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Non-Functional Requirements (NFRs) play a critical role in driving self-adaptation in software systems. In Self-Adaptive Systems (SAS),
satisfying multiple NFRs simultaneously introduces significant complexity, as these requirements often conflict—improving one NFR
can negatively impact others. Addressing such trade-offs becomes even more challenging due to the varying degrees of observability
of NFRs, with some being fully observable and others only partially observable. Traditional approaches to SAS decision-making, such
as those based on Markov Decision Processes (MDPs), often assume homogeneous observability, which limits their ability to address
these challenges effectively.

We argue that treating NFRs as having mixed observability—where some are fully observable and others are partially observ-
able—enables more effective decision-making. How can self-adaptive systems model and resolve trade-offs among NFRs with mixed
observability to achieve better outcomes?

This paper introduces SPECTRA, a multi-objective decision framework based on MDPs. SPECTRA addresses trade-offs among
NFRs by leveraging a multi-objective Mixed Observability Markov Decision Process (MOMDP), which models and handles the varying
observability of NFRs effectively. The approach is evaluated using scenarios from MirrorNet, a realistic Remote Data Mirroring
(RDM) system utilizing Software-Defined Networking (SDN). Results show that SPECTRA achieves higher utility values, faster policy
planning, and more effective trade-offs compared to existing approaches.
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1 INTRODUCTION

Self-adaptive systems (SAS) must adapt to satisfy both functional and non-functional requirements (NFRs) in dynamically
changing environments, where trade-offs are often unavoidable [50]. For instance, encrypting data streams may ensure
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confidentiality but can degrade performance, while implementing a heartbeat protocol to monitor availability may
reduce bandwidth efficiency with excessive usage [10]. Managing these trade-offs in SAS is inherently complex,
requiring context-specific configurations and careful balancing to accommodate dynamic environmental changes [50].
Furthermore, SAS must navigate uncertainties arising from external factors and internal system intricacies [26].

Adaptation decisions in SAS should be guided by NFR priorities [52]. Without clear prioritization, resolving conflicts
between competing objectives becomes challenging. Stakeholders’ preferences and measurable metrics, such as response
time for performance or resource consumption for efficiency, play a crucial role in evaluating NFR satisfaction [36].
Ideally, the decision-making agent requires complete information about the environment and NFR satisfaction to make
informed decisions. However, full observability is not always feasible 1, necessitating estimation from incomplete data,
leading to partial observability.

We argue that many SAS applications exhibit mixed observability, where some NFRs are fully observable while
others are only partially observable. For example, an autonomous vehicle (AV) fully observes its internal states, such
as speed and GPS location, but can only partially infer the intentions of other drivers and pedestrians. Here, safety
becomes a partially observable NFR as it depends on limited external data. Similarly, a smart home system can monitor
usage patterns for lighting and heating but cannot fully understand occupants’ emotional states or preferences, making
usability a partially observable NFR. These mixed observability scenarios are exemplified in the motivating example
described in Section 2, concerning a MirrorNet system [32, 53].

Existing SAS solutions often model decision-making using Markov models, such as Markov Decision Processes
(MDPs), which are well-suited for stochastic environments with uncertainty [7, 23]. Classical MDPs are used when NFR
satisfaction is fully observable [47], while Partially Observable MDPs (POMDPs) are employed when full observability is
infeasible [25, 43, 52]. However, applying existing MDP or POMDP techniques to environments with mixed observable
NFRs may lead to suboptimal outcomes or inefficiencies.

Observability plays a fundamental role in determining how an SAS perceives and interacts with its environment, di-
rectly influencing the complexity of decision-making and trade-off resolution. The challenges outlined above—balancing
fully and partially observable NFRs, addressing mixed observability without unnecessary complexity, and ensuring
explicit representation of NFR priorities—underscore the limitations of existing approaches. Addressing these challenges
requires a novel framework that can dynamically manage trade-offs, optimize decision-making under uncertainty, and
accommodate diverse observability setups.

This paper makes the following novel contributions:
Firstly, SPECTRA, a framework for Mixed Observability: we propose a framework, SPECTRA, to address

heterogeneous setups of fully, partially, and mixed observable NFRs. SPECTRA helps designers and engineers choose
suitable Markov models based on NFR observability and uncertainty.

Secondly, a MR-MOMDP Implementation: we implement a Multi-Reward Mixed Observable Markov Decision
Process (MR-MOMDP) to handle environments with mixed observability and multiple objectives. The implementation,
built as a Python extension to the POMDPy framework [12], adds support for multi-objective modeling and policy
generation.

Thirdly, a comprehensive Evaluation: the framework is evaluated in a Remote Data Mirroring (RDM) system
[32, 53]. Results demonstrate SPECTRA’s ability to dynamically control trade-offs in SAS with mixed observability,

1Observability, from control theory, refers to the extent to which the internal state of a system can be inferred from its outputs [29].
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achieving superior utility and performance. To encourage adoption, we provide the implementation and artifacts for
experimentation and further research.

The remainder of this paper is organized as follows: Section 2 introduces a motivating scenario. Section 3 provides an
overview of Markov models. Section 4 details the MR-MOMDP concept, and Section 5 presents the SPECTRA framework.
Section 6 discusses the software implementation, while Section 7 evaluates our approach. Section 8 addresses threats
to validity, and Section 9 explores related work. Finally, Section 10 concludes the paper and outlines future research
directions.

2 MOTIVATING SCENARIO

Consider MirrorNet, a hypothetical Remote Data Mirroring (RDM) system leveraging Software-Defined Networking
(SDN) [34] to enable seamless network topology changes without hardware adjustments. RDM is a reliable approach
for failure management, creating an identical copy of data from a primary storage system at a remote location over
a network connection. It efficiently replicates and distributes data while ensuring its integrity and freedom from
corruption [32]. The primary goals of the RDMMirrorNet are to ensure data redundancy, enable disaster recovery,
and maintain business continuity.

Fig. 1. MirrorNet Architecture.

As shown in Figure 1, MirrorNet comprises vital components, such as 1) the primary system, which is the primary data
source that requires mirroring. This can be a storage device, a server, or even an entire data center; 2) remote systems
or mirrors are locations where mirrored data is stored and are typically geographically separated from the primary
system to minimize risks from regional disasters; 3) mirroring protocols that replicate data from the primary system to
the remote system continuously or periodically, synchronously or asynchronously. And 4) a network infrastructure
provides connections for primary and secondary systems, which can involve different types of wired and wireless
networks with varying characteristics.

To establish a network of mirrors and efficiently distribute data, MirrorNet employs two dynamic topologies:
Minimum Spanning Tree (MST) and Redundant Topology (RT). Figure 2 illustrates these topologies, featuring 11
nodes comprising a primary system and 10 mirrors. The MST topology (Figure 2a) minimizes the number of active
links required to connect all nodes without cycles, reducing bandwidth usage and operating costs. However, MST is
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(a) MST Topology (b) RT Topology

Fig. 2. Two topologies on MirrorNet

susceptible to network failure if a single link fails. In contrast, the RT topology (Figure 2b) introduces additional active
links to provide alternate paths, enhancing reliability and fault tolerance. This improvement, however, comes at the
cost of increased bandwidth consumption and higher operating expenses due to additional hardware and maintenance.

MirrorNet seeks to balance improved performance at lower costs (i.e., efficiency) with enhanced reliability, even in
scenarios involving attacks or anomalies. Its goal is to satisfy the non-functional requirements (NFRs) of minimizing
costs (MC), maximizing performance (MP), and maximizing reliability (MR), while adapting to uncertain conditions such
as link failures and fluctuating bandwidth [24, 32]. To meet these NFRs, the network dynamically adapts by switching
between the MST and RT topologies based on the prevailing conditions.

2.1 Mixed Observability in MirrorNet

The three NFRs that constitute MirroNet objectives have different observability. Performance (NFR: MP) can be fully
observed based on the writing time, which represents the duration required to copy data to all mirrors, and in this
aspect, both MST and RT are comparable. Cost efficiency (NFR: MC) can be fully observed by the total bandwidth
consumption, which significantly impacts costs. On the other hand, active links and connected mirror nodes do not
guarantee network reliability (NFR: MR) because security threats and failures can occur at all layers of RDM, involving
various hardware and software components. Additionally, Intrusion Detection System (IDS) sensors have limitations in
detecting and mitigating all types of attacks and failures. Nevertheless, we can partially observe reliability through
probability-based metrics [46] such that higher reliability can be observed when there is a greater number of active
network links and a lower severity level of attacks.

2.2 Uncertainty in MirrorNet

MirrorNet has various sources of uncertainty, some of which can be modeled using MDPs. Firstly, not all Non-Functional
Requirements (NFRs) can be fully observed; only the metrics for MP and MC are completely measurable. In contrast,
the satisfaction level for MR can only be estimated through a probabilistic metrics approach. This state observation
uncertainties are modeled using the observation 𝑂 (𝑠′, 𝑎, 𝑜) detailed in Section 4 and 5.

Secondly, the switching between MST and RT topologies, or vice versa, introduces stochastic effects [24]. These
effects, which influence the state representing satisfaction levels of the NFRs in MirrorNet, are shaped by inherent
trade-offs that guide decision-making. While the RT topology offers superior reliability, it comes with higher costs and
reduced performance. Conversely, the MST topology emphasizes improved performance and lower costs, often at the
expense of system reliability. These stochastic effects are captured and analyzed using the transition function 𝑇 (𝑠, 𝑎, 𝑠′),
as detailed in Section 4 and 5.
Manuscript submitted to ACM
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3 BACKGROUND

MDPs have become a popular mathematical framework for modeling and solving decision-making problems in various
domains, including wireless sensor networks, robotics, and resource allocation [1]. As previously mentioned, the key
advantage of MDPs is their ability to handle non-deterministic environments, where the outcome of an action is not
always predictable [45]. MirrorNet entails Markov property which states that the future state of the system depends
not only on the current state but also on the actions taken by the decision-maker.

In the following sections, we provide a brief overview of MDP, POMDP, and MOMDP, as well as MR-POMDP, which
are the foundational concepts of this research.

3.1 MDP, POMDP, and MOMDP

The Markov Decision Process (MDP) [45] is a mathematical framework employed in decision-making, structured as a
series of states, actions, and rewards.

The standard MDPs are specifically designed for scenarios where all states are fully observable. At each timestep, the
agent determines its current state and selects an action, which results in a reward based on the action taken and the
resulting state change. The objective of an MDP is to identify the optimal policy, which specifies the best action for
each state to maximize the total expected rewards over time.

The Partially Observable Markov Decision Process (POMDP) [55] is an extension of the MDP where the state of
the system cannot be fully observed or partially observable. The agent has to rely on noisy, incomplete or partial
observations to infer the current state. Partial observations are caused by sensor limitations, environmental noise and
disturbance, incomplete sensing range, complexity of the state, and so on. Partial observability can be either intrinsic
attributed to the innate nature of the NFR and the problem where observability is difficult (e.g., reliability [46], emotion,
satisfaction, etc.), or extrinsic, where the environment (e.g., sensor inaccuracy and other technical constraints) makes it
difficult to fully measure NFR metrics, despite them being actually fully observable by nature (e.g., network security
[46]). Unlike MDP, which assumes full observability of states, POMDP deals with partial observability using belief
states. A belief state is a probability distribution over all possible states in the environment. It quantifies the agent’s
belief about the likelihood of the system being in each of those states. This makes POMDP more challenging because it
has to find an optimal policy with an uncertain actual state of the system, relying on partial observations.

The Mixed Observable Markov Decision Process (MOMDP) [41] framework generalizes POMDP by employing a
hybrid state representation that combines fully observable and partially observable states. Unlike POMDP, where all
states are partially observable, MOMDP distinguishes states that can be directly observed with certainty from states
that can only be inferred through partial observation. This state partitioning benefits the agent by taking advantage of
the certainty of fully observable states while focusing computational resources on handling the uncertainty associated
with partially observable states.

The multi-reward (MR) version of MDP, POMDP, and MOMDP employs vector rewards instead of scalar rewards.
The vector reward dimensions represent the number of objectives (i.e., NFRs to satisfy). Fig. 3 illustrates MR-MDP,
MR-POMDP, and MR-POMDP with vector rewards for a three-objectives problem. MR-MDPs operate in fully observable
settings, MR-POMDPs handle partial observability of states by incorporating an observation component into the model,
and MR-MOMDPs deal with mixed observability that balances complexity by separating states into fully observable
and partially observable states, all while addressing multiple reward objectives. We discuss more on MR-MOMDP in
Section 4, and MR-POMDP in Section 3.2 below.
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Fig. 3. Schematic diagram of MR-MDP, MR-POMDP, and MR-MOMDP model. MR-MDP is fully observable, MR-POMDP addresses
partial observability by adding observation handling, and MR-MOMDP separates fully observable and partially observable states.

3.2 Multi-Reward Partially Observable Markov Decision Process (MR-POMDP)

An MR-POMDP [48, 56] model is a tuple {𝑆,𝐴,Ω,𝑇 ,𝑂, 𝑅,𝛾} where 𝑆 represents the set of discrete states of the environ-
ment which are not directly observable to the agent; 𝐴 denotes a finite set of all possible actions that the agent can
take; Ω represents the set of discrete observations that the agent can receive; 𝑇 (𝑠, 𝑎, 𝑠′) is the transition function that
defines state-to-state transition probabilities; 𝑂 (𝑠′, 𝑎, 𝑜) is observation function that generates observation outcome
probabilities; 𝑅(𝑠, 𝑎) is the reward function defining the reward vector given after doing an action 𝑎 in the state 𝑠 , given
by 𝑅(𝑠, 𝑎) = [𝑟1, . . . , 𝑟𝑘 ], where 𝑘 is the number of objectives; and 𝛾 is the discount factor, ranges from 0 to 1, used to
prioritize immediate rewards over future rewards.

Since an agent in MR-POMDP cannot fully observe the true state, it maintains a belief state, denoted as 𝑏, a probability
distribution over all possible states, representing its current knowledge and uncertainty about the environment. The
belief state is updated based on the agent’s actions and observations using Bayes’ rule.

At each timestep, the agent selects an action 𝑎 based on its belief state 𝑏 to move from the current state 𝑠 to the next
state 𝑠′. The next state 𝑠′ is given by the transition function𝑇 (𝑠, 𝑎, 𝑠′) that specifies the probability distribution over the
next state 𝑠′ given the current state 𝑠 and action 𝑎. The agent receives an immediate reward defined by reward function
𝑅(𝑠, 𝑎) for doing action 𝑎 in state 𝑠 . After reaching new state 𝑠′, the environment generates new observations 𝑜 ∈ Ω
from the environment. The outcome of the observing 𝑜 is given by𝑂 (𝑠′, 𝑎, 𝑜) = 𝑝 (𝑜 |𝑠′, 𝑎) for 𝑠′ ∈ 𝑆 and 𝑎 ∈ 𝐴. Then the
agent uses these observations to update its belief state in state 𝑠′ using Equation 1. The updated belief state for the next
state 𝑠′ is denoted as 𝑏′ (𝑠′).

𝑏′ (𝑠′) = 𝑂 (𝑠′, 𝑎, 𝑜)∑𝑠∈𝑆 𝑇 (𝑠, 𝑎, 𝑠′)𝑏 (𝑠)
𝑝 (𝑜 |𝑏, 𝑎) , (1)

where 𝑝 (𝑜 |𝑏, 𝑎) = ∑
𝑠′∈𝑆 𝑂 (𝑠′, 𝑎, 𝑜)

∑
𝑠∈𝑆 𝑇 (𝑠, 𝑎, 𝑠′)𝑏 (𝑠) is the normalisation constant that ensures that 𝑏′ (𝑠′) sums to 1

over all 𝑠′.
In standard MDPs, the value function quantifies the expected cumulative reward an agent can achieve by following a

particular policy starting from a given initial belief state. In contrast, MR-POMDP employs vector rewards, necessitating
the use of a scalarized value function using a weight vector. An MR-POMDP policy, denoted as 𝜋 (𝑏,𝑤), takes the belief
state 𝑏 ∈ 𝐵 and weight vector𝑤 as input and returns the action 𝑎 ∈ 𝐴 to be executed by the agent. The agent’s goal
in MR-POMDP is to find an optimal policy 𝜋∗ that maximizes its scalarized value function 𝑉 ∗ where 𝑉 ∗ is defined in
Equation 2 and satisfies the Bellman optimality equation.
Manuscript submitted to ACM
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𝑉 ∗ (𝑏,𝑤) = max
𝑎∈𝐴

[∑︁
𝑠∈𝑆

𝑅(𝑠, 𝑎).𝑤 .𝑏 (𝑠) + 𝛾
∑︁
𝑜∈Ω

𝑝 (𝑜 |𝑏, 𝑎)𝑉 ∗ (𝑏′,𝑤)
]

(2)

𝑉 ∗ can be approximated by iterating a number of stages where a value function 𝑉𝑛 at stage 𝑛 is parameterized by a
finite set of 𝛼-matrices Θ𝑛 = {𝛼𝑖𝑛}, 𝑖 = 1, . . . , |𝑉𝑛 | [57]. Each 𝛼-matrix 𝛼𝑛 ∈ Θ𝑛 is associated with an action 𝑎. It comes
with |𝑆 | × 𝑘 dimension where 𝑘 is the number of objectives, as in Equation 3. Each row represents a vector value for
each state 𝑠 , and each column corresponds to a different objective 𝑘 .

𝛼𝑛 =



𝑂𝑏 𝑗1 . . . 𝑂𝑏 𝑗𝑘

𝑉 (𝑠1)1 . . . 𝑉 (𝑠1)𝑘 ‘
.
.
.

. . .
.
.
.

𝑉 (𝑠 𝑗 )1 . . . 𝑉 (𝑠 𝑗 )𝑘


, (3)

where 𝑉 (𝑠 𝑗 )𝑘 , 𝑠 ∈ 𝑆, 𝑘 ≥ 1, 𝑗 = 1, . . . , |𝑆 |, is the value of state 𝑠 𝑗 under 𝑘-th objective.
The value function of a belief 𝑏 at stage 𝑛, denoted as 𝑉𝑛 (𝑏,𝑤), is the inner product of belief 𝑏 with the 𝛼-matrix

𝛼𝑛 ∈ Θ𝑛 and weight vector𝑤 given by Equation 4:

𝑉𝑛 (𝑏,𝑤) = max
𝛼𝑛∈Θ𝑛

𝑏.𝛼𝑛 .𝑤 (4)

A point-based solver uses approximate backups to calculate the optimal 𝛼-matrix for a selected set 𝐵 of sampled
belief points. A point-based backup [48] is started by determining the back-projection 𝑔𝑎,𝑜

𝑖
of each next-stage value

matrix 𝛼𝑖 ∈ Θ𝑛 for every action 𝑎 and observation 𝑜 , given by Equation 5.

𝑔
𝑎,𝑜
𝑖

=
∑︁
𝑠′∈𝑆

𝑂 (𝑎, 𝑠′, 𝑜)𝑇 (𝑠, 𝑎, 𝑠′)𝛼𝑖 (𝑠′) (5)

Then, for each 𝑏 ∈ 𝐵, the back-projection matrix 𝑔𝑎,𝑜 is used to construct a new set of 𝛼-matrices, given by Equation 6
where 𝑟𝑎 is a rewards matrix for performing action 𝑎 in every state. Each new 𝛼-matrix 𝛼𝑎

𝑛+1 corresponds to an action
𝑎 ∈ 𝐴, so in total, there will be |𝐴| number of new 𝛼-matrices.

𝛼𝑎𝑛+1 = 𝑟
𝑎 + 𝛾

∑︁
𝑜∈Ω

argmax
𝑔𝑎,𝑜

𝑏.𝑔𝑎,𝑜 .𝑤 (6)

Finally, the new optimal 𝛼-matrix for 𝑏, denoted as 𝛼𝑏,𝑎
𝑛+1, is the 𝛼

𝑎
𝑛+1 that maximises 𝑉𝑛+1 (𝑏,𝑤) (cf. Eq. 4):

𝛼
𝑏,𝑎
𝑛+1 = argmax

𝛼𝑎
𝑛+1

𝑏.𝛼𝑎𝑛+1 .𝑤 (7)

Given a belief 𝑏 and weight vector𝑤 , a policy 𝜋 (𝑏,𝑤) at a particular stage 𝑛 + 1 is defined by choosing an action 𝑎
that corresponds to the 𝛼-matrix 𝛼𝑏,𝑎

𝑛+1.
Expanding upon the foundational concepts, in Section 4, we present our proposed approach of MR-MOMDP that

deals with the mixed observability of the NFRs along with modeling of the individual priorities of NFRs to support the
decision-making of SAS.

Manuscript submitted to ACM



8 Hargyo T.N. Ignatius, Huma Samin, Rami Bahsoon, and Nelly Bencomo

4 THE APPROACH: MULTI-REWARD MIXED OBSERVABLE MARKOV DECISION PROCESS
(MR-MOMDP)

Many real-world systems contain a mix of fully and partially observable state variables. In robotics, for instance, a robot
might have complete information about its battery level (fully observable) but only partial knowledge of its surrounding
obstacles (partially observable). Similarly, not all NFR satisfaction levels in various SAS domains are fully observable.

Solving mixed observability problems with POMDP is not efficient due to its inability to exploit the structure
inherent in mixed observability. POMDP treats all variables as partially observable, requiring the computation of a
belief state (i.e., a probability distribution) over the entire state space. In contrast, MOMDP differentiates between fully
and partially observable state variables. In MOMDP, the belief state is only maintained for the partially observable
variables, which significantly reduces its dimensionality and simplifies computational complexity [41]. For problems
with mixed observability, POMDP solvers perform redundant computations, which can increase time and memory
requirements.

POMDPs often become computationally intractable for large-scale problems involving numerous state variables (i.e.,
the curse of dimensionality) [41]. MOMDPs, however, remain computationally manageable by focusing resources on
the uncertain aspects of the system.

In the following sections, we introduce the MR-MOMDP model, which shares several attributes with the MR-POMDP
model, and discuss the OLSAR solver, which requires modifications in its implementation to accommodate the specific
characteristics of the MR-MOMDP model.

4.1 Model

As we mentioned earlier, MOMDP [41] is a type of POMDP where the environment includes states fully observed by
the agent and partially observable states. Similar to MR-POMDP, our proposed MR-MOMDP utilizes a reward vector
in which each axis component of the reward vector reflects a goal (e.g., NFR satisfaction level). The MR-MOMDP
is defined as a tuple {𝑋,𝑌,𝐴,Ω, 𝑏,𝑇𝑥 ,𝑇𝑦,𝑂, 𝑅,𝛾 }. The set 𝑋 contains fully observable states 𝑥 ∈ 𝑋 , while the set 𝑌
contains partially observable states 𝑦 ∈ 𝑌 . A complete system state is represented by a tuple (𝑥,𝑦), so the state space is
factored as 𝑆 = 𝑋 × 𝑌 . To transition from a start state (𝑥,𝑦) to an end state (𝑥 ′, 𝑦′), the agent takes an action 𝑎, and the
value of 𝑥 ′ is determined by the transition function 𝑇𝑥 (𝑥,𝑦, 𝑎, 𝑥 ′) = 𝑝 (𝑥 ′ |𝑥,𝑦, 𝑎), while the value of 𝑦′ is determined by
the transition function 𝑇𝑦 (𝑥,𝑦, 𝑎, 𝑥 ′, 𝑦′) = 𝑝 (𝑦′ |𝑥,𝑦, 𝑎, 𝑥 ′). The remaining components of the MR-MOMDP are the same
as those in the MR-POMDP, including the set of observations Ω, the observation function𝑂 , the vector reward function
𝑅, and 𝛾 is the discount factor with a real value ∈ [0, 1]. The similarities and differences between the components of the
MR-MOMDP and MR-POMDP models are illustrated in Figure 3.

By decomposing the state space into fully and partially observable states, expressing the belief space 𝐵 in a factorized
manner becomes feasible, reducing its high dimensionality [41]. As a result, any belief 𝑏 in MR-MOMDP regarding
the complete system state 𝑠 = (𝑥,𝑦) can be represented as (𝑥, 𝑏𝑦), where 𝑏𝑦 ∈ 𝐵𝑦 denotes the belief concerning the
partially observable state 𝑦 and 𝐵𝑦 denotes the space of all beliefs on the partially observable state variable 𝑦. Each
𝐵𝑦 is associated with the fully observable state 𝑥 , denoted as 𝐵𝑦 (𝑥). Therefore, as 𝐵 is a union of 𝐵𝑦 (𝑥) for 𝑥 ∈ 𝑋 , 𝐵
possesses |𝑋 | × |𝑌 | dimensions, and each 𝐵𝑦 (𝑥) has |𝑌 | dimensions only, where |𝑋 | and |𝑌 | indicate the number of fully
observable and partially observable states in 𝑋 and 𝑌 , respectively.
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Unlike in an MR-POMDP, each fully observable state 𝑥 in MR-MOMDP maintains its 𝛼-matrices set, denoted as
Θ𝑦 (𝑥), defined over 𝐵𝑦 (𝑥). This approach divides the belief space into smaller subspaces that are easier to manage and
analyze, making it more efficient than representing the whole belief space as one complex entity [41].

As mentioned earlier in Section 3.2, an MR-POMDP policy is represented as a value function𝑉𝑛 (𝑏,𝑤) = max
𝛼𝑖
𝑛∈Θ𝑛

𝑏.𝛼𝑖𝑛 .𝑤 .

Since the belief in MR-MOMDP is represented by the pair (𝑥, 𝑏𝑦), the value function of MR-MOMDP, denoted as
𝑉 ((𝑥, 𝑏𝑦),𝑤), is determined by a collection of 𝛼-matrices sets Θ = {Θ𝑦 (𝑥) |𝑥 ∈ 𝑋 }, where for each 𝑥 , Θ𝑦 (𝑥) is an
𝛼-matrices set, defined over 𝐵𝑦 (𝑥).

𝑉 ((𝑥, 𝑏𝑦),𝑤) = max
𝛼∈Θ𝑦 (𝑥 )

𝑏𝑦 .𝛼 .𝑤 (8)

To compute the value of 𝑉 ((𝑥, 𝑏𝑦),𝑤) in equation 8, we initially utilize the value of 𝑥 as an index to locate the
corresponding 𝛼-matrices set Θ𝑦 (𝑥) and subsequently determine the maximum 𝛼-matrix 𝛼 within that set using
equation 9.

𝛼 = arg max
𝛼∈Θ𝑦 (𝑥 )

𝑏𝑦 .𝛼 .𝑤 (9)

4.2 Solver

A solver is an algorithm or software designed to find solutions for MDP problems, including MR-MOMDP and MR-
POMDP. Its primary objective is to compute an optimal policy that maximizes the expected long-term reward while
addressing uncertainties in state transitions and observations defined in the model.

We employ Optimistic Linear Support with Alpha Reuse (OLSAR) [48], a point-based solver used in MR-POMDP
[48, 52], and modify it to fit the MR-MOMDP. OLSAR is a method to solve multi-objective decision problems using a
series of calls of a bounded approximate single-objective POMDP solver (e.g., OCPerseus [48]) that leverages previously
discovered 𝛼-matrices to create an initial lower bound for subsequent OCPerseus calls, enabling faster resolution of the
scalarized POMDP.

The OLSAR algorithm for MR-MOMDP is largely similar to its original version for MR-POMDP. However, in MR-
MOMDP, the state is divided into a fully observable component, denoted as 𝑥 , and a partially observable component,
denoted as 𝑦. This changes the representation of the belief state to a pair (𝑥, 𝑏𝑦) consisting of the fully observable state,
𝑥 , and the belief over the partially observable state, 𝑏𝑦 . It also modifies the structure of the alpha-matrix set, transitioning
from a single set of alpha-matrices, denoted as Θ = {𝛼}, to a collection of sets, denoted as Θ = {Θ𝑦 (𝑥) |Θ𝑦 (𝑥) = {𝛼}, 𝑥 ∈
𝑋 }. As a result, the implementation differs, particularly in how data structures are accessed for operations involving
belief states, alpha-matrices, and alpha-matrix sets, reflecting the added complexity in the implementation of OLSAR
for MR-MOMDP compared to OLSAR for MR-POMDP.

Our MR-MOMDP solver consists of three layers. The term “layer” refers to the hierarchical structure of functions.
The top layer is OLSAR, an outer loop responsible for calling OCPerseus() in the middle layer for each iteration until
the convergence criteria are reached. The bottom layer is a multi-objective backup function (i.e., backupMO()) that
implements back-projection within OCPerseus().

4.2.1 Layer 1. OLSAR for MR-MOMDP.

OLSAR, as presented in Algorithm 1, takes initial belief 𝑏0 as a tuple of (𝑥0, 𝑏𝑦0), a convergence threshold 𝜂, and
maximum allowed error 𝜖 to produce a set of partial approximate convex coverage set (CCS) of multi-objective value
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Algorithm 1: OLSAR(𝑏0, 𝜂, 𝜖) for MR-MOMDP, adapted from [48].
Input : Initial belief 𝑏0 = (𝑥0, 𝑏𝑦0 ) , Convergence threshold 𝜂, Max. allowed error 𝜖
Output :A set of partial approximate CCS of multi-objective value vectors𝐶𝑣 and its associate weights set𝐶𝑤

1 𝐶𝑣 ← ∅ // A set of partial approximate CCS of multi-objective value vectors 𝑉𝑏0
2 𝐶𝑤 ← ∅ // A set of weights associated with every value in 𝐶𝑣

3 𝑄 ← ∅ // A queue of weights to search with their priority { (𝑤,Δ𝑤 ) }
4 Add extrema weights to𝑄 with infinite priority
5 Initialize Θ𝑎𝑙𝑙 // A set of 𝛼-matrices that create a minimum estimate of the value.

6 Initialize 𝐵 // A set of sampled belief points obtained by random exploration

7 while ¬𝑄.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 ( ) ∧ ¬𝑡𝑖𝑚𝑒𝑂𝑢𝑡 ( ) do
8 𝑤 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ( ) // retrieve a weight vector

9 Θ𝑟 ← select best 𝛼-matrix 𝛼 𝑓 𝑟𝑜𝑚Θ𝑎𝑙𝑙 for each (𝑥,𝑏𝑦 ) ∈ 𝐵, given 𝑤

10 Θ𝑤 ← OCPerseus(Θ𝑟 , 𝐵, 𝑤,𝜂 )
11 𝑉𝑏0 ← max

𝛼 ∈Θ𝑤

𝑏𝑦0 .𝛼 .𝑤

12 Θ𝑎𝑙𝑙 ← Θ𝑎𝑙𝑙 ∪ Θ𝑤

13 if 𝑉𝑏0 ∉ 𝐶𝑣 then
14 𝑊𝑑𝑒𝑙 ← delete the corner weights that𝑉𝑏0 made obsolete from𝑄 .
15 𝐶𝑣 ← remove all values made obsolete by𝑉𝑏0 from𝐶𝑣

16 𝐶𝑣 ← 𝐶𝑣 ∪𝑉𝑏0
17 𝐶𝑤 ← 𝐶𝑤 ∪ 𝑤

18 𝑊𝑑𝑒𝑙 ←𝑊𝑑𝑒𝑙 ∪ 𝑤

19 𝑊𝑐𝑜𝑟𝑛𝑒𝑟 ← newCornerWeights(𝑉𝑏0 ,𝑊𝑑𝑒𝑙 ,𝐶𝑣 )
20 foreach 𝑤 ∈𝑊𝑐𝑜𝑟𝑛𝑒𝑟 do
21 Δ𝑤 ← calculate max. possible improvement (i.e., priority) using (𝑤,𝐶𝑣 )
22 if Δ𝑤 > 𝜖 then
23 Q.add({ (𝑤,Δ𝑤 ) })
24 end
25 end
26 end
27 end
28 return𝐶𝑣,𝐶𝑤

vectors, denoted as𝐶𝑣 , and its associate weights set𝐶𝑤 . It begins by initializing a priority queue𝑄 and assigning extrema
weights to 𝑄 with infinite priority. It also initializes a set of 𝛼-metrices Θ𝑎𝑙𝑙 that define a minimum of the value and a
set of sampled belief points 𝐵 that can be obtained through random exploration. Θ𝑎𝑙𝑙 = {Θ𝑦 (𝑥) |Θ𝑦 (𝑥) = {𝛼}, 𝑥 ∈ 𝑋 }
consists of |𝑋 | subsets where each subset corresponds to a fully observable state 𝑥 .

While 𝑄 is not empty and a timeout threshold has not been reached, OLSAR does the following: it retrieves the
weight vector 𝑤 from 𝑄 and given 𝑤 , it selects the best 𝛼-matrix 𝛼 from Θ𝑎𝑙𝑙 for each (𝑥, 𝑏𝑦) ∈ 𝐵 and stores it into
Θ𝑟 = {Θ𝑦 (𝑥) |Θ𝑦 (𝑥) = {𝛼}, 𝑥 ∈ 𝑋 }. It then calls 𝑂𝐶𝑃𝑒𝑟𝑠𝑒𝑢𝑠 (Θ𝑟 , 𝐵,𝑤, 𝜂) that solves MR-POMDP through scalarization
using𝑤 to obtain new 𝛼-matrices set Θ𝑤 . OLSAR then update Θ𝑎𝑙𝑙 with the new Θ𝑤 . Given initial belief 𝑏0 = (𝑥0, 𝑏𝑦0)
and Θ𝑤 , a scalarized value of 𝑏0, denoted as 𝑉𝑏0 , can be calculated. If 𝑉𝑏0 is not in the CCS 𝐶𝑣 , it removes all values
made obsolete by 𝑉𝑏0 from 𝐶𝑣 , updates 𝐶𝑣 with 𝑉𝑏0 , and stores it associated weight vector𝑤 into 𝐶𝑤 . Then, OLSAR
deletes the obsoleted corner weights from 𝑄 and stores them into𝑊𝑑𝑒𝑙 . Given 𝑉𝑏0 ,𝑊𝑑𝑒𝑙 , and 𝐶𝑣 , OLSAR calculates new
corner weights and maximum possible improvements (i.e., priority) Δ𝑤 . For each weight𝑤 in new corner weights, if
Δ𝑤 is bigger than max. allowed error 𝜖 , OLSAR add 𝑤 and its priority Δ𝑤 in the queue 𝑄 . These steps are repeated
until 𝑄 is empty.
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4.2.2 Layer 2. OCPerseus.

Perseus is a point-based solver, originally for POMDP, that approximates the exact solution using a set of randomized
points representing the belief state. This approach allows Perseus to focus on several points of the belief space rather
than dealing with a continuous representation of the entire space.
𝑂𝐶𝑃𝑒𝑟𝑠𝑒𝑢𝑠 , described in Algorithm 2, takes a set of 𝛼-matrices Θ, a set of sampled belief points 𝐵, weight vector𝑤 ,

and a convergence threshold 𝜂 as input to produce a new set of 𝛼-matrices Θ′. As explained in the last paragraph of
Section 4.1, both Θ and Θ′ consist of |𝑋 | subsets of 𝛼-matrices where each subset corresponds to a fully observable
state variable 𝑥 .
𝑂𝐶𝑃𝑒𝑟𝑠𝑒𝑢𝑠 performs several backup stages until it reaches the convergence threshold 𝜂. The backup stage begins

by setting Θ′ to an empty set and initializing 𝐵′ by copying 𝐵 to 𝐵′. 𝐵′ is used to keep track of non-improved belief
points consisting 𝑏 = (𝑥, 𝑏𝑦) ∈ 𝐵 whose 𝑉𝑛+1 (𝑏,𝑤) is still lower than 𝑉𝑛 (𝑏,𝑤) (line 11). As long as 𝐵′ is not empty,
𝑂𝐶𝑃𝑒𝑟𝑠𝑒𝑢𝑠 randomly selects a belief point (𝑥, 𝑏𝑦) from 𝐵′ (line 8). Given 𝑏,𝑤, and Θ, if possible, an improving 𝛼-matrix
𝛼 is selected and added it into Θ. Then Θ′ is updated with the best 𝛼-matrix from Θ. Next, all the improved belief points
are deleted from 𝐵′. These steps are repeated until 𝐵′ is empty.

Algorithm 2: OCPerseus(Θ, 𝐵,𝑤, 𝜂) adapted from [48].
Input :A set of 𝛼-matrices Θ, A set of belief points 𝐵 = {𝑏 |𝑏 = (𝑥,𝑏𝑦 ) }, weight vector 𝑤, Convergence threshold 𝜂
Output :A new set of 𝛼-matrices Θ′

1 Θ′ ← Θ

2 Θ← { ®−∞}

3 while max
𝑏∈𝐵

(
max
𝛼 ′∈Θ′

𝑏.𝛼 ′ .𝑤 − max
𝛼 ∈Θ

𝑏.𝛼.𝑤

)
> 𝜂 do

4 Θ← Θ′

5 Θ′ ← ∅
6 𝐵′ ← 𝐵

7 while 𝐵′ ≠ ∅ do
8 𝑏 ← randomly select a belief point 𝑏 = (𝑥,𝑏𝑦 ) from 𝐵′

9 𝛼 ← 𝑏𝑎𝑐𝑘𝑢𝑝𝑀𝑂 (Θ, 𝑏, 𝑤 ) // select 𝛼-matrix

10 Θ′ ← Θ′ ∪ {arg max
𝛼 ′∈ (Θ∪𝛼 )

𝑏.𝛼 ′ .𝑤}

11 𝐵′ ← {𝑏 |𝑏 ∈ 𝐵′, max
𝛼 ′∈Θ′

𝑏.𝛼 ′ .𝑤 < max
𝛼 ∈Θ

𝑏.𝛼.𝑤}

12 end
13 end
14 return Θ′

4.2.3 Layer 3. backupMO for MR-MOMDP.

Since, in MR-MOMDP, each belief point 𝑏 ∈ 𝐵 is a tuple (𝑥, 𝑏𝑦), each observable state variable 𝑥 ∈ 𝑋 maintains the
back-projection matrix 𝑔𝑥,𝑎,𝑜

𝑖,𝑛
of next-stage value matrix 𝛼𝑖𝑛 ∈ Θ𝑦 (𝑥)𝑛 , formulated in equation 10.

𝑔
𝑥,𝑎,𝑜
𝑖,𝑛

=
∑︁
𝑥 ′∈𝑋

∑︁
𝑦′∈𝑌

𝑂 (𝑎, 𝑥 ′, 𝑦′, 𝑜)𝑇𝑥 (𝑥,𝑦, 𝑎, 𝑥 ′)𝑇𝑦 (𝑥,𝑦, 𝑎,𝑦′)𝛼𝑖 (𝑦′) (10)

For every 𝑏𝑦 ∈ 𝐵𝑦 (𝑥), the back-projection matrix 𝑔𝑥,𝑎,𝑜
𝑖,𝑛

is utilized to create a fresh collection of 𝛼-matrices, given in
Equation 11, for each 𝑥 ∈ 𝑋 and for each action 𝑎 ∈ 𝐴. Consequently, the total number of sets of 𝛼-matrices will equal
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|𝐴| × |𝑋 |.
𝛼
𝑥,𝑎
𝑛+1 = 𝑟

𝑥,𝑎 + 𝛾
∑︁
𝑜∈Ω

arg max
𝑔𝑥,𝑎,𝑜

𝑏𝑦 .𝑔
𝑥,𝑎,𝑜 .𝑤 (11)

The new optimal 𝑎𝑙𝑝ℎ𝑎-matrix for (𝑥, 𝑏𝑦) returned by 𝑏𝑎𝑐𝑘𝑢𝑝𝑀𝑂 is given by Equation 12.

𝑏𝑎𝑐𝑘𝑢𝑝𝑀𝑂 (Θ𝑦, (𝑥, 𝑏𝑦),𝑤) = argmax
𝛼
𝑥,𝑎
𝑛+1

𝑏𝑦 .𝛼
𝑥,𝑎
𝑛+1 .𝑤 (12)

5 THE SPECTRA FRAMEWORK

Fig. 4. The proposed SPECTRA Framework

Our proposed framework, SPECTRA, as shown in Fig. 4, aims to assist SAS in satisfying their NFRs in environments
with many uncertainties. The word “SPECTRA” abbreviates specification and vector reward, which are the heart of our
methodology. SPECTRA is based on Markov Decision Process models, which consider action, state, and observation

uncertainty. Action uncertainty refers to uncertain consequences of actions; state uncertainty pertains to a lack of
knowledge about the actual system state; and incomplete, noisy, or ambiguous observation results cause observation
uncertainty.

This framework serves as a versatile set of steps that can be customized to suit particular domains by employing
appropriate techniques. It provides a foundational structure that can be adjusted and fine-tuned according to the unique
requirements and characteristics of different contexts and domains. Although the framework is presented as sequential
steps/phases, it allows for flexibility in refining the design and model by revisiting previous steps or jumping further
ahead. In the following sections, we describe the different phases of SPECTRA by using the hypothetical scenario of
MirrorNet, described in Section 2, as an example.

5.1 Phase 1. NFRs Specification

At this stage, adopted from the SAFe framework [36], the stakeholders and designer specify NFRs by considering three
attributes. Firstly, a name is given to each NFR, which may pertain to the system’s attributes such as configurability,
performance, security, and reproducibility, among others [62]. Secondly, they determine the scale, which identifies
the object being measured and the corresponding unit of measurement. Finally, they establish the meter, which is the
measurement method. These details are outlined in Table 1, providing an overview of the NFRs of MirrorNet and their
corresponding attributes in phase 1. This approach ensures that the NFRs are well-defined and accurately measured.
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Table 1. Phase 1 - NFRs Definition

Name Scale Meter
Minimise Cost (MC) Bandwidth consumption Average bandwidth consumption
Maximise Performance (MP) Writing time Average writing time
Maximise Reliability (MR) Network reliability Average number of healthy links

Table 2. Phase 2 - Observability Identification

NFR Metrics Observability Monitorables
MC Average bandwidth consumption Direct Bandwidth consumption (BWC)
MP Average writing time Direct Writing time (WRT)
MR Average number of healthy links Indirect Active network links (ANL), Network attack and anomaly (ATK)

5.2 Phase 2. Observability Identification

During this stage, stakeholders and designers assess the observability of each metric associated with the NFRs. Observ-
ability is categorized as either direct or indirect. If the metric can be directly observed, the NFR is fully observable. On
the other hand, if the metric can only be probed through various monitorable objects, it implies that the NFR is partially
observable. In the case of direct or fully observable metrics, the metric itself serves as the monitorable. Conversely,
different objects are used as monitorables to probe the desired metric for indirect or partially observable metrics.

In Table 2, MC and MP metrics are easily observable. Bandwidth consumption (BWC) and writing time (WRT) can
be directly monitored to determine their averages. However, the number of healthy links cannot be directly observed as
compromised hosts may be connected to active links and exhibit malicious behavior at the upper layer. Nonetheless,
MirrorNet employs a traffic monitoring system that can detect anomalies and network attacks, enabling it to probe the
number of healthy links by monitoring the active network links (ANL) and the status of network attacks and anomalies
(ATK).

5.3 Phase 3. Priority Elicitation

Preference elicitation constitutes a foundational issue in creating intelligent systems that make or recommend decisions
on behalf of users[4]. Priorities and preferences need to be elicited from domain experts and stakeholders, which serve as
guiding factors for decision-making in adaptation, aligning with the system’s objectives [64]. Various decision-making
techniques (e.g., AHP [40], TOPSIS [35], POM [67], etc.) and utility theories [33, 59] can be employed in this phase.

Stakeholders may specify the tradeoff between NFRs by creating a utility function that assigns weight to each quality
attribute, i.e., forming a weight vector (e.g., [0.333, 0.333, 0.333]), incorporating quality attribute scenarios, or utilizing
conditional logic [10].

If a global weight vector is provided, we do not need to find the set of optimal weights in Phase 6 - Policy Planning.
Policies can be generated by scalarizing and solving the model using a single-objective solver. In the case of MirrorNet,
priorities are not elicited as a weight vector but rather as a conditional logic, as stated below:

"In normal to moderately detrimental conditions, priority is given to cost efficiency and performance,
with reliability being less important. However, in highly severe detrimental conditions, reliability holds
the highest priority, resulting in a relaxation of cost efficiency and performance requirements."

The priorities and preferences generated in this phase determine how targets and constraints can be determined in
the subsequent phase, as well as the reward function of the model.
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Table 3. Phase 4. Targets in environment SL1 and SL2.

NFR Targets
MC Average bandwidth consumption SHALL below the threshold and AS FEW AS POSSIBLE
MP Average writing time SHALL below the trhreshold and AS FEW AS POSSIBLE
MR Average number of active link SHALL above the threshold and AS MANY AS POSSIBLE

Table 4. Phase 4. Constraints for normal and detrimental conditions of environment SL1.

Condition Normal / Non-detrimental Detrimental / Severity Level: Low-Moderate
NFR Constraints Constraints
MC Total bandwidth threshold violations ≤ 15% Total bandwidth threshold violations ≤ 15%
MP Total writing time threshold violations ≤ 10% Total writing time threshold violations ≤ 10%
MR The number of active network links threshold violations ≤ 30% The number of active network links threshold violations ≤ 35%

Table 5. Phase 4. Constraints for normal and detrimental conditions of environment SL2.

Condition Normal / Non-detrimental Detrimental / Severity Level: High
NFR Constraints Constraints
MC Total bandwidth threshold violations ≤ 15% Total bandwidth threshold violations ≤ 30%
MP Total writing time threshold violations ≤ 10% Total writing time threshold violations ≤ 10%
MR The number of active network links threshold violations ≤ 30% The number of active network links threshold violations ≤ 5%

5.4 Phase 4. Targets and Constraints

The next stage involves defining target values to achieve and constraints to avoid, considering the priority given in the
previous stage. This step is crucial in establishing clear objectives and boundaries that determine the satisfactory level
of the system.

“If you can’t measure it, you can’t manage it.” - Peter Drucker

To define targets and constraints, our reference values are monitorables rather than meters or metrics, as meters/metrics
may not always be directly observable, while we can determine metric values through monitorables.

Additionally, we can control the values of monitorables through each action or decision we take in each state, which
will impact the monitorables value.

By defining targets and constraints, stakeholders can effectively communicate their expectations and align the system
with organizational goals. However, it is possible to relax the target and constraints under particular circumstances to
enable SAS to keep functioning in changing and uncertain environments while still meeting critical requirements [63].

Table 3 lists the targets of MirrorNet for two different environmental scenarios: SL1 and SL2. The targets are specified
using the RELAX language [63] to explicitly acknowledge and address the inherent uncertainty in SAS. The SL1
environment anticipates detrimental conditions with low to moderate severity levels, while the SL2 environment
anticipates detrimental conditions with high severity levels.

Table 4 and Table 5 illustrate the constraints for the SL1 and SL2 environments in both normal and detrimental
conditions. Under normal (non-detrimental) conditions, both environments share the same constraints, allowing for a
higher threshold violation of active network links (ANL) to achieve better performance (MP) and cost efficiency (MC).
However, in detrimental conditions, the SL1 environment relaxes its ANL threshold without sacrificing performance
(MP) and efficiency (MC) because stakeholders remain confident in the reliability of the MirrorNet infrastructure
under low to moderate severity levels. In contrast, the SL2 environment with high severity levels tightens its reliability
requirements at the expense of cost efficiency.
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5.5 Phase 5. Model Formulation

This phase is a critical part and determines the success of adaptation. Markov models rely heavily on the accuracy
of their inputs. Key parameters, such as transition probabilities, reward functions, and observability functions, are
crucial for determining both the model’s reliability and the optimality of the resulting policy. Therefore, the Markovian
framework should be applied in systems that can be accurately modeled, have well-defined states, and have reliable
data, and it should be avoided in highly unpredictable or data-scarce environments.

Fig. 5 depicts MirrorNet as a control system consisting of a controller and a MirrorNet network on the plant side. To
achieve the objectives, i.e., satisfice the NFRs, the controller needs to observe and analyze the plant behavior (using
models and thresholds) and decide the best action to take (e.g., topology), using the available weight vector and policy,
then sends the decision to the actuator. Therefore, plant behavior needs to be reflected in the model accurately.

Fig. 5. The block diagram of MirrorNet as a closed loop control system.

Based on the observabilities of the NFRs, we can determine the appropriate Markovian model to utilize. If all NFRs
are fully observable, using a multi-reward MDP (MR-MDP) is recommended. However, if all NFRs are only partially
observable, the problem must be modeled as an MR-POMDP. In cases where the environment presents a combination
of both partially and fully observable NFRs, it is advisable to model it as an MR-MOMDP.

As shown in Table 2, MirrorNet exhibits mixed observability NFRs, where MC and MP can be directly observed, but
MR is only partially observed through the number of active network links (ANL) and the status of network attacks
(ATK). Therefore, the suggested modeling approach is MR-MOMDP. The MirrorNet environment and NFRs can be
mapped to an MR-MOMDP model shown in Fig. 6.

5.5.1 States. States at least represent combinations of satisfaction levels of the NFRs (i.e., MC, MP, and MR) but can
also involve other variables that are deemed necessary to represent the states of the plant (i.e., MirrorNet network as the
managed asset). In the MR-MOMDP, there are two types of states: fully observable states and partially observable states.
Regarding MirrorNet, fully observable states represent combinations of satisfaction values for MC and MP, whereas
partially observable states represent combinations of satisfaction values for MR. Consequently, four fully observable
states 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and two partially observable states 𝑌 = {𝑦1, 𝑦2} have been identified and presented in Table
6.

5.5.2 Actions. An action represents the agent’s decision or choice at each state. In the case of MirrorNet, two adaptive
actions are considered for each state: selecting the most suitable topology between Minimum Spanning Tree (MST)
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Fig. 6. MirrorNet RDM as an MR-MOMDP problem.

Table 6. Fully and partially observable states of MirrorNet.

Fully observable States (𝑋 )
State 𝑁𝐹𝑅1 = 𝑀𝐶 𝑁𝐹𝑅2 = 𝑀𝑃
x1 TRUE TRUE
x2 TRUE FALSE
x3 FALSE TRUE
x4 FALSE FALSE
Partially observable States (𝑌 )
State 𝑁𝐹𝑅3 = 𝑀𝑅
y1 TRUE
y2 FALSE

or Redundant Topology (RT). Based on the current state, the agent chooses the appropriate topology to support the
satisfaction of the NFRs in the RDM system.

5.5.3 Transition Functions. Any action (i.e., topology) chosen in each state will have an impact on the environment and
transition the environment from the current state to a new state with some probabilities. To capture these transitions,
we decompose the transition functions 𝑇𝑥 and 𝑇𝑦 into marginal conditional probabilities of the NFRs, specified in Table
7, as in Equation 13, 14, and 15. This information is provided by domain experts [25, 52].

𝑇 ((𝑥,𝑦), 𝑎, (𝑥 ′, 𝑦′)) = 𝑇𝑥 (𝑥,𝑦, 𝑎, 𝑥 ′)𝑇𝑦 (𝑥,𝑦, 𝑎,𝑦′) (13)

𝑇𝑥 (𝑥,𝑦, 𝑎, 𝑥 ′) = 𝑃 (𝑀𝐶′ |𝑥,𝑦, 𝑎)𝑃 (𝑀𝑃 ′ |𝑥,𝑦, 𝑎) (14)

𝑇𝑦 (𝑥,𝑦, 𝑎,𝑦′) = 𝑃 (𝑀𝑅′ |𝑥,𝑦, 𝑎) (15)

Table 8 presents the complete transition function 𝑇𝑥 , as defined by Equation 14 and refers to Table 7. This function
specifies the transition probabilities when performing an action, either MST or RT, from the current state (𝑥,𝑦) to the
next fully observable state 𝑥 ′ ∈ 𝑋 . For instance, executing the MST action from any current state (𝑥,𝑦) transitions the
Manuscript submitted to ACM



SPECTRA: A Markovian Framework for Managing NFR Tradeoffs in Systems with Mixed Observability 17

Table 7. NFR satisfaction probabilities.

Action 𝑀𝐶𝑡−1 𝑀𝑃𝑡−1 𝑀𝑅𝑡−1 P(𝑀𝐶𝑡 = 𝑇 ) P(𝑀𝐶𝑡 = 𝐹 ) P(𝑀𝑃𝑡 = 𝑇 ) P(𝑀𝑃𝑡 = 𝐹 ) P(𝑀𝑅𝑡 = 𝑇 ) P(𝑀𝑅𝑡 = 𝐹 )
MST T or F T or F T or F 0.9002 0.0998 0.9697 0.0303 0.3725 0.6275
RT T or F T or F T or F 0.7045 0.2955 0.8788 0.1212 0.7222 0.2778

Table 8. Transition probabilities to fully observable states (Tx)

Action 𝑥 𝑦 𝑥 ′ = 𝑥1 𝑥 ′ = 𝑥2 𝑥 ′ = 𝑥3 𝑥 ′ = 𝑥4
MST ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 0.8729 0.0273 0.0968 0.0030
RT ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 0.6191 0.0854 0.2596 0.0358
x = Fully observable state, y = Partially observable state, see Table 6

Table 9. Transition probabilities to partially observable states (Ty)

Action 𝑥 𝑦 𝑦′ = 𝑦1 𝑦′ = 𝑦2
MST ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 0.3725 0.6275
RT ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 0.7222 0.2778

system to the next state 𝑥 ′ = 𝑥1 with a probability of 0.8729, to the next state 𝑥 ′ = 𝑥2 with a probability of 0.0273, and
so on.

On the other hand, Table 9 describes transition function𝑇𝑦 , as defined by Equation 15 and also refers to Table 7. This
function outlines the transitions from the current state (𝑥,𝑦) to the next partially observable state 𝑦′ ∈ 𝑌 , based on the
selected topology in MirrorNet. For example, performing the MST action from any current state (𝑥,𝑦) transitions the
system to state 𝑦′ = 𝑦1 with a probability of 0.3725 and to state 𝑦′ = 𝑦2 with a probability of 0.6275.

The overall transition function, which defines the movement from the current state (𝑥,𝑦) to the next state (𝑥 ′, 𝑦′), is
represented as a joint probability of 𝑇𝑥 and 𝑇𝑦 , as given in Equation 13.

In our transition probabilities, we utilize four decimal places. While longer decimal representations can provide more
precise probabilities, the appropriate number of decimal places ultimately depends on the context and the judgment of
the designers and domain experts. For many real-world applications, a few decimal places are often sufficient. However,
in highly sensitive or critical systems, additional decimal places may be necessary to ensure the required level of
accuracy. Although four decimal places may not offer significantly more meaningful information than two in our
specific scenario, it does enhance accuracy without substantially increasing the computational load of the system.

5.5.4 Rewards. In the decision-making process of SAS, it is crucial to consider the satisfaction priorities of individual
NFRs. SPECTRA uses vector rewards to model these priorities and considers higher reward value as higher prior-
ity/desirability when making adaptation decisions. The reward value may also represent the utility of a particular
objective-action pair.

A vector reward gives different values to each objective, as opposed to a scalar reward, which gives a single value to
each action. This approach provides a more precise understanding of how a particular action can impact multiple NFRs.
By simultaneously evaluating several factors, a vector reward helps to make more informed decisions by capturing the
relative importance and trade-offs between objectives. It enables decision-makers to optimize choices based on multiple
competing objectives and more accurately represents the decision-making process. The use of reward vectors adds
complexity but offers transparency to capture the different impacts of adaptive decisions on individual NFRs in terms of
their satisfaction.
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Table 10. Reward vector values for NFRs in MirrorNet.

State Action Reward vector values
𝑟𝑀𝐶 𝑟𝑀𝑃 𝑟𝑀𝑅

x1:y1 MST 110 95 95
x1:y2 MST 60 60 10
x2:y1 MST 95 40 80
x2:y2 MST 65 10 10
x3:y1 MST 40 80 80
x3:y2 MST 10 60 10
x3:y1 MST 35 35 65
x3:y2 MST 3 3 3
x1:y1 RT 80 95 90
x1:y2 RT 85 83 20
x2:y1 RT 60 10 60
x2:y2 RT 80 18 20
x3:y1 RT 10 66 68
x3:y2 RT 40 75 40
x3:y1 RT 11 10 26
x3:y2 RT 10 10 10

The vector reward values are acquired from domain experts and should accurately reflect the knowledge and
information available to them [52]. Since every possible action in each state must have a defined reward, when the state
space is large, designers need more effort to determine the reward. The provision of vector rewards in a consistent
and precise manner is challenging, especially in a large state space, but it is still possible to do so with caution in an
adequate timeframe.

MirrorNet aims to satisfice three NFRs, and to achieve this, each state is linked to a three-dimensional reward
vector function specified as 𝑅(𝑠, 𝑎) = [𝑟𝑀𝐶 , 𝑟𝑀𝑃 , 𝑟𝑀𝑅]. Each element of the reward vector indicates the priority of the
corresponding NFR in each state compared to the other NFRs along their respective axes. The values of the reward vector
are based on the elicited priorities obtained during Phase 3 - Priority Elicitation and might follow utility theories [33].
During this stage, we establish local weights as state-specific reward vectors, while the global weight vector, generated
by OLSAR-Perseus in Phase 6 or determined beforehand in Phase 3, reflects the stakeholders’ overall preferences.

The complete reward values are presented in Table 10, serving as the reward function in our model. Each entry of
Table 10 indicates the preference over the execution of an action according to the value of NFRs in each state. We can
observe that MST is preferable when all NFRs are satisfied or when MC is unsatisfied, whereas RT is preferable when
MR is most likely unsatisfied. This reward function captures the cumulative impact of the NFRs on the overall reward
in MirrorNet.

5.5.5 Observations. Observations represent combinations of monitorable values used to determine the current state.
For fully observable states, the monitorables directly determine the state. However, for partially observable states, the
monitorables are used to probe the state value based on probabilistic values obtained from observations validated by
domain experts.

MirrorNet incorporates four monitorables (i.e., BWC, WRT, ANL, and ATK) associated with each NFR, as outlined in
Phase 2 of the MR-MOMDP and listed in Table 2. The observation probabilities for these monitorables in MirrorNet are
presented in Table 11. BWC, WRT, and ANL can take on two possible values: violating or not violating the threshold,
while ATK indicates the boolean status of anomalies or attacks in the network. Threshold values for BWC, WRT, and
Manuscript submitted to ACM



SPECTRA: A Markovian Framework for Managing NFR Tradeoffs in Systems with Mixed Observability 19

Table 11. Observation probabilities of MirrorNet.

MON1 Bandwidth consumption (BWC)
P(MC=T|BWC) P(MC=F|BWC)

Action BWC ≤ 𝑡𝑏 BWC > 𝑡𝑏 BWC ≤ 𝑡𝑏 BWC > 𝑡𝑏
MST 1 0 0 1
RT 1 0 0 1
MON2Writing time (WRT)

P(MP=T|WRT) P(MP=F|WRT)
Action WRT ≤ 𝑡𝑡 WRT > 𝑡𝑡 WRT ≤ 𝑡𝑡 WRT > 𝑡𝑡
MST 1 0 0 1
RT 1 0 0 1
MON3 Active network links (ANL)

P(MR=T|ANL) P(MR=F|ANL)
Action ANL < 𝑡𝑙 ANL ≥ 𝑡𝑙 ANL < 𝑡𝑙 ANL ≥ 𝑡𝑙
MST 0.3 0.7 0.7 0.3
RT 0.15 0.85 0.85 0.15
MON4 Anomaly/attack status (ATK)

P(MR=T|ATK) P(MR=F|ATK)
Env: SL1 SL2 SL1 SL2
Action ATK=True ATK=False ATK=True ATK=False ATK=True ATK=False ATK=True ATK=False
MST 0.4 0.6 0.15 0.85 0.6 0.4 0.85 0.15
RT 0.4 0.6 0.15 0.85 0.6 0.4 0.85 0.15

Table 12. Selected optimal weight vectors.

Framework Environment
Weight vector for SL1 Weight vector for SL2

MR-MOMDP [0.8441, 0. , 0.1559] [6.7026e-01, 3.5220e-06, 3.2974e-01]
MR-POMDP [0.8387, 0. , 0.1613] [6.2697e-01, 1.7295e-09, 3.7303e-01]

ANL (i.e., 𝑡𝑏, 𝑡𝑡, 𝑡𝑙 ) are given in Table 13. With the inclusion of these four monitorables and two possible values for each,
our MR-MOMDP model for MirrorNet incorporates a total of sixteen observations 𝑜 ∈ Ω ∴ |Ω | = 16.

5.6 Phase 6. Policy Planning

Given the model, our next step is to solve the problem and obtain an optimal set of policies. The policy planning can be
conducted offline or online using a specific solver. If the global weight vector can be determined in Phase 3, the policy
can be generated using an appropriate single-objective solver through scalarization.

This article employs OLSAR and Perseus for offline planning, assuming that the global weight vector is not determined
in Phase 3. As shown in Fig. 7, OLSAR provides us with a set of optimal weight vectors and their corresponding vector
value and policy. Various methods, such as knee point detection [5], can be utilized to select a values vector that aligns
with the preferences. However, this study defines the minimum CCS values as the threshold to choose an optimal
weight vector and its corresponding policy for each value point that exceeds the threshold. The chosen weight vector
and policy are among the inputs the controller uses (i.e., managing system) as in Fig. 5. Table 12 shows the optimal
weight vectors chosen for different frameworks and environments during our evaluation.

6 SOFTWARE IMPLEMENTATION

We implemented MR-MOMDP in a Python framework called XPOMDPy, which stands for Extended POMDPy. For
the purpose of reproducibility, the framework is available online at [30]. XPOMDPy extends the current POMDPy
framework [12] by providing the following additional features:
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Fig. 7. Policy planning with OLSAR & OCPerseus.

(1) Perseus solver for single-objective POMDP and MOMDP, as well as OLSAR-Perseus for multi-objective
MR-POMDP and MR-MOMDP. Our implementation of Perseus is a Python translation of Java implementation
by [60]. We also use OLS implementation by [3] in our OLSAR implementation.

(2) Model parsing capabilities from POMDP and PomdpX file formats. This feature simplifies the process of
solving and generating new model objects by easily reading and interpreting the model specifications.

(3) Policy writer that supports the PolicyX file format for both single-objective (i.e., alpha vector) and
multi-objective (i.e., alpha matrix) policies. This enables storing and retrieving policies in a structured
format, facilitating their use in decision-making processes.

7 EVALUATIONS

We evaluate the feasibility of our proposed SPECTRA and MR-MOMDP frameworks by comparing the policy planning
of MirrorNet using MR-MOMDP with baseline approaches. Specifically, we aim to address the following research
questions:

(RQ1): How can SPECTRA better optimize the planning process and produce better policy?
(RQ2): To what extent does SPECTRA produce better policies and effectively satisfy NFRs with tradeoffs aligning with

stakeholders’ preferences?

Through this evaluation, we aim to assess the effectiveness of our proposed SPECTRA framework and determine the
superiority of MR-MOMDP over the baseline approaches in terms of planning time and policy quality for MirrorNet.

7.1 Experiment Setup

7.1.1 Environment Model and Scenario. To analyze the effectiveness of the policies, each approach is tested in two
scenarios: the Non-detrimental Scenario, where all topologies operate normally without any disruptions, and the
Detrimental Scenario, where system disruptions occur. To introduce variability in our experiments, we consider two
environmental models representing the Low-Moderate Severity Level (SL1) and High Severity Level (SL2) in the
Detrimental Scenario. These environments are modeled using different observation functions in MON4, as shown in
Table 11.

7.1.2 Simulation. Our experiments were conducted using a modified Python version of RDMSim [53] - a discrete
event simulator of a Remote Data Mirroring environment. As illustrated in Figure 8, we use the MAPE-K architecture,
which consists of two layers: the managing system and the managed system. We incorporated RDMSim as the managed
system at the bottom layer. To ensure reproducibility, we made modifications to the original RDMSim, including
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the implementation of a random seed function. The modified RDMSim can be accessed at [30]. We conducted our
simulations and experiments on a laptop equipped with an Intel(R) Core(TM) i3-5005U CPU @ 2.00GHz and 8 GB RAM,
running Windows 10 Pro.

Fig. 8. MAPE-K Architecture of the simulation using RDMSim and MR-MOMDP.

The managing system at the upper layer consists of a decision-making agent with MAPE-K components [49]. It
employs MR-MOMDP or other baseline approaches in the Analysis & Planning component. The managing system is
responsible for providing the optimal policy for the managed system. This policy can be generated offline at design
time or online at runtime. In this article, we use OLSAR Perseus to generate offline policies, which are stored in the
architecture’s Knowledge component. Online policy planning can use solvers such as DESPOT [66], POMCP [54], etc.,
which are currently beyond the scope of this article.

Runtime adaptation works as follows: At each time step the managing system makes observations of the managed
system (using four monitorables: BWC, WRT, ANL, and ATK). Based on the observations made by the Monitoring
component, the Analysis component updates its belief state. The Planning component uses the updated belief state to
select the appropriate topology based on the policy available in the Knowledge component. Given an updated belief
state, weight vector, and policy (containing alpha matrices, see Figure 7), the Planning component selects the action
(i.e., topology) associated with the alpha matrix that provides the most optimal value using Equation 9. The topology
chosen is then activated in the managed system by the Execute component.

We configured RDMSim by adjusting the parameters in 𝐶𝑜𝑛𝑓 𝑖𝑔.𝑝𝑦 and 𝑀𝐴𝑃𝐸𝐾𝐿𝑜𝑜𝑝.𝑝𝑦 to simulate MirrorNet,
which consists of 25 mirrors with 300 physical links used for data transfer between these mirrors, with the settings
specified in Table 13.

7.2 Evaluation Metrics

We utilize the following metrics to analyze the experimental results:

(1) Planning time: the execution time required to generate a CCS of weight vectors and a set of policies.
(2) Expected total reward: the accumulated expected reward obtained by executing an action in each step, in which

the belief state determines the value for each step.
(3) Size of CCS solutions: the number of non-dominated weight vectors successfully found.
(4) Topology proportions: the proportion of selecting MST topology relative to RT topology in a simulation round.
(5) Target satisfaction: measures how closely the execution results meet the target.
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Table 13. RDMSim configuration

Configuration item Value
Random seed 0
Time steps 200
Mirrors 25
MST Active Links % [8, 58]
RT Active Links % [30, 65]
Single bandwidth consumption [20, 30]
Single writing time [10, 20]
BWC max. threshold 𝑡𝑏 4050
WRT max. threshold 𝑡𝑡 3000
ANL min. threshold 𝑡𝑙 90
Discount factor 𝛾 0.95

(6) Constraints violation: identifies whether the execution results violate the given constraints.

7.3 Baselines

7.3.1 MR-POMDP. For a fair comparison, we selected the implementation of MR-POMDP that also utilizes OLSAR-
Perseus [48, 52] to investigate the effects of modeling multi-objective mixed observability problems using MR-MOMDP
(a specific model for mixed observability) and MR-POMDP designed for multi-objective partial observability. In this
evaluation, we employ a discount factor of 𝛾 = 0.95 to generate policies for both MR-POMDP and MR-MOMDP.

7.3.2 Rule-Based Adaptation. . RDMSim [53] is equipped with a default rule-based adaptation mechanism that selects
the MST topology if there is a violation of the BWC threshold and WRT threshold, and chooses the RT topology if the
ANL threshold is violated. We use this as an additional baseline to compare various adaptation strategies in satisficing
NFRs.

7.4 (RQ1) Optimal Policy Planning

The SPECTRA method enhances the management of tradeoffs in uncertain situations for SAS. This is achieved through
three key features: 1) considering diverse observability to determine the most suitable MDP model, 2) priority elicitation
to guide policy decision-making during runtime, and 3) representing the priorities of each NFR through vector reward
to facilitate well-informed decision-making.

Through SPECTRA, we can model the decision-making of MirrorNet using MR-MOMDP, which can be compared
with baselines. As previously explained, we implemented MR-MOMDP with OLSAR and Perseus to formulate an
optimal policy configuration for MirrorNet, using a convergence threshold of 𝜂 = 0.01, a maximum allowed error of
𝜖 = 0.01, and a convergence timeout of 3600 seconds. The convergence threshold is used to determine when the policy
computation has converged to an acceptable solution. A policy is considered good enough when the improvement in
the policy falls below the convergence threshold. The maximum allowed error defines how much deviation from the
optimal policy is acceptable. By controlling the maximum allowed error, we can trade off precision against runtime.
Convergence timeout is used to prevent excessively long computations. The designers and domain experts choose these
values to generate an acceptable policy while ensuring computational feasibility and practical applicability.

We compared the planning time required by MR-MOMDP and MR-POMDP in two environments with different
values of 𝜖 . In the default setting, as shown in Fig. 9a, with 𝜖 = 0.01, MR-POMDP is intractable and always reaches
the timeout convergence, while MR-MOMDP completes within the range of 300-372 seconds. When the maximum
allowed error is relaxed to 𝜖 = 0.10, MR-MOMDP still finishes faster than MR-POMDP, taking 247-291 seconds in the
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(a) Env. model=SL1, 𝜖 = 0.01 (b) Env. model=SL1, 𝜖 = 0.10 (c) Env. model=SL2, 𝜖 = 0.10

Fig. 9. Planning time of MR-POMDP and MR-MOMDP in different settings

SL1 environment (Fig. 9b) and 345-379 seconds in the SL2 environment (Fig. 9c), while MR-POMDP requires 654-856
seconds in the SL1 environment and 511-627 seconds in the SL2 environment. It can also be observed that different
random seeds yield different planning times.

We observed that the backup time required by MR-MOMDP is longer than MR-POMDP due to the additional loop
caused by the decomposition of states into fully and partially observable states. This decomposition increases the
number of alpha-matrices and computational operations needed in MR-MOMDP. However, we suspect that the smaller
belief space maintained by MR-MOMDP reduces the number of corner weights that need to be tested individually. On
the other hand, MR-POMDP with a larger belief space has a higher likelihood of finding more corner weights, which
leads to a longer convergence time for MR-POMDP.

Fig. 10 shows the size of CCS found by MR-POMDP and MR-MOMDP using 𝜖 = 0.01, where MR-POMDP yields 174
points in the SL1 environment and 164 points in the SL2 environment, while MR-MOMDP only yields 18 points and 34
points, respectively. However, when the maximum allowable error is relaxed to 𝜖 = 0.10, we can reduce the size of the
CCS in MR-POMDP to approximately half, as shown in Table 14.

Fig. 10. Convex Coverage Set (CCS) of (a) MR-POMDP (164 points) and (b) MR-MOMDP (34 points) under SL2 context.
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Table 14. CCS size of MR-MOMDP and MR-POMDP in different environments and settings

CCS Size
Part 1. Seed=0, Epsilon=0.01

Env: SL1 Env: SL2
MR-MOMDP 18 34
MR-POMDP 174 164
Part 2. Env: SL1, Epsilon=0.10
Seed 0 5 10 123 12345
MR-MOMDP 8 8 10 10 10
MR-POMDP 93 87 81 89 98
Part 3. Env: SL2, Epsilon=0.10
Seed 0 5 10 123 12345
MR-MOMDP 12 12 12 12 13
MR-POMDP 74 70 77 85 78

As we need to decide on a single final weight vector along with its corresponding set of policies, having a larger CCS
size provides more alternatives. However, it also requires more time and effort to determine the choice, especially if the
selection is made manually by a human decision-maker. Nevertheless, having a reliable autonomous component to
select the best final weight vector will benefit the planning process.

7.5 (RQ2) PolicyQuality and NFR Satisfaction

We answer RQ2 by evaluating the policies produced by MR-MOMDP and MR-POMDP using metrics: expected total
reward, the proportion of topology used, target satisfactions, and constraint violations, which we discuss below.

7.5.1 Expected Total Reward. The expected total reward represents the utility value of a system because the agent’s
goal is to maximize the expected total reward through a sequence of actions while accounting for the uncertainty of the
system’s state. Therefore, a set of policies that yields a higher expected total reward can be considered a better set of
policies.

We compared the average expected total reward of MR-MOMDP and MR-POMDP for each NFR in SL1 and SL2
environments under both non-detrimental and detrimental conditions, using different random seeds mentioned in
Table 14 and Fig. 9.
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(a) Env. model=SL1, Scenario=Non-Detrimental (b) Env. model=SL1, Scenario=Detrimental

(c) Env. model=SL2, Scenario=Non-Detrimental (d) Env. model=SL2, Scenario=Detrimental

Fig. 11. Expected total reward of MR-MOMDP and MR-POMDP in different environment models.

Fig. 11 shows that under non-detrimental conditions, all NFRs had higher average expected total rewards in MR-
MOMDP and MR-POMDP compared to detrimental conditions. This outcome is not surprising since NFRs are easier
to satisfice in normal conditions than during anomalies. In non-detrimental conditions, SL2 provided higher rewards
than SL1, while in detrimental conditions, SL1 performed better than SL2. The reason behind this is the probability
values in the observation function, where SL2 has higher probability values of P(MR=T|ATK=F) and lower values of
P(MR=T|ATK=T).

Overall, MR-MOMDP yielded higher average values for all NFRs compared to MR-POMDP. However, in SL2-
Detrimental, MR-POMDP outperformed MR-MOMDP in MC and MP, as MR-MOMDP sacrificed both NFRs for higher
MR, which is a preferred outcome.

To ensure the reward difference was not due to the weight vector choice, we evaluated the solutions using the
policy evaluator tool provided by APPL [41]. We compared the scalarized versions of MR-MOMDP and MR-POMDP
with a weight vector of [0.333, 0.333, 0.333], solved using SARSOP [41]. Fig. 12 shows that the scalarized MR-POMDP
(SARSOP-MOMDP) consistently yielded higher expected rewards than SARSOP-POMDP across various configurations.
This is because MOMDP reduces uncertainty through a smaller belief space, resulting in higher belief values that impact
optimal rewards.

7.5.2 Topology Proportion. As highlighted in Section 5, the utilization of the MST topology offers the advantage
of lower operational expenses, although it may not provide the same level of reliability as the RT topology. The MST
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(a) Env. model=SL1 (b) Env. model=SL2

Fig. 12. Expected Total Reward of Scalarised MR-MOMDP and MR-POMDP using SARSOP

topology can be a suitable option when the risk of disruptions is low, such as in non-detrimental conditions. However,
it may not be ideal in detrimental situations where reliability is crucial.

Fig. 13. Proportions of topology under different conditions.

In Fig. 13, the usage proportions of the MST and RT topologies are depicted for the SL1 and SL2 environments,
respectively. In non-detrimental conditions, MR-MOMDP, MR-POMDP, and the Rule-based adaptation demonstrate
similar proportions in terms of utilizing the two topologies. However, in detrimental conditions, there are notable
differences.

The rule-based adaptation only marginally increases the allocation of RT by approximately 9-11% in detrimental
conditions. On the other hand, both MR-MOMDP and MR-POMDP significantly increase the portion of RT. In the SL1
environment, they allocate RT by approximately 20%. However, in the more stringent SL2 environment, MR-MOMDP
and MR-POMDP dramatically increase the allocation of RT by about 70%. This shift towards RT usage is driven
by the need to adhere to stricter MR constraints in SL2-Detrimental compared to SL1-Detrimental. However, it is
important to note that this higher reliance on RT in SL2-Detrimental leads to increased operational costs compared to
SL1-Detrimental.

7.5.3 Target Satisfaction. Based on the specified targets in Table 3, the objective is to minimize the average values
of WRT (MP) and BWC (MC) while maximizing the average value of ANL (MR). Fig. 14 illustrates that under normal
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Fig. 14. Target satisfaction under various conditions.

or non-detrimental conditions, MR-MOMDP, MR-POMDP, and the Rule-based adaptation perform equally well in
achieving all the targets.

However, in detrimental conditions, a notable difference arises. The Rule-based adaptation yields a lower WRT and
BWC average than MR-MOMDP and MR-POMDP. This discrepancy can be attributed to the rule-based adaptation
relying more heavily on the MST topology than MR-MOMDP and MR-POMDP. Consequently, when detrimental
conditions occur, disruptions in the MST topology reduce the number of active links, resulting in decreased values of
both BWC and WRT.

On the contrary, MR-MOMDP and MR-POMDP adapt their strategy by increasing the allocation of the RT topology to
maintain system reliability. This strategic adjustment allows them to equally satisfy all the targets while outperforming
the Rule-based adaptation in satisficing the ANL objective.

To summarize, under detrimental conditions, the Rule-based adaptation exhibits lower values of WRT and BWC due
to its reliance on the MST topology, which is more susceptible to disruptions. In contrast, MR-MOMDP and MR-POMDP
respond by prioritizing the RT topology to enhance system reliability, resulting in better performance across all targets
and excelling in satisficing the MR requirements.
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7.5.4 Constraint Violation. Regarding constraint violation, as shown in Fig. 15, none of the approaches, including
MR-POMDP, MR-MOMDP, and rule-based adaptation, violate any constraints under non-detrimental conditions.
However, when subjected to detrimental conditions, the rule-based adaptation violates the MR constraints in SL1 and
SL2, indicating its inability to handle detrimental conditions effectively. On the other hand, both MR-POMDP and
MR-MOMDP still manage to avoid violating any constraints.

Additionally, during the evaluation, we specifically observed the number of threshold violations betweenMR-MOMDP
and MR-POMDP across different random seeds. The aim was to assess the performance of the two approaches in
maintaining the predefined thresholds for the NFRs. Notably, our findings indicate that the number of violations is
comparable between MR-MOMDP and MR-POMDP. This implies that the two approaches exhibit similar capabilities in
effectively maintaining the set thresholds for the NFRs.

Based on these findings, we can conclude that the default RDMSim rule-based adaptation cannot effectively satisfy
the NFRs in this experiment. In contrast, MR-POMDP and MR-MOMDP exhibit better performance by successfully
adhering to the MR constraints, even under detrimental conditions. However, one can improve the rule-based adaptation
by adding more rules to address different conditions, which is often impractical.

Fig. 15. Constraint violation under various conditions.

8 THREATS TO VALIDITY

8.1 Threats to external validity

Threats to external validity are associated with the generalisability of results and the replicability of experiments. Our
testing was conducted using RDMSim simulator [53], which has also been used in [51, 52]. We present two models and

different environmental scenario conditions with the initial configuration provided by domain experts.

Our implementation of Markov models relies on several key assumptions, including constant transition probabilities
and discrete state representations. Specifically, the models assume that the probabilities of transitioning between states
remain fixed over time. However, some systems may exhibit non-stationary behavior, where transition probabilities
evolve due to factors such as system wear, user behavior, or external influences. Additionally, the use of discrete state
representations may be inadequate for environments that require a continuous range of state values. In more complex
and dynamic settings, extending the models to accommodate these factors is essential to ensure accurate and reliable
results.
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Another issue is the computational cost of both MR-MOMDP and MR-POMDP, which can become intractable in
their worst-case scenarios when the number of states used is too large, even though MR-MOMDP requires a shorter
computation time than MR-POMDP. Our approach adopts [25, 52], which uses states as representations of combinations
of two values for the satisfaction levels of NFRs (i.e., True and False). For example, 2 NFRs will result in 4 states, 3 NFRs
will yield 8 states, and so on. Therefore, limiting the number of NFRs used to drive the self-adaptation is recommended
when implementing our proposal. To strive for replicability, we provided a detailed experiment setup and configuration
used in the simulator. Our implementation code, model, and simulator are also available online for the public [30].

8.2 Threats to internal validity

Threats to internal validity can be associated with randomness and settings in the implementation. We observe that the
randomness of the environment affects the test results. Changes and differences in values for each component in the
model will result in different policies.

To minimize potential biases arising from specific implementation or environmental factors, we conducted ex-
periments under different environment/constraint configurations. We also used multiple random seeds during our
experiments to ensure consistent results while capturing diversity in possible outcomes. This approach helps to reduce
the impact of random fluctuations and strengthens the overall robustness of our findings.

We evaluated MR-MOMDP against MR-POMDP using the same solver and similar weight vectors. Additionally, we
also applied scalarization techniques using identical weight vectors for a fair comparison between the two models. This
uniformity in experimental setup ensures that differences in performance can be attributed to the models themselves
rather than the solvers or other parameterizations.

8.3 Threats to construct validity

Threats to construct validity are related to the metrics’ suitability, which is crucial to accurately assess the models
concerning the research objectives. To anticipate this, we utilized various metrics in the evaluation to address our
research questions. The metrics employed include planning time - which measures the computational efficiency shown
by the time required to generate policies, expected total reward - which evaluates the overall effectiveness of the policies
by quantifying their ability to maximize system utility, CCS size, target satisfaction - which reflects the models’ ability to
achieve specified objectives, and constraint violation - that quantified the adherence of policies to system requirements.

9 RELATEDWORK

This section presents relevant literature that aligns closely with our proposal. Our focus is solely on those works that
employ the Markov model within the realm of decision-making for self-adaptation. To emphasize the unique aspects
of our approach, we have divided this section into two parts. A comparison of our proposal with some of the most
relevant previous work is summarized in Table 15.

9.1 Observability

Introduced by the Reinforcement Learning (RL) and the robotics community, MDPs and POMDPs have been applied to
model sequential decision-making processes in various domains of SAS, including SOA-based systems [26, 47, 61, 65],
cloud computing [38, 39, 42], mission planning [27, 28], and security [6, 37]. While one may assume that the impact
of the adaptation action is deterministic [6], much research based on Markov processes assumes that the effects of
adaptation on NFRs are uncertain.
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Table 15. Comparison of our proposal with existing approaches

Approach # of NFRs State space repre-
sents NFR satisfac-
tion information?

Observability Reward

Full Partial Mixed
Hybrid planning [42] Single No ✓ Scalar
CSSC-MDP [47] Multiple Yes ✓ Scalar
ADAM [26] Multiple Yes ✓ Scalar
MDP-LSP with HTN [65] Multiple Yes ✓ Scalar
Wang et.al. [61] Single Yes ✓ Scalar
RE-STORM-ARRoW [43] Multiple Yes ✓ Scalar
MR-POMDP++ [52] Multiple Yes ✓ Vector
Filieri et.al. [15] Multiple No ✓ Scalar
Moreno et.al. [19] Multiple No ✓ Scalar
SPECTRA (our proposal) Multiple Yes ✓ ✓ ✓ Vector

The studies conducted by [25, 26, 42, 43, 47, 52, 61, 65] share common objectives with our work in the realm of
enhancing Quality of Service (QoS) and ensuring the satisfaction of NFRs. The works by [25, 26, 43, 47, 52, 61, 65]
utilize state space to represent information related to the satisfaction level of NFRs. However, only RE-STORM [25]
and Pri-AwaRE [51, 52] specifically demonstrate how NFRs, which only can be partially observed in the context, are
mapped and represented by the states of the POMDP model.

In other studies using MDP [2, 6, 26–28, 37–39, 42, 47, 65], the agent works in an environment where it could fully
observe the current state. However, in POMDP-based systems [25, 43, 52, 61], the agent can only partially observe the
current state of the environment. Adopting POMDP in SAS is less common than MDP for various reasons. Besides
additional computational complexity, not all domains or applications require modeling and reasoning under partial
observability. Most of the existing studies considering full observability of the satisfaction state of NFRs either use a
general goal model [11, 16–18, 20, 21] or an implementation of approaches such as Markov Decision Process (MDP),
Discrete-Time Markov Chains (DTMCs) [15, 19], Monte Carlo Tree Simulations [9] or Dynamic Decision Networks
[13, 14, 22]. The limitation of these approaches, considering full observability, is that they do not model the uncertainty
related to the satisfiability of the NFRs in a system.

It is important to note that all studies mentioned above only focus on one type of observability (i.e., homogeneous
observability), either fully observable or partially observable states.

MOMDP [41] considers mixed observability and solves it by representing separately the fully and partially observable
components of an environment’s state (i.e., robot) and derives a compact lower-dimensional representation of its belief
space, which can be combined with any point based algorithm to compute approximate POMDP solutions, resulting in
significant improvements in performance.

Our proposal, SPECTRA, builds upon RE-STORM [25] and Pri-AwaRE [51] by incorporating a state space model to
represent the satisfaction level of NFRs. We recognize the significance of using MDP and POMDP in environments with
uniform observability. However, unlike existing approaches, our work takes a step further by incorporating MOMDP to
handle decision-making in mixed observability environments, an under-explored area in Software Engineering and
Requirements Engineering in particular.
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9.2 Reward Function

Existing approaches generally use single-objective approaches with scalar rewards in their models [2, 6, 8, 9, 15, 19, 25,
27, 28, 37–39, 42, 43, 47, 61, 65]. Although not explicitly stated, works by [42, 65] rely on the reward function to meet
NFRs instead of using NFR satisfaction level as a determinant of the environment’s current state. Although their model
does not explicitly provide information on the satisfaction level of NFRs, the scalar reward function utilized in their
MDP model strives to optimize the system’s overall utility by prioritizing the essential quality constraints.

While scalar rewards are generally static, ARRoW [44] introduces dynamic rewards representing the prefer-
ences/weights over NFRs updated at runtime by monitoring the current levels of satisfaction of NFRs (i.e., states), the
satisfaction threshold for each NFR, and comparing it to a set of satisfaction ranges. The weights associated with the
NFRs are mapped onto a decision-making specification using a quantitative requirement prioritization scheme based
on the P-CNP method. The resulting priorities are then aggregated into a single scalar reward value representing the
overall importance of each NFR.

One issue with the scalar approach is that it hides important information about the significance of meeting each NFR
in various states of the environment [52]. Scalar rewards also obscure the effects of decisions on adapting to specific
NFRs. MR-POMDP++ [52] tackles the problem of scalar reward by suggesting an approach based on MR-POMDP [56].
This method employs a reward vector to represent the priorities of objectives (i.e., NFRs) by indicating how desirable
they are in terms of satisfaction, given a particular state of the environment. The use of reward vectors adds complexity
but offers transparency to capture the different impacts of adaptive decisions on the satisfaction of each individual NFR.

Echoing the importance of explicitly defining the significance of each NFR through vector rewards, our work goes
beyond MR-POMDP++ by considering the mixed observability of using MOMDP and contributing to a multi-reward
version of MOMDP (i.e., MR-MOMDP, described in Section 4) which can be applied in various domains. The SPECTRA
we propose covers the multi-reward/vector reward MDP, MR-POMDP, and MR-MOMDP and serves as a guideline for
designing priority-aware decision-making models of SAS to satisfy NFRs tradeoffs.

10 CONCLUSION AND FUTUREWORK

We have proposed SPECTRA, a framework that can be used as a guide in designing decision-making tradeoffs for
satisficing multiple NFRs in SAS using various types of Markov models according to the observability properties of the
NFRs involved. Through the MirrorNet scenario, we have shown that MR-MOMDP is more suitable for contexts with
NFRs showing mixed observability. The evaluation shows that MR-MOMDP can shorten planning time, produce higher
expected values total rewards, and better satisfy NFRs. This findings encourage further development and exploration in
other domains with mixed observability.

The current implementation of SPECTRA requires enhancement to make it more effective in real-world applications.
Several methods have the potential to work with OLSAR for offline planning (e.g., SARSOP [41]) as well as online
planning (e.g., DESPOT [66]). Further exploration is also needed for fine-tuning the selection of weight vectors from
CCS generated by OLS, as our current implementation still relies on human judgment for this task. Additionally, we
will explore the SPECTRA framework’s application in satisfying NFRs in different socio-technical contexts, including
Human-in-The-Loop Cyber-Physical Systems, where humans can play different roles [31]. Some NFRs in socio-technical
systems are ’soft-requirements’ [58], linked to soft goals involving partially known human attributes like values, beliefs,
motivations, and personalities, making their satisfaction challenging to measure [58].
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