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The latest cosmological constraints on the sum of the neutrino masses depend on prior physical
assumptions about the mass spectrum. To test the accordance of cosmological and laboratory constraints in
the absence of such priors, we introduce an effective neutrino mass parameter that extends consistently to
negative values. For the ΛCDM model, we analyze data from Planck, the Atacama Cosmology Telescope,
and the Dark Energy Spectroscopic Instrument and find a 2.8–3.3σ tension with the constraints from
oscillation experiments. Motivated by recent hints of evolving dark energy, we analyze the w0wa and
mirage dark energy models, finding that they favor larger masses consistent with laboratory data,
respectively,

P
mν;eff ¼ 0.06þ0.15

−0.10 eV and
P

mν;eff ¼ 0.04þ0.15
−0.11 eV (both at 68%).

DOI: 10.1103/PhysRevD.111.063534

I. INTRODUCTION

The ability of cosmological surveys to probe the sum of
the neutrino masses [1–3] provides a unique opportunity to
evaluate cosmological models by confronting them with
laboratory constraints on this same quantity. The strongest
model-independent constraint on the neutrino mass
comes from measurements of tritium β-decay by KATRIN:
mβ < 0.45 eV (90% C.L.) [4]. If neutrinos are Majorana
particles, searches for neutrinoless double β-decay are
also sensitive to the mass scale, with the strongest limit
coming from the KamLAND-Zen experiment [5] at mββ <
0.028–0.122 eV (90%). [6] Most relevant for cosmology
are the neutrino oscillation experiments, which are sensi-
tive to the mass squared differences. Global fits to the
experimental data indicate that Δm2

21 ≡m2
2 −m2

1 ∼ 7.5 ×
10−5 eV2 and jΔm2

31j≡ jm2
3−m2

1j∼2.5×10−3 eV2 [7–11].
These set a lower limit on the sum of the three neutrino
masses, depending on the sign of Δm2

31,

X
mν ¼ m1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ Δm2
21

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ Δm2
31

q

> 0.059 eV;

if m1 < m2 < m3 (the normal ordering), or

X
mν ¼ m3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 − Δm2
31

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 − Δm2
31 þ Δm2

21

q

> 0.10 eV

if m3 < m1 < m2 (the inverted ordering).
Recent cosmological constraints are approaching or

breaching these lower limits, when assuming a standard
ΛCDM model. The strongest bounds generally result from
the combination of Planck measurements of the cosmic
microwave background (CMB) [12] and different probes of
the large-scale structure [13–15]. With the latest baryon
acoustic oscillations (BAO) and full-shape measurements
by the Dark Energy Spectroscopic Instrument (DESI)
collaboration [16–19], the limit has tightened to

P
mν <

0.071 eV (95%) [17]. Incorporating also other background
measurements, a bound of

P
mν < 0.043 eV (95%) was

obtained [20], in significant tension with the lower bounds
for both the normal and inverted orderings.
The tension with neutrino oscillations motivates the

search for alternative cosmological models. Alternative
models of dark energy are of particular interest due to
the degeneracy between the sum of neutrino masses,

P
mν,

and the dark energy equation of state, w [21–29]. Recently,
DESI reported hints of an evolving dark energy equation of
state of 2.5–3.9σ [17,30,31]. In the w0waCDM model, the
equation of state is a function of the expansion factor,
wðaÞ ¼ w0 þ wað1 − aÞ. This simple empirical model is
flexible enough to match the observational predictions for
DESI of physically motivated dark energy models [32–34].
For instance, the mirage class of dark energy models,
in which the equation of state crosses w ≈ −1 around
z ≈ 0.4 and, therefore, resembles that of a cosmological
constant, and which provide an improved fit to the DESI
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data compared to ΛCDM, can be described by wa ¼
−3.66ð1þ w0Þ [30,35]. When adopting the general
w0waCDM model, the DESI constraint on the neutrino
masses is relaxed to

P
mν < 0.195 eV (95%), which is

consistent with neutrino oscillation data.
The possibility of systematic errors must also be con-

sidered. One concern is the presence of an oscillatory resi-
dual in the best-fitting ΛCDM temperature power spectrum
from Planck [36]. Such a feature could be explained by
additional smoothing of the acoustic peaks, which is a
characteristic signature of gravitational lensing. The ano-
maly can be quantified by scaling the gravitational lensing
potential by a factor Alens, defined such that Alens ¼ 1 in the
absence of systematics or new physics [37–39]. Various
analyses have found a preference for Alens > 1 [12,39–42],
albeit with reduced significance since the latest data release
of Planck (PR4) [43,44]. Since massive neutrinos suppress
the growth of the cosmic structure and thereby the strength
of lensing, a preference for Alens > 1 implies tight upper
limits on the neutrino mass [27,40,45–48], and could even
be interpreted as

P
mν < 0 [46–48].

Nearly all cosmological analyses to date have imposed
the physical constraint,

P
mν ≥ 0, and found that the mar-

ginal posterior distribution, PðPmνÞ, peaks at
P

mν ¼ 0.
As a consequence, imposing more restrictive constraints
from neutrino oscillations leads to outcomes that are
dominated by those constraints. Indeed, imposing the
prior,

P
mν > 0.059 eV, significantly degrades the DESI

constraint to
P

mν < 0.113 eV (95%) [17]. This depend-
ence on a priori assumptions also calls into question theP

mν ≥ 0 prior. Only by relaxing this constraint can we
assess whether cosmological data are compatible with
physical neutrino masses and reveal the dependence of
the central value on the data and choice of model. This is
necessary to determine whether changes in the upper bound
are due to increased precision or shifts in the posterior,
which are otherwise easily confused.
Previously, using frequentist methods, Ref. [49] extrapo-

lated a parabolic fit to the profile likelihood curve and
estimated a minimum at

P
mν ¼ −0.05� 0.15 eV (68%)

from Planck and BAO data. From the Bayesian point of
view, Ref. [50] extrapolated the marginal posterior distri-
bution to negative values by fitting a Gaussian distribution
to PðPmνÞ and obtained

P
mν ¼ −0.026� 0.074 eV

(68%) from Planck and sloan digital sky survey BAO.
More recently, Ref. [48] extended the analysis to negative
neutrino masses by expressing the effect of neutrinos on the
CMB in terms of Alensð

P
mνÞ, finding

P
mν ¼ −0.16�

0.09 eV (68%) from Planck, the Atacama Cosmology
Telescope (ACT), and DESI. However, these approaches
cannot fully characterize the effects of

P
mν < 0, such as

the impact on the expansion history, or capture parameter
correlations independently of Alens. In this paper, we
introduce a model that consistently extends the domain
to negative masses for all observables and examine the
preference for

P
mν < 0.

II. NEGATIVE NEUTRINO MASSES

Formally, the Friedmann equations that govern the
expansion of space depend only on the neutrino masses
squared, m2

i , via expressions like

ΩνðaÞ ¼
XNν

i¼1

8GT4
ν

3πH2
0

Z
∞

0

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2m2

i =T
2
ν

p
1þ ex

dx; ð1Þ

where Nν is the number of neutrino species, Tν is the
present-day neutrino temperature, and H0 is the Hubble
constant. Only at late times, when the neutrinos become
nonrelativistic and the a2m2

i =T
2
ν term dominates, does this

expression reduce to the well-known approximation

Ων ≈
P

mν

93.14h2
: ð2Þ

The effect of Eq. (1) is to produce a greater radiation
density while neutrinos are relativistic and a greater matter
density once neutrinos become nonrelativistic. Without
attributing the effect to neutrinos, a phenomenological
term of the form Ων;effðaÞ ¼ κΩνðaÞ would behave in the
opposite way for κ < 0, reducing the radiation density at
early times and the matter density at late times. To make
contact with terrestrial constraints, we could reinterpret
such a term as an effective neutrino mass parameter,P

mν;eff ≡ 93.14h2Ων;eff [51].
We can extend this behavior beyond the Friedmann

equations to all orders in cosmological perturbation theory
by consistently replacing the neutrino energy, ϵ, with an
effective neutrino energy,

ϵeff ¼ sgnðmνÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2m2

ν=T2
ν

q
; ð3Þ

where sgn is the sign function. For instance, the familiar
first-order equations for the multipole moments, Ψl, of the
neutrino distribution function in the conformal Newtonian
gauge [52] become

Ψ̇0 ¼ −
qk
ϵeff

Ψ1 − ϕ̇
d ln f̄
d ln q

; ð4Þ

Ψ̇1 ¼
qk
3ϵeff

ðΨ0 − 2Ψ2Þ −
ϵeffk
3q

ψ
d ln f̄
d ln q

; ð5Þ

Ψ̇l ¼ qk
ð2lþ 1Þϵeff

½lΨl−1 − ðlþ 1ÞΨlþ1�; ðl ≥ 2Þ;

ð6Þ

where dots denote conformal time derivatives, ϕ and ψ are
the metric perturbations, k is the wave number, q is the
neutrino momentum, and f̄ is the unperturbed distribution
function.
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The following operational definition offers a simpler
calculation. We restrict attention to the case where all
masses are either positive or negative. For any cosmologi-
cal observable X, such as the CMB temperature power
spectrum, X ¼ CTT

l , and a set of fixed parameters, θ ¼
fωb;ωc; θs; τ; As; nsg, we define the prediction for the
effective mass,

P
mν;eff , as

X
P

mν;eff

θ ≡ X
P

mν¼0

θ þ sgn
�X

mν;eff

�

×

�
X

��Pmν;eff

��
θ − X

P
mν¼0

θ

�
; ð7Þ

where X

��Pmν;eff

��
θ is the prediction for positive neutrino

masses jmij. We implemented both the exact approach and
the extrapolation (7) in the CLASS [53,54] and Cobaya [55]
codes. The two methods agree to excellent precision, as
shown in Fig. 1 for the effect on the dark matter power
spectrum. The results presented in this paper were obtained
using (7), but we verified that this does not affect the
conclusions.
A key advantage of our approach is that one recovers

exactly the physical neutrino model for
P

mν;eff ¼P
mν ≥ 0. Moreover, we no longer need to assume a

Gaussian functional form for the marginalized posterior
distribution, nor make any assumptions about parameter
correlations. We apply our model to the latest BAO
measurements from DESI [16,18] and CMB temperature
and polarization measurements from Planck, using the
low-l Commander and SimAll likelihoods [36] and the high-l
CamSpec likelihood [43,56] based on the PR4 release. In
some cases, we also include CMB lensing measurements
based on ACT DR6 [57–59] and Planck PR4 [60]. Our
primary analysis is explicitly blind to the constraints from

neutrino oscillations. In this case, we assume a degenerate
mass spectrum with Nν ¼ 3 species and mν;eff ≡m1 ¼
m2 ¼ m3, with a uniform prior, mν;eff ∈ ½−1.5; 1.5� eV.
When we perform a combined analysis of cosmo-
logical data and laboratory constraints, we adopt
Gaussian likelihoods on Δm2

21 and jΔm2
31j, based on global

fits to the experimental data [11], and fixm1,m2, andm3 in
terms of Δm2

21; jΔm2
31j; β, and mlightest, where β is a binary

variable for the mass ordering and mlightest is the lightest
neutrino mass [61]. We then adopt a uniform prior
on mlightest ∈ ½0; 0.5� eV.

III. RESULTS

In the first instance, we assume ΛCDM and only use
Planck CMB temperature and polarization data. The
resulting constraints on

P
mν;eff and the Hubble constant,

H0, are shown in Fig. 2, where the colors indicate the
amplitude of matter fluctuations, σ8. The results are
consistent with the lower bounds from neutrino oscilla-
tions, which are shown as vertical dotted lines, at the 1.9σ
level for the normal ordering and at 2.1σ for the inverted
ordering [62]. The figure clearly demonstrates the geo-
metric degeneracy between

P
mν;eff and H0. This degen-

eracy can be broken with measurements of the expansion
history. We show two such measurements. In both cases,
the preference for

P
mν;eff < 0 increases compared to

the CMB-only case. The first is the Supernova H0
for the Equation of State (SH0ES) measurement of

FIG. 1. The effects of positive and negative effective neutrino
masses on the dark matter power spectrum at z ¼ 0. We show
both the exact linear theory calculation for 0.15 eV (solid red) and
−0.15 eV (solid black), as well as the linear extrapolation (7)
in dashed black, which agrees with the exact calculation to
within 0.1%.

FIG. 2. Constraints on the effective neutrino mass,
P

mν;eff , the
Hubble constant, H0, and the amplitude of matter fluctuations,
σ8, from Planck temperature and polarization data [36,43,56],
assuming ΛCDM. The degeneracy between these parameters can
be broken with measurements of the expansion history. Shown
are the �1σ bounds from DESI BAO, combined with a big bang
nucleosynthesis prior on Ωbh2 [16,18], and the SH0ES meas-
urement ofH0 from the local distance ladder [64]. The unphysical
regime,

P
mν;eff < 0, is grey, and the dotted lines indicate the

lower bounds from neutrino oscillations for the normal ordering
(NO) and inverted ordering (IO).
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H0 ¼ 73.04� 1.04 km s−1Mpc−1 from Cepheid variable
stars and type 1a supernovae [64]. Reconciling the SH0ES
measurement with Planck requires a negative effective
neutrino mass of

P
mν;eff ¼ −0.5� 0.1 eV and values of

σ8 ¼ 0.92� 0.02 that are large compared to clustering
measurements [15,65–68].
For illustrative purposes, we also show the determination

ofH0 ¼ 68.53� 0.80 kms−1Mpc−1 from DESI BAO com-
bined with a big bang nucleosynthesis prior on Ωbh2 [17].
When performing a formal analysis of Planck CMB
temperature and polarization and DESI BAO data, we find
that the tension with the lower bound from neutrino
oscillations increases from 1.9σ to 2.7σ for the normal
ordering and from 2.1σ to 3.2σ for the inverted ordering.
This trend continues with the addition of CMB lensing
measurements from Planck and ACT DR6 [57–60],
increasing the tension to 2.8σ and 3.3σ. The resulting
marginalized posterior obtained from Planck + ACTþ
DESI is shown as a black line in Fig. 3(a). As a point of
reference, we compare our results with those obtained for a
Gaussian extrapolation of PðPmνÞ to

P
mν < 0, as used

previously in [47,50]. We find that the Gaussian procedure
significantly underestimates the preference for negative
effective neutrino masses, as can be seen from the dotted
line in Fig. 3(a). The Gaussian fit yields a central value ofP

mν;eff ¼ −0.041� 0.052 eV (68%), compared to the
full posterior mean of

P
mν;eff ¼ −0.125þ0.058

−0.070 eV (68%).
Motivated by the hint of evolving dark energy reported

by DESI [17], we repeat the analysis for the w0waCDM
model for Planck, ACT, and DESI data. We obtain a
posterior mean of

P
mν;eff ¼ 0.06þ0.15

−0.10 eV (68%) and an
upper bound of

P
mν;eff < 0.24 eV (95%). Hence, the

data are now fully consistent with the lower bounds
from neutrino oscillations. The full posterior is shown
as a red line in Fig. 3(a). Interestingly, the reduction

in tension is driven not just by an increase in uncertainty,
from σðPmν;effÞ ¼ 0.07 eV for ΛCDM to σðPmν;effÞ ¼
0.13 eV, but primarily by a large shift in the central value of
ΔðPmν;effÞ ¼ 0.24 eV. This shift can only be quantified
by allowing negative effective neutrino masses. A similar
shift is observed in the CMB-only case, in the absence
of DESI BAO data. We also consider the mirage class of
dark energy models and show the resulting posterior as a
blue line. We obtain

P
mν;eff ¼ 0.04þ0.15

−0.11 eV (68%) and an
upper bound of

P
mν;eff < 0.24 eV (95%), similar to the

w0waCDM case. In Fig. 3(b), we show the 68% and
95% constraints in the plane of

P
mν;eff and wa. The dark

energy equation-of-state parameters are degenerate with the
sum of neutrino masses, with larger neutrino masses
requiring wa < 0. We note that an evolving dark energy
equation of state appears to be necessary. Within the
wCDM model, with a constant equation of state, w, we
obtain w ¼ −1.01� 0.08, consistent with ΛCDM, andP

mν;eff ¼ −0.12� 0.10 eV (68%).
To understand these results, we show the residuals of the

CMB temperature power spectrum, relative to the best-
fitting ΛCDM model with physical neutrino masses,
obtained from a combined analysis of cosmological data
(Planck + ACTþ DESI) and laboratory constraints, in
Fig. 4(a). There is a clear oscillatory feature that gives rise
to a preference for Alens > 1. The same oscillations can also
be described by abandoning the laboratory constraints and
allowing

P
mν;eff < 0, since negative effective neutrino

masses enhance the growth of density perturbations and
boost the lensing potential. Gravitational lensing is sim-
ilarly enhanced for the best-fitting dark energy models with
physical neutrino masses (both for w0wa and mirage dark
energy), obtained from a combined analysis of cosmo-
logical data and laboratory constraints. The preference
for these models is not just driven by the CMB, but also

FIG. 3. (a) Posterior distribution of
P

mν;eff from Planck, ACT, and DESI data, for ΛCDM, w0waCDM, and mirage dark energy. The
black dotted line is a Gaussian fit to the ΛCDM posterior restricted to

P
mν;eff ≥ 0, normalized by the same Pmax. (b) The 68% and 95%

constraints on
P

mν;eff and wa for the same models and data.
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by the expansion history. Figure 4(b) shows the isotropic
BAO distance measurements from DESI, along with the
best-fitting ΛCDM model with negative neutrino masses
(black) and the best-fitting models with physical neutrino
masses for ΛCDM (grey dashed), w0wa (red), and mirage
dark energy (blue). Within ΛCDM, adopting

P
mν;eff < 0

provides a better fit to the BAO data, especially at z < 1.
The evolving dark energy models fit the data even better,
but with one or two additional parameters. The χ2 for these
four models are given in Table I, confirming that negative
values of effective neutrino masses and evolving dark
energy both improve the fit to the BAO data, the high-l
CMB temperature data, and the low-l CMB polariza-
tion data.
Finally, we consider the impact of constraints on the

expansion history from type 1a supernovae. The inclusion
of supernovae helps to constrain the dark energy param-
eters by breaking the degeneracy between w0 and wa [17],
but also leads to weaker constraints on

P
mν [47]. We con-

sider three different datasets: Union-3 [69], Dark Energy
Survey (DES) Year 5 [70], and Pantheon+ [71,72]. These

datasets have many supernovae in common but differ in
their treatment of systematic errors. We show the 68%
constraints on

P
mν;eff from Planck + ACTþ DESI alone

and combined with each of the three supernovae datasets
in Fig. 5. The inclusion of supernovae helps to constrain
H0, which for ΛCDM shifts

P
mν;eff to slightly larger

values along the geometric degeneracy. Nevertheless, the
tension with the lower bound for the normal ordering
remains at 2.4σ (Union-3), 2.0σ (DES-Y5), and 2.3σ
(Pantheon+). For w0waCDM, the values of

P
mν;eff are

reduced, but remain compatible with the lower bound
for the normal ordering. In general, the greater the pull
away from ΛCDM (with w0 ¼ −1 and wa ¼ 0), the greater
the shift in

P
mν;eff between ΛCDM and w0waCDM.

Hence, the shift is most pronounced for Union-3

TABLE I. Values of χ2 for the best-fitting ΛCDM model with
physical neutrino masses, together with the Δχ2 for the best-
fitting ΛCDM model with negative effective neutrino masses and
the best-fitting w0wa and mirage DE models with physical
neutrino masses.

High-l CMB Low-l CMB CMB

BAO TT TEEE TT EE Lensing

ΛCDM 14.93 6419.56 4121.90 22.73 398.27 19.88P
mν;eff < 0 −2.13 −2.09 −0.25 þ0.55 −2.55 þ0.17

w0wa DE −4.13 −3.13 þ0.47 þ1.56 −2.57 −0.15
Mirage DE −3.28 −2.71 þ0.65 þ1.23 −2.57 −0.19

FIG. 4. (a) Residuals of the best-fitting ΛCDM temperature power spectrum with physical neutrino masses, together with the best-
fitting ΛCDM model with

P
mν;eff < 0, and the best-fitting w0waCDM and mirage models with physical neutrino masses. (b) DESI

measurements of the angle-averaged distance ratio,DV=rd, arbitrarily rescaled by a factor of z2=3 for clarity, together with the predictions
for the best-fitting ΛCDM, w0waCDM, and mirage models with physical neutrino masses and the best-fitting ΛCDM model
with

P
mν;eff < 0.

FIG. 5. The 68% constraints on the effective neutrino mass,P
mν;eff , from CMB/DESI (Planck + ACTþ DESI) alone

and combined with supernovae from Union-3, DES-Y5, and
Pantheon+.

NEGATIVE NEUTRINO MASSES AS A MIRAGE OF DARK … PHYS. REV. D 111, 063534 (2025)

063534-5



(w0 ¼ −0.69þ0.10
−0.12 , wa ¼ −1.04þ0.54

−0.44 ) and least significant
for Pantheon+ (w0 ¼ −0.866þ0.062

−0.069 , wa ¼ −0.43þ0.38
−0.30 ). This

confirms that a large shift away from ΛCDM is needed to
reconcile cosmology with positive neutrino masses satisfy-
ing the constraints from neutrino oscillations. For the
mirage dark energy model, the results with supernovae
are remarkably consistent with Planck + ACTþ DESI
alone, but with greatly reduced uncertainty. Moreover, once
combined with supernovae, mirage dark energy favors the
largest neutrino masses, which are always compatible with
the lower bound for the normal ordering [73].

IV. CONCLUSION

Cosmological constraints on the neutrino mass sum,P
mν, are becoming increasingly sensitive to prior assump-

tions about the mass spectrum. In this paper, we showed
how the domain of an effective neutrino mass parameter,P

mν;eff , can be consistently extended to negative values.
By abandoning the physical constraint,

P
mν ≥ 0, and

adopting an effective mass parameter with a broad prior, we
can assess whether cosmological data are compatible with
laboratory constraints, determine the sensitivity of the data
independently of the prior, and reveal how the central value
depends on the data and choice of model. Analyzing
cosmological data from Planck, ACT, and DESI in the
context of the ΛCDM model, we found a preference for
negative masses and a tension of 2.8 − 3.3σ with the lower
bounds on

P
mν that apply in the case of positive neutrino

masses satisfying the constraints from neutrino oscillations.
We showed that adopting an evolving dark energy

equation of state, combined with physical neutrino masses,
led to similar predictions as the ΛCDM model with

P
mν;eff < 0. In particular, both models predicted addi-

tional gravitational lensing of the CMB. As a result,
evolving dark energy models can address both the prefer-
ence for additional CMB lensing and the tension with
neutrino oscillations. The mirage class of dark energy
models appeared promising [30,35], favoring larger neu-
trino masses compatible with laboratory data, with similar
uncertainty as ΛCDM once combined with supernovae
data. The lower bounds from neutrino oscillations are
saturated in the case where the lightest neutrino is massless.
Measurement of a nonzero lightest neutrino mass by
KATRIN [4], Project 8 [75], or from neutrinoless dou-
ble-β decay [5,76,77] would further challenge the assump-
tions of a standard cosmological evolution and cosmic
neutrino background.
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