subgraph with bounded chromatic number satisfying an arbitrary but 
fixed property expressible in counting monadic second-order logic (CMSO2) which generalizes
Feedback Vertex Set and Odd Cycle Transversal, among others. Dallard, Milanič and Štorgel [27] 
showed that k-Clique and List k-Colouring admit linear-time algorithms and that List k-Edge 
Colouring admits a quadratic-time algorithm, for every graph class of bounded tree-independence 
number.

There exists a wealth of algorithmic applications of mim-width (see, e.g., [4,6,17,34,43–45]) 
and a recent meta-theorem provided by Bergougnoux, Dreier and Jaffke [5], which captures all 
these results and shows that all problems expressible in A&C DN logic2 can be solved in XP time 
parameterized by the mim-width of a given branch decomposition of the input graph. However, 
much less is known about algorithmic applications of the more powerful sim-width. To the best of 
our knowledge, the only NP-hard problem known to be in XP parameterized by the sim-width of 
a given branch decomposition of the input graph is List k-Colouring [57]. In [57] it is also shown 
that, if Independent Set is in XP parameterized by the sim-width of a given branch decomposition 
of the input graph, then the same is true for its generalization Independent H-packing. The best 
known result in this direction is a recent quasipolynomial-time algorithm for Independent Set on 
graphs of bounded sim-width [7].

With the aid of Theorems  1 and 7, we can extend the list of NP-hard problems which are in XP
parameterized by the sim-width of a given branch decomposition of the input graph. Consider first
List k-Edge Colouring, where an instance consists of a graph G and a list of colours L(e) ⊆ {1, . . . , k}
for each e ∈ E(G), and the task is to determine whether there is an assignment of colours to 
the edges of G using colours from the lists in such a way that no two adjacent edges receive 
the same colour. This problem admits a quadratic-time algorithm on every class of bounded tree-
independence number, with no tree decomposition required as input [27]. Theorem  1 implies the 
following:

Corollary 8.  For every k ≥ 1, List k-Edge Colouring is quadratic-time solvable on every class of 
bounded sim-width.

Indeed, we simply check whether the input graph of sim-width at most c contains a vertex 
of degree at least k + 1. If it does, we have a no-instance. Otherwise, the input graph is Kk+1,k+1-
subgraph-free and, by Corollary  2, has tree-independence number at most f (c, k), for some function 
f  (we remark that all bounding functions from Corollary  2 are computable). We then apply the 
algorithm from [27].

2 An extension of existential MSO  logic.
1

7



N. Brettell, A. Munaro, D. Paulusma et al. European Journal of Combinatorics 127 (2025) 104163
Fig. 3. The graph S2,3,4 + P2 + P3 + P4 , which is an example of a graph that belongs to S.

We now consider List (d, k)-Colouring. A (d, k)-colouring of a graph G is an assignment of 
colours to the vertices of G using at most k colours such that no two vertices at distance at most d
receive the same colour. For fixed d and k, (d, k)-Colouring is the problem of determining whether 
a given graph G has a (d, k)-colouring. The List (d, k)-Colouring problem requires in addition that 
every vertex u must receive a colour from some given set L(u) ⊆ {1, . . . , k}. Clearly, a graph G has a 
(d, k)-colouring if and only if Gd has a (1, k)-colouring. Sharp [66] provided the following complexity 
dichotomy: For fixed d ≥ 2, (d, k)-Colouring is polynomial-time solvable for k ≤ ⌊

3d
2 ⌋ and NP-hard 

for k > ⌊
3d
2 ⌋.

We recall that for every k ≥ 1, List (1, k)-Colouring is in XP parameterized by the sim-width of 
a given branch decomposition of the input graph [57]. Hence, Theorem  7 immediately implies the 
following:

Corollary 9.  For every k ≥ 1 and odd d ≥ 1, List (d, k)-Colouring is in XP parameterized by the 
sim-width of a given branch decomposition of the input graph.

Kratsch and Müller [52] showed that List (1, k)-Colouring is polynomial-time solvable for AT-
free graphs and hence for the subclass of cocomparability graphs. Moreover, Chang et al. [18] 
showed that if G is an AT-free graph, then Gd is a cocomparability graph for any d ≥ 2 (see 
also [14]). Therefore, for any k, d ≥ 1, List (d, k)-Colouring is polynomial-time solvable for AT-free 
graphs. Since we can compute in linear time a branch decomposition of a cocomparability graph 
with sim-width at most 1 [47], Corollary  9 implies the following special case:

Corollary 10.  For every k ≥ 1 and odd d ≥ 1, List (d, k)-Colouring is polynomial-time solvable for 
AT-free graphs.

Finally, we note that the existence of a polynomial-time algorithm for Independent Set for graph 
classes whose sim-width is bounded and ‘‘quickly’’ computable, pipelined with Theorem  7 and [57, 
Corollary 7], would imply the same for the more general Max Weight Distance-d Packing, for even 
d ≥ 2. This would be in contrast to the situation for odd d ≥ 3, as for any such d, Max Weight 
Distance-d Packing is NP-complete even for chordal graphs [31], which have sim-width 1 [47].

1.3. Consequences of Theorem  3

The subdivision of an edge e = uv of a graph replaces e by a new vertex z and edges uz and zv. 
The claw is the 4-vertex star with vertices u, v1, v2, v3 and edges uv1, uv2 and uv3. A subdivided claw 
is a graph obtained from a claw by subdividing each of its edges zero or more times. The disjoint 
union G1+G2 of two vertex-disjoint graphs G1 and G2 is the graph (V (G1)∪V (G2), E(G1)∪E(G2)). The 
graph class S consists of all non-empty disjoint unions of a set of zero or more subdivided claws 
and paths (see Fig.  3 for an example of a graph that belongs to S). We let T  consists of all line 
graphs of graphs in S .

Dabrowski, Johnson and Paulusma [23] showed that for any finite set of graphs H = {H1, . . . ,Hk}, 
the class of H-free line graphs has bounded clique-width if and only if Hi ∈ T  for some i ∈

{1, . . . , k}. By using Theorem  3 we can extend this result as follows.

Corollary 11.  For any finite set of graphs H = {H , . . . ,H }, the following are equivalent:
1 k

8
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• The class of H-free line graphs has bounded clique-width.
• The class of H-free line graphs has bounded mim-width.
• The class of H-free line graphs has bounded sim-width.
• The class of H-free line graphs has bounded tree-independence number.
• Hi ∈ T  for some i ∈ {1, . . . , k}.

1.4. Consequences of Theorem  6

In this section we highlight some structural consequences of Theorem  6. Its algorithmic connec-
tions with the problem of computing tree decompositions of small independence number will be 
deferred to Section 7, as mostly contingent upon some open problems.

Considerable attention has been recently devoted to understanding the substructures of graphs 
with large treewidth or large pathwidth (a parameter dominated by treewidth). While under the 
minor and subgraph relations these substructures are well understood thanks to the Grid-minor 
theorem [63] (see Theorem  27) and the Forest-minor theorem [62], much less is known for the 
induced subgraph relation.

Most results on induced substructures of graphs with large pathwidth or large treewidth deal 
with specific graph classes such as classes of bounded degree or defined by finitely many forbidden 
induced subgraphs (see, e.g., [3,41,49,54] and references therein). For other width parameters, the 
situation is even more obscure. Given a width parameter p, one would like to characterize the 
families Fp of unavoidable induced subgraphs of graphs with large p. More formally, Fp is any set 
of graphs for which there exists an integer c ∈ N such that every graph G with p(G) > c contains a 
member of Fp as an induced subgraph.3

Even though characterizing the families Fp for fixed p ∈ {cw,mimw, simw, tree-α} is widely 
open, there are some obvious graphs that any Fp must contain. For example, for each of these 
four parameters p, any Fp must contain an induced subgraph of every subdivision of a wall and an 
induced subgraph of the line graph of every subdivision of a wall [16,23,27,38,47]. Moreover, any 
Ftree-α must in addition contain a complete bipartite graph [27]. Observe also that Corollary  11 can 
be rephrased as follows. For each p ∈ {cw,mimw, simw, tree-α} and finitely defined4 class C of line 
graphs, the unavoidable induced subgraphs of graphs in C with large p are precisely the graphs in 
T .

Theorem  6 readily implies that a graph with large tree-independence number either contains a 
large complete bipartite graph as an induced subgraph or has large mim-width, and so any Ftree-α
contains precisely some complete bipartite graph and graphs from some Fmimw.

Corollary 12.  For every integer k ≥ 1 and graph G with tree-α(G) ≥ 6(22k−1
+ kk+2), either

• G contains a Kk,k as an induced subgraph, or
• mimw(G) ≥ k.

Theorem  6 has another structural consequence, related to a conjecture of Dallard, Milanič and 
Štorgel [28] (see also a note at the end of Section 7). A graph class G is (tw, ω)-bounded if there exists 
a function f  such that, for every G ∈ G and induced subgraph H of G, tw(H) ≤ f (ω(H)). Ramsey’s 
theorem implies that in every graph class of bounded tree-independence number, the treewidth 
is bounded by an explicit polynomial function of the clique number, and hence bounded tree-
independence number implies (tw, ω)-boundedness [27]. In fact, a partial converse is conjectured 
to hold [28, Conjecture 8.5]:

Conjecture 13 (Dallard, Milanič and Štorgel [28]). A hereditary graph class is (tw, ω)-bounded if and 
only if it has bounded tree-independence number.

3 The families Ftw are called useful families in [3].
4 A hereditary class is finitely defined if the set of its minimal forbidden induced subgraphs is finite.
9
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Dallard, Milanič and Štorgel [28] showed that the conjecture holds for every graph class obtained 
by excluding a single graph H with respect to any of the following containment relations: subgraph, 
topological minor, minor, and their induced variants. Very recently, Abrishami et al. [1] showed 
that it holds for (even hole, diamond, pyramid)-free graphs. We use Theorem  6 and the fact that a 
(tw, ω)-bounded graph class is Kt,t-free for some t [26] to prove that Conjecture  13 holds for any 
(not necessarily hereditary) graph class of bounded mim-width.

Corollary 14.  A graph class of bounded mim-width is (tw, ω)-bounded if and only if it has bounded 
tree-independence number.

Note that there exist (tw, ω)-bounded graph classes of unbounded mim-width, for example 
chordal graphs or even the proper subclass of split graphs [47].

2. Preliminaries

We only consider graphs that are simple (i.e., with no self-loops and no multiple edges), unless 
otherwise stated. Since we will not directly work with clique-width and twin-width, we refer the 
reader to [13,23], respectively, for their definitions. In some cases, it will be convenient to work with 
parameters equivalent to treewidth on the class of all graphs (branch-width and mm-width) and to 
recall that clique-width is equivalent to rank-width. For these reasons, we provide the definitions 
of branch-width, mm-width and rank-width as well. For all standard graph-theoretic notions not 
defined here, we refer the reader to [29].

Given a set S, a function f : 2S
→ Z is symmetric if f (X) = f (X) for all X ⊆ S, where we use X

to denote S \ X . A branch decomposition on S is a pair (T , δ), where T  is a subcubic tree and δ is a 
bijection between S and the leaves of T . Each edge e ∈ E(T ) naturally splits the leaves of the tree 
in two parts depending on what component they belong to when e is removed. In this way, each 
edge e ∈ E(T ) represents a partition of S into two partition classes that we denote by Ae and Ae. Let 
f : 2S

→ Z be a symmetric function and let (T , δ) be a branch decomposition on S. The f -width of 
(T , δ) is the quantity maxe∈E(T ) f (Ae). The f -branch-width on S is either the minimum f -width over 
all branch decompositions on S when |S| ≥ 2, or f (∅) when |S| ≤ 1.

Let G = (V , E) be a graph. For X ⊆ E, let mid(X) be the set of vertices that are incident with 
both an edge in X and another edge in E \ X , and let ηG(X) = |mid(X)|. We define the branch-width 
of G, denoted bw(G), to be the ηG-branch-width on E. For X ⊆ V , let G[X, X] denote the edges of G
having one endpoint in X and the other endpoint in X , and let cutmmG(X) be the size of a maximum 
matching in G[X, X]. The mm-width of G, denoted mmw(G), is the cutmmG-branch-width on V . For 
X ⊆ V , let cutmimG(X) be the size of a maximum induced matching in G[X, X]. The mim-width of 
G, denoted mimw(G), is the cutmimG-branch-width on V . For X ⊆ V , let cutsimG(X) be the size of 
a maximum induced matching between X and X in G. The sim-width of G, denoted simw(G), is the 
cutsimG-branch-width on V . For a bipartite graph G with bipartition X and X , its bipartite adjacency 
matrix is an |X | × |X | matrix BG = (bi,j)i∈X,j∈X  over the binary field GF(2) such that bi,j = 1 if and 
only if {i, j} ∈ E(G). For X ⊆ V , let cutrkG(X) = rank BG[X,X]

. The rank-width of G, denoted rw(G), is 
the cutrkG-branch-width on V . When it is clear from context, we refer to a branch decomposition 
on V (G) or E(G) as a branch decomposition of G.

A tree decomposition of a graph G is a pair T = (T , {Xt}t∈V (T )), where T  is a tree such that every 
node t of T  is assigned a vertex subset Xt ⊆ V (G), called a bag, satisfying the following three 
conditions:

(T1) every vertex of G belongs to at least one bag;

(T2) for every edge uv ∈ E(G), there exists a bag containing both u and v;

(T3) for every vertex u ∈ V (G), the subgraph T  of T  induced by {t ∈ V (T ) : u ∈ X } is connected.
u t
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The width of T  is the maximum value of |Xt | − 1 over all t ∈ V (T ). The treewidth of a graph G, 
denoted tw(G), is the minimum width over all tree decompositions of G. Given a graph G and a tree 
decomposition T = (T , {Xt}t∈V (T )) of G, the independence number of T , denoted α(T ), is the quantity 
maxt∈V (T ) α(G[Xt ]), where α(H) denotes the maximum size of an independent set in a graph H . The 
tree-independence number of G, denoted tree-α(G), is the minimum independence number over all 
tree decompositions of G.

We already explained in Section 1 the relationships between the six parameters illustrated in Fig. 
2(a). In the following, we recall the results showing that a certain parameter p dominates another 
parameter q and the corresponding computable functions. Robertson and Seymour [64] showed 
that, for every graph G, 

bw(G) − 1 ≤ tw(G) ≤

⌊
3
2
bw(G)

⌋
− 1, (2)

so treewidth and branch-width are linearly equivalent. More recently, Vatshelle [69] and Jeong 
et al. [46] showed that, for every graph G, 

mmw(G) ≤ bw(G) ≤ tw(G) + 1 ≤ 3mmw(G), (3)

so mm-width is also linearly equivalent to treewidth and branch-width. Oum and Seymour [61] 
showed that, for every graph G, 

rw(G) ≤ cw(G) ≤ 2rw(G)+1
− 1, (4)

so clique-width and rank-width are equivalent. Note also that, for every graph G, 
simw(G) ≤ mimw(G) ≤ rw(G) ≤ bw(G), (5)

where the first inequality follows from the definition, the second follows from [6, Lemma 2.4], for 
example, and the third is due to Oum [59]. Eqs.  (2), (4) and (5) imply that clique-width dominates 
treewidth. This was also shown by Corneil and Rotics [20]: more precisely, for every graph G, 

cw(G) ≤ 3 · 2tw(G)−1. (6)

Munaro and Yang [57] showed that sim-width dominates tree-independence number, and Yolov [71]
and Dallard et al. [27] showed that tree-independence number in turn dominates treewidth: more 
precisely, for every graph G, 

simw(G) ≤ tree-α(G) ≤ tw(G) + 1. (7)

The following result of Bonnet et al. [13] shows that twin-width dominates clique-width: for every 
graph G, 

tww(G) ≤ 2cw(G)+1
− 1. (8)

We conclude this section with two results which will be repeatedly used in our proofs but first 
require a series of definitions. Let Kt ⊟ Kt be the graph obtained from 2Kt by adding a perfect 
matching between the two copies of Kt , and let Kt⊟St be the graph obtained from Kt⊟Kt by removing 
all the edges in one of the complete graphs. We write R(s, t) to denote the minimum number such 
that any graph on at least R(s, t) vertices contains either a clique of size s, or an independent set of 
size t (such a number exists due to Ramsey’s theorem). A wall of height h and width r (an h× r-wall
for short) is the graph that can be obtained from the grid of height h and width 2r as follows. Let 
C1, . . . , C2r  be the sets of vertices in each of the 2r columns of the grid, ordered from left to right. 
For each column Cj, let ej1, e

j
2, . . . , e

j
h−1 be the edges between two vertices of Cj, in top-to-bottom 

order. If j is odd, delete all edges eji with i even. If j is even, delete all edges eji with i odd. By removing 
all degree-1 vertices of the resulting graph, we obtain an elementary h×r-wall. Finally, an h×r-wall 
is any subdivision of the elementary h× r-wall. See Fig.  4 for a small example. A net-wall is a graph 
obtained from a wall G by replacing every vertex u of G that has three distinct neighbours v,w, x
by three new vertices u , u , u  and edges u v, u w, u x, u u , u u , u u . See again Fig.  4.
v w x v w x v w v x w x
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Fig. 4. An elementary wall of height 2 and a net-wall.

Proposition 15 (Kang et al. [47]). Let G be a graph with simw(G) = w and no induced subgraph 
isomorphic to Kt ⊟ Kt and Kt ⊟ St . Then mimw(G) ≤ R(R(w + 1, t), R(t, t)).

Corollary 16.  There exists a function f : N → N such that the sim-width of the elementary 
f (m) × f (m)-wall is at least m.

Proof.  It follows from Proposition  15 and the fact that the elementary m × m-wall, with m ≥ 7, 
has mim-width at least 

√
m/50 [16]. ◀

3. Kt,t -Subgraph-free graphs

3.1. The proof of Theorem  1

We begin by considering the class of Kt,t-subgraph-free graphs. The following result is useful 
(notice that it follows from a more general result of Gravier et al. [35, Theorem 2]).

Lemma 17 (Dabrowski, Demange and Lozin [22, Lemma 1]).  For any positive integers t and p, there 
exists a number N(t, p) such that every bipartite graph with a matching of size at least N(t, p) and 
having no Kt,t-subgraph contains an induced matching of size p.

Proposition 18.  Let t be a positive integer. Then sim-width, mim-width, tree-independence number, 
clique-width and treewidth are equivalent for Kt,t-subgraph-free graphs.

Proof.  Define ft :N → N such that ft (x) is the least integer such that every bipartite graph with a 
matching of size at least ft (x) and having no Kt,t-subgraph contains an induced matching of size x
(such a number exists by Lemma  17). Observe that ft (x) is non-decreasing, and define f −1

t :N → N
such that f −1

t (y) = x when ft (x) ≤ y but ft (x + 1) > y. Note that f −1
t  is non-decreasing as well.

Suppose mmw(G) = k. Let p = f −1
t (k), so p is an integer such that k ≥ ft (p). Then, for any 

branch decomposition (T , δ) of G, there is some e ∈ E(T ) such that mmwG(Ae) ≥ k. Since G[Ae, Ae]

is a bipartite graph with no Kt,t-subgraph, the definition of ft implies that cutmimG(Ae) ≥ p. Thus 
mimw(G) ≥ p = f −1

t (mmw(G)). As mimw(G) ≤ mmw(G) by definition, mmw-width and mim-
width (and hence also treewidth and clique-width) are equivalent for the class of graphs with no 
Kt,t-subgraph.

Observe now that if a graph G has no Kt,t-subgraph, then it has no K2t-subgraph and so no 
induced K2t ⊟ K2t and K2t ⊟ S2t either. Therefore, Proposition  15 and Eq.  (5) imply that sim-width is 
equivalent to mim-width for the class of Kt,t-subgraph-free graphs.

Finally, since tree-independence number always dominates treewidth and sim-width always 
dominates tree-independence number (see Fig.  2(a)), we conclude that tree-independence number 
is equivalent to the other parameters for the class of Kt,t-subgraph-free graphs. ◀

An analogue to Proposition  18 for (Ks, Kt,t )-free graphs can be proved, mutatis mutandis, using 
the following result.

Lemma 19 (Dabrowski, Demange and Lozin [22, Lemma 2]).  For any positive integers s, t and p, there 
exists a number N ′(s, t, p) such that every (Ks, Kt,t )-free graph with a matching of size at least N ′(s, t, p)
contains an induced matching of size p.
12
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Corollary 20.  Let s and t be positive integers. Then tree-independence number, sim-width, mim-width, 
clique-width and treewidth are equivalent for the class of (Ks, Kt,t )-free graphs.

We provide an alternative proof of Corollary  20 which makes use of Theorem  6 (recall that the 
latter result will be proved in Section 5).

Proof (Alternative proof of Corollary  20). Let G be a (Ks, Kt,t )-free graph with simw(G) = w. Since 
G contains no induced subgraph isomorphic to Ks ⊟ Ks and Ks ⊟ Ss, Proposition  15 implies that 
mimw(G) ≤ R(R(w + 1, s), R(s, s)). Let k = R(R(w + 1, s), R(s, s)). Since G is Kt,t-free, Theorem 
6 implies that tree-α(G) ≤ 6(2t+k−1

+ tkt+1). Since G is Ks-free, [27, Lemma 3.2] implies that 
tw(G) ≤ R(s, 6(2t+k−1

+tkt+1)+1)−2. It remains to finally recall that clique-width always dominates 
treewidth and that sim-width always dominates clique-width (see Fig.  2(a)). ◀

We are finally ready to prove Theorem  1, which we restate for convenience.

Theorem 1.  For every s ≥ 3 and t ≥ 2, when restricted to (Ks, Kt,t )-free graphs, sim-width, mim-
width, clique-width, treewidth and tree-independence number are equivalent, whereas twin-width is 
more powerful than any of these parameters.

Proof.  The equivalence between sim-width, mim-width, clique-width, treewidth and
tree-independence number follows from Corollary  20. Observe finally that twin-width is not 
dominated by any of these parameters, even for (K3, K2,2)-free graphs. Indeed, walls are (K3, K2,2)-
free and have bounded twin-width, but each of the other parameters is unbounded, by Corollary 
16. ◀

3.2. Induced matchings in d-degenerate graphs

Vatshelle [69, Lemma 4.3.9] had a purported lemma used to obtain a lower bound on the mim-
width of grids, stating that a d-degenerate bipartite graph with a matching of size µ has an induced 
matching of size at least µ/(d + 1). Recall that a graph is d-degenerate if each of its subgraphs has 
a vertex of degree at most d. Vatshelle’s statement was later used in [47, Lemma 5.2] and [56, 
Lemma 7] to give a lower bound for mim-width that was linear in treewidth for d-degenerate 
graphs. We now give a counterexample to Vatshelle’s statement and then provide an alternative 
linear lower bound for mim-width in terms of treewidth for degenerate graphs (in fact, more 
generally, for graphs of bounded maximum average degree).

Our counterexample consists of a d-degenerate bipartite graph with a matching of size 2d but 
whose largest induced matching is of size 1. This demonstrates that, for a d-degenerate bipartite 
graph with a matching of size µ, at best one could hope to guarantee an induced matching of size 
µ/2d.

Example 21.  Let d be a positive integer, and let V1, V2, V3, V4 be pairwise disjoint sets with |Vi| = d
for each i ∈ {1, 2, 3, 4}. Let G be the graph with vertex set V = V1 ∪ V2 ∪ V3 ∪ V4 and edge set 
E =

⋃
i∈{1,2,3}{uv : u ∈ Vi, v ∈ Vi+1}. Clearly, G is bipartite with vertex bipartition (V1 ∪ V3, V2 ∪ V4). 

Consider now an ordering of V  in which V1 precedes V2, V2 precedes V3, and V3 precedes V4. Each 
vertex of G has at most d earlier neighbours in such an ordering. Hence, G is d-degenerate. Moreover, 
G has a matching of size 2d but no induced matching of size 2.

In order to linearly lower bound mim-width in terms of treewidth for d-degenerate graphs, we 
make use of the following result of Kanj et al. [48, Lemma 4.10]. Recall that the maximum average 
degree of a graph G is the quantity maxH⊆G 2|E(H)|/|V (H)|, where the maximum is taken over all 
subgraphs of G.

Lemma 22 (Kanj et al. [48]). Let G be a graph with maximum average degree at most d. If G has a 
matching of size µ, then G has an induced matching of size at least µ .
2d−1
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Since a d-degenerate graph has maximum average degree at most 2d (see, e.g., [58]), we have 
the following consequence of Lemma  22.

Lemma 23.  Let G be a d-degenerate graph with a matching of size µ. Then G has an induced matching 
of size at least µ

4d−1 .

The next result is a straightforward consequence of Lemma  22 and the equivalence of treewidth 
and mm-width (see Eq.  (3)). It implies that mim-width and treewidth are equivalent for a class of 
graphs with bounded maximum average degree (and, in particular, for degenerate graphs, or graphs 
with bounded maximum degree).

Lemma 24.  For a graph G with maximum average degree at most d,

mimw(G) ≥
mmw(G)
2d − 1

≥
tw(G) + 1
3(2d − 1)

.

4. Line graphs

4.1. The proof of Theorem  3

Recall that Gurski and Wanke [38] showed that for a class of line graphs {L(G) : G ∈ G}, clique-
width is equivalent to treewidth for the underlying graph class G. In this section, we show that, 
in fact, clique-width (and hence treewidth for the underlying graph class) is also equivalent to 
mim-width, sim-width and tree-independence number.

Due to known results, it suffices to prove that there is a non-decreasing unbounded function f
such that simw(L(G)) ≥ f (tw(G)) for every graph G; we prove this as Proposition  28. Towards this, 
we require a preliminary result. In [47, Lemma 4.5], it is shown that the sim-width of a graph cannot 
increase when contracting an edge. In Lemma  25, we show that the sim-width of the corresponding 
line graph cannot increase either. We first require a definition.

Let T  be a tree with at least one vertex of degree at least three, and let v be a leaf of T . Let u be 
the vertex of T  with degree at least 3 and having shortest distance in T  from v. Let P be the v, u-path 
in T . The operation of trimming v consists of deleting the vertices V (P) \ {u} from T . Observe that 
the operation of trimming decreases the number of leaves of T  by exactly 1.

Lemma 25.  Let G be a graph with |E(G)| ≥ 3 and let G′ be the graph obtained by contracting an edge 
of G. Then simw(L(G)) ≥ simw(L(G′)).

Proof.  Suppose that G′ is obtained from G by contracting5 the edge uv into the vertex w. Let 
X = {x1, . . . , xn} be the set of vertices in G adjacent to u but not v. Let Y = {y1, . . . , ym} be the set of 
vertices in G adjacent to v but not u. Let Z = {z1, . . . , zℓ} be the set of vertices in G adjacent to both 
u and v. Suppose that simw(L(G)) = k. Then, there exists a branch decomposition (T , δ) of L(G) such 
that simwL(G)(T , δ) = k. We show how to construct a branch decomposition (T ′, δ′) of L(G′) such 
that simwL(G′)(T ′, δ′) ≤ k. This would imply that simw(L(G′)) ≤ simwL(G′)(T ′, δ′) ≤ k = simw(L(G)), 
thus concluding the proof. We may assume that L(G′) ̸∼= K1, for otherwise simw(L(G′)) = 0 and 
simw(L(G)) ≥ 0.

We construct (T ′, δ′) from (T , δ) as follows. First, we trim the leaf δ(uv) of T . Then, for each zi, we 
recursively trim the leaf δ(ziv). We call the resulting tree T ′. We now argue that these operations 
can indeed be performed. Since we aim to trim ℓ+1 leaves, it is enough to show that T  contains at 
least ℓ + 1 vertices of degree at least 3. We first recursively contract edges of T  having at least one 
endpoint of degree 2. The resulting tree ̃T  has each of its nodes of degree either 1 or 3. Moreover, 
the number of degree-3 vertices in ̃T  is the same as that of T  and the same holds for degree-1
vertices. Let d1 and d3 be the number of degree-1 and degree-3 vertices in ̃T  (and hence in T ). It is 

5 Recall that the operation of contracting an edge uv in G deletes u and v from G and adds a new vertex w that is 
made adjacent to the vertices in (N (u) \ {v}) ∪ (N (v) \ {u}); note that the resulting graph is simple again.
G G
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easy to see that d1−d3 = 2. Since the leaves of T  are in bijection with the edges of G, we obtain that 
d3 = |E(G)| − 2. Thus, it suffices to show that |E(G)| ≥ ℓ + 3. We now count the edges of G. Since 
uv ∈ E(G) and, for each i ∈ {1, . . . , ℓ}, we have {ziu, ziv} ⊆ E(G), we see that |E(G)| = 1 + 2ℓ + k, 
for some k ≥ 0. In particular, as |E(G)| ≥ 3, either |E(G)| ≥ ℓ + 3, or k = 0 and ℓ = 1. But in the 
latter case L(G′) ∼= K1. Therefore T ′ is a well-defined subcubic tree. To conclude the construction of 
(T ′, δ′), we define δ′ as follows. For each xi, let δ′(xiw) = δ(xiu); for each yi, let δ′(yiw) = δ(yiv); for 
each zi, let δ′(ziw) = δ(ziu); finally, let δ′ coincide with δ on the remaining vertices of L(G′) (these 
correspond to the edges of G not adjacent to uv).

We now show that simwL(G′)(T ′, δ′) ≤ k. Suppose, to the contrary, that simwL(G′)(T ′, δ′) ≥ k + 1. 
Then, there exists e ∈ E(T ′) such that cutsimL(G′)(A′

e, A′
e) ≥ k + 1. Since T ′ is obtained from T

by repeated applications of trimming, and hence by repeated vertex deletions, e ∈ E(T ′) ∩ E(T ). 
Then, e naturally induces a partition (Ae, Ae) of V (L(G)). Without loss of generality, we assume 
that Ae agrees with A′

e on the vertices of L(G) corresponding to edges of G not intersecting {u, v}, 
and the same for Ae and A′

e. Now, since cutsimL(G′)(A′
e, A′

e) ≥ k + 1, there exist independent sets 
P ′

= {p1, . . . , pk+1} ⊆ A′
e and Q ′

= {q1, . . . , qk+1} ⊆ A′
e of L(G′) such that L(G′)[P ′,Q ′

] ∼= (k + 1)P2. 
If none of the vertices in P ′

∪ Q ′ correspond to an edge of G′ incident to w, then P ′
⊆ Ae and 

Q ′
⊆ Ae, and P ′ and Q ′ are independent sets of L(G) such that L(G)[P ′,Q ′

] ∼= (k + 1)P2. This implies 
that simwL(G)(T , δ) ≥ k + 1, a contradiction. Hence, there is a vertex in P ′

∪ Q ′, say without loss of 
generality p1, which corresponds to an edge of G′ incident to w. Moreover, since p1 is anticomplete 
to {pj, qj} in L(G′), for each j ≥ 2, the following claim holds:

Claim 25.1.  For each j ≥ 2, neither of the edges pj and qj of G′ is adjacent to p1.
We now introduce the following notation. If p1 = xiw, we let a = xi and b = u. If p1 = yiw, we 

let a = yi and b = v. If p1 = ziw, we let a = zi and b = u. Note that, in each case, ab is an edge of 
G and hence a vertex of L(G).

Claim 25.2.  Let P = {ab, p2, . . . , pk+1}. Then P ⊆ Ae and P is an independent set of L(G).

Proof of Claim  25.2.  By Claim  25.1, for each j ≥ 2, the edge pj of G′ is incident to neither w nor 
a. Moreover, b ∈ V (G) \ V (G′). These two facts imply that P = {ab, p2, . . . , pk+1} ⊆ E(G) and that P
is an independent set of L(G). By construction, δ′(p1) = δ′(aw) = δ(ab), from which ab ∈ Ae and so 
P ⊆ Ae. ◁

To complete the proof of Lemma  25, we distinguish two cases.
Case 1: The edge q1 of G′ is not incident to w.

By Claim  25.2, P = {ab, p2, . . . , pk+1} ⊆ Ae and P is an independent set of L(G). Since q1 is not 
incident to w, it must be that q1 ∈ E(G). Similarly, by Claim  25.1, no qj with j ≥ 2 is incident to w
and so Q ′

= {q1, . . . , qk+1} ⊆ E(G). Therefore, Q ′
⊆ Ae and Q ′ is an independent set of L(G). We 

now show that, in L(G), the vertex ab is adjacent to the vertex q1. As the vertex p1 is adjacent to 
the vertex q1 in L(G′), the edge q1 is adjacent to the edge p1 = aw. But by assumption, the edge q1
is not incident to w, and so q1 is incident to a. Hence, in G, the edge q1 is adjacent to the edge ab
(note that, since q1 ∈ E(G′)∩ E(G), no endpoint of q1 belongs to {u, v}) and so, in L(G), the vertex q1
is adjacent to the vertex ab. Observe finally that, since Q ′

⊆ V (L(G′)), none of the edges of G′ in Q ′

are incident to the vertex b ∈ V (G) \ V (G′). Combining this with Claim  25.1 and the fact that ab is 
adjacent to q1 in L(G), we obtain that L(G)[P,Q ′

] ∼= (k + 1)P2. Therefore, cutsimL(G)(Ae, Ae) ≥ k + 1
and so simwL(G)(T , δ) ≥ k + 1, a contradiction.
Case 2: The edge q1 of G′ is incident to w.

Consider uv ∈ V (L(G)). Either uv ∈ Ae or uv ∈ Ae.
Case 2.1: uv ∈ Ae.

By Claim  25.2, P = {ab, p2, . . . , pk+1} ⊆ Ae is an independent set of L(G). By assumption and 
Claim  25.1, Q = {uv, q2, . . . , qk+1} ⊆ Ae. Moreover, again by Claim  25.1, none of the edges qj
with j ≥ 2 is adjacent to uv in G, or else they would be adjacent to p1 in G′. Therefore, Q  is an 
independent set of L(G). It is finally easy to see that, in L(G), ab is adjacent to uv, no q  with j ≥ 2
j
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is adjacent to ab, and no pj with j ≥ 2 is adjacent to uv. Hence, L(G)[P,Q ] ∼= (k + 1)P2. Therefore, 
cutsimL(G)(Ae, Ae) ≥ k + 1 and so simwL(G)(T , δ) ≥ k + 1, a contradiction.
Case 2.2: uv ∈ Ae.

Let q1 = cw, for some c ∈ X∪Y ∪Z . By construction, δ′(q1) = δ′(cw) = δ(cd), for some d ∈ {u, v}. 
Since q1 ∈ A′

e, we have that cd ∈ Ae. Let P = {uv, p2, . . . , pk+1} and Q = {cd, q2, . . . , qk+1}. 
By symmetry, the same proof as in Case 2.1 applies to show that P ⊆ Ae and Q ⊆ Ae are 
independent sets in L(G) such that L(G)[P,Q ] ∼= (k + 1)P2. Therefore, cutsimL(G)(Ae, Ae) ≥ k + 1
and so simwL(G)(T , δ) ≥ k + 1, a contradiction. ◀

In order to prove Proposition  28, we also require the following two results, the first of which is 
an easy observation (see [47, Lemma 4.5]).

Lemma 26.  Let G be a graph and v ∈ V (G). Then simw(G) ≥ simw(G − v).

Theorem 27 (Grid-minor theorem [63]). There exists a non-decreasing unbounded function g :N → N
such that, for every k ∈ N, every graph of treewidth at least k contains the g(k)× g(k)-grid as a minor.

Proposition 28.  There exists a non-decreasing unbounded function f : N → N such that, for every 
graph G, simw(L(G)) ≥ f (tw(G)).

Proof.  Let Gn denote the n × n-grid. Let G be a graph with tw(G) = k and let g be the function 
from Theorem  27. Then G contains Gg(k) as a minor. This implies that there exists a finite sequence of 
operations {fi}mi=1, where each fi is either an edge contraction or an edge or vertex deletion, such that 
f1(f2(· · · fm(G) · · · )) ∼= Gg(k). Observe now that, for each operation fi, simw(L(G)) ≥ simw(L(fi(G))), by 
Lemma  25 if fi is an edge contraction, or by Lemma  26 if fi is an edge or vertex deletion. Therefore, 
simw(L(G)) ≥ simw(L(f1(f2(· · · fm(G) · · · )))) = simw(L(Gg(k))). But since L(Gg(k)) is K5-free, Proposition 
15 implies that there exists an increasing function h :N → N such that 

h(simw(L(Gg(k)))) ≥ mimw(L(Gg(k))). (9)

Recall now the following well-known fact (see, e.g., [40]): Given a minimum width tree decompo-
sition of L(G), replacing each edge with both of its endpoints gives a tree decomposition of G and 
so tw(L(G)) ≥

1
2 (tw(G) + 1) − 1. Therefore, since tw(Gg(k)) = g(k), we have that tw(L(Gg(k))) ≥

1
2 (g(k) + 1) − 1. But the line graph of the g(k) × g(k)-grid is K6,6-subgraph-free and so, by the 
proof of Proposition  18, there exists a non-decreasing unbounded function h′

: N → N such that 
mimw(L(Gg(k))) ≥ h′(mmw(L(Gg(k)))) ≥ h′( 13 (tw(L(Gg(k))) + 1)) ≥ h′( 16 (g(k) + 1)), where the second 
inequality follows from Eq.  (3). Combining this chain with Eq.  (9), we obtain that there exists a 
non-decreasing unbounded function f :N → N such that simw(L(Gg(k))) ≥ f (k). This concludes the 
proof. ◀

We are finally ready to prove Theorem  3, which we restate for convenience.

Theorem 3.  For a graph class G, the following statements are equivalent:
1. The class G has bounded treewidth;
2. The class L(G) has bounded clique-width;
3. The class L(G) has bounded mim-width;
4. The class L(G) has bounded sim-width;
5. The class L(G) has bounded tree-independence number.

Moreover, when restricted to line graphs, sim-width, mim-width, clique-width and tree-independence 
number are equivalent; twin-width dominates each of these four parameters; and each of the four 
parameters in turn dominates treewidth.

Proof.  The implications 2 ⇒ 3 ⇒ 4 follow from Fig.  2(a). The implication 4 ⇒ 1 follows from 
Proposition  28. The implication 1 ⇒ 2 follows from Eq.  (1), while 5 ⇒ 4 follows again from Fig. 
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2(a). The implication 1 ⇒ 5 follows from the proof of [9, Lemma 2.4] (see also [27, Theorem 3.12]). 
We provide the short argument for completeness. To this end, let G ∈ G and let T = (T , {Xt}t∈V (T ))
be a tree decomposition of width at most k, for some k ∈ N. We build a tree decomposition T ′ of 
L(G) as follows: Replace each bag Xt with the set Bt of edges of G incident with a vertex in Xt . It 
is easy to see that, for each t ∈ V (T ), α(L(G)[Bt ]) ≤ |Xt | ≤ k + 1. Hence, α(T ′) ≤ k + 1. Therefore, 
1, 2, 3, 4, 5 are equivalent.

To complete the proof, it suffices to observe that twin-width is not dominated by any of the other 
parameters and that treewidth does not dominate any of the other parameters for line graphs (see 
Fig.  2(c)). As for the former, let G be the class of 1-subdivisions of walls. Then L(G) contains the 
class of net-walls, which has unbounded treewidth (see, e.g., [16]). However, L(G) consists of planar 
graphs and hence has bounded twin-width [13]. As for the latter, let G be the class of stars. Then 
L(G) coincides with the class of complete graphs, which has unbounded treewidth, but for which 
any other parameter is bounded. ◀

4.2. The proof of Theorem  4

In this section we prove Theorem  4, which we restate for convenience.

Theorem 4.  For any graph G, bw(G)
25 ≤ mimw(L(G)) ≤ bw(G).

The upper bound follows from the fact that, for any graph G, mimw(G) ≤ rw(G) and rw(L(G)) ≤

bw(G) [59]. We provide a short direct proof for completeness.

Lemma 29.  For any graph G, mimw(L(G)) ≤ bw(G).

Proof.  Let (T , δ) be a branch decomposition on E(G) of minimum ηG-width bw(G). Clearly, (T , δ) is a 
branch decomposition on V (L(G)) as well, so it suffices to show that cutmimL(G)(Ae) ≤ |mid(Ae)| for 
any e ∈ E(T ). This follows from the fact that an induced matching of size k in L(G)[Ae, Ae] provides 
k distinct vertices in G that are incident with an edge in Ae and another edge in Ae. ◀

We now turn to the lower bound, which is immediately obtained from the following result.

Proposition 30.  Let n be a positive integer and let G be a graph such that bw(G) ≥ 25n − 1. Then 
mimw(L(G)) ≥ n.

Proof.  Let (T , δ) be an arbitrary branch decomposition on V (L(G)). Then, (T , δ) is also a branch 
decomposition on E(G). Since bw(G) ≥ 25n−1, there exists e ∈ E(T ) such that ηG(Ae) = |mid(Ae)| ≥

25n − 1. It is then enough to show that cutmimL(G)(Ae, Ae) ≥ n.
Let M = mid(Ae). Hence, |M| ≥ 25n−1. For every vertex m ∈ M ⊆ V (G), there exist edges x ∈ Ae

and y ∈ Ae of G such that both x and y are incident with m. We can then define two functions, l
and r , as follows. The function l assigns to each m ∈ M a vertex l(m) ∈ V (G) such that l(m)m ∈ Ae. 
The function r assigns to each m ∈ M a vertex r(m) ∈ V (G) such that r(m)m ∈ Ae. Note that l
and r are not necessarily injective and that, for each m ∈ M , the vertices m, l(m) and r(m) are 
pairwise distinct. Given M , l and r as above, a perfect triple (L,D, R) is a triple such that D ⊆ M , 
L = {l(d) : d ∈ D}, R = {r(d) : d ∈ D} and L, D and R are pairwise disjoint. The size of the perfect 
triple (L,D, R) is |D|.

Observe that if there exists a perfect triple (L,D, R) of size n, then cutmimL(G)(Ae, Ae) ≥ n. Indeed, 
suppose that D = {d1, . . . , dn}. By definition, for each i ∈ {1, . . . , n}, we have that l(di)di ∈ Ae, 
r(di)di ∈ Ae and l(di)di is adjacent to r(di)di in L(G). Consider now X = {l(d1)d1, . . . , l(dn)dn} ⊆ Ae
and Y = {r(d1)d1, . . . , r(dn)dn} ⊆ Ae. Since (L,D, R) is a perfect triple, L, D and R are pairwise disjoint. 
Therefore, for i ̸= j, we have that {l(di), di} ∩ {r(dj), dj} = ∅ and so L(G)[X, Y ] ∼= nP2. Consequently, 
cutmimL(G)(Ae, Ae) ≥ n.

In view of the paragraph above, it is enough to show that there exists a perfect triple (L,D, R) of 
size at least n. Suppose, to the contrary, that every perfect triple has size less than n. Let (L,D, R)
be a perfect triple of maximum size |D| = k < n. Since M ̸= ∅ and for each m ∈ M , m, l(m) and 
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r(m) are pairwise distinct, we have that k ≥ 1. We now consider the reason why (L,D, R) cannot 
be extended to a larger perfect triple by adding a vertex m ∈ M \D to D, and possibly l(m) to L and 
r(m) to R, if not already in L and R, respectively. We have that either m ∈ M \ D cannot be added 
(Case 1 below), or m can be added and exactly one of l(m) and r(m) can be added (Cases 2 to 5 
below), or m can be added and none of l(m) and r(m) can be added (Case 6 below). There are six 
possible cases:

1. m ∈ L ∪ R;
2. m /∈ L ∪ R, l(m) ∈ D and r(m) ̸∈ L ∪ D;
3. m /∈ L ∪ R, l(m) ∈ R and r(m) ̸∈ L ∪ D;
4. m /∈ L ∪ R, l(m) ̸∈ R ∪ D and r(m) ∈ D;
5. m /∈ L ∪ R, l(m) ̸∈ R ∪ D and r(m) ∈ L;
6. m /∈ L ∪ R, l(m) ∈ R ∪ D and r(m) ∈ L ∪ D.

In the following series of claims, we show that each of these cases holds for a small number of 
vertices of M .

Claim 30.1.  Case 1 holds for at most 2k vertices of M.

Proof of Claim  30.1.  This follows from the fact that |L| ≤ |D| and |R| ≤ |D|, from which 
|L ∪ R| ≤ 2k. ◁

Claim 30.2.  Cases 2 and 4 each hold for at most 3k vertices of M.

Proof of Claim  30.2.  By symmetry, it suffices to consider Case 2. Suppose, to the contrary, that 
there exist 3k + 1 vertices m ∈ M \ (L ∪ D ∪ R) satisfying Case 2. Since |D| = k, the pigeonhole 
principle implies that there exists d ∈ D and four vertices m1, . . . ,m4 ∈ M \ (L ∪ D ∪ R) such that 
l(mi) = d and r(mi) ̸∈ L ∪ D for each i ∈ {1, . . . , 4}. Then, we remove d from D and, in case there is 
no d′

∈ D with d′
̸= d and l(d′) = l(d), we also remove l(d) from L and, in case there is no d′

∈ D
with d′

̸= d and r(d′) = r(d), we further remove r(d) from R. We claim that we can add d into L, at 
least two of m1, . . . ,m4 into D, and the corresponding r(mi)’s into R to obtain a perfect triple of size 
larger than k. Since d /∈ L∪ R and, for each i ∈ {1, . . . , 4}, we have mi /∈ L∪ R∪D and r(mi) /∈ L∪D, 
the only possible obstacle is that after adding m1 to D, and r(m1) to R, we have that for each mj with 
j ̸= 1, either mj = r(m1) (so we cannot add mj to D), or r(mj) = m1 (so we cannot add r(mj) to R). 
Observe that there exist distinct indices p, q ∈ {2, 3, 4} such that mp ̸= r(m1) and mq ̸= r(m1), or 
else two vertices of m2,m3,m4 coincide. Without loss of generality, m2 ̸= r(m1) and m3 ̸= r(m1). 
We then assume that r(m2) = r(m3) = m1, or else we immediately get a perfect triple of size k+1. 
But in this case we can add m2 and m3 into D, m1 into R, and d into L to obtain a perfect triple of 
size k + 1, a contradiction. ◁

Claim 30.3.  Cases 3 and 5 each hold for at most 6k vertices of M.

Proof of Claim  30.3.  By symmetry, it suffices to consider Case 3. Suppose, to the contrary, that 
there exist 6k + 1 vertices m ∈ M \ (L ∪ D ∪ R) satisfying Case 3. Let S be the set of such vertices. 
For each b ∈ R, let wb = |{d ∈ D : r(d) = b}| and w′

b = |{s ∈ S : l(s) = b, r(s) /∈ L ∪ D}|. Note that ∑
b∈R wb = |D| = k and 

∑
b∈R w′

b = |S| ≥ 6k + 1. Therefore, there exists c ∈ R such that 
w′

c ≥ 6wc + 1. Let p = wc and let M ′
= {s ∈ S : l(s) = c, r(s) /∈ L ∪ D}. Hence, |M ′

| = w′
c ≥ 6p + 1

and take an arbitrary subset M ′′
⊆ M ′ of size 6p + 1.

We now claim that there exists Q ⊆ M ′′ of size at least p + 1 such that r(q) /∈ Q  for every 
q ∈ Q . To see this, for each m ∈ M ′′, let deg(m) = |{m′′

∈ M ′′
: r(m′′) = m}|. Observe that ∑

m∈M ′′ deg(m) ≤ |M ′′
| = 6p + 1. So the number of vertices m ∈ M ′′ with deg(m) ≥ 2 is at most 3p

and there are at least 3p + 1 vertices m ∈ M ′′ with deg(m) ≤ 1. Let M∗
= {m ∈ M ′′

: deg(m) ≤ 1}. 
Hence, |M∗

| ≥ 3p + 1. Since each m ∈ M∗ satisfies deg(m) ≤ 1, there is at most one m′′
∈ M ′′ such 

that r(m′′) = m. We now show how to construct Q ⊆ M∗ such that, for every q ∈ Q , r(q) /∈ Q . 
Iteratively, for each m ∈ M∗, add m into Q  and possibly remove the following vertices from M∗ (in 
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case they belong to M∗): m, r(m) and the vertex m′′
∈ M ′′ with r(m′′) = m if it exists. At each step, 

we add one vertex into Q  and remove at most three vertices from M∗. Therefore, we can repeat the 
step above p + 1 times in order to obtain Q  of size at least p + 1. By construction, for each q ∈ Q , 
we have r(q) /∈ Q , as desired.

Let Q  be a set given by the previous paragraph. We move c from R to L, remove from D any 
d ∈ D with r(d) = c and add Q  into D. Moreover, we remove from L any l ∈ L such that no d ∈ D
satisfies l(d) = l. Finally, we add {r(q) : q ∈ Q } into R. Observe that Q ⊆ S and S is disjoint from 
L ∪ D ∪ R. Moreover, each q ∈ Q ⊆ M ′ satisfies l(q) = c and r(q) /∈ L ∪ D and, by the previous 
paragraph, r(q) /∈ Q . Therefore, we obtain a perfect triple. In this process we have removed wc = p
vertices from D and added |Q | ≥ p+ 1 vertices into D, and so we obtained a perfect triple of larger 
size, a contradiction. This concludes the proof of Claim  30.3. ◁

Claim 30.4.  Case 6 holds for at most 4k vertices of M.

Proof of Claim  30.4.  Suppose, to the contrary, that there exist 4k + 1 vertices m ∈ M \ (L ∪ D ∪ R)
satisfying Case 6. Let Q  be the set of such vertices. Hence, |Q | ≥ 4k+1. Consider now the multigraph 
H with vertex set V (H) = V (G) and such that, for each q ∈ Q , l(q)r(q) is an edge of H . Observe that 
l(q) ̸= r(q) for each q ∈ Q , so H does not have loops. It is well known that every loopless multigraph 
has a bipartite subgraph with at least half of its edges (see, e.g., [70, Theorem 1.3.19]). Let H ′ be a 
bipartite subgraph of H , with bipartition (V1, V2), and at least ⌈|E(H)|/2⌉ ≥ ⌈(4k + 1)/2⌉ = 2k + 1
edges. Each edge of H ′ is of the form eq = l(q)r(q) for some q ∈ Q , and either l(q) ∈ V1 and 
r(q) ∈ V2, or l(q) ∈ V2 and r(q) ∈ V1. Without loss of generality, at least k + 1 edges eq of H ′ satisfy 
the former, and let Eq be the corresponding set. Let D′

= {q ∈ Q : eq ∈ Eq}, L′
= {l(d) : d ∈ D′

} and 
R′

= {r(d) : d ∈ D′
}. By construction, L′

∩ R′
= ∅. Moreover, for each q ∈ D′, since q /∈ L ∪ D ∪ R and 

l(q) ∈ R∪D and r(q) ∈ L∪D, we have that D′
∩ (L′

∪ R′) = ∅. Therefore, (L′,D′, R′) is a perfect triple 
of size |D′

| ≥ k + 1, a contradiction. ◁

By the previous series of claims, there are at most 2k + 2 · 3k + 2 · 6k + 4k = 24k vertices of 
M \ D satisfying at least one of the six cases. Since |M \ D| ≥ 24n ≥ 24(k + 1), there is at least 
one vertex m ∈ M \ D satisfying none of the six cases. We add m into D, and possibly l(m) into L
and r(m) into R (if not already present) and obtain a perfect triple of size k + 1, contradicting the 
maximality of (L,D, R). Therefore, there exists a perfect triple of size at least n, thus concluding the 
proof of Proposition  30. ◀

Note that the proof of Proposition  30 does not seem to be easily adaptable to bound simw(L(G)), 
as the functions l and r therein are not necessarily injective.

We conclude with a comment on the tightness of Theorem  4. The upper bound on mimw(L(G))
is tight in the sense that, for any integer n ≥ 2, if we let G = K1,n, then mimw(L(G)) = bw(G) = 1. 
The problem of determining a tight lower bound on mimw(L(G)) in terms of bw(G) is left open.

4.3. Sim-width of L(Kn,m) and L(Kn)

We begin by determining the exact value of simw(L(Kn,m)). For a positive integer k, we use the 
notation [k] = {1, . . . , k}. For positive integers n and m, the n × m rook graph Rn,m is the graph 
representing the legal moves of a rook on an n × m chessboard: the vertex set is [n] × [m], two 
vertices being adjacent if and only if they have one of the two coordinates in common. Clearly, Rn,m
is isomorphic to Kn□Km, the Cartesian product of Kn and Km.

Observation 31 (Folklore). L(Kn,m) is isomorphic to Rn,m.

Proposition 32.  Let n and m be integers with 6 < n ≤ m. Then simw(L(Kn,m)) = ⌈
n
3⌉.

Proof.  In view of Observation  31, we show that simw(Rn,m) = ⌈n/3⌉. We first need the following 
definition. For an integer l ≥ 1, an l-caterpillar is a subcubic tree T  on 2l vertices with V (T ) =
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{s1, . . . , sl, t1, . . . , tl}, such that E(T ) = {siti : 1 ≤ i ≤ l} ∪ {sisi+1 : 1 ≤ i ≤ l − 1}. Note that we label 
the leaves of an l-caterpillar t1, t2, . . . , tl, in this order.

Let us begin by showing the upper bound simw(Rn,m) ≤ ⌈n/3⌉. Let a = ⌈n/3⌉ and b = ⌊2n/3⌋. 
Observe that 1 ≤ a < b < n. Build an (a + 1)-caterpillar C1 with leaves p1, l1, l2, . . . , la, a 
(b− a+ 1)-caterpillar C2 with leaves p2, la+1, l2, . . . , lb and an (n− b+ 1)-caterpillar C3 with leaves 
p3, lb+1, l2, . . . , ln. For each i ∈ [n], build an (m + 1)-caterpillar Di with leaves hi, li,1, . . . , li,m and 
add the edge hili. Finally, add a vertex p0 and add edges p0p1, p0p2 and p0p3. Let T  be the resulting 
tree and let δ be the function mapping each (i, j) ∈ [n] × [m] to the leaf li,j of T . Clearly, (T , δ) is a 
branch decomposition of Rn,m. We now show that simwRn,m (T , δ) ≤ ⌈n/3⌉.

Let e ∈ E(T ) and let (Ae, Ae) be the corresponding bipartition of V (Rn,m). Suppose first that e = hili
or e ∈ E(Di), for some i ∈ [n]. Then, without loss of generality, the first coordinate of each vertex 
in Ae equals i and so Ae is a clique in Rn,m. Therefore, cutsimRn,m (Ae, Ae) ≤ 1. Suppose instead that 
e = p0pj or e ∈ E(Cj), for some j ∈ {1, 2, 3}. Then, without loss of generality, each vertex in Ae has 
first coordinate between 1 and a = ⌈n/3⌉, if j = 1, or between a + 1 = ⌈n/3⌉ + 1 and b = ⌊2n/3⌋, 
if j = 2, or between b + 1 = ⌊2n/3⌋ + 1 and n, if j = 3. In any case, it is easy to see that there 
are at most ⌈n/3⌉ distinct choices for the first coordinate, and so α(Rn,m[Ae]) ≤ ⌈n/3⌉, from which 
cutsimRn,m (Ae, Ae) ≤ ⌈n/3⌉.

Finally, we show that simw(Rn,m) ≥ ⌈n/3⌉. Let D = {(i, i) : 1 ≤ i ≤ n}. Suppose, to the contrary, 
that simw(Rn,m) < ⌈n/3⌉ and let (T , δ) be a branch decomposition with sim-width w < ⌈n/3⌉. We 
first show that there exists e ∈ E(T ) such |D|/3 ≤ |Ae ∩ D|, |Ae ∩ D|. Indeed, by trimming the set of 
leaves δ(V (Rn,m) \D) of T , we obtain a branch decomposition of Rn,m[D] with sim-width at most w. 
We then apply [47, Lemma 2.3]6 to the graph Rn,m[D] and the obtained branch decomposition. Fix 
now e as above and suppose that Ae∩D = {(a1, a1), . . . , (ar , ar )} and Ae∩D = {(b1, b1), . . . , (bs, bs)}, 
for pairwise distinct a1, . . . , ar , b1, . . . , bs in [n] with r, s ≥ ⌈n/3⌉. For each i ∈ [⌈n/3⌉], we proceed 
as follows. If (ai, bi) ∈ Ae, let xi = (ai, bi) and yi = (bi, bi). Else, (ai, bi) ∈ Ae, and let xi = (ai, ai)
and yi = (ai, bi). Let X = {x1, . . . , x⌈n/3⌉} and Y = {y1, . . . , y⌈n/3⌉}. Clearly, X ⊆ Ae and Y ⊆ Ae. 
Moreover, X is an independent set, since no two of its vertices share a coordinate, and similarly for 
Y . Finally, each xi is adjacent to yi and no other yj with j ̸= i. Therefore, cutsimRn,m (Ae, Ae) ≥ ⌈n/3⌉, 
contradicting the fact that (T , δ) has sim-width w < ⌈n/3⌉. ◀

We conclude with some observations related to simw(L(Kn)). Since L(Kn) contains L(Kn/2,n/2) as 
an induced subgraph, Proposition  32 implies that simw(L(Kn)) ≥ ⌈n/6⌉, for n > 12. Moreover, since 
bw(Kn) =

⌈ 2n
3

⌉
 for n ≥ 3 [64], Theorem  4 implies that simw(L(G)) ≤

⌈ 2n
3

⌉
.

Lemma 33.  Let n > 12 be an integer. Then 
⌈ n

6

⌉
≤ simw(L(Kn)) ≤

⌈ 2n
3

⌉
.

We expect the value of simw(L(Kn)) to be close to the lower bound 
⌈ n

6

⌉
 and leave its determi-

nation as an open problem.

5. Kt,t -Free graphs: The proof of Theorem  5

In this section, we consider the class of Kt,t-free graphs and ask which parameters from Fig.  2(a) 
become equivalent or comparable when restricted to this class. In fact, we answer this question 
except for one remaining open case (see Open Problem  1), as shown in Fig.  2(d).

Let us first analyse the pairs of comparable parameters from Fig.  2(a).

Lemma 34.  Even when restricted to K2,2-free graphs:

• Treewidth does not become equivalent to any of the other parameters in Fig.  2(a);
• Clique-width does not become equivalent to twin-width, mim-width or sim-width;
• Mim-width does not become equivalent to sim-width.

6 Notice that the statement of the Lemma in [47] contains a typo, as < should be replaced by ≤. It should read as 
follows. Let G be a graph, let w be a positive integer, and let f : 2V (G)

→ N be a symmetric function. If G has f -width at 
most w, then V (G) admits a bipartition (A , A ) where f (A ) ≤ w and |V (G)|/3 ≤ |A |, |A | ≤ 2|V (G)|/3.
1 2 1 1 2
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Proof.  The class of cliques is Kt,t-free for any t , has unbounded treewidth but bounded clique-width, 
twin-width and tree-independence number. Therefore, treewidth does not become equivalent to 
any of the other parameters. The class of split permutation graphs is K2,2-free, has unbounded 
clique-width [51] but bounded twin-width [13], mim-width [4] and hence sim-width. Therefore, 
clique-width does not become equivalent to twin-width, mim-width or sim-width. The class of 
chordal graphs is K2,2-free, has unbounded mim-width but sim-width at most 1 [47]. Therefore, 
mim-width does not become equivalent to sim-width. ◀

Note that the relationship between sim-width and tree-independence number is not covered by 
Lemma  34 and indeed corresponds to Open Problem  1.

Let us now analyse the incomparable pairs and check whether they become comparable or 
equivalent, starting with pairs involving twin-width.

Lemma 35.  Even when restricted to K2,2-free graphs, twin-width is incomparable with

• mim-width,
• sim-width, and
• tree-independence number.

Proof.  The class of walls is K2,2-free, is not (tw, ω)-bounded [26], and hence has unbounded tree-
independence number [27], unbounded mim-width [16], and unbounded sim-width by Corollary  16, 
but has bounded twin-width [13]. On the other hand, the class of chordal graphs is K2,2-free, has 
unbounded twin-width [12], but bounded tree-independence number [27], and hence has bounded 
sim-width. Finally, the class of interval graphs is K2,2-free, has unbounded twin-width [12], but 
bounded mim-width [4]. ◀

We finally consider pairs involving tree-independence number and show that tree-independence 
number dominates mim-width on Kt,t-free graphs (Theorem  6). The following two lemmas will be 
used.

Lemma 36.  Let j and ℓ be positive integers. Let G be a graph and let U and V  be disjoint subsets of 
V (G) such that each u ∈ U has at least one neighbour in V  while each v ∈ V  has at most j neighbours 
in U. If |U | ≥ 2jℓ, then there exist X ⊆ U and Y ⊆ V  such that |X | = |Y | = ℓ and G[X, Y ] ∼= ℓP2.

Proof.  We proceed by induction on ℓ. The base case ℓ = 1 is trivial. Let ℓ′ > 1 and suppose 
that the statement holds for each ℓ < ℓ′. We show it holds for ℓ′. Therefore, let |U | ≥ 2jℓ′. 
Pick x ∈ U such that |NV (x)| is minimum and let y ∈ NV (x). Then, at most j − 1 vertices of 
U \ {x} have the same neighbourhood in V  as x, or else |NU (y)| ≥ j + 1, a contradiction. Let 
U ′′

= {u ∈ U \ {x} : NV (u) ̸= NV (x)}. For every vertex u′
∈ U ′′, we have that NV (u′) \ NV (x) ̸= ∅ by 

minimality of |NV (x)|. Note that |U ′′
| ≥ |U \ {x}| − (j − 1) = |U | − j ≥ 2jℓ′

− j. Let U ′
= U ′′

\ NU (y). 
As |NU (y)| ≤ j, we have that |U ′

| ≥ 2jℓ′
− j − j = 2j(ℓ′

− 1). Let V ′
= V \ NV (x). Consider now the 

graph G[U ′
∪V ′

]. Each vertex in U ′
⊆ U ′′ has at least one neighbour in V ′ and each vertex in V ′ has 

at most j neighbours in U ′. Therefore, by the induction hypothesis, there exist X ′
⊆ U ′ and Y ′

⊆ V ′

such that G[X ′, Y ′
] ∼= (ℓ′

− 1)P2. Note further that y is anticomplete to U ′
= U ′′

\ NU (y) and x is 
anticomplete to V ′

= V \ NV (x), so taking X = X ′
∪ {x} and Y = Y ′

∪ {y} completes the proof. ◀

Lemma 37.  Let m be a fixed positive integer. For each positive integer n and k, let f (n, k) = 2n+k and 
gm(n, k) = mkn. Let G be a graph and let U and V  be disjoint subsets of V (G), where U is an independent 
set. Suppose, for some positive integers n and k, that |U | ≥ f (n, k) and that α(G[NV (u)]) ≥ gm(n, k) for 
each u ∈ U. Then, one of the following occurs:

1. there exist X ⊆ U and Y ⊆ V  such that |X | = |Y | = k and G[X, Y ] ∼= kP2; or
2. there exist independent sets X ⊆ U and Y ⊆ V  such that |X | = n, |Y | = m and G[X ∪Y ] ∼= Kn,m.

Proof.  We proceed by double induction on n and k. The base case n = 1 or k = 1 is an easy 
exercise left to the reader. Suppose that the statement is true for (n, k) = (n′, k′

− 1), with n′
≥ 1
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and k′ > 1, and for (n, k) = (n′
− 1, k′), with n′ > 1 and k′

≥ 1. We show that the statement is 
true for (n, k) = (n′, k′). Therefore, let |U | ≥ f (n′, k′) and assume α(G[NV (u)]) ≥ gm(n′, k′) for each 
u ∈ U .

Pick x ∈ U and let V ′
= NV (x). Suppose first that there exist at least f (n′

−1, k′) vertices u′
∈ U\{x}

such that α(G[NV ′ (u′)]) = α(G[NV (u′)∩V ′
]) ≥ gm(n′

−1, k′). Let U ′ be the set of such vertices. Hence, 
|U ′

| ≥ f (n′
− 1, k′). By the induction hypothesis for (n, k) = (n′

− 1, k′), either there exist X ′
⊆ U ′

and Y ′
⊆ V ′ such that |X ′

| = |Y ′
| = k′ and G[X ′, Y ′

] ∼= k′P2, or there exist independent sets X ′
⊆ U ′

and Y ′
⊆ V ′ such that |X ′

| = n′
− 1, |Y ′

| = m and G[X ′
∪ Y ′

] ∼= Kn′−1,m. If the former occurs, set 
X = X ′ and Y = Y ′. If the latter occurs, set X = X ′

∪ {x} and Y = Y ′. In either case, it is easy to see 
that the statement holds for (n, k) = (n′, k′) with the chosen X and Y .

Suppose instead that fewer than f (n′
−1, k′) vertices u′

∈ U\{x} satisfy α(G[NV (u′)∩V ′
]) ≥ gm(n′

−

1, k′). This implies that the number of vertices a ∈ U \{x} such that α(G[NV (a)∩V ′
]) < gm(n′

−1, k′)
is at least (f (n′, k′) − 1) − (f (n′

− 1, k′) − 1) = 2n′
+k′

− 2n′
−1+k′

= 2n′
+k′−1

= f (n′, k′
− 1). Let A be 

the set of such vertices. Hence, |A| ≥ f (n′, k′
− 1). Let now B = V \ V ′

= V \NV (x). Observe that, for 
each a ∈ A, we have

α(G[NB(a)]) = α(G[NV (a) \ V ′
])

≥ α(G[NV (a)]) − α(G[NV (a) ∩ V ′
])

> gm(n′, k′) − gm(n′
− 1, k′)

= m(k′)n
′
−1(k′

− 1)
> m(k′

− 1)n
′
−1(k′

− 1)
= gm(n′, k′

− 1).

By the induction hypothesis for (n, k) = (n′, k′
− 1), either there exist X ′

⊆ A and Y ′
⊆ B such 

that |X ′
| = |Y ′

| = k′
− 1 and G[X ′, Y ′

] ∼= (k′
− 1)P2, or there exist independent sets X ′

⊆ A and 
Y ′

⊆ B such that |X ′
| = n′, |Y ′

| = m and G[X ′
∪ Y ′

] ∼= Kn′,m. If the latter occurs, set X = X ′ and 
Y = Y ′ and the statement holds for (n, k) = (n′, k′) with the chosen X and Y . If however the former 
occurs, first set X = X ′

∪ {x}. Observe now that, since x is anticomplete to Y ′
⊆ B = V \ V ′, it 

is sufficient to find a neighbour of x in V  which is anticomplete to X ′. Since x ∈ U , we have that 
α(G[V ′

]) ≥ gm(n′, k′). Let I be an independent set of G[V ′
] of size at least gm(n′, k′). By definition of 

A, each x′
∈ X ′

⊆ A is such that α(G[NV (x′) ∩ V ′
]) < gm(n′

− 1, k′) and so, for each x′
∈ X ′, we have 

|NV (x′) ∩ I| < gm(n′
−1, k′). Therefore, since |X ′

| = k′
−1, we have that |NV (X ′) ∩ I| < k′gm(n′

−1, k′). 
However, |I| ≥ gm(n′, k′) = k′gm(n′

− 1, k′), and so I \ NV (X ′) ̸= ∅. This implies that at least one 
vertex in V ′ is anticomplete to X ′. Pick such a vertex y and set Y = Y ′

∪ {y}. The statement then 
holds for (n, k) = (n′, k′) with the chosen X and Y . ◀

We are finally ready to prove Theorem  6, which we restate for convenience.

Theorem 6.  Let n and m be positive integers. Let G be a Kn,m-free graph and let (T , δ) be a branch 
decomposition of G with mimwG(T , δ) < k. Then we can construct a tree decomposition of G with 
independence number less than 6(2n+k−1

+ mkn+1) in O(|V (G)|mkn+4) time. In particular, tree-α(G) <
6(2n+k−1

+ mkn+1).

Proof.  Let f (n, k) = 2n+k and gm(n, k) = mkn. We begin by describing an algorithm that constructs 
a tree decomposition T  of G from the branch decomposition (T , δ) of G. The bags of T  will be 
constructed recursively. We first need to introduce some notation (see also Fig.  5).

For each t ∈ V (T ) and i ∈ N, we let Xt |i denote a particular subset of V (G), where i represents 
the step of the recursion (think of Xt |i as a bag assigned to t at step i). Given a pair (T , {Xt |i}t∈V (T ))
satisfying (T1) and (T3) in the definition of a tree decomposition (but not necessarily (T2)) and 
v ∈ V (G), we denote by Tv|i the subtree of T  induced by the set {t ∈ V (T ) : v ∈ Xt |i}. Let e = ab
be an edge of T . Deleting e splits T  into two subtrees, T (a, b) and T (b, a), where a ∈ V (T (a, b)) and 
b ∈ V (T (b, a)). We say that T (a, b) (resp. T (b, a)) hosts v ∈ V (G) if δ(v) is a leaf of T (a, b) (resp. 
T (b, a)). For u ∈ V (G), the edge ab ∈ E(T ) touches Tu|i at a if a ∈ V (Tu|i) and b ̸∈ V (Tu|i). If the edge 
ab ∈ E(T ) touches Tu|i at a, we let

N(u, b, a)| = {v ∈ N (u) \ X | : T (b, a) hosts v}.
i G a i
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Fig. 5. Construction of a tree decomposition T  of G from a branch decomposition (T , δ) of G. The edge ab of T (in green) 
touches Tu|i (in light blue) at a. Informally, the set N(u, b, a)|i consists of all neighbours v of u in G, hosted by T (b, a), 
and such that the edge uv does not yet satisfy (T2). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)

Algorithm. We now describe the algorithm. We first pre-process T  by recursively contracting edges 
having at least one endpoint of degree 2. So we may assume that all internal nodes of T  have degree 
3. We let i represent a step counter.
Set i = 0. Set Xt |0 = {δ−1(t)} if t is a leaf of T , and set Xt |0 = ∅ if t is an internal node of T . For 
each triple (u, b, a), where u ∈ V (G) and ab touches Tu|0 at a, compute N(u, b, a)|0.
While there exists a triple (u, b, a), where u ∈ V (G), the edge ab touches Tu|i at a, and N(u, b, a)|i
contains an independent set of G of size gm(n, k), do:

Pick an arbitrary such triple (u, b, a). Set Xb|i+1 = Xb|i∪{u}, label u a bad vertex with respect to 
Xb and, for each c ̸= b, set Xc |i+1 = Xc |i. Compute N(u, b, a)|i+1 for each triple (u, b, a) where 
u ∈ V (G) and ab touches Tu|i+1 at a. Set i = i + 1.

While there exists a triple (u, b, a), where u ∈ V (G), the edge ab touches Tu|i at a, and N(u, b, a)|i ̸=

∅, do:
Pick an arbitrary such triple (u, b, a). Set Xb|i+1 = Xb|i ∪ {u}, label u a good vertex with respect 
to Xb and, for each c ̸= b, set Xc |i+1 = Xc |i. Compute N(u, b, a)|i+1 for each triple (u, b, a)
where u ∈ V (G) and ab touches Tu|i+1 at a. Set i = i + 1.

Return T = (T , {Xt |i}t∈V (T )).

Observation 38.  Observe that no vertex added to a bag in the second loop is bad. Indeed, suppose 
that the first loop stops at step i. Then, for any triple (u, b, a) where u ∈ V (G) and the edge ab
touches Tu|i at a, we have that N(u, b, a)|i does not contain an independent set of G of size gm(n, k). 
Let now i′ ≥ i and fix an arbitrary triple (u, b′, a′) such that u ∈ V (G) and the edge a′b′ touches 
Tu|i′  at a′. Consider the edge ab of T  that touches Tu|i at a and which is closest to a′b′. It holds that 
N(u, b′, a′)|i′ ⊆ N(u, b, a)|i, and so N(u, b′, a′)|i′  does not contain an independent set of G of size 
gm(n, k).

Running time analysis. We now analyse the running time of the algorithm. Let z = |V (G)| so, 
by definition, z is the number of leaves of T . Since each vertex of T  has degree either 1 or 3, the 
number of internal vertices of T  is z−2 and T  has at most 2z−3 edges. Therefore, at each iteration 
of the while-do loops, there are O(z2) triples to be checked. For each such triple (u, b, a), the set 
N(u, b, a)|i has size at most z and so checking whether it contains an independent set of G of size 
gm(n, k) can be done in O(zgm(n,k)) time. Since computing all the sets N(u, b, a)|i+1 takes O(z3) time, 
each iteration of the while-do loops can be done in O(zgm(n,k)+2

+ z3) = O(zgm(n,k)+2) time. Observe 
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now that, after each iteration of either loop, if (u, b, a) is the chosen triple, then Tu|i is extended 
into Tu|i+1 by the addition of one node of T . For each u ∈ V (G), at most O(z) such extensions are 
possible and so the total number of iterations of the while-do loops is O(z2). Therefore, the running 
time of the algorithm is O(zgm(n,k)+4).

Correctness. We first show that the algorithm indeed outputs a tree decomposition of G. Suppose 
that we stop at step s, so N(u, b, a)|s = ∅ for all triples (u, b, a) such that u ∈ V (G) and ab touches 
Tu|s at a. We show that T = (T , {Xt |s}t∈V (T )) is indeed a tree decomposition of G; namely, it satisfies 
(T1), (T2) and (T3). Since δ is a bijection from V (G) to the leaves of T  and since δ−1(t) ∈ Xt |s for 
each leaf t of T , (T1) holds. Consider now (T3). Let u be an arbitrary vertex of G. We claim that Tu|s
is connected. Observe that, at each step i + 1 (for i ≥ 0), we add u to a bag Xb|i only if there exists 
an edge ab ∈ E(T ) that touches Tu|i at a. This implies that Tu|i+1 is obtained from Tu|i by adding the 
node b which is adjacent to a ∈ Tu|i. Hence, if Tu|i is connected, then Tu|i+1 is connected. Since Tu|0
is connected, the same holds for Tu|s. Finally, consider (T2). Suppose (T2) does not hold, so there 
exists uv ∈ E(G) such that no bag in {Xt |s}t∈V (T ) contains both u and v. Then Tu|s and Tv|s share 
no common nodes. Since T  is connected and, by (T3), Tu|s and Tv|s are connected subgraphs of T , 
there is a path in T  from Tu|s to Tv|s. The first edge of this path when traversing from Tu|s to Tv|s, 
say ab, touches Tu|s at a. Then v ∈ N(u, b, a)|s, so N(u, b, a)|s ̸= ∅, contradicting that the algorithm 
terminates at step s.

Finally, we show that α(T ) < 3f (n, k) + 6gm(n + 1, k). Suppose, to the contrary, that α(T ) ≥

3f (n, k) + 6gm(n + 1, k). Then, there exists a bag Xt ⊆ V (G), with t ∈ V (T ), such that α(G[Xt ]) ≥

3f (n, k)+6gm(n+1, k). Let P ⊆ Xt be an independent set of G such that |P| ≥ 3f (n, k)+6gm(n+1, k). 
We claim that there exists t ′ ∈ V (T ) with t ′t ∈ E(T ) and such that T (t ′, t) hosts at least |P|/3
vertices of P . If t is a leaf of T , it is enough to take as t ′ the unique neighbour of t in T , as T (t ′, t)
hosts |P| − 1 ≥ |P|/3 vertices of P . If t is an internal node of T , then T − t is the disjoint union of 
three trees (recall that after our pre-processing all internal nodes have degree 3). One of these trees, 
say T1, must host at least |P|/3 vertices of P , and we let t ′ ∈ V (T1) be the unique vertex such that 
t ′t ∈ E(T ). This shows our claim. Let now P ′

⊆ P be the subset of vertices of P hosted by T (t ′, t). 
Hence, |P ′

| ≥ |P|/3 = f (n, k) + 2gm(n + 1, k). Since each vertex of P ′
⊆ Xt has been labelled either 

good or bad with respect to Xt , we have that either at least f (n, k) vertices of P ′ are bad, or at least 
2gm(n + 1, k) vertices of P ′ are good.

Suppose first that at least f (n, k) vertices of P ′ are bad. Let U ⊆ P ′
⊆ P be the set of such vertices 

and let V ⊆ V (G) be the set of vertices not hosted by T (t ′, t). Pick an arbitrary u ∈ U and suppose 
that u has been added to Xt at step i + 1 for some i ≥ 0. Then, α(G[N(u, t, t ′)|i]) ≥ gm(n, k), where 
N(u, t, t ′)|i ⊆ NV (u). Therefore, we found an independent set U of G disjoint from V  and such that 
|U | ≥ f (n, k) and, for each u ∈ U , we have α(G[NV (u)]) ≥ α(G[N(u, t, t ′)|i]) ≥ gm(n, k). Since G
is Kn,m-free, Lemma  37 implies that there exist X ⊆ U and Y ⊆ V  such that |X | = |Y | = k and 
G[X, Y ] ∼= kP2. But then, letting e = tt ′, we obtain that cutmimG(Ae, Ae) ≥ k, contradicting that 
mimwG(T , δ) < k.

Suppose instead that at least 2gm(n+1, k) vertices of P ′ are good. Let U = {u1, u2, . . . } ⊆ P ′
⊆ P

be the set of such vertices. Hence, |U | ≥ 2gm(n + 1, k). For each uj ∈ U , let ij + 1 be the step uj has 
been added to Xt , for some ij ≥ 0. Let u1 be the first vertex of U added to Xt , at step i1+1. For u1 to be 
added to Xt at step i1+1 as a good vertex, it must be that N(u1, t, t ′)|i1 ̸= ∅ but α(G[N(u1, t, t ′)|i1 ]) <

gm(n, k), for the edge tt ′ ∈ E(T ) touching Tu1 |i1  at t ′. Moreover, for every other triple (y, v, v′), where 
y ∈ V (G) and vv′ touches Ty|i1  at v′, it must be that α(G[N(y, v, v′)|i1 ]) < gm(n, k).

Now let V =
⋃

uj∈U
N(uj, t, t ′)|ij . We claim that each v ∈ V  is adjacent to fewer than gm(n, k)

vertices of U . Suppose, to the contrary, that there exists v ∈ N(uj, t, t ′)|ij , for some uj ∈ U , which 
is complete to a subset U ′

⊆ U with |U ′
| ≥ gm(n, k). Then, as v ∈ N(uj, t, t ′)|ij  for some uj ∈ U , it 

follows that v ̸∈ Xt ′ |ij . Since ij ≥ i1, this implies that v /∈ Xt ′ |i1  and so Tv|i1  does not contain the 
node t ′. Since v ∈ N(uj, t, t ′)|ij , we have that v is hosted by T (t, t ′). Now let ab be the first edge 
of the shortest path in T  from Tv|i1  to t ′. Clearly, ab touches Tv|i1 , say without loss of generality at 
a. Note that T (t ′, t) is a subtree of T (b, a). Since u1 is the first vertex of U added to Xt , no other 
uj ∈ U is added to Xt at step i1. We now claim that no vertex uj ∈ U belongs to Xa|i1 . Observe first 
that u  is hosted by T (t ′, t), i.e. δ(u ) is a leaf of T (t ′, t), and a is a node of T (t, t ′). Since T  is a tree, 
j j
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there is a unique path in T  from δ(uj) to a and such path contains t . By definition of u1, we have 
that uj ̸∈ Xt |i1 . But if uj ∈ Xa|i1  (in particular, a ̸= t), then Tuj |i1  is not connected, a contradiction. 
Therefore, for each u′

∈ U ′, it must be that u′
∈ NG(v)\Xa|i1 . This implies that U ′

⊆ N(v, b, a)|i1  and 
so α(G[N(v, b, a)|i1 ]) ≥ α(G[U ′

]) = |U ′
| ≥ gm(n, k). But then, at step i1 +1, the vertex v should have 

been added to Xb|i1  as a bad vertex instead of adding u1 to Xt |i1  as a good vertex, a contradiction.
By the previous paragraph, each v ∈ V  has fewer than gm(n, k) neighbours in U . Moreover, for 

each uj ∈ U , the vertex uj has been added to Xt and so uj has a neighbour in V . Therefore, U and 
V  satisfy the conditions of Lemma  36 with j = gm(n, k) and ℓ = k, and so there exist X ⊆ U and 
Y ⊆ V  such that |X | = |Y | = k and G[X, Y ] ∼= kP2. Since U ⊆ T (t ′, t) and V ⊆ T (t, t ′), by letting 
e = tt ′ we have that cutmimG(Ae, Ae) ≥ k, contradicting that mimwG(T , δ) < k.

To summarize, α(T ) < 3f (n, k) + 6gm(n + 1, k) = 6(2n+k−1
+ mkn+1), as desired. ◀

We are finally ready to prove Theorem  5, which we restate for convenience.

Theorem 5.  For every t ≥ 2, when restricted to Kt,t-free graphs,

• sim-width dominates tree-independence number, tree-independence number and sim-width are 
more powerful than mim-width, and twin-width is incomparable with these three parameters;

• twin-width and mim-width are more powerful than clique-width; and
• clique-width is more powerful than treewidth.

Proof.  It follows from Lemmas  34 and 35, Theorem  6 and the following observation showing 
that tree-independence number is more powerful than mim-width for Kt,t-free graphs when 
t ≥ 2: Chordal graphs are K2,2-free, have tree-independence number 1 [27] but unbounded 
mim-width [47]. ◀

6. Width parameters and graph powers: The proof of Theorem  7

In this short section we prove Theorem  7 and observe that a result similar to Theorem  7 cannot 
hold for even powers.

Theorem 7.  Let r ≥ 1 be an odd integer and let G be a graph. If (T , δ) is a branch decomposition of 
G with simwG(T , δ) = w, then (T , δ) is also a branch decomposition of Gr  with simwGr (T , δ) ≤ w. In 
particular, simw(Gr ) ≤ simw(G), for every odd integer r ≥ 1.

Proof.  Clearly, (T , δ) is a branch decomposition of Gr . Suppose, to the contrary, that simwGr (T , δ) >
w. Hence, r ≥ 3. Let e ∈ E(T ) be such that cutsimGr (Ae, Ae) ≥ w + 1. There exist independent sets 
X = {x1, . . . , xw+1} ⊆ Ae and Y = {y1, . . . , yw+1} ⊆ Ae of Gr  such that, for each i, j ∈ {1, . . . , w +1}, 
xi is adjacent to yj if and only if i = j. Since xi is adjacent to yi in Gr  for each i ∈ {1, . . . , w+1}, there 
exists a path Pi = v(i, 0)v(i, 1)v(i, 2) · · · v(i, ai) in G, with endpoints v(i, 0) = xi and v(i, ai) = yi, for 
some ai ≤ r . We claim that, for each i ̸= j, V (Pi) ∩ V (Pj) = ∅ and no vertex of Pi is adjacent to a 
vertex of Pj in G. Suppose, to the contrary, that there exist v(i, k) ∈ V (Pi) adjacent to v(j, l) ∈ V (Pj)
(the proof that V (Pi) ∩ V (Pj) = ∅ is similar and left to the reader).

Suppose first that k + l < r . Then, there is a walk v(i, 0)v(i, 1) · · · v(i, k)v(j, l)v(j, l − 1) · · · v(j, 0)
in G of length at most r and hence a v(i, 0), v(j, 0)-path in G, from which xi = v(i, 0) is adjacent to 
xj = v(j, 0) in Gr , a contradiction. Suppose now that k + l > r . Then, there is a walk v(i, ai)v(i, ai −
1) · · · v(i, k)v(j, l)v(j, l+ 1) · · · v(j, aj) in G of length at most r , from which yi = v(i, ai) is adjacent to 
yj = v(j, aj) in Gr , a contradiction. Suppose finally that k+ l = r . Since r is odd, either k < l or k > l. 
Without loss of generality, k < l. Then, there is a walk v(i, 0)v(i, 1) · · · v(i, k)v(j, l)v(j, l+1) · · · v(j, aj)
in G of length at most r , and so xi = v(i, 0) is adjacent to yj = v(j, aj) in Gr , a contradiction.

Consider now, for each i ∈ {1, . . . , w + 1}, the path Pi = v(i, 0)v(i, 1)v(i, 2) · · · v(i, ai). Since 
xi = v(i, 0) ∈ Ae and yi = v(i, ai) ∈ Ae, there exists an integer bi ≤ ai − 1 such that v(i, bi) ∈ Ae and 
v(i, bi +1) ∈ Ae. Let x′

i = v(i, bi) and y′

i = v(i, bi +1). Clearly, each x′

i is distinct from and adjacent to 
y′

i . Moreover, by the paragraph above, each x′

i is distinct from and non-adjacent to both x′

j and y′

j , for 
i ̸= j. We then have that X ′

= {x′

1, . . . , x
′

w+1} ⊆ Ae and Y ′
= {y′

1, . . . , y
′

w+1} ⊆ Ae are independent 
sets of G and G[X ′, Y ′

] ∼ (w + 1)P . Therefore, cutsim (A , A ) ≥ w + 1, a contradiction. ◀
= 2 G e e
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Lima et al. [53] showed that, for every fixed even integer r ≥ 2 and for every graph H , there 
exists a chordal graph G such that Gr  contains an induced subgraph isomorphic to H . Since walls 
have arbitrarily large sim-width, their result immediately implies the following:

Proposition 39.  For every even integer r ≥ 2 and every integer w ≥ 1, there exists a graph G such 
that simw(G) = 1 while simw(Gr ) ≥ w. In particular, for every fixed even integer r ≥ 2, there is no 
function f  such that simw(Gr ) ≤ f (simw(G)) for all graphs G.

7. Concluding remarks and open problems

In Theorems  1, 3 and 5, we investigated the relationships between six width parameters 
(treewidth, clique-width, twin-width, mim-width, sim-width and tree-independence number) when
restricted to Kt,t-subgraph-free graphs, line graphs and Kt,t-free graphs in order to examine to what 
extent relationships between non-equivalent width parameters may change (see Fig.  2). In this way 
we also extended and generalized several known results from the literature. Moreover, in the case 
that two parameters become comparable or equivalent on one of these graph classes, we showed 
how to obtain computable functions witnessing this.

Arguably, the main unresolved problem is the (only) missing case in Fig.  2, which corresponds 
to the following question already stated in Section 1.

Open Problem 1.  Does tree-independence number dominate sim-width for the class of Kt,t-free graphs? 
In other words, is it true that every subclass of Kt,t-free graphs of bounded sim-width has bounded 
tree-independence number?

We first observe a consequence of a positive answer to Open Problem  1. If tree-independence 
number dominates sim-width for the class of Kt,t-free graphs then, in order to prove Conjecture 
13, it suffices to show that every hereditary (tw, ω)-bounded graph class has bounded sim-width. 
The question of whether every (tw, ω)-bounded graph class has bounded sim-width was first asked 
in [57]. Note also that complete bipartite graphs have sim-width 1 but are not (tw, ω)-bounded.

We now turn to possible algorithmic consequences of Theorem  6, and of its extension contingent 
to a positive answer to Open Problem  1. Computing optimal decompositions for a certain width is in 
general an NP-hard problem (see [65] and references therein). However, in some cases, there exist 
exact or approximation algorithms running in FPT or XP time parameterized by the target width. 
This is exemplified by treewidth, which admits an exact FPT algorithm [8]. Most of the time, it is 
in fact sufficient to simply obtain an approximate decomposition: we seek an algorithm that, given 
a graph of width at most k, outputs a decomposition of width at most f (k), for some computable 
function f .

It is known that rank-width admits an FPT-approximation algorithm [61], with the current 
best-known result, in terms of running time, being the following. Korhonen and Sokołowski [50] 
showed that, for fixed k, there exists an algorithm that, given an n-vertex m-edge graph G, in 
time Ok(n1+o(1)) + O(m), either decides that rw(G) > k, or outputs a branch decomposition of G
of cutrkG-width at most k. Recently, it was shown that tree-independence number admits an XP-
approximation algorithm: Dallard et al. [24] showed that, for fixed k, there exists an algorithm 
that, given an n-vertex graph G, in time 2O(k2)nO(k), either decides that tree-α(G) > k, or outputs 
a tree decomposition of G with independence number at most 8k. For other width parameters, 
such as mim-width and sim-width, it is a well-known open problem to obtain XP-approximation 
algorithms.

Open Problem 2 (See, e.g., [42,47]). Does there exist a computable function f  and an algorithm A that, 
for fixed k and given a graph G, in XP time parameterized by k, either decides that mimw(G) > k (or 
simw(G) > k), or outputs a branch decomposition of G of mim-width (or sim-width) at most f (k)?

Therefore, in contrast to algorithms on classes of bounded treewidth, clique-width or tree-
independence number, algorithms for graph problems restricted to classes of bounded mim-width 
(or sim-width) require a branch decomposition of constant mim-width (or sim-width) as part of 
26
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the input. Obtaining such branch decompositions in polynomial time has been shown possible for 
several special graph classes (see, for example, [4,16,47]).

One may also consider the problem of finding exact and approximation algorithms for computing 
optimal decompositions for a certain width parameterized by a parameter other than the target 
width. For example, Bodlaender and Kloks [10] obtained an XP algorithm for computing pathwidth 
when parameterized by the treewidth of the input graph, and it is not known whether this can be 
improved to FPT (see, e.g., [36]). Eiben et al. [30] showed that mim-width admits an exact FPT al-
gorithm parameterized by the treewidth and the maximum degree of the input graph, and an exact 
FPT algorithm parameterized by the treedepth of the input graph. Groenland et al. [36] obtained a 
polynomial-time algorithm that approximates pathwidth to within a factor of O(tw(G)

√
log tw(G)). 

Their key observation is that every graph with large pathwidth either has large treewidth or contains 
a subdivision of a large complete binary tree. This shows how the study of exact and approximation 
algorithms for computing optimal decompositions for a certain width is related to the study of 
obstructions to small width.

A straightforward consequence of Theorem  6 is the following. Here the induced biclique number
of a graph G is the largest t ∈ N such that G contains Kt,t as an induced subgraph.

Corollary 40.  There exists an XP-approximation algorithm for tree-independence number parameter-
ized by rank-width and induced biclique number.

Proof.  Let G be the input graph, and let t be the induced biclique number of G. We compute a 
branch decomposition of G of cutrkG-width at most 2 rw(G) in time 22O(rw(G))

n2 [32]. This is also a 
branch decomposition of G of mim-width less than 2 rw(G)+ 1 (see, e.g., [6, Lemma 2.4]). We then 
run the algorithm from Theorem  6 with this branch decomposition in input. It outputs, in nO(t rw(G)t )

time, a tree decomposition of G with independence number O(2rw(G)
+ t(2 rw(G) + 1)t+1). ◀

It is not immediately clear whether Corollary  40 gives a conditional improved running time 
compared to the 2O(k2)nO(k) XP-approximation algorithm parameterized by tree-independence num-
ber [24] mentioned above. So we pose the following open problem.

Open Problem 3.  For a graph G with induced biclique number t and rank-width rw(G), find an 
asymptotically tight upper bound on tree-α(G) in terms of t and rw(G).

In a similar vein, we also observe an immediate consequence of a positive answer to Open Open 
Problems  1 and 2. Suppose that Open Problem  2 has a positive answer for sim-width. That is, 
suppose that there exists an XP-approximation algorithm for sim-width parameterized by the target 
width. If, in addition, an algorithmic version of Open Problem  1 has a positive answer (i.e., suppose 
that, given a Kt,t-free graph G and a branch decomposition of G with sim-width at most k, it is 
possible to compute a tree decomposition of G with independence number at most g(t, k), for 
some computable function g , in XP time parameterized by k and t), then we can obtain an XP-
approximation algorithm for tree-independence number. Indeed, given an input graph G and an 
integer k, we simply check whether G is Kk+1,k+1-free. If not, then tree-α(G) > k. Otherwise, G is 
Kk+1,k+1-free. We now run the algorithm A from Open Problem  2. Algorithm A either decides that 
simw(G) > k, and so tree-α(G) > k, or outputs a branch decomposition of G of sim-width at most 
f (k), from which we build a tree decomposition of G with independence number at most g(k) in 
XP time parameterized by k. This would thus provide a different proof of the main result in [24], 
although one should expect worse running time and approximation factor.

Other natural problems related to Theorems  1, 3 and 5 consist of optimizing the bounding 
functions obtained therein, as those provided are most likely not optimal. A first attempt in this 
direction was made in Theorem  4, where we showed that, in fact, mimw(L(G)) equals (up to a 
multiplicative constant) bw(G), for any graph G. It would be interesting to refine the bounds for the 
sim-width of a line graph, and a starting point is to improve Proposition  28.

Open Problem 4.  Find an asymptotically optimal function f  such that simw(L(G)) ≥ f (tw(G)) for any 
graph G.
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Any attempt to solve Open Problem  4 seems to need to avoid the use of the Grid-minor theorem. 
Another problem in this direction is whether it is possible to improve the bound in Theorem  6.

Open Problem 5.  Is the exponential dependency of tree-independence number in mim-width and 
induced biclique number from Theorem  6 necessary?

In Lemma  33, we observed that 
⌈ n

6

⌉
≤ simw(L(Kn)) ≤

⌈ 2n
3

⌉
, for each n > 12. We ask to 

determine the exact value.

Open Problem 6.  Determine the exact value of simw(L(Kn)).

Note. Several results related to our paper have been announced after its submission for publication. 
First, Conjecture  13 was disproved by Chudnovsky and Trotignon [19]. Second, Abrishami et al. [2] 
proved the following special case of Open Problem  1 (incomparable with Theorem  6): every sub-
class of Kt,t-free graphs of bounded induced matching treewidth has bounded tree-independence 
number. Third, Dallard et al. [25] showed that, for every positive integer n, simw(L(Kn)) ≤

⌊ n
2

⌋
.
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