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Recoverable strain in amorphous materials: The role of ongoing plastic events
following initial elastic recoil
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Abstract

Recoverable strain is the strain recovered once a stress is removed from a body, in the direction opposite to that in which the stress had acted.
To date, the phenomenon has been understood as being elastic in origin: polymer chains stretched in the direction of an imposed stress will
recoil after the stress is removed, for example. Any unrecoverable strain is instead attributed to irreversible plastic deformations. Here we
study theoretically strain recovery within the soft glassy rheology (SGR) model, aimed at describing the rheology of elastoplastic yield stress
fluids and amorphous soft solids. We consider a material subject to the switch-on of a shear stress that is held constant before later being set
back to zero, after which the strain recovery is observed. After an initially fast recoil that is indeed elastic in nature, significant further strain
recovery then occurs more slowly via the plastic yielding of elements with negative local stresses, opposite to that of the original shear. We
elucidate the mechanism that underlies this behavior, in terms of the evolution of the SGR model’s population of elastoplastic elements. In
particular, we show that the initial fast elastic recoil brings to a state of negative local stress those elements that had yielded during the
forward straining while the load was applied. The subsequent delayed plastic yielding of these elements with negative stress is the origin of
the slow ongoing strain recovery. In this way, counterintuitively, elements that had yielded plastically while the load was applied still contrib-
ute significantly to strain recovery after the sample is unloaded. This finding has important consequences for constitutive modeling, because
such behavior can only arise in a constitutive model that evolves a full distribution of local stresses (or multiple moments of such a distribu-
tion), rather than a single average stress. Unexpectedly, although in rare parameter regimes, this slow ongoing strain recovery post switch-off
does not always in fact recover in the negative direction, counter to that of the previously imposed stress, but can sometimes continue to accu-
mulate in the forward direction. The recovery is then non-monotonic overall, reminiscent of observations of non-monotonic stress relaxation
after straining. © 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-
nd/4.0/). https://doi.org/10.1122/8.0000866

I. INTRODUCTION

The concept of recoverable strain has a long history in the
rheology literature. Reiner noted that, when stresses are
removed from a body, part of the deformation will in general
be recovered, and that this part of the deformation is elastic
[1]. Weissenberg suggested that the stress in a flowing mate-
rial can be expressed at any time in terms of a strain that
relates the current state of the material to some reference state
and that this reference state, which depends on the flow
history, defines the recoverable state to which the material
would ultimately deform if the stress were then removed [2].
In essence, then, recoverable strain is the amount of strain
recovered once a stress is removed from a body, in the direc-
tion opposite to that in which the stress had acted.

In physical terms, recoverable strain has to date been under-
stood as elastic in origin: polymer chains elastically stretched
in the direction of an imposed stress show viscoelastic recoil
after the stress is removed, for example. (In a material with a
single Maxwell relaxation time scale, this recovery is predicted
to occur instantaneously. A superposition of Maxwell modes

with distinct relaxation time scales confers a finite recovery
time [3].) Indeed, the term “elastic recovery” has often been
used synonymously with “strain recovery” [3–6]. Any unre-
coverable strain is instead attributed to irreversible plastic
deformations.

The same distinction is also evident in more recent litera-
ture concerning the use of recoverable versus unrecoverable
strain to characterize yielding [7–10]. Donley et al. [7] note
that zero-stress recovery tests allow materials to recover their
instantaneous “ground state,” enabling calculation of the rela-
tive amounts of viscosity and elasticity. Shim and Rogers [8]
state that “the recoverable and unrecoverable [strain] compo-
nents can be interpreted as the contributions from the visco-
elastic solid and plastic properties respectively.” Kamani et al.
[9] note that “the recoverable [strain] component is related to
elastic processes, while the unrecoverable component is related
to the plastic behaviour” and that “yield stress fluids change
from being viscoelastic solids, where deformations are recover-
able, to deforming plastically, where deformation is unrecover-
able.” Lee et al. [10] state that “recoverable strain is elastic,
while viscous properties are dictated by the rate at which strain
is acquired unrecoverably.”

In experimental studies, strain recovery following an
initial forward creep under an imposed stress, after the stress
is subsequently switched off, has been observed in cold set
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gels [11], protein gels [12], fractal colloidal gels [13], hector-
ite clay [14], peptide gels [15], carbopol [16], and polysty-
rene aggregate concrete [17]. A high degree of recovery after
a large deformation has been discussed as being an important
property of tough hydrogels [18–21]. Shape memory effects
in self-healing polymers are also attracting increasing atten-
tion [22], although here the recovery is typically induced by
a change in temperature, or other control parameter besides
stress or strain, which we do not consider here.

In this work, we study theoretically recoverable and unre-
coverable strain within the class of materials that are vari-
ously (in different parts of the literature) referred to as soft
glassy materials [23,24], amorphous materials [25], yield
stress fluids [26], or elastoplastic materials [27]. These
include dense foams and emulsions, glassy colloidal suspen-
sions, jammed athermal suspensions and granular matter, as
well as harder metallic and molecular glasses. We do so by
performing simulations within the widely used SGR model
[23,24], focusing, in particular, on the simple recovery proto-
col in which a material of age tw is subject to the switch-on
at some time zero of a shear stress of amplitude σ0, which is
held constant until it is later set back to zero at some time
tstop, after which the strain recovery is observed as a function
of the time t � tstop.

After an initially fast recoil that is elastic in nature, we
find, counterintuitively, that significant further slow strain
recovery then occurs via ongoing plastic events in the reverse
direction, opposite to that of the original shear. We provide a
mechanistic understanding of this phenomenon in terms of
the evolution of the SGR model’s population of elastoplastic
elements. In particular, we show that the initial recoil, which
elastically advects each element backwards in its trap, leaves
in a state of negative stress those elements that had yielded
plastically while the material was under load. The subsequent
delayed plastic yielding of these elements with negative stress
then leads to slow ongoing strain recovery. Because this yield-
ing is of negative stresses, counter to the original shear, we
call these “reverse plastic events.” Counterintuitively, there-
fore, those elements that had yielded plastically while the
forward load was applied still make an important contribution
to the material’s overall recovery after unloading. This has
important consequences for constitutive modeling, because
such behavior can only arise in a constitutive model that
evolves a full distribution of local stresses (or multiple
moments of such a distribution). A model that instead evolves
only a single average stress will be unable to capture it. To
illustrate this, we also simulate a simple fluidity model, which
shares many features of SGR’s behavior, including a yield
stress, rheological aging, and stress overshoot in shear startup.
In evolving only an average stress rather than a stress distribu-
tion, however, it lacks the slow ongoing strain recovery pre-
dicted by the SGR model.

We show that the observation of slow ongoing strain
recovery from reverse plastic events holds robustly across
broad parameter regimes. Unexpectedly—although in rela-
tively rare parameter regimes—we also find that the slow
ongoing strain post switch-off does not always take place in
the negative direction, counter to that of the originally
imposed stress, but can sometimes continue to accumulate in

the forward direction. The recovery process is then non-
monotonic overall, with the initially backward elastic recoil
followed by a (lesser) slow forward straining. This is reminis-
cent of recent observations of non-monotonic stress relaxa-
tion after straining [28–31], which have been attributed to
complex material memory effects [32].

The notion of a distribution of local stresses in an amor-
phous material, rather than a single macroscopic average
stress, has a well developed history in the statistical physics
literature. Modeling approaches based on shear transforma-
tion zones [33] and lattice elastoplastic descriptions are based
on it [27,34–36], as is the SGR model itself [23,24]. These
approaches in turn draw on concepts originally developed by
Spaepan [37] and Argon and Kuo [38] in the context of
metallic glasses and bubbles rafts. More recently, frustrated
local stresses have been recognized to play an important role
in the elastically driven aging of soft solids [39], the memory
of soft jammed solids to shear flow [40], the elasticity prop-
erties of amorphous solids [41], the directional memory of
soft glasses [42], and the non-monotonic relaxation of shear
stress after flow cessation [43]. A key contribution of this
work is to recognize and explore the significance of a stress
distribution in strain recovery after unloading and to empha-
size that important effects such as non-monotonic recovery
can be captured only in constitutive descriptions that indeed
consider a full distribution of local stresses (or at least multi-
ple moments of such a distribution), rather than a single
average stress.

The paper is structured as follows. In Sec. II, we outline
the SGR model [23,24], within which we shall study the phe-
nomenon of strain recovery. The step stress protocol that we
shall simulate is specified in Sec. III. In Sec. IV, we define
our units, summarize the parameters of the model and proto-
col, and discuss the rheological quantities to be measured.
Our results are presented in Sec. V. We set out our conclu-
sions in Sec. VIII.

II. SOFT GLASSY RHEOLOGY MODEL

The SGR model [23,24] considers the dynamics of an
ensemble of elastoplastic elements that explore a landscape
of energy traps. Each element is notionally taken to represent
a local mesoscopic region of a soft glassy material: a few
tens of droplets in a dense emulsion, for example. Each
element is assumed small relative to any macroscopic varia-
tions in the flow field, on the one hand, yet large enough to
allow the definition of local continuum variables of shear
strain l and shear stress kl, on the other hand. Here, k is an
elastic constant, assumed the same for all elements. The local
strain variable l is taken to describe the element’s state of
elastic deformation relative to a locally undeformed equilib-
rium. Between local plastic yielding events, defined below,
the strain of each element is assumed elastically to follow the
macroscopically imposed strain rate _γ, such that _l ¼ _γ.

Plasticity is incorporated by assuming that these local
stresses are intermittently released by local plastic yielding
events. In each such yielding event, a mesoscopic region of
material is assumed suddenly to rearrange itself into a new
local configuration, relative to a new state of local
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equilibrium. This is modeled by the corresponding represen-
tative elastoplastic element hopping between traps in the
model’s energy landscape: at any instant in time, an element
that lies in a trap of energy depth E and has local shear strain
l is assumed to have a probability per unit time of hopping
given by [44]

r(E, l) ¼ τ�1
0 min 1, exp

�
1
2
kl2 � E

�
=x

� �� �
, (1)

with τ0 being a microscopic attempt time. As can be seen via
this expression, the elastic strain energy 1

2 kl
2 essentially

reduces the local energy barrier E, giving an effective barrier
E � 1

2 kl
2. This shear-induced reduction in barrier heights

renders the model’s overall rheological behavior shear thin-
ning. Depending on the material considered, the parameter x
can be interpreted as the true thermal temperature or an effec-
tive noise temperature: a point to which we shall return below.

After hopping, an element is assumed instantaneously to
select a new trap depth randomly from the landscape’s prior
distribution of trap depths, taken to be of the form

ρ(E) ¼ 1
xg

exp �E=xg
� 	

, (2)

in which xg is the model’s glass transition (effective) temper-
ature, discussed further below. The element is further
assumed to reset its local strain l to zero, so relaxing its
stress. (At the end of Sec. V, we shall return to consider a
distribution of post-hop strain values with non-zero width lp,
to model local frustration.)

With these dynamics, the joint probability P(E, l, t) for an
element to be found at any time t in a trap of depth E, and
with local shear strain l, evolves via the following master
equation:

_P(E, l, t)þ _γ
@P

@l
¼ �r(E, l)Pþ Y(t)ρ(E)δ(l): (3)

The advection term on the left hand side captures the elastic
loading of each element within its trap. The first term on the
right hand side describes the local plastic yielding events
described above. Because these are modeled by hops out of
traps, this takes the form of a “death” term. The second term
on the right hand side is a “rebirth” term, describing the
hopping of freshly yielded elements into the bottom of new
traps, l ¼ 0, with the new trap depth selected randomly from
the prior ρ(E) of Eq. (2). The ensemble average hopping rate

Y(t) ¼
ð
dE

ð
dl r(E, l)P(E, l, t), (4)

and the ensemble average macroscopic stress

σ(t) ¼ k

ð
dE

ð
dl l P(E, l, t): (5)

In combination with the exponential prior distribution of trap
depths across the model’s energy landscape, ρ(E), the expo-
nential activation factor r(E, l) confers a glass transition at an
effective temperature x ¼ xg. In the absence of any imposed

shear, the model captures rheological aging for effective tem-
peratures in the glass phase x , xg [45]. Following the prepa-
ration of a sample via a sudden quench from a high initial
effective temperature to a working temperature x , xg, the
system slowly evolves into ever deeper traps as a function of
the time since the temperature quench. The overall stress
relaxation time grows linearly with time, giving progressively
more solid-like rheology as the sample ages.

Conversely, an imposed shear of rate _γ will halt this aging
process and rejuvenate the sample to a flowing state with an
effective age set by the inverse shear rate, 1= _γ. In its glass
phase, x , xg, the model predicts steady state flow curves
with a yield stress σY(x) in the limit of slow shear _γ ! 0.
For xg , x , 2xg, the model predicts power law flow curves
with a shear-thinning (sublinear) exponent, giving infinite
viscosity in the limit of slow shear. For x . 2xg, the flow
curves are Newtonian.

In many soft glassy materials, the typical scale of energy
barriers for local rearrangement events—the penalty for
stretching soap films in a foam, for example—is far greater
than the typical scale of thermal energy, kBT . In such materi-
als, the parameter x is taken to be an effective noise tempera-
ture that models an assumed coupling with other yielding
events elsewhere in the sample. This is intended to capture in
a mean-field way the basic idea that a local yielding event in
one part of the sample may trigger follow-on yielding events
in other regions. To date, this remains a mean-field assump-
tion that is yet to be made self consistent. In materials for
which the energy barriers are instead on the scale of kBT , the
parameter x can be taken as the true thermal temperature.

III. PROTOCOL

In this section, we define the recovery protocol that we
shall simulate within the SGR model just described.

Sample preparation prior to shear is modeled by assuming
a sudden deep quench at some time t ¼ �tw, from infinite
effective temperature to the final working value x, which is
held constant thereafter. For times �tw , t , 0, the sample
is allowed to age undisturbed, without any strain or stress
being applied. Throughout most of the paper, we assume that
all elemental strains are equal to zero during this initial aging
stage, l ¼ 0. An exception can be found in Figs. 3 and 4,
where we assume an initial Gaussian distribution of l values,
of narrow standard deviation l0 ¼ 0:05. This does not affect
the basic physics of interest in this work, but merely allows
us to show as a narrow Gaussian in Fig. 4 what would other-
wise be an unplottable initial delta function distribution. We
return at the end of Sec. V to consider in more detail the
effect of non-zero l0 values on the physics that we report.

At time t ¼ 0, a step stress of amplitude σ0 is imposed.
At the time of this step, all elements instantaneously strain
elastically forward within their traps by the same amount
l ¼ σ0=k, giving an instantaneous global elastic strain
response γ0 ¼ σ0=k. With the imposed stress held constant
and equal to σ0, we then allow the sample to strain further
forward by an amount Δγf , beyond the elastic straining that
occurred at the instant the stress was imposed. Note that this
further straining arises from elements hopping between traps
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and accordingly is plastic in nature. Once the total strain has
attained a value γ(t) ¼ γ0 þ Δγf , we set the stress to zero,
σ ¼ 0. We define the time at which this occurs as t ¼ tstop.
In principle, we could use either tstop or Δγf as a control
parameter in our study. In practice, we have chosen to use
Δγf because it better reflects the physical state of the material
at switch-off.

For all subsequent times, t . tstop, we hold the stress
equal to zero and measure the strain γ as a function of the
time interval t � tstop since switch-off. We shall be interested,
in particular, in the degree to which the strain recovers in the
negative direction, whether it does so monotonically or non-
monotonically, and in the basic physics that underlies this
recovery process.

IV. UNITS, PARAMETER VALUES, AND MEASURED
QUANTITIES

The parameters of the SGR model are the effective tem-
perature x, the attempt time for local yielding events τ0, the
elemental modulus k, and the glass transition temperature xg.
Recall Sec. II. The parameters of the rheological protocol are
the time tw for which the sample is aged before the stress is
imposed, the amplitude of the imposed stress σ0, and the
degree to which the sample is allowed to strain further for-
wards due to plastic yielding while the stress is held fixed,
Δγf . Recall Sec. III.

To solve the SGR model numerically, (at least) two differ-
ent methods can be used. In the first, one derives integral
equations from the governing master equation, Eq. (3), then
uses numerical mathematics to solve these [24]. In the
second method, which we adopt here, one instead directly
simulates the stochastic hopping dynamics of a population of
M SGR elements. In any time step dt, each element has its
strain shifted elastically by an amount l ! lþ _γ(t)dt, where
_γ(t) is the strain rate at that time. Any element also plastically
hops into a new trap with probability rdt, with r that ele-
ment’s probability per unit time of hopping as given by
Eq. (1). In the limit of many elements M ! 1, one recovers
the solution of the governing equations. During any intervals
in which the stress is held constant, the strain rate is calcu-
lated as _γ ¼ hlriP. This ensures that the rate of stress loss via
plastic hopping between traps is exactly counterbalanced by
stress gain via elements shifting their local strains within
their existing traps. At the instant of any step stress of size
Δσ, each element is simply shifted elastically in its trap by an
amount l ! lþ Δσ=k.

We work in units of stress in which the modulus k ¼ 1,
and of time in which τ0 ¼ 1. We restrict ourselves to homo-
geneous shear, assuming that (for example) no shear bands
form either during forward creep or backward recovery. With
this simplification, there is no lengthscale implied by the
flow geometry or model. We also set the glass transition tem-
perature xg ¼ 1. This amounts to setting the average trap
depth in the landscape’s prior distribution to unity, thereby
setting the typical scale of strain for local yielding events. To
compare with any experimental data, therefore, all strains
reported below would need to be rescaled by the typical
strain for local yielding events in the material.

We set the noise temperature x ¼ 0:3, deep within the
glass phase. Results are presented for a number of SGR ele-
ments M ¼ 105, convergence checked against M ¼ 106. The
numerical time step dt ¼ α=hjljr(E, l)i with α ¼ 10�5, con-
vergence checked against α ¼ 2� 10�6.

Important physical parameters to be explored are then the
sample age tw prior to stress switch-on, the amplitude of the
imposed stress σ0, and the degree of forward plastic strain
that accumulates before the stress is switched off, Δγf . Recall
from Sec. IV that this further defines a switch-off time
tstop(x, tw, σ0, Δγf ).

At the instant of stress switch-off, all elements instanta-
neously strain elastically backwards, giving a global strain
change Δγ ¼ �σ0 (in our units). We then measure the subse-
quent strain evolution as a function of the time t � tþstop since
switch-off. Our interest, in particular, will be in the total
reverse strain Δγrec accumulated in the long time limit,
t � tstop ! 1, beyond that which arose in the fast elastic
recoil during the reverse step stress. As noted above, in rare
cases, we shall find Δγrec , 0: the further straining that
arises after the initial reverse elastic recoil, in fact, takes
place in the forward direction.

V. RESULTS

We now present our results. As a preamble to understand-
ing strain recovery post switch-off, we shall start in Sec. V A
by analyzing the forward creep and/or yielding and flow that
arise while the stress is held imposed. We then present our
results for strain recovery in Sec. V B.

A. Forward strain during stress application

Following the application of a step stress of magnitude σ0

at time t ¼ 0, a material’s creep response is characterized by
the strain curve γ(t). As noted above, in the SGR model,
this shows an initially elastic step strain of magnitude
γ0 ¼ σ0=k (¼σ0 in our units) at t ¼ 0, followed by subse-
quent plastic straining for t . 0. Figure 1(a) shows this
plastic part of the creep, beyond the initial elastic step, normal-
ized by the stress amplitude σ0. Results are shown for a fixed
sample age tw, and several imposed stresses in curves upwards,
spanning values from below the SGR model’s dynamic yield
stress σY to above it. (At the noise temperature x ¼ 0:3 consid-
ered in this work, the yield stress σY ¼ 0:758.) The corre-
sponding strain rate curves _γ(t) are shown in panel (b).

For imposed stresses σ0 , σY, the strain rate decreases
perpetually as a power law _γ � t�α. The exponent
0 , α , 1 depends on the noise temperature x. The strain
correspondingly increases sublinearly as γ � t1�α, corre-
sponding to sustained power-law creep. In contrast, for
imposed stresses σ0 . σY, an initial interval of creep (for σ0

only just above σY at least) is interrupted by yielding, in
which the strain rate curves upwards before finally settling to
a time-independent value prescribed by the steady state flow
curve σss( _γ), with σss � σY(x) � _γ1�x. The time delay before
yielding scales as the sample age tw, with a prefactor that
diverges as σ0 � σY ! 0þ [45].

Figure 2(b) shows the same data as in Fig. 1, but with the
scaled strain rate _γ(t)=σ0 now plotted parametrically as a
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function of the forward plastic strain (γ(t)� γ0)=σ0.
Accordingly, time t is not explicitly represented in Fig. 2.
The scaled strain on the abscissa, however, increases mono-
tonically with increasing t. The counterpart data for sample

ages tw ¼ 101 and 106 are shown in Figs. 2(a) and 2(c),
respectively. As can be seen, for imposed stresses above the
yield stress, σ0 . σY, yielding typically occurs at a scaled
strain (γ � γ0)=σ0 ¼ O(1), although the value increases
slowly with tw and diverges as σ0 ! σþ

Y.
A dot at each of several logarithmically spaced values of

the abscissa in Fig. 2 shows the values of scaled forward
plastic strain (γ � γ0)=σ0 ¼ Δγf=σ0 at which we shall later,
in Fig. 5, explore the amount of strain Δγrec that is ultimately
recovered plastically after the stress is switched off.

B. Strain recovery after stress switch-off

Having mapped out the forward creep and/or yielding and
flow that arise while the stress is held imposed, we now
explore the strain recovery after the stress is switched off.
Our focus will be in particular on the part of this recovery
that stems from slow ongoing plastic yielding of elements
that were left with negative local stresses as a result of the
fast initial elastic recoil. In Sec. VI, we shall consider the
interplay of a non-zero time scale for the initial (visco)elastic
recoil with the later slow plastic strain recovery.

The basic physics that we aim to elucidate is shown in
Figs. 3 and 4. The imposed stress σ as a function of time t is
shown in the top panel of Fig. 3. The corresponding strain
response γ(t) is shown in the bottom panel. As described
above, a stress of amplitude σ0 is switched on at time t ¼ 0.
(The preparation phase during which the sample is allowed
to age undisturbed for a time tw prior to t ¼ 0 is not shown.)
At the instant of switch-on, the system shows an instanta-
neous forward elastic step strain of amplitude γ0 ¼ σ0, in our

FIG. 2. Forward strain evolution during stress application. The strain rate is
normalized by the imposed stress and parametrically plotted as a function of
the plastic strain that arises beyond the initial elastic step strain, also normal-
ized by the imposed stress. Imposed stress σ0 ¼ 0:1, 0:2, . . . , 2:0 in curves
upwards in each panel. Waiting time tw ¼ 101, 103, and 106 indicated in
each panel. Dots show equally logarithmically spaced values of the scaled
forward plastic strain (γ � γ0)=σ0 ¼ Δγf=σ0 for which the subsequent strain
recovery after switch-off is reported in Fig. 5.

FIG. 1. Forward strain evolution during stress application. (a) Plastic strain
γ(t)� γ0 as a function of time t after the initial elastic step of size γ0 that
arises at the instant of switch-on t ¼ 0, normalized by the amplitude of the
imposed stress σ0. (b) Corresponding strain rate as a function of time. Waiting
time tw ¼ 103. Imposed stress σ0 ¼ 0:1, 0:2, . . . , 2:0 in curves upwards.
Dots are placed at equally logarithmically spaced values of the scaled strain
for each imposed stress value in (a) and at corresponding times in (b).

FIG. 3. (a) Imposed stress σ as a function of time t. The sample is prepared
at time t ¼ �tw via a deep temperature quench, then left to age undisturbed
for a time tw (not shown). At time t ¼ 0, a stress of amplitude σ0 is imposed
and held constant until a time tstop (defined below). The stress is then set to
zero and held at zero for all times t . tstop. (b) Strain response γ(t). At the
instant the stress is imposed, t ¼ 0, the system shows an instantaneous
forward elastic step strain of amplitude γ0 ¼ σ0 (in our units). The strain
then subsequently increases beyond γ0 due to plastic yielding events. Once it
has done so by an amount Δγf , the stress is set back to zero. This defines the
switch-off time tstop. At this instant t ¼ tstop, the system shows an instanta-
neous backward elastic step strain of amplitude γ0. The strain then subse-
quently further recovers in the negative direction (usually) by an additional
amplitude Δγrec. Parameters: x ¼ 0:3, σ0 ¼ 1:4, tw ¼ 103, Δγf ¼ 1:4.
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units in which k ¼ 1. (In experimental practice, this forward
strain would be rapid but not instantaneous, with a rate
limited by inertia or dissipation; we return to this point in
Sec. VI.) The stress is then held constant for some time inter-
val, over which the strain increases further due to plastic
yielding events, this forward straining having been explored
in Sec. V A. Once it has thus increased by an amount Δγf
beyond γ0, the stress is switched off. This defines the switch-
off time tstop. At the instant of switch-off, t ¼ tstop, the
system shows an instantaneous backward elastic step strain,
Δγ ¼ �σ0 ¼ �γ0. [We consider in Sec. VI the effect of a
finite time scale for this initial (visco)elastic recoil.] The
stress is then held at zero for all subsequent times t . tstop.
As a function of the time interval t � tþstop, the strain further
recovers in the negative direction by an amplitude Δγrec,
beyond the negative elastic step Δγ ¼ �γ0 that occurred at
the instant of switch-off. This additional recovery Δγrec,
which has a significant amplitude compared with both Δγf
and γ0, arises from slowly ongoing plastic events, in which
elements left with negative local stresses by the initial elastic
recoil slowly reset these negative stresses to zero.

To understand the physics underlying this strain evolution
in more detail, let us consider the master equation governing
the time evolution of the joint probability distribution of
elemental trap depths E and strains l. This was specified in
Eq. (3), which we repeat here for convenience,

_P(E, l, t)þ _γ
@P

@l
¼ �r(E, l)Pþ Y(t)ρ(E)δ(l): (6)

Multiplying across by l and integrating over all l then gives a
constitutive equation (albeit not in closed form) for the evo-
lution of the stress, σ, at imposed strain rate,

_σ(t) ¼ _γ(t)� hl r(E, l)iP(E,l,t): (7)

In this equation, the first term on the right hand side stems
from the elastic loading term that describes the advection of
elemental strains while elements remain in their traps. The

second term stems from stress relaxation due to local plastic
yielding events, as elements hop between traps. The evolu-
tion of the strain rate at an imposed stress is then of course
simply

_γ(t) ¼ _σ(t)þ hl r(E, l)iP(E,l,t): (8)

Consider the predictions of this equation for the imposed-
stress protocol of interest here. Integrating across the positive
(resp. negative) step in stress at t ¼ 0 (resp. t ¼ tstop) gives
an elastic step strain of the same amplitude and sign as the
step stress (in our units in which k ¼ 1), as indeed discussed
above and seen numerically in Fig. 3.

In contrast, during any interval in which the stress is cons-
tant, _σ ¼ 0, either after switch-on while the stress of ampli-
tude σ ¼ σ0 is held imposed, or after switch-off when
σ ¼ 0, the strain rate is given by

_γ(t) ¼ hl r(E, l)iP(E,l,t): (9)

This tells us that any forward straining Δγf that occurs after
the initial elastic loading during switch-on but before switch-
off is determined purely by the relaxation of local stresses
due to local plastic yielding events. Importantly, it also tells
us that any strain recovery Δγrec that occurs after the initial
elastic recoil post switch-off is likewise determined by the
slow plastic yielding of elements left with negative local
stress values by that initial recoil. Indeed, as these local
plastic events occur and elements hop between traps, a global
straining must arise in order to advect elements within their
traps and exactly counterbalance any such plastic stress loss
(or gain), keeping the overall stress constant. Accordingly,
the initial fast elastic recoil creates a state out of which the
slow reverse plastic events later emerge, and we return in
Sec. VI to consider in more detail the interplay between
these two different stages of strain recovery.

In order to fully understand the forward plastic straining
during stress imposition and the strain recovery afterward;
therefore, we must consider in more detail the evolution of
the probability distribution of local strains, and the way this
determines the strain rate _γ(t) via Eq. (9). Accordingly, we
plot this distribution P(l, t) in Fig. 4 (having first integrated
out the trap energy depth variable E). We do so at several
times t while the stress is held applied (top panel in Fig. 4),
and at several times after the stress is switched off (bottom
panel). The time at which any distribution is plotted in Fig. 4
is indicated by a cross of corresponding color in Fig. 3.

The form of these distributions in Fig. 4 can be under-
stood as follows. At the end of the sample preparation phase,
immediately before the stress is applied, the distribution of
local strains is (by assumption) a Gaussian of narrow width
l0, centered at l ¼ 0. (As noted above, our results in all
figures except 3, 4, and 7(b) have l0 ¼ 0, corresponding to a
delta function.) At the instant the stress is switched on, this
distribution shifts via the elastic advection term, without
changing shape, to be now centered at l ¼ þσ0 ¼ þγ0. This
distribution is shown by the black curve in Fig. 4. Over sub-
sequent times while the stress is held imposed, plastic

FIG. 4. Probability distribution P(l) of local elemental strains at several
times during the simulation of Fig. 3. (a) While the stress is held applied, at
times shown by crosses in Fig. 3, with time increasing in distributions left to
right. (b) After the stress has been switched off, at times shown by crosses in
Fig. 3, with time increasing in distributions right to left. Line colors corre-
spond to cross colors in Fig. 3.
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yielding events arise: recall that an element in a trap of depth
E with local strain l has a hopping rate r(E, l) given by Eq.
(1). When any such plastic event occurs, the corresponding
element resets its local strain l ! 0. This slightly depletes
the original spike in the distribution centered at l ¼ σ0 and
leads to the development of a secondary lobe of probability
around l ¼ 0.

Were the strain held constant, with zero strain rate _γ ¼ 0,
the macroscopic consequence of these plastic yielding events
would be a relaxation of the ensemble average stress at rate
_σ ¼ hl r(E, l)iP(t). Conversely, to maintain the stress constant,
σ ¼ þσ0 with _σ ¼ 0, requires a forward strain of corre-
sponding rate _γ ¼ hl r(E, l)iP(t), ensuring sufficient forward
advection of elements within their traps exactly to counter-
balance this plastic relaxation. This is the origin of the
forward plastic straining seen for times 0 , t , tstop in
Fig. 3. Its consequence is to advect forward at rate _l ¼ _γ both
the spike in probability centered (originally) at l ¼ σ0 ¼ γ0
(as it simultaneously depletes due to the plastic relaxation
events just described), as well as the newly developing lobe
of probability near the origin l � 0. In this way, the distribu-
tion evolves over time from the black to cyan curve in the
top panel of Fig. 4.

At the instant the stress is switched off, a fast elastic recoil
occurs, in which the distribution of local strains instanta-
neously shifts by l ! l� γ0, with γ0 ¼ σ0, without changing
shape, as each element elastically reduces its strain within its
trap. Accordingly, the rightmost (cyan) curve in the top panel
of Fig. 4, which obtained at t ¼ t�stop, shifts to become the
rightmost (magenta) curve in the bottom panel at t ¼ tþstop.

Importantly, this distribution shown in magenta just
after switch-off now has some weight for strains
�γ0 , l , �γ0 þ Δγf , corresponding to those elements that
had plastically yielded and reset their strains to zero while
the stress was held applied, and then shifted elastically by
l ! l� γ0 at switch-off. These elements then themselves
plastically yield over the subsequent time t � tstop since
switch-off, resetting their strains from that negative strain
interval �γ0 , l , �γ0 þ Δγf to l ¼ 0. Accordingly, weight
is progressively lost from the leftmost part of this probability
lobe at negative l, with probability instead accumulating
nearer l ¼ 0, in moving from the magenta to green curves in
the bottom panel of Fig. 4.

If the strain were held constant, the macroscopic effect of
these plastic yielding events from negative to zero l would be
a positive growth in stress, via Eq. (9), as elements hop from
negative to zero local stress. Conversely, under the conditions
of constant stress that pertain after stress switch off, σ ¼ 0
and _σ ¼ 0, a corresponding negative strain rate is required to
advect elements in the negative direction in their traps, in
order to counterbalance this positive plastic stress change.
Accordingly, as weight is lost from the negative l part of the
distribution in moving from the magenta to green curves,
these curves also simultaneously advect leftwards. We, there-
fore, now understand the slow ongoing strain recovery that
arises after the initial elastic recoil post switch-off to stem
from the reverse local plastic yielding of elements left with
negative stress values by that initial recoil. We further recog-
nize these elements to be those that had previously yielded

plastically in the forward direction while the material was
under load. In this way, counterintuitively, stress relaxation
that occurs plastically while a material is under load can still
in fact contribute to strain recovery after the load is removed.

With this basic physics in mind, we shall now explore the
dependence of the phenomenon on each of the three control
parameters in our study: the amplitude of imposed stress σ0,
the degree to which the sample plastically strains forward
while the stress is held imposed Δγf , and the age of the
sample tw before stress switch-on. We shall consider first in
Fig. 5 the total strain Δγrec recovered plastically at long times
t � tstop ! 1, before examining the time-dependence of the
recovery process in Fig. 6. Recall that Δγf and Δγrec are indi-
cated on the left and hand sides, respectively, of Fig. 3(b): a
value Δγrec ¼ 0 corresponds to zero plastic strain recovery
(beyond the initial elastic recoil Δγ ¼ �γ0 at the instant of
switch-off ), whereas a value Δγrec ¼ Δγf would indicate full
recovery.

FIG. 5. Total strain plastically recovered in the reverse direction at long
times t � tstop ! 1 after switch-off, Δγrec, scaled by the forward plastic
strain Δγf that arose while the stress was held imposed. Recall that a value
Δγrec=Δγf ¼ 1 would indicate full strain recovery. This normalized recovery
is plotted as a function of the forward plastic strain that arose while the
stress was imposed, normalized by the imposed stress. Imposed stress
σ0 ¼ 0:1, 0:2, . . . , 2:0 in curves upward in each panel. Waiting time
tw ¼ 101, 103 and 106 indicated in each panel. Dots indicate equally
logarithmically spaced values of the scaled forward plastic strain prior to
switch-off, (γ � γ0)=σ0 ¼ Δγf=σ0, corresponding to the dots marked on the
differentiated creep curves in Fig. 2.
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Accordingly, we plot in Fig. 5 the scaled plastic strain
recovery Δγrec=Δγf as a function of the scaled forward
plastic strain Δγf=σ0 that accumulated while the stress was
imposed. Data are shown for imposed stress values
σ0 ¼ 0:1, 0:2, . . . , 2:0 in curves upwards in each panel, for
samples ages tw ¼ 101, 103 and 106 in panels downwards,
corresponding to the counterpart forward plastic creep
curves in Fig. 2. Indeed, dots marked left to right on each
creep curve in Fig. 2 show the various scaled forward strain
values at switch-off, (γ(t)� γ0)=σ0 ¼ Δγf=σ0, shown as
corresponding data point dots on each curve in Fig. 5.

To understand the trends observed in Fig. 5 we recall that,
immediately prior to stress switch-off, any elements that
remain unyielded since the stress was imposed have local
strain l ¼ σ0 þ Δγf , as in the rightmost lobe of the cyan dis-
tribution in Fig. 4. (This actually has a slightly smeared dis-
tribution of strain values of small width l0. As noted above,
this is simply for the purposes of being able to plot the distri-
bution graphically and does not change the basic physics.)
We shall call these “group I” elements. In contrast, those ele-
ments that yielded at least once during the initial forward
creep (“group II”) have local strain values in the range
0 , l , Δγf , giving the leftmost lobe of that distribution. At
the instant of stress switch-off, the whole distribution of
shifts to the left, with each l ! l� σ0, corresponding to a
fast elastic recoil. Immediately after switch-off, therefore, the
unyielded group I elements have positive local strain
l ¼ Δγf , as in the (slightly smeared) rightmost lobe of the
magenta distribution in Fig. 4. They furthermore reside in
traps of a depth set by the age tw, and with a rate of yielding
r � 1=tw. In contrast, the yielded group II elements have
local strain values in the range �σ0 , l , Δγf � σ0 immedi-
ately post switch-off, as in the leftmost lobe of the magenta
distribution in Fig. 4. In being freshly yielded, they reside in
shallow traps with a rate of yielding r ¼ O(1). The relative
proportion of elements in group II compared to those in
group I increases with increasing forward strain Δγf .

Strain recovery post switch-off then arises from a basic
competition between the plastic yielding of elements in
group I versus those in group II. In most parameter regimes,
the yielding of group II outweighs that of group I. When
these negatively strained group II elements yield, they reset
their local strains to zero. As discussed above, to maintain
the stress constant and equal to zero post-switch off, an
exactly counterbalancing negative global strain—strain
recovery —must arise.

Indeed, for small forward plastic strain values Δγf , σ0,
all group II elements have negative local strains post switch-
off. In this regime, the larger the imposed stress σ0 prior to
switch-off, the more negative overall will be the local strains
of group II elements post switch-off, requiring more counter-
balancing recovery. This explains the increasing levels of
recovery with increasing imposed stress prior to switch-off at
the left of Fig. 5. The larger the sample age tw, the greater
the dominance of group II over group I elements, which are
stuck in deep traps with yielding rate 1=tw. Accordingly, the
degree of strain recovery increases with increasing tw in
moving from the top to the bottom panels of Fig. 5, for these
small Δγf=σ0.

A different trend is, however, observed for larger values of
the scaled forward strain prior to switch-off, Δγf=σ0 just above
1. In this case, for large imposed stresses, the ultimate plastic
strain recovery is actually observed to be negative: the system
strains plastically further forwards as a function of time t . 0
since switch-off. The overall strain recovery is therefore non-
monotonic, with the initially backward elastic recoil at the
instant of switch-off t ¼ tstop followed by this forward plastic
straining for t . tstop, reminiscent of observations of non-
monotonic stress relaxation after straining [28–31]. The total
recovery is still however negative, with the initial elastic recoil
always exceeding any subsequent forward plastic straining, for
all parameter regimes we have explored.

This counterintuitive observation of forward plastic
straining post switch-off can be understood as follows. For
these larger values of Δγfσ0 just above 1, the local strain dis-
tribution �σ0 , l , Δγf � σ0 of group II elements immedi-
ately post switch-off contains some weight at positive strain
l . 0. Furthermore, group I elements are also strained further
forwards in their traps, acquiring larger yielding rates. In con-
sequence, as the time since switch-off elapses, the yielding
of elements with positive local strains now outweighs that of
elements with negative local strains. To maintain zero stress
post switch-off, this must be exactly counter-balanced by an
increase in strain, giving negative strain recovery. This effect
is more pronounced in younger samples (small tw) for which
group I elements are in relatively shallow traps and yield
more rapidly.

For large Δγf=σ0, such significant forward straining takes
place before switch off, with significant flow for imposed
stresses σ0 . σY, that the proportional degree of recovery
post switch off is small. Accordingly, Δγrec=Δγf ! 0 as
Δγf=σ0 ! 1, as indeed seen in Fig. 5.

We show finally in Fig. 6 the strain recovery as a function
of the time t � tstop since switch-off. The six panels shown
correspond to the smallest stress (left panel column) and
largest stress (right panel column) and three different waiting
times (increasing in panel rows downwards) for which the
ultimate recovery in the limit t � tstop ! 1 is plotted versus
the scaled forward strain Δγf=σ0 in Fig. 5. Each panel in
Fig. 6 shows the results for the time dependent strain recov-
ery for several different values of forward strain Δγf , increas-
ing logarithmically in curves upwards, with the lowest curve
in each panel of Fig. 6 corresponding to the leftmost data-
point in the counterpart curve of Fig. 5.

So far, we have assumed the distribution of local strains
present in the sample at time t ¼ 0, before shearing com-
mences, to be a delta function of zero mean. (An exception
can be found in Fig. 3, where we assumed a narrow Gaussian
simply to facilitate plotting.) We have likewise assumed the
distribution of strains selected by any element immediately
post-hop to be a delta function of zero mean. We now con-
sider the more general case in which the distribution before
shearing commences is a Gaussian of zero mean and stan-
dard deviation l0, and the post-hop distribution is a Gaussian
of zero mean and standard deviation lp. (Our results so far
therefore have l0 ¼ lp ¼ 0.) The parameter l0 thus now repre-
sents the degree of local strain frustration present in the
sample before shearing starts, arising from whatever
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complicated aging or annealing dynamics took place during
sample preparation. Smaller values of l0 correspond to better
ordered, more strongly annealed samples. Likewise, lp repre-
sents the frustration experienced by elements in attempting to
relax their local strains during local rearrangement events.

In Fig. 7, we explore the effect of non-zero values of l0
and lp on the basic phenomenon of recoverable strain arising

from reverse plastic events. Shown are results counterpart to
those in Fig. 3, but now for a range of lp values in panel (a)
and l0 in 3(b). As can be seen, the basic phenomenon is
quite robust to varying these quantities. Indeed, the degree of
strain recovery from reverse plastic events increases with
increasing post-hop frustration lp, as might be expected intui-
tively: the left hand lobe of the turquoise distribution (for
example) in Fig. 4(a) will now be more smeared, including
some weight to the left of the origin. When elastically shifted
leftward to form the magenta distribution in (b), more weight
will be present at more negative l values, resulting in faster
yielding of elements with more strongly negative l, and more
negative global straining (i.e., more strain recovery) to com-
pensate. Although the effect of plastic strain recovery
decreases with increasing initial frustration l0 in panel
Fig. 7(b), it nonetheless persists to values of this parameter
O(1).

VI. INTERPLAY OF INITIAL (VISCO)ELASTIC
RECOIL AND SLOW ONGOING PLASTICITY

So far, we have used the SGR model in its original form,
considering only the elastoplastic stress arising from the pop-
ulation of SGR elements. In this version of the model, the
initial response to an applied step stress is instantaneous: ele-
ments shift elastically within their traps at the instant of the
step. Accordingly, in Fig. 3 (say) we saw an instantaneous
elastic recoil at the time the stress is switched off, followed
by the later slow recovery arising from reverse plastic yield-
ing of elements left with a negative local strain by the initial
recoil. (The instantaneous elastic upward step during
switch-on at t ¼ 0 is not seen on the logarithmic time axis in
Fig. 3.)

In practice, however, drag against a background solvent
will render the time scale for this first part of the strain
response non-zero, such that the initial recoil is now visco-
elastic rather than purely elastic. An obvious question is then
to what extent the initial (visco)elastic recoil and later reverse
plastic yielding of elements with negative local stresses
during strain recovery after stress switch-off overlap in time,
or whether they occur truly sequentially, with the fast (visco)
elastic recoil simply acting to leave elements with negative
local stresses that later relax to give reverse plastic events.
To answer this question, we now consider the total stress
Σ ¼ σ þ η _γ to comprise the usual elastoplastic stress σ as
predicted by the SGR model in Eq. (5), plus a Newtonian
solvent contribution of viscosity η.

Figure 8 shows results for forward creep and reverse strain
recovery with model parameter values otherwise as in Fig. 3,
but now with a non-zero solvent viscosity η. As can be seen,
this indeed imposes a finite time scale for the initial rise in
strain after stress switch-on [panel (a)] and for the initial (now
visco)elastic strain recoil after stress switch-off [panel (b)].
The time scale for each of these processes scales as η=k,
tending to zero in the limit η ! 0. It is in this limit that the
initial elastic recoil and later reverse plastic events become
truly distinct: for finite η, the two processes merge somewhat.

Panels (c) and (d) show the number of plastic events n
accumulated per element on average during forward creep

FIG. 7. Strain response with non-zero local strain frustration, for parameter
values otherwise as in Fig. 3. (a) Effect of non-zero width lp to the dis-
tribution of strains selected by any element immediately post-hop, with
lp ¼ 0:0, 0:1, . . . , 1:0 in curves downwards at the right. (b) Effect of a
non-zero width l0 to the distribution of strains in the sample at time
t ¼ 0, after sample preparation and before shearing commences, with
l0 ¼ 0:0, 0:1, . . . , 1:0 in curves upward at the right.

FIG. 6. Strain recovery as a function of the time since stress switch-off. The
strain γ has been scaled by the forward plastic strain that arose while the
stress was held imposed, Δγf . The scaled strain γ=Δγf accordingly starts at
unity at t ¼ tþstop (the forward and reverse elastic step strains at switch-on and
switch-off having exactly canceled each other). A full decay of γ=Δγf ! 0
as t � tstop ! 1 would indicate full strain recovery. Imposed stress prior to
switch-off σ0 ¼ 0:1 and 2:0 in left and right panel columns, respectively.
Sample age prior to stress switch-on tw ¼ 101, 103, and 106 in panel rows
from top to bottom. Plastic forward strain accumulated prior to switch-off
Δγf ¼ 0:001σ0 � 10:0=0:001ð Þn=19 with n ¼ 5, 6, . . . , in curves upwards in
each panel.

RECOVERABLE STRAIN IN AMORPHOUS MATERIALS 337
 09 M

ay 2025 10:34:35



and reverse recovery. Consistent with plastic events being
thermally activated (as well as strain-induced) in the SGR
model (rather than purely strain-induced, as would be the
case in an athermal system), these signals show only modest
dependence on the strain (and so on η). As can be seen, the
plastic part of the forward creep and—importantly to the key
message of this work—of the reverse recovery, arises in each
case only once n approaches O(1), denoting significant
plastic yielding.

We have seen, then, that the initial (visco)elastic recoil
post-switch off and the later slow plastic strain recovery will
only be truly time-separated in the limit of zero solvent vis-
cosity η ! 0. In either case (for η finite or zero), however, it
is clear that these two stages interact, in the sense that the
initial (visco)elastic recoil creates the state in which some ele-
ments have negative local strain values. It thereby creates the
conditions out of which the slower plastic part of the strain
recovery can later emerge.

VII. IMPLICATIONS FOR CONSTITUTIVE MODELING

Finally, we consider for the purpose of pedagogical com-
parison the response of a simplified fluidity model to the
same stress protocol as studied for the SGR model in this
work. The model is defined as follows. The total stress com-
prises an elastoplastic contribution σ and a Newtonian
solvent contribution of viscosity η,

Σ ¼ σ þ η _γ: (10)

The elastoplastic stress evolves with dynamics

dσ

dt
¼ G _γ � σ

τ
, (11)

in which the relaxation time scale τ has its own dynamics

dτ

dt
¼ 1� j _γj(τ � τ0): (12)

Here, G is a constant elastic modulus and τ0 a constant
microscopic time scale. (Artificially setting the relaxation
time to infinity then gives Kelvin–Voigt dynamics. Instead
artificially setting the viscosity to zero and the relaxation
time to a constant gives a Maxwell model.) The dynamics
assumed for the relaxation time scale τ confers a yield stress,
as in SGR, with a flow curve given by σ ¼ G(1þ _γτ0). In
the absence of any imposed flow, the model displays aging
in which the stress relaxation time scale τ increases linearly
in time, also as in SGR.

The strain response of this simplified model to the stress
protocol considered in this work is shown in Fig. 9. When
the stress is imposed, we see an initial (visco)elastic loading
on a time scale O(η=G), followed by a slower creep once the
integrated rate of plasticity n ¼ Ð

dt 1=τ approaches O(1), as
in SGR. After stress switch-off, we see an initial (visco)
elastic recoil on a time scale O(η=G), as in SGR. Crucially,
however, this simplified model lacks a distribution of local
stresses, having just one global averaged stress σ. Accordingly,
it lacks reverse plastic events and correspondingly lacks the
slow ongoing strain recovery predicted by the SGR model:
compare panel (b) of Fig. 9 for the fluidity model with the
counterpart panel (b) of Fig. 8 for SGR.

This has important implications for constitutive modeling,
in showing that the phenomenon studied in this work can be
captured only by models that evolve a full distribution of
stress values (or multiple moments of such a distribution),
rather than a single sample-averaged stress.

FIG. 9. Strain response of simplified fluidity model with non-zero back-
ground solvent viscosity η. (a) Forward strain creep while the stress is held
imposed. (b) Strain recovery after the stress is switched off. (c) Integrated
rate of plasticity accumulated while the stress is held imposed. (d) Integrated
rate of plasticity accumulated after the stress is switched off. Viscosity values
η ¼ 10n with n ¼ �3:0, � 2:5, . . . , 0:0 in curves left to right in (a), with
the same color code across all sub-panels. Σ ¼ 1:4, tw ¼ 103, Δγf ¼ 1:4.

FIG. 8. Strain response with non-zero background solvent viscosity η,
for parameter values otherwise as in Fig. 3. (a) Forward strain creep
while the stress is held imposed. (b) Strain recovery after the stress is
switched off. (c) Number of plastic events per element accumulated while
the stress is held imposed. (d) Number of plastic events per element
accumulated after the stress is switched off. Viscosity values η ¼ 10n with
n ¼ �3:0, � 2:5, . . . , 0:0 in curves left to right in (a), with the same color
code across all sub-panels.
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VIII. CONCLUSIONS

In this work, we have studied theoretically recoverable
and unrecoverable strain in amorphous and soft glassy mate-
rials such as dense foams and emulsions, glassy colloidal
suspensions, jammed athermal suspensions, granular
matter, and metallic and molecular glasses. Within the soft
glassy rheology model [23,24], we have simulated the rhe-
ological protocol in which a material of age tw is subject to
the switch-on at time zero of a shear stress of amplitude
σ0, which is later switched off at some time tstop, and the
strain recovery observed as a function of the subsequent
time t � tþstop.

We have reported the counterintuitive phenomena that a
significant component of the strain recovery post switch-off
arises, after an initially fast elastic recoil, via the slow reverse
plastic yielding of elements left with negative local stresses
by that recoil. We have also showed that the time evolution
of strain post switch-off is not always monotonic but can be
non-monotonic (albeit in relatively rare parameter regimes):
the plastic straining that takes place for times after switch-off
t . tstop does not always occur in the negative direction, as in
the initial elastic recoil at t ¼ tstop, but can sometimes in fact
continue to accumulate in the same forward direction as the
originally imposed stress. This provides a potential counter-
part, in this imposed-stress protocol, to recent observations of
non-monotonic stress relaxation after the switch off of an
imposed strain [28–31].

We have discussed these observations in terms of the evo-
lution of the SGR model’s population of elastoplastic ele-
ments. In particular, we have shown that plastic strain
recovery (after the initial fast elastic recoil) arises via ele-
ments that locally yielded during the initial forward plastic
creep, resetting their local strains from positive values to zero
as they did so. These elements then acquire negative local
stresses during the fast elastic recoil, and later yield again
post switch-off, resetting these local stresses from negative
values to zero. It is this plastic yielding from negative to zero
stress values that leads to global plastic strain recovery, in
order to maintain the global stress of the sample as a whole
equal to zero post switch-off. In this way, elements that yield
plastically in the forward direction while a material is under
load can still contribute to strain recovery after load removal.

The phenomenon reported here has important implications
for constitutive modeling, in showing that a full distribution
of stress values (or multiple moments of such a distribution)
is needed to capture it. Any model that evolves just a single
average stress will fail to describe it.

The physics described in this work is reminiscent of but
distinct from the concept of reversible plasticity, which has
gained increasing attention in the recent physics literature.
Indeed, a key concept in the rheology of amorphous materials
is that of intermittent local plastic events, sometimes called T1
events, arising at soft spots or shear transformation zones [25],
coupled by elastic stress propagation [46]. Within this frame-
work, oscillatory shear experiments on jammed particle rafts
identified three different regimes of imposed strain amplitude
[47–49]. At low amplitudes, the material responds elastically,
with no plastic events. At high amplitudes, irreversible plastic

events occur within each cycle, with significant cycle-to-cycle
stroboscopic changes in particle positions. More surprisingly,
at intermediate strain amplitudes, these experiments report
reversible local plastic events within each cycle. Such events
dissipate energy, consistent with the notion of plasticity, but
exactly reverse in the opposite part of the cycle, with zero stro-
boscopic cycle-to-cycle change in particle positions.
Reversible plastic events have also been reported in experi-
ments on foams [50], in particle simulations [50–54], and in
elastoplastic models [55]. Reversible plastic limit cycles have
likewise been studied in models of hysterons [56] and iterated
maps [57]. For a review, see Ref. [58].

It should be noted, however, that the mean field SGR
model as studied here does not provide any spatial resolution
of elemental positions. Accordingly, we are not able to make
any statement as to whether a plastic event at a specific loca-
tion later exactly reverses at the same location. Furthermore,
because plastic events in SGR are thermally activated as well
as being strain-induced, exact reversibility under straining is
unlikely, except in the athermal limit x ! 0—in which limit,
however, predictions of sustained slow creep are difficult to
obtain.

Therefore, we do not claim a close correspondence
between the plasticity that arises in this work in the reverse
direction during strain recovery post-switch off and the truly
reversible plasticity in which individual elements exactly
retrace their trajectories, as seen under oscillatory shear in
athermal systems. Instead, we make only the weaker state-
ment that some elements that yield during the initial forward
creep later do so in reverse during recovery. For this reason,
we have been careful to use the weaker term reverse plastic
events rather than the term reversible plasticity, as coined in
the literature concerning oscillatory shear in athermal
systems. Indeed, we use the term “reverse” in this work to
mean “in the opposite direction,” as distinct from “revers-
ible” meaning “an event capable of being reversed.” Future
work should study creep and recovery in spatially resolved
athermal models of amorphous materials, to establish
whether there is a stronger link to reversible plasticity, with
its precise connotations of exact localized reversibility.

Related to this, we have assumed throughout that the
shear remains macroscopically homogeneous across the
sample, disallowing any possibility of shear band formation.
However, it has been predicted that shear bands will tend to
form in an imposed stress protocol at the end of any initial
creep regime, as the strain rate dramatically increases and the
sample yields [5]. This is likely to be an important effect for
large values of Δγf in particular. Future studies should con-
sider extending this work to allow for the formation of shear
bands.

ACKNOWLEDGMENTS

The authors thank Mike Cates, Andrew Clarke, and
Gareth McKinley for comments on an early draft of the man-
uscript and for helpful discussions. We also thank SLB
(Schlumberger Cambridge Research Ltd.) for funding. This
project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020

RECOVERABLE STRAIN IN AMORPHOUS MATERIALS 339
 09 M

ay 2025 10:34:35



research and innovation programme (Grant Agreement No.
885146). We thank the anonymous reviewers for their
insightful comments that improved the clarity of our
descriptions.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are avail-
able from the corresponding author upon reasonable request.

REFERENCES

[1] Reiner, M., “Rheology,” in Elasticity and Plasticity/Elastizität und

Plastizität (Springer, New York, 1958), pp. 434–550.

[2] Weissenberg, K., “A continuum theory of rheological phenomena”

Nature 159, 310–311 (1947).

[3] White, J. L., “Considerations of unconstrained elastic recovery in vis-

coelastic fluids,” Trans. Soc. Rheol. 19, 271–296 (1975).

[4] Lodge, A. S., “A network theory of constrained elastic recovery in con-

centrated polymer solutions,” Rheol. Acta 1, 158–163 (1958).

[5] Mooney, M., “The rhéology of raw rubber,” Physics 7, 413–420

(1936).

[6] Reiner, M., “A classification of rheological properties,” J. Sci. Instrum.

22, 127–129 (1945).

[7] Donley, G. J., P. K. Singh, A. Shetty, and S. A. Rogers, “Elucidating

the G00 overshoot in soft materials with a yield transition via a time-

resolved experimental strain decomposition,” Proc. Natl. Acad. Sci.

U.S.A. 117, 21945–21952 (2020).

[8] Shim, Y. H., and S. A. Rogers, “Understanding the yielding behavior

of graphene oxide colloids via experimental strain decomposition,”

Phys. Fluids 35, 063117 (2023).

[9] Kamani, K., G. J. Donley, and S. A. Rogers, “Unification of the rheo-

logical physics of yield stress fluids,” Phys. Rev. Lett. 126, 218002

(2021).

[10] Lee, J. C.-W., K. M. Weigandt, E. G. Kelley, and S. A. Rogers,

“Structure-property relationships via recovery rheology in viscoelastic

materials,” Phys. Rev. Lett. 122, 248003 (2019).

[11] Brito-Oliveira, T. C., I. C. F. Moraes, S. C. Pinho, and

O. H. Campanella, “Modeling creep/recovery behavior of cold-set gels

using different approaches,” Food Hydrocoll. 123, 107183 (2022).

[12] Leocmach, M., C. Perge, T. Divoux, and S. Manneville, “Creep and

fracture of a protein gel under stress,” Phys. Rev. Lett. 113, 038303

(2014).

[13] Aime, S., L. Cipelletti, and L. Ramos, “Power law viscoelasticity of a

fractal colloidal gel,” J. Rheol. 62, 1429–1441 (2018).

[14] Ten Brinke, A. J. W., L. Bailey, H. N. W. Lekkerkerker, and

G. C. Maitland, “Rheology modification in mixed shape colloidal dis-

persions. Part I: Pure components,” Soft Matter 3, 1145–1162 (2007).

[15] Helen, W., P. De Leonardis, R. V. Ulijn, J. Gough, and N. Tirelli,

“Mechanosensitive peptide gelation: Mode of agitation controls

mechanical properties and nano-scale morphology,” Soft Matter 7,

1732–1740 (2011).

[16] Lidon, P., L. Villa, and S. Manneville, “A mesoscale study of creep in

a microgel using the acoustic radiation force,” Soft Matter 15,

2688–2702 (2019).

[17] Tang, W. C., H. Z. Cui, and M. Wu, “Creep and creep recovery proper-

ties of polystyrene aggregate concrete,” Constr. Build. Mater. 51,

338–343 (2014).
[18] Zhao, X., “Multi-scale multi-mechanism design of tough hydrogels:

Building dissipation into stretchy networks,” Soft Matter 10, 672–687

(2014).
[19] Sun, J.-Y., X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh,

D. J. Mooney, J. J. Vlassak, and Z. Suo, “Highly stretchable and tough

hydrogels,” Nature 489, 133–136 (2012).
[20] Bakarich, S. E., G. C. Pidcock, P. Balding, L. Stevens, P. Calvert, and

M. in het Panhuis, “Recovery from applied strain in interpenetrating

polymer network hydrogels with ionic and covalent cross-links,” Soft

Matter 8, 9985–9988 (2012).
[21] Hou, J., X. Ren, S. Guan, L. Duan, G. Hui Gao, Y. Kuai, and

H. Zhang, “Rapidly recoverable, anti-fatigue, super-tough double-

network hydrogels reinforced by macromolecular microspheres,” Soft

Matter 13, 1357–1363 (2017).
[22] Hornat, C. C., and M. W. Urban, “Shape memory effects in self-

healing polymers,” Prog. Polym. Sci. 102, 101208 (2020).
[23] Sollich, P., F. Lequeux, P. Hébraud, and M. E. Cates, “Rheology of

soft glassy materials,” Phys. Rev. Lett. 78, 2020–2023 (1997).
[24] Sollich, P., “Rheological constitutive equation for a model of soft

glassy materials,” Phys. Rev. E 58, 738–759 (1998).
[25] Falk, M. L., and J. S. Langer, “Deformation and failure of amorphous,

solidlike materials,” Annu. Rev. Condens. Matter Phys. 2, 353–373

(2011).
[26] Lindeman, C. W., and S. R. Nagel, “Multiple memory formation in

glassy landscapes,” Sci. Adv. 7, eabg7133 (2021).

[27] Nicolas, A., E. E. Ferrero, K. Martens, and J.-L. Barrat, “Deformation

and flow of amorphous solids: Insights from elastoplastic models,”

Rev. Mod. Phys. 90, 045006 (2018).

[28] Hendricks, J., A. Louhichi, V. Metri, R. Fournier, N. Reddy,

L. Bouteiller, M. Cloitre, C. Clasen, D. Vlassopoulos, and

W. J. Briels, “Nonmonotonic stress relaxation after cessation of

steady shear flow in supramolecular assemblies,” Phys. Rev. Lett.

123, 218003 (2019).

[29] Sudreau, I., M. Auxois, M. Servel, É. Lécolier, S. Manneville, and

T. Divoux, “Residual stresses and shear-induced overaging in boehmite

gels,” Phys. Rev. Mater. 6, L042601 (2022).

[30] Murphy, K. A., J. W. Kruppe, and H. M. Jaeger, “Memory in nonmo-

notonic stress relaxation of a granular system,” Phys. Rev. Lett. 124,

168002 (2020).

[31] Mandal, R., D. Tapias, and P. Sollich, “Memory in non-monotonic

stress response of an athermal disordered solid,” Phys. Rev. Res. 3,

043153 (2021).

[32] Keim, N. C., J. D. Paulsen, Z. Zeravcic, S. Sastry, and S. R. Nagel,

“Memory formation in matter,” Rev. Mod. Phys. 91, 035002 (2019).

[33] Falk, M. L., and J. S. Langer, “Dynamics of viscoplastic deformation

in amorphous solids,” Phys. Rev. E 57, 7192–7205 (1998).

[34] Hébraud, P., and F. Lequeux, “Mode-coupling theory for the pasty

rheology of soft glassy materials,” Phys. Rev. Lett. 81, 2934–2937

(1998).

[35] Bocquet, L., A. Colin, and A. Ajdari, “Kinetic theory of plastic flow in

soft glassy materials,” Phys. Rev. Lett. 103, 036001 (2009).

[36] Lin, J., E. Lerner, A. Rosso, and M. Wyart, “Scaling description of the

yielding transition in soft amorphous solids at zero temperature,” Proc.

Natl. Acad. Sci. U.S.A. 111, 14382–14387 (2014).

[37] Spaepen, F., “A microscopic mechanism for steady state inhomoge-

neous flow in metallic glasses,” Acta Metall. 25, 407–415 (1977).

[38] Argon, A. S., and H. Y. Kuo, “Plastic flow in a disordered bubble

raft (an analog of a metallic glass),” Mater. Sci. Eng. 39, 101–109

(1979).

340 HENRY A. LOCKWOOD AND SUZANNE M. FIELDING
 09 M

ay 2025 10:34:35

https://doi.org/10.1038/159310a0
https://doi.org/10.1122/1.549395
https://doi.org/10.1007/BF01968859
https://doi.org/10.1063/1.1745351
https://doi.org/10.1088/0950-7671/22/7/303
https://doi.org/10.1073/pnas.2003869117
https://doi.org/10.1073/pnas.2003869117
https://doi.org/10.1063/5.0164842
https://doi.org/10.1103/PhysRevLett.126.218002
https://doi.org/10.1103/PhysRevLett.122.248003
https://doi.org/10.1016/j.foodhyd.2021.107183
https://doi.org/10.1103/PhysRevLett.113.038303
https://doi.org/10.1122/1.5025622
https://doi.org/10.1039/b704742h
https://doi.org/10.1039/C0SM00649A
https://doi.org/10.1039/C8SM02294A
https://doi.org/10.1016/j.conbuildmat.2013.10.093
https://doi.org/10.1039/C3SM52272E
https://doi.org/10.1038/nature11409
https://doi.org/10.1039/c2sm26745d
https://doi.org/10.1039/c2sm26745d
https://doi.org/10.1039/C6SM02739C
https://doi.org/10.1039/C6SM02739C
https://doi.org/10.1016/j.progpolymsci.2020.101208
https://doi.org/10.1103/PhysRevLett.78.2020
https://doi.org/10.1103/PhysRevE.58.738
https://doi.org/10.1146/conmatphys.2011.2.issue-1
https://doi.org/10.1126/sciadv.abg7133
https://doi.org/10.1103/RevModPhys.90.045006
https://doi.org/10.1103/PhysRevLett.123.218003
https://doi.org/10.1103/PhysRevMaterials.6.L042601
https://doi.org/10.1103/PhysRevLett.124.168002
https://doi.org/10.1103/PhysRevResearch.3.043153
https://doi.org/10.1103/RevModPhys.91.035002
https://doi.org/10.1103/PhysRevE.57.7192
https://doi.org/10.1103/PhysRevLett.81.2934
https://doi.org/10.1103/PhysRevLett.103.036001
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1016/0001-6160(77)90232-2
https://doi.org/10.1016/0025-5416(79)90174-5


[39] Bouzid, M., J. Colombo, L. V. Barbosa, and E. Del Gado, “Elastically

driven intermittent microscopic dynamics in soft solids,” Nat.

Commun. 8, 15846 (2017).

[40] Vinutha, H. A., M. Marchand, M. Caggioni, V. V. Vasisht, E. Del

Gado, and V. Trappe, “Memory of shear flow in soft jammed materi-

als,” PNAS nexus 3, pgae441 (2024).

[41] Zhang, S., E. Stanifer, V. V. Vasisht, L. Zhang, E. Del Gado, and

X. Mao, “Prestressed elasticity of amorphous solids,” Phys. Rev. Res.

4, 043181 (2022).

[42] Edera, P., M. Bantawa, S. Aime, R. T. Bonnecaze, and M. Cloitre,

“Mechanical tuning of residual stress, memory, and aging in soft

glassy materials,” Phys. Rev. X 15, 011043 (2025).

[43] Ward, V. K., and S. M. Fielding, “Shear banding as a cause of nonmo-

notonic stress relaxation after flow cessation,” Phys. Rev. Mater. 9,

L022601 (2025).

[44] Sollich, P., and M. E. Cates, “Thermodynamic interpretation of soft

glassy rheology models,” Phys. Rev. E 85, 031127 (2012).

[45] Fielding, S. M., P. Sollich, and M. E. Cates, “Aging and rheology in

soft materials,” J. Rheol. 44, 323–369 (2000).

[46] Picard, G., A. Ajdari, F. Lequeux, and L. Bocquet, “Elastic conse-

quences of a single plastic event: A step towards the microscopic mod-

eling of the flow of yield stress fluids,” Eur. Phys. J. E 15, 371–381

(2004).

[47] Lawrence Galloway, K., D. J. Jerolmack, and P. E. Arratia,

“Quantification of plasticity via particle dynamics above and below

yield in a 2D jammed suspension,” Soft Matter 16, 4373–4382 (2020).

[48] Keim, N. C., and P. E. Arratia, “Mechanical and microscopic proper-

ties of the reversible plastic regime in a 2D jammed material,” Phys.

Rev. Lett. 112, 028302 (2014).

[49] Keim, N. C., and P. E. Arratia, “Yielding and microstructure in a 2D

jammed material under shear deformation,” Soft Matter 9, 6222–6225

(2013).

[50] Lundberg, M., K. Krishan, N. Xu, C. S. O’Hern, and M. Dennin,

“Reversible plastic events in amorphous materials,” Phys. Rev. E 77,

041505 (2008).

[51] Regev, I., T. Lookman, and C. Reichhardt, “Onset of irreversibility and

chaos in amorphous solids under periodic shear,” Phys. Rev. E 88,

062401 (2013).

[52] Priezjev, N. V., “Reversible plastic events during oscillatory deforma-

tion of amorphous solids,” Phys. Rev. E 93, 013001 (2016).

[53] Szulc, A., M. Mungan, and I. Regev, “Cooperative effects driving the

multi-periodic dynamics of cyclically sheared amorphous solids,”

J. Chem. Phys. 156, 164506 (2022).

[54] Nagasawa, K., K. Miyazaki, and T. Kawasaki, “Classification of the

reversible–irreversible transitions in particle trajectories across the

jamming transition point,” Soft Matter 15, 7557–7566 (2019).

[55] Khirallah, K., B. Tyukodi, D. Vandembroucq, and C. E. Maloney,

“Yielding in an integer automaton model for amorphous solids under

cyclic shear,” Phys. Rev. Lett. 126, 218005 (2021).

[56] Keim, N. C., and J. D. Paulsen, “Multiperiodic orbits from interacting

soft spots in cyclically sheared amorphous solids,” Sci. Adv. 7,

eabg7685 (2021).

[57] Mungan, M., and T. A. Witten, “Cyclic annealing as an iterated

random map,” Phys. Rev. E 99, 052132 (2019).

[58] Reichhardt, C., I. Regev, K. Dahmen, S. Okuma, and C. J.

O. Reichhardt, “Perspective on reversible to irreversible transitions in

periodic driven many body systems and future directions for classical

and quantum systems,” arXiv:2211.03775 (2022).

RECOVERABLE STRAIN IN AMORPHOUS MATERIALS 341
 09 M

ay 2025 10:34:35

https://doi.org/10.1038/ncomms15846
https://doi.org/10.1038/ncomms15846
https://doi.org/10.1093/pnasnexus/pgae441
https://doi.org/10.1103/PhysRevResearch.4.043181
https://doi.org/10.1103/PhysRevX.15.011043
https://doi.org/10.1103/PhysRevMaterials.9.L022601
https://doi.org/10.1103/PhysRevE.85.031127
https://doi.org/10.1122/1.551088
https://doi.org/10.1140/epje/i2004-10054-8
https://doi.org/10.1039/C9SM02482D
https://doi.org/10.1103/PhysRevLett.112.028302
https://doi.org/10.1103/PhysRevLett.112.028302
https://doi.org/10.1039/c3sm51014j
https://doi.org/10.1103/PhysRevE.77.041505
https://doi.org/10.1103/PhysRevE.88.062401
https://doi.org/10.1103/PhysRevE.93.013001
https://doi.org/10.1063/5.0087164
https://doi.org/10.1039/C9SM01488H
https://doi.org/10.1103/PhysRevLett.126.218005
https://doi.org/10.1126/sciadv.abg7685
https://doi.org/10.1103/PhysRevE.99.052132
https://arxiv.org/abs/2211.03775

