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Accurate and efficient theoretical techniques for describing ionic fluids are highly desirable for many
applications across the physical, biological, and materials sciences. With a rigorous statistical mechanical
foundation, classical density functional theory (cDFT) is an appealing approach, but the competition
between strong Coulombic interactions and steric repulsion limits the accuracy of current approximate
functionals. Here, we extend a recently presented machine learning (ML) approach [Sammüller et al., Proc.
Natl. Acad. Sci. U.S.A., 120, e2312484120 (2023)] designed for systems with short-ranged interactions to
ionic fluids. By adopting ideas from local molecular field theory, the framework we present amounts to using
neural networks to learn the local relationship between the one-body direct correlation functions and
inhomogeneous density profiles for a “mimic” short-ranged system, with effects of long-ranged interactions
accounted for in a mean-field, yet well-controlled, manner. By comparing to results from molecular
simulations, we show that our approach accurately describes the structure and thermodynamics of
prototypical models for electrolyte solutions and ionic liquids, including size-asymmetric and multivalent
systems. The framework we present acts as an important step toward extending ML approaches for cDFT to
systems with accurate interatomic potentials.

DOI: 10.1103/PhysRevLett.134.148001

The behavior of ionic fluids underlies a vast array of
physical and biological phenomena as well as technological
applications, ranging from electrolyte solutions controlling
protein folding [1] to room-temperature ionic liquids
in energy storage devices [2]. A fundamental topic that
continues to attract enormous interest both experimentally
[3–7] and theoretically [8–13] is the structure and thermo-
dynamics of ions near charged interfaces, in particular, how
the nature of both the electrolyte and solid surface impacts
the properties of the electric double layer (EDL). Poisson–
Boltzmann (PB) theory and its linearized Debye-Hückel
form provide the basis for much of our understanding of
ionic fluids. Their neglect of correlations arising from
nonelectrostatic interactions, however, restricts their validity
to fluids of low ionic strength.
Classical density functional theory (cDFT) [14–17]

provides a natural framework for including correlations
omitted by PB theory, and has proven to be a powerful
approach to describe equilibrium structure and thermody-
namics of fluids in general. While in principle an exact
theory, historically, cDFT relies on making approximations

for the excess intrinsic free energy functional F ðexÞ
intr ½fρνg�,

where ρν denotes the one-body density of species ν. For
hard sphere fluids, functionals based on Rosenfeld’s fun-
damental measure theory (FMT) [18–21] have proven
highly successful. For simple liquids with square-well,
Yukawa, or Lennard–Jones interaction potentials, hard
sphere mixtures act as suitable reference systems, with
effects of attractive interactions described reasonably well in
a mean-field fashion [22–24]. In contrast, existing func-
tionals for ionic fluids are far less accurate, failing to
adequately capture the interplay between Coulombic and
steric interactions [25–28]. In this Letter, we present a
strategy that utilizes machine learning (ML) to construct
accurate free energy functionals for ionic fluids.
The rapid advance of modern ML approaches means

there has been much recent interest in “learning” repre-

sentations of the exact F ðexÞ
intr ½fρνg� [29–35]. Here we build

on the method proposed by Sammüller et al. [36], in which
the one-body direct correlation functions

cð1Þν ðr; ½fρνg�Þ ¼ −
βδF ðexÞ

intr ½fρνg�
δρνðrÞ

ð1Þ

are learned by generating inhomogeneous density profiles
in the presence of various external and chemical potentials
by grand canonical (GC) simulations. This approach to
cDFT, dubbed “neural functional theory,” has been shown
to outperform FMT-based approaches for both hard sphere
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fluids and Lennard-Jones liquids in terms of both accuracy
and speed [36,37].
Two key features underpin the success of the neural

functional approach: (i) correlations in the fluid are short-
ranged (SR), such that the functional relationship between

cð1Þν and fρνg is local; and (ii) the feasibility of GC
simulations to produce inhomogeneous density profiles of
sufficient quality to form a reliable training set. Ionic
fluids pose challenges on both fronts. First, the long-
ranged (LR) nature of the Coulomb potential leads to a

nonlocal relationship between cð1Þν and fρνg. Second, GC
simulations for ionic systems raise delicate questions
concerning electroneutrality, with various schemes pro-
posed that either insert individual ions or neutral pairs
[38–42]. Even then, simulations corresponding exactly to
the GC ensemble where the number of each species can
fluctuate are impractical, owing to poor acceptance rates
of trial insertion and deletion moves. We circumvent both
of these issues by adopting concepts from local molecular
field theory (LMFT) [43–47], which has been shown to
have close links to cDFT [48].
We initially focus our efforts on the prototypical model

of an ionic fluid: the restricted primitive model (RPM)
comprising oppositely charged hard spheres of equal
diameter σ, embedded in a uniform dielectric continuum.
Later, we will also present results for a primitive model
(i.e., size asymmetric) and a multivalent system. The
scheme we propose can be briefly summarized. First, by
employing neural networks, we find the one-body direct
correlation functions for a suitably chosen “mimic system”
whose electrostatic interactions are entirely short ranged.
Then, by leveraging LMFT and its relation to cDFT, we
account for the net averaged effects of LR electrostatic
interactions in a well-controlled fashion. When compared
to molecular simulations, the framework we outline
describes inhomogeneous density profiles, the equation
of state, and the properties of the electric double layer in the
presense of electric fields with very high accuracy.
cDFT of a short-ranged “mimic” ionic fluid—Our

overall strategy follows that of LMFT, in which we consider
a suitably chosen mimic system whose interatomic inter-
actions are entirely short-ranged, and, when subject to a
suitably chosen one-body potential ϕR, has the same one-
body densities as the system of interest with LR interactions
(the “full” system). For systems such as the RPM, where LR
interactions arise from the Coulomb potential, one adopts
the exact splitting

1=r ¼ v0ðrÞ þ v1ðrÞ; ð2Þ

with v0ðrÞ ¼ erfcðκrÞ=r and v1ðrÞ ¼ erfðκrÞ=r. The inter-
atomic potential of the mimic system is then v0, and the
length scale κ−1 is chosen such that the mimic system
accurately describes the SR correlations of the full
system. In the following, we will work with κ−1 ¼ 1.8σ

[see Supplemental Material (SM) [49] ]. We will also
indicate quantities pertaining to the mimic system with a
subscript “R” and focus on behaviors at a reduced
temperature T� ¼ 0.066, corresponding to supercritical
conditions [67]. The one-body direct correlation functions
of the mimic system can be exactly written as

cð1ÞR;νðrÞ ¼ lnΛ3
νρR;νðrÞþ βVR;νðrÞþ βqνϕRðrÞ− βμR;ν; ð3Þ

where Λν, μR;ν and qν indicate the thermal de Broglie
wavelength, chemical potential, and point charge of
species ν, respectively, VR;ν encompasses any nonelec-
trostatic contributions to the external potential for species
ν, and, for now, ϕR is a general external electrostatic
potential; we will later discuss how ϕR can be chosen such
that ρR;νðrÞ ¼ ρνðrÞ.
To learn the functional relationship for cð1ÞR;νðr; ½fρR;νg�Þ,

we obtain data for the right hand side of Eq. (3) by
measuring ρR;ν from simulations with known βVR;ν, βϕR,
and βμR;ν. To this end, in line with Ref. [36], we perform
GC simulations in a planar geometry at different combi-
nations of fβVR;νg, βϕR, and fβμR;νg. Note that GC
simulations are essential for the purpose of evaluating
Eq. (3) and, on their own, canonical methods such as
molecular dynamics (MD) simulations are insufficient.
The form of v0 means that each particle of the mimic
system can be considered electroneutral, comprising both a
point charge and a compensating Gaussian charge distri-
bution [68]. As such, in addition to translational moves, we
can readily perform GC particle insertions/deletions, along
with semi-GC swapping of “anions” and “cations” without
needing to worry about issues of electroneutrality [see
Fig. 1(a)]. We have found this highly beneficial for
converging our simulations, full details of which are
provided in SM [49]. In total, ∼2500 simulations have
been performed to gather training data.
For each species, ν ¼ þ or −, the neural network used to

represent the relationship fρR;νðzÞg → cð1ÞR;νðzÞ is structured
as follows. The input layer has two channels that are
supplied with the discretized values of the cation and anion
density profiles in a window Δz ¼ 3.6σ around the
particular value of z. Following a fully connected multi-
layer perceptron of three layers, the output layer consists of

a single node, which yields the predicted value of cð1ÞR;ν at
position z. For each ionic fluid considered, we train two
independent networks, one for the cation and one for the
anion. To reduce noise in the bulk structure predictions, we
also obtained models regularized with bulk two-body direct
correlation functions as proposed in Ref. [69]. Details of
our training procedure are provided in SM [49], and all data
are openly available [70].
We first assess the bulk structure predicted by the

functional. On the basis of the neural network, we make
use of automatic differentiation and radial projection to
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obtain the partial two-body direct correlation functions

cð2Þνλ ðrÞ (see Ref. [36] and SM [49]). By solving the general
Ornstein-Zernike equation for mixtures [71,72], we then

obtain the total correlation functions hð2Þνλ ðrÞ and the
corresponding structure factors SνλðkÞ. We further quantify
the degree of coupling between number–number (SNN),
number–charge (SNZ) and charge–charge (SZZ) densities by
appropriate weighted summations

SNNðkÞ ¼ SþþðkÞ þ 2Sþ−ðkÞ þ S−−ðkÞ;
SNZðkÞ ¼ SþþðkÞ − S−−ðkÞ;
SZZðkÞ ¼ SþþðkÞ − 2Sþ−ðkÞ þ S−−ðkÞ: ð4Þ

Figure 1(b) shows that the static structure factors obtained
from the functional are in excellent agreement with results
from a molecular dynamics simulation of the mimic system
at the same bulk densities [73]. The symmetry of the RPM is
well captured, reflected in SNZðkÞ ¼ 0. Moreover, by
comparing to results from a MD simulation of the full
system, we see that SNNðkÞ and SZZðkÞ for the full and
mimic systems agree very well at sufficiently large k,
confirming that our choice of κ−1 ¼ 1.8σ is sufficient for
the mimic system to capture the SR correlations of the
full system. Deviations of the SR system from the LR
system only manifest significantly in SZZðkÞ at small k, in
agreement with previous works on the subject [46,74].
In particular, as shown in the inset, we see that SZZðkÞ
for the LR system strictly obeys the Stillinger-Lovett sum
rule [75,76]

lim
k→0

k2D
k2

SZZðkÞ ¼ 1; ð5Þ

where k−1D is the Debye screening length. In contrast, for the
mimic system we observe SZZðkÞ > k2=k2D as k → 0,
indicative of a lack of screening. Consistent with the
dielectric response of a short-ranged water model [74],
these deviations appear at length scales far larger than the
range separation prescribed by 2πκ ¼ 3.5σ−1.
Turning to the ability of cDFT to predict inhomogeneous

structure, the equilibrium density profiles of the mimic
system can be obtained by self-consistently solving the
Euler-Lagrange equation

Λ3
νρR;νðrÞ ¼ exp

�
−βVR;νðrÞ − βqνϕRðrÞ

þ βμR;ν þ cð1ÞR;νðr; ½fρR;νg�Þ
�
; ð6Þ

where cð1ÞR;ν is evaluated by the corresponding neural net-
work. As shown in Fig. 1(c) for a representative set of
external potentials, the resulting fρR;νðzÞg from cDFT are
in excellent agreement with reference simulation data of the
mimic system.
Accounting for long-ranged electrostatics with LMFT—

Having established that the cDFT obtained from the ML
procedure is accurate for a SR variant of the RPM, we turn
our attention to incorporating the effects of LR electrostatic
interactions. To do so, we will use concepts from LMFT.
The premise of LMFT is that there exists a potential ϕR
such that

ρνðr; ½ϕ�; fμνgÞ ¼ ρR;νðr; ½ϕR�; fμR;νgÞ: ð7Þ

In Eq. (7), we have explicitly indicated the functional
dependence of the densities on the external electrostatic
potential [77]. As shown in Ref. [48], when recast in a

i

iv
(b) (c)(a)

FIG. 1. Structure of the SR mimic RPM. (a) Training data for the neural functional are obtained from GCMC simulations with
(i) insertion/deletion, (ii) position swapping, (iii) displacement, and (iv) mutation (identity exchange) moves. (b) The static structure
factors from cDFT agree well with results from molecular simulation across the whole range of k for the SR system, shown for a bulk
system with σ3ρR;� ¼ 0.315. Inset: At low k, the SR system violates the perfect screening condition, whereas the LR system obeys the
Stillinger–Lovett sum rule [see Eq. (5)]. (c) For the applied external potentials (top), predictions of the ion density profiles (bottom) are
in excellent agreement with the simulation data.
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cDFT framework, LMFT relates the one-body direct
correlation functions of the full and mimic systems through

cð1Þν ðr; ½fρνg�Þ ¼ cð1ÞR;νðr; ½fρνg�Þ − βΔμν þ βqνΔϕðrÞ; ð8Þ
which is an exact result. A key insight from LMFT [43,44]
is that for an appropriate splitting of the potential [see
Eq. (2)], Δϕ is well-approximated by a mean field form

ΔϕðrÞ≡ ϕðrÞ − ϕRðrÞ ¼ −
1

ϵ

Z
dr0nðr0Þv1ðjr − r0jÞ; ð9Þ

where ϵ is the dielectric constant of the continuum and
n ¼ nR ¼ P

ν qνρν is the charge density. For homogeneous
systems, Rodgers and Weeks have also derived a thermo-
dynamic correction for the total energy, from which a
correction for the pressure follows [78],

ΔP≡ P − PR ¼ −
kBT

2π3=2κ−3
: ð10Þ

Based on Ref. [78], we have further derived a correction for
the chemical potential (see SM [49]),

Δμν ≡ μν − μR;ν ¼ −
q2ν

κ−1
ffiffiffi
π

p : ð11Þ

We first consider the bulk thermodynamics of the RPM.
The equation of state for the LR system is obtained with

PðfρνgÞ¼
X
ν

kBTρνð1−cð1ÞR;ν½fρνg�Þ−
F ðexÞ

intr;R½fρνg�
V

þΔP;

ð12Þ
where the sum of the first two terms is the negative of the
grand potential density of the mimic system. The excess free

energy F ðexÞ
intr;R is accessible by functional line integration.

The result of this procedure, shown in Fig. 2(a), agrees very
well with reference simulation data. We also see that,
particularly at higher densities, Eq. (12) performs signifi-
cantly better than the analytical approximation that results
from adding the Carnahan-Starling equation of state (PCS)
[79] and the mean spherical approximation (PMSA) [80,81],
despite the fact that PCS þ PMSA forms the basis for the vast
majority of current state-of-the-art functionals for ionic
fluids [27,28].
The advantages of cDFT combined with LMFT become

even clearer when inhomogeneous systems are considered.
The equilibrium densities of the full system are given by

Λ3
νρνðrÞ ¼ exp

�
−βVνðrÞ − βqνϕðrÞ

þ βμν þ cð1Þν ðr; ½fρνg�Þ
�
; ð13Þ

where the nonlocal functional cð1Þν is now given by Eq. (8),
together with Eqs. (9) and (11). From a cDFT perspective,
we have captured all strong rapidly varying short-ranged

correlations with the neural networks for cð1ÞR;ν, while the
effects of LR electrostatic interactions are incorporated in a
mean-field yet well-controlled fashion.
In practical terms, for a planar geometry, Eq. (9) can be

recast as

ΔϕðzÞ ¼ −
1

ϵL

X
k≠0

4π

k2
ñðkÞ expðikzÞ exp

�
−

k2

4κ2

�
; ð14Þ

where ñ denotes a Fourier component of n, and L is the total
length of the periodic cell. In Fig. 2(b), we show the results
from our cDFTapproach for the RPM confined between two
repulsive walls for various values of μþ ¼ μ−. The density

(b) (c)(a)

FIG. 2. Structure and thermodynamics of the LR full system. cDFT for the RPM at T� ¼ 0.066 with effects of LR electrostatic
interactions accounted by LMFT shows excellent agreement with reference molecular simulation data for (a) the equation of state,
(b) ion density profiles confined in a slit, and (c) with an applied external potential. In (a), we see that our cDFT approach outperforms
the prediction obtained by combining the Carnahan-Starling equation of state for hard-sphere fluids (PCS) and the mean spherical
approximation (PMSA). For the LR system in (c), the applied external potential acts over a much longer range and the chemical potentials
are shifted lower compared to the SR mimic system in Fig. 1(c) to yield ρνðzÞ ¼ ρR;νðzÞ.
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profiles are in very good agreement with reference canonical
MD simulation data in which the number of particles
matches that obtained by integrating the density profiles
from cDFT. Our cDFT approach also works very well in
cases where the external potential contains an electrostatic
component, as illustrated in Fig. 2(c). Here, the full system is
the LR counterpart of the mimic system shown in Fig. 1(c),
emphasizing the premise of LMFT [see Eq. (7)].
The electric double layer and other ionic fluids—The

results presented so far demonstrate that our cDFT
approach provides an efficient and accurate route to the
structure and thermodynamics of the RPM. As an appli-
cation, we turn our attention to the fundamental topic of
ongoing scientific interest: the electric double layer. We
also show that our approach is robust to the choice of
interatomic potential. Specifically, we also consider the
primitive model (PM) and a multivalent fluid.
As a simple model of an EDL-forming system, we

consider the RPM confined between two repulsive walls,
and in the presence of an electric field Ez along the z
direction. The electrostatic potential that the LR system
feels is ϕðzÞ ¼ −Ezz. For the reference simulation data, the
LR system was simulated at constant Ez using the finite-
field approach [82–88]. As shown in Fig. 3(a), the ion
distributions from our cDFT approach are in excellent
agreement with the results from simulations. Notably, the
cDFT accurately describes the strong oscillations in the
density profiles of co- and counterions. Moreover, as we
detail in SM [49], our functional is thermodynamically
consistent, satisfying the contact density theorem [89–91]

P ¼ −
X
ν

Z
dzρνðzÞ

dVνðzÞ
dz

−
2πσ2s
ϵ

; ð15Þ

which relates the bulk pressure to the surface charge density
σs ¼

R
0
−L dznðzÞ [92] and ion densities at contact with the

walls. Obeying this contact theorem has proven a challenge
not only for integral equation methods [93–96], which tend
to violate key sum rules and are therefore generally
thermodynamically inconsistent [48,97], but also for most
state-of-the-art cDFT functionals for ionic fluids [98,99].
The accurate description of EDL structure and thermody-
namic consistency displayed by our LMFT-based neural
cDFTapproach constitutes a significant advancement in the
theoretical description of ionic fluids.
The main advantage of the neural functional approach

outlined in Ref. [36] is arguably that the local relationship

between cð1Þν and fρνg permits application of the resulting
functional to system sizes far beyond those encountered
during training of theML. By using the framework of LMFT
and its relationship to cDFT, we have successfully extended
the neural functional approach to a case where the relation-

ship between cð1Þν and fρνg is nonlocal. To demonstrate that
this methodology is not limited to the RPM, in Figs. 3(b)
and 3(c), we present results for a PM and multivalent system.
For the PM, we have changed the sizes of the anion and

cation to σ− ¼ 4σ=3 and σþ ¼ 2σ=3, respectively. For the
multivalent system, we consider equal-sized anions and
cations of diameter σ, but increase the valency of the anion
such that q−=qþ ¼ 2. We use the same temperature as for
the RPM, T� ¼ ϵσkBT=jqþq−j ¼ 0.066. In both cases, we
observe excellent agreement between the neural cDFT and
simulations, both for inhomogeneous profiles and bulk
equations of state, as further shown in SM [49]. Future
work will pursue using neural functionals to understand
EDL capacitance [100] and surface force balance measure-
ments [13], and to augment other cDFT approaches to
understand solvation [101]. The framework we have out-
lined should also find use in describing the dielectric
response of polar fluids such as water [74,102,103].
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(a)

(b)

(c)

FIG. 3. Accurately describing the EDL with cDFT for (a) the
RPM, (b) the PM, and (c) a multivalent fluid. In all cases,
confining walls are located at z=σ ¼ �7.2 in a periodic cell of
L=σ ¼ 18.1, and Ez ¼ 1.7kBT=eσ. The resulting ion density
profiles from cDFT are in excellent agreement with molecular
simulations, and obey the contact theorem [Eq. (15)].

PHYSICAL REVIEW LETTERS 134, 148001 (2025)

148001-5



[1] W. Kunz, J. Henle, and B.W. Ninham, ‘Zur Lehre von der
Wirkung der Salze’ (about the science of the effect of
salts): Franz Hofmeister’s historical papers, Curr. Opin.
Colloid Interface Sci. 9, 19 (2004).

[2] S. Kondrat, G. Feng, F. Bresme, M. Urbakh, and A. A.
Kornyshev, Theory and simulations of ionic liquids in
nanoconfinement, Chem. Rev. 123, 6668 (2023).

[3] R. M. Espinosa-Marzal, A. Arcifa, A. Rossi, and N. D.
Spencer, Microslips to “avalanches” in confined, molecu-
lar layers of ionic liquids, J. Phys. Chem. Lett. 5, 179
(2014).

[4] M. A. Gebbie, H. A. Dobbs, M. Valtiner, and J. N.
Israelachvili, Long-range electrostatic screening in ionic
liquids, Proc. Natl. Acad. Sci. U.S.A. 112, 7432 (2015).

[5] A. M. Smith, A. A. Lee, and S. Perkin, The electrostatic
screening length in concentrated electrolytes increases
with concentration, J. Phys. Chem. Lett. 7, 2157 (2016).

[6] A. A. Lee, C. S. Perez-Martinez, A. M. Smith, and S.
Perkin, Underscreening in concentrated electrolytes, Fara-
day Discuss. 199, 239 (2017).

[7] M. A. Gebbie, A.M. Smith, H. A. Dobbs, A. A. Lee, G. G.
Warr, X. Banquy, M. Valtiner, M.W. Rutland, J. N.
Israelachvili, S. Perkin, and R. Atkin, Long range electro-
static forces in ionic liquids, Chem. Commun. (Cambridge)
53, 1214 (2017).

[8] G. M. Torrie and J. P. Valleau, Electrical double layers.
I. Monte Carlo study of a uniformly charged surface,
J. Chem. Phys. 73, 5807 (1980).

[9] C. Merlet, D. T. Limmer, M. Salanne, R. van Roij, P. A.
Madden, D. Chandler, and B. Rotenberg, The electric
double layer has a life of its own, J. Phys. Chem. C 118,
18291 (2014).

[10] M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Double
layer in ionic liquids: Overscreening versus crowding,
Phys. Rev. Lett. 106, 046102 (2011).

[11] F. Coupette, A. A. Lee, and A. Härtel, Screening lengths in
ionic fluids, Phys. Rev. Lett. 121, 075501 (2018).

[12] J. P. de Souza, Z. A. H. Goodwin, M. McEldrew, A. A.
Kornyshev, and M. Z. Bazant, Interfacial layering in the
electric double layer of ionic liquids, Phys. Rev. Lett. 125,
116001 (2020).

[13] P. Cats, R. Evans, A. Härtel, and R. van Roij, Primitive
model electrolytes in the near and far field: Decay lengths
from DFT and simulations, J. Chem. Phys. 154, 124504
(2021).

[14] R. Evans, The nature of the liquid-vapour interface and
other topics in the statistical mechanics of non-uniform,
classical fluids, Adv. Phys. 28, 143 (1979).

[15] R. Evans, Fundamentals of Inhomogeneous Fluids, edited
by D. Henderson (Dekker, New York, 1992).

[16] J. F. Lutsko, Recent Developments in Classical Density
Functional Theory, Adv. Chem. Phys. (John Wiley & Sons,
New York, 2010) pp. 1–92, 10.1002/9780470564318.ch1.

[17] J. Hansen and I. McDonald, Theory of Simple Liquids:
With Applications to Soft Matter (Elsevier Science, New
York, 2013).

[18] Y. Rosenfeld, Free-energy model for the inhomogeneous
hard-sphere fluid mixture and density-functional theory of
freezing, Phys. Rev. Lett. 63, 980 (1989).

[19] R. Roth, R. Evans, A. Lang, and G. Kahl, Fundamental
measure theory for hard-sphere mixtures revisited: The
White Bear version, J. Phys. Condens. Matter 14, 12063
(2002).

[20] H. Hansen-Goos and R. Roth, Density functional theory
for hard-sphere mixtures: The White Bear version mark II,
J. Phys. Condens. Matter 18, 8413 (2006).

[21] R. Roth, Fundamental measure theory for hard-sphere
mixtures: A review, J. Phys. Condens. Matter 22, 063102
(2010).

[22] E. Kierlik and M. L. Rosinberg, Density-functional theory
for inhomogeneous fluids: Adsorption of binary mixtures,
Phys. Rev. A 44, 5025 (1991).

[23] M. C. Stewart and R. Evans, Wetting and drying at a
curved substrate: Long-ranged forces, Phys. Rev. E 71,
011602 (2005).

[24] A. J. Archer, B. Chacko, and R. Evans, The standard mean-
field treatment of inter-particle attraction in classical DFT
is better than one might expect, J. Chem. Phys. 147,
034501 (2017).

[25] A. Härtel, M. Janssen, S. Samin, and R. v. Roij,
Fundamental measure theory for the electric double
layer: Implications for blue-energy harvesting and
water desalination, J. Phys. Condens. Matter 27, 194129
(2015).

[26] A. Härtel, Structure of electric double layers in capacitive
systems and to what extent (classical) density functional
theory describes it, J. Phys. Condens. Matter 29, 423002
(2017).

[27] R. Roth and D. Gillespie, Shells of charge: A density
functional theory for charged hard spheres, J. Phys.
Condens. Matter 28, 244006 (2016).

[28] M. Bültmann and A. Härtel, The primitive model in
classical density functional theory: Beyond the standard
mean-field approximation, J. Phys. Condens. Matter 34,
235101 (2022).

[29] P. Cats, S. Kuipers, S. de Wind, R. van Damme, G. M.
Coli, M. Dijkstra, and R. van Roij, Machine-learning free-
energy functionals using density profiles from simulations,
APL Mater. 9, 031109 (2021).

[30] J. Dijkman, M. Dijkstra, R. van Roij, M. Welling, J.-W.
van de Meent, and B. Ensing, Learning neural free-energy
functionals with pair-correlation matching, Phys. Rev.
Lett. 134, 056103 (2025).

[31] A. Simon and M. Oettel, Machine learning appro-
aches to classical density functional theory, arXiv:2406
.07345.

[32] S.-C. Lin, G. Martius, and M. Oettel, Analytical classical
density functionals from an equation learning network,
J. Chem. Phys. 152, 021102 (2020).

[33] L. Shang-Chun and M. Oettel, A classical density func-
tional from machine learning and a convolutional neural
network, SciPost Phys. 6, 025 (2019).

[34] A. Malpica-Morales, P. Yatsyshin, M. A. Durán-Olivencia,
and S. Kalliadasis, Physics-informed Bayesian inference of
external potentials in classical density-functional theory,
J. Chem. Phys. 159, 104109 (2023).

[35] R. Pederson, B. Kalita, and K. Burke, Machine learning and
density functional theory, Nat. Rev. Phys. 4, 357 (2022).

PHYSICAL REVIEW LETTERS 134, 148001 (2025)

148001-6

https://doi.org/10.1016/j.cocis.2004.05.005
https://doi.org/10.1016/j.cocis.2004.05.005
https://doi.org/10.1021/acs.chemrev.2c00728
https://doi.org/10.1021/jz402451v
https://doi.org/10.1021/jz402451v
https://doi.org/10.1073/pnas.1508366112
https://doi.org/10.1021/acs.jpclett.6b00867
https://doi.org/10.1039/C6FD00250A
https://doi.org/10.1039/C6FD00250A
https://doi.org/10.1039/C6CC08820A
https://doi.org/10.1039/C6CC08820A
https://doi.org/10.1063/1.440065
https://doi.org/10.1021/jp503224w
https://doi.org/10.1021/jp503224w
https://doi.org/10.1103/PhysRevLett.106.046102
https://doi.org/10.1103/PhysRevLett.121.075501
https://doi.org/10.1103/PhysRevLett.125.116001
https://doi.org/10.1103/PhysRevLett.125.116001
https://doi.org/10.1063/5.0039619
https://doi.org/10.1063/5.0039619
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1002/9780470564318.ch1
https://doi.org/10.1103/PhysRevLett.63.980
https://doi.org/10.1088/0953-8984/14/46/313
https://doi.org/10.1088/0953-8984/14/46/313
https://doi.org/10.1088/0953-8984/18/37/002
https://doi.org/10.1088/0953-8984/22/6/063102
https://doi.org/10.1088/0953-8984/22/6/063102
https://doi.org/10.1103/PhysRevA.44.5025
https://doi.org/10.1103/PhysRevE.71.011602
https://doi.org/10.1103/PhysRevE.71.011602
https://doi.org/10.1063/1.4993175
https://doi.org/10.1063/1.4993175
https://doi.org/10.1088/0953-8984/27/19/194129
https://doi.org/10.1088/0953-8984/27/19/194129
https://doi.org/10.1088/1361-648X/aa8342
https://doi.org/10.1088/1361-648X/aa8342
https://doi.org/10.1088/0953-8984/28/24/244006
https://doi.org/10.1088/0953-8984/28/24/244006
https://doi.org/10.1088/1361-648X/ac5e7a
https://doi.org/10.1088/1361-648X/ac5e7a
https://doi.org/10.1063/5.0042558
https://doi.org/10.1103/PhysRevLett.134.056103
https://doi.org/10.1103/PhysRevLett.134.056103
https://arXiv.org/abs/2406.07345
https://arXiv.org/abs/2406.07345
https://doi.org/10.1063/1.5135919
https://doi.org/10.21468/SciPostPhys.6.2.025
https://doi.org/10.1063/5.0146920
https://doi.org/10.1038/s42254-022-00470-2


[36] F. Sammüller, S. Hermann, D. de las Heras, and M.
Schmidt, Neural functional theory for inhomogeneous
fluids: Fundamentals and applications, Proc. Natl. Acad.
Sci. U.S.A. 120, e2312484120 (2023).

[37] F. Sammüller, M. Schmidt, and R. Evans, Neural density
functional theory of liquid-gas phase coexistence, Phys.
Rev. X 15, 011013 (2025).

[38] J. C. Shelley and G. N. Patey, A configuration bias
Monte Carlo method for ionic solutions, J. Chem. Phys.
100, 8265 (1994).

[39] Q. Yan and J. J. de Pablo, Hyper-parallel tempering
Monte Carlo: Application to the Lennard-Jones fluid
and the restricted primitive model, J. Chem. Phys. 111,
9509 (1999).

[40] F. Moučka, M. Lísal, J. Škvor, J. Jirsák, I. Nezbeda, and
W. R. Smith, Molecular simulation of aqueous electrolyte
solubility. 2. Osmotic ensemble Monte Carlo methodology
for free energy and solubility calculations and application
to NaCl, J. Phys. Chem. B 115, 7849 (2011).

[41] F. Moučka, D. Bratko, and A. Luzar, Electrolyte pore/
solution partitioning by expanded grand canonical ensem-
ble Monte Carlo simulation, J. Chem. Phys. 142, 124705
(2015).

[42] J. Kim, L. Belloni, and B. Rotenberg, Grand-canonical
molecular dynamics simulations powered by a hybrid
4D nonequilibrium MD/MC method: Implementation
in LAMMPS and applications to electrolyte solutions,
J. Chem. Phys. 159, 144802 (2023).

[43] J. M. Rodgers and J. D. Weeks, Local molecular field
theory for the treatment of electrostatics, J. Phys. Condens.
Matter 20, 494206 (2008).

[44] J. D. Weeks, K. Katsov, and K. Vollmayr, Roles of
repulsive and attractive forces in determining the structure
of nonuniform liquids: Generalized mean field theory,
Phys. Rev. Lett. 81, 4400 (1998).

[45] J. M. Rodgers, C. Kaur, Y.-G. Chen, and J. D. Weeks,
Attraction between like-charged walls: Short-ranged sim-
ulations using local molecular field theory, Phys. Rev. Lett.
97, 097801 (2006).

[46] Y.-g. Chen, C. Kaur, and J. D. Weeks, Connecting systems
with short and long ranged interactions: Local molecular
field theory for ionic fluids, J. Phys. Chem. B 108, 19874
(2004).

[47] R. C. Remsing, S. Liu, and J. D. Weeks, Long-ranged
contributions to solvation free energies from theory and
short-ranged models, Proc. Natl. Acad. Sci. U.S.A. 113,
2819 (2016).

[48] A. J. Archer and R. Evans, Relationship between local
molecular field theory and density functional theory for
non-uniform liquids, J. Chem. Phys. 138, 014502
(2013).

[49] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.134.148001, which
includes Refs. [50–66], for additional information on
simulation details, training procedure, derivation of Δμν,
and additional results.

[50] A. Z. Panagiotopoulos, *Molecular simulation of phase
equilibria: Simple, ionic and polymeric fluids, Fluid Phase
Equilib. 76, 97 (1992).

[51] A. P. Thompson, H.M. Aktulga, R. Berger, D. S.
Bolintineanu, W.M. Brown, P. S. Crozier, P. J. in ’t Veld,
A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J.
Stevens, J. Tranchida, C. Trott, and S. J. Plimpton,
LAMMPS—a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum
scales, Comput. Phys. Commun. 271, 108171 (2022).

[52] T. Schneider and E. Stoll, Molecular-dynamics study of a
three-dimensional one-component model for distortive
phase transitions, Phys. Rev. B 17, 1302 (1978).

[53] A. Härtel, S. Samin, and R. van Roij, Dense ionic fluids
confined in planar capacitors: In- and out-of-plane struc-
ture from classical density functional theory, J. Phys.
Condens. Matter 28, 244007 (2016).

[54] J. Jover, A. J. Haslam, A. Galindo, G. Jackson, and E. A.
Müller, Pseudo hard-sphere potential for use in continuous
molecular-dynamics simulation of spherical and chain
molecules, J. Chem. Phys. 137, 144505 (2012).

[55] A. V. Brukhno, J. Grant, T. L. Underwood, K. Stratford,
S. C. Parker, J. A. Purton, and N. B. Wilding,
DL_MONTE: A multipurpose code for Monte Carlo
simulation, Mol. Simul. 47, 131 (2021).

[56] S. W. de Leeuw, J. W. Perram, E. R. Smith, and J. S.
Rowlinson, Simulation of electrostatic systems in periodic
boundary conditions. I. Lattice sums and dielectric con-
stants, Proc. R. Soc. A 373, 27 (1997).

[57] R. Hockney and J. Eastwood, Computer Simulation Using
Particles (Adam-Hilger, New York, 1988).

[58] J. Kolafa and J. W. Perram, Cutoff errors in the Ewald
summation formulae for point charge systems, Mol. Simul.
9, 351 (1992).

[59] F. Chollet, Deep Learning with Python (Manning Pub-
lications, New York, 2017), https://www.manning.com/
books/deep-learning-with-python.

[60] T. Sayer, C. Zhang, and M. Sprik, Charge compensation at
the interface between the polar NaCl ð111Þ surface and a
NaCl aqueous solution, J. Chem. Phys. 147, 104702 (2017).

[61] T. Sayer, M. Sprik, and C. Zhang, Finite electric dis-
placement simulations of polar ionic solid-electrolyte
interfaces: application to NaCl ð111Þ/aqueous NaCl sol-
ution, J. Chem. Phys. 150, 041716 (2019).

[62] F. Sedlmeier, D. Horinek, and R. R. Netz, Spatial corre-
lations of density and structural fluctuations in liquid
water: A comparative simulation study, J. Am. Chem.
Soc. 133, 1391 (2011).

[63] J. K. Johnson, J. A. Zollweg, and K. E. Gubbins, The
Lennard-Jones equation of state revisited, Mol. Phys.
78, 591 (1993).

[64] A. T. Bui, GCMC with Gaussian truncated potentials,
https://github.com/annatbui/GCMC (2024).

[65] S. J. Cox, Gaussian truncated potentials in LAMMPS,
https://github.com/uccasco/LMFT (2020).

[66] A. T. Bui and S. J. Cox, Learning cDFT for ionic fluids,
https://github.com/annatbui/ion-cdft (2024).

[67] The critical temperature of the RPM is T�
c ¼ 0.0492 (from

Ref. [39]).
[68] D. Frenkel and B. Smit, Understanding Molecular

Simulation: From Algorithms to Applications (Elsevier
Science, New York, 2023).

PHYSICAL REVIEW LETTERS 134, 148001 (2025)

148001-7

https://doi.org/10.1073/pnas.2312484120
https://doi.org/10.1073/pnas.2312484120
https://doi.org/10.1103/PhysRevX.15.011013
https://doi.org/10.1103/PhysRevX.15.011013
https://doi.org/10.1063/1.466770
https://doi.org/10.1063/1.466770
https://doi.org/10.1063/1.480282
https://doi.org/10.1063/1.480282
https://doi.org/10.1021/jp202054d
https://doi.org/10.1063/1.4914461
https://doi.org/10.1063/1.4914461
https://doi.org/10.1063/5.0168878
https://doi.org/10.1088/0953-8984/20/49/494206
https://doi.org/10.1088/0953-8984/20/49/494206
https://doi.org/10.1103/PhysRevLett.81.4400
https://doi.org/10.1103/PhysRevLett.97.097801
https://doi.org/10.1103/PhysRevLett.97.097801
https://doi.org/10.1021/jp0469261
https://doi.org/10.1021/jp0469261
https://doi.org/10.1073/pnas.1521570113
https://doi.org/10.1073/pnas.1521570113
https://doi.org/10.1063/1.4771976
https://doi.org/10.1063/1.4771976
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.148001
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.148001
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.148001
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.148001
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.148001
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.148001
http://link.aps.org/supplemental/10.1103/PhysRevLett.134.148001
https://doi.org/10.1016/0378-3812(92)85080-R
https://doi.org/10.1016/0378-3812(92)85080-R
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1103/PhysRevB.17.1302
https://doi.org/10.1088/0953-8984/28/24/244007
https://doi.org/10.1088/0953-8984/28/24/244007
https://doi.org/10.1063/1.4754275
https://doi.org/10.1080/08927022.2019.1569760
https://doi.org/10.1098/rspa.1980.0135
https://doi.org/10.1080/08927029208049126
https://doi.org/10.1080/08927029208049126
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python
https://doi.org/10.1063/1.4987019
https://doi.org/10.1063/1.5054843
https://doi.org/10.1021/ja1064137
https://doi.org/10.1021/ja1064137
https://doi.org/10.1080/00268979300100411
https://doi.org/10.1080/00268979300100411
https://github.com/annatbui/GCMC
https://github.com/annatbui/GCMC
https://github.com/uccasco/LMFT
https://github.com/uccasco/LMFT
https://github.com/annatbui/ion-cdft
https://github.com/annatbui/ion-cdft


[69] F. Sammüller and M. Schmidt, Neural density functionals:
Local learning and pair-correlation matching, Phys. Rev. E
110, L032601 (2024).

[70] A. T. Bui and S. J. Cox, Research data supporting “Learn-
ing classical density functionals for ionic fluids”, Zenodo
(2024), 10.5281/zenodo.15085645.

[71] L. S. Ornstein and F. Zernike, Accidental deviations of
density and opalescence at the critical point of a single
substance, Proc. R. Neth. Acad. Arts Sci. 17, 793 (1914).

[72] R. J. Baxter, Ornstein–Zernike relation and Percus–Yevick
approximation for fluid mixtures, J. Chem. Phys. 52, 4559
(2003).

[73] While GC simulations (i.e., known fμνg) are required to
train the neural networks [see Eq. (3)], it is reasonable to
compare to average structures obtained with canonical
simulations at the same average density.

[74] S. J. Cox, Dielectric response with short-ranged electro-
statics, Proc. Natl. Acad. Sci. U.S.A. 117, 19746 (2020).

[75] F. H. Stillinger and R. Lovett, General restriction on the
distribution of ions in electrolytes, J. Chem. Phys. 49, 1991
(1968).

[76] F. H. Stillinger and R. Lovett, Ion-pair theory of concen-
trated electrolytes. I. Basic concepts, J. Chem. Phys. 48,
3858 (1968).

[77] The number densities also have a functional dependence
on the non-electrostatic contribution to the external po-
tential. As this is the same for both the full and mimic
systems, i.e fVνg ¼ fVν;Rg, we do not indicate this
functional dependence explicitly in Eq. (7).

[78] J. M. Rodgers and J. D. Weeks, Accurate thermodynamics
for short-ranged truncations of Coulomb interactions in
site-site molecular models, J. Chem. Phys. 131, 244108
(2009).

[79] N. F. Carnahan and K. E. Starling, Equation of state
for nonattracting rigid spheres, J. Chem. Phys. 51, 635
(1969).

[80] J. L. Lebowitz and J. K. Percus, Mean spherical model for
lattice gases with extended hard cores and continuum
fluids, Phys. Rev. 144, 251 (1966).

[81] L. Blum, Mean spherical model for asymmetric electro-
lytes, Mol. Phys. 30, 1529 (1975).

[82] M. Stengel, N. A. Spaldin, and D. Vanderbilt, Electric
displacement as the fundamental variable in electronic-
structure calculations, Nat. Phys. 5, 304 (2009).

[83] C. Zhang and M. Sprik, Computing the dielectric constant
of liquid water at constant dielectric displacement, Phys.
Rev. B 93, 144201 (2016).

[84] C. Zhang and M. Sprik, Finite field methods for the
supercell modeling of charged insulator/electrolyte inter-
faces, Phys. Rev. B 94, 245309 (2016).

[85] M. Sprik, Finite Maxwell field and electric displacement
Hamiltonians derived from a current dependent Lagran-
gian, Mol. Phys. 116, 3114 (2018).

[86] S. J. Cox and M. Sprik, Finite field formalism for bulk
electrolyte solutions, J. Chem. Phys. 151, 064506 (2019).

[87] T. Sayer and S. J. Cox, Macroscopic surface charges from
microscopic simulations, J. Chem. Phys. 153, 164709
(2020).

[88] C. Zhang, T. Sayer, J. Hutter, and M. Sprik, Modelling
electrochemical systems with finite field molecular dy-
namics, J. Phys. Energy 2, 032005 (2020).

[89] D. Henderson and L. Blum, Some exact results and the
application of the mean spherical approximation to
charged hard spheres near a charged hard wall, J. Chem.
Phys. 69, 5441 (1978).

[90] D. Henderson, L. Blum, and J. L. Lebowitz, An exact
formula for the contact value of the density profile of a
system of charged hard spheres near a charged wall,
J. Electroanal. Chem. 102, 315 (1979).

[91] P. A. Martin, Sum rules in charged fluids, Rev. Mod. Phys.
60, 1075 (1988).

[92] This equation for σs assumes that the electrolyte is centered
in a periodically replicated cell of length L along the z
direction.

[93] T. Ichiye and A. D. J. Haymet, Integral equation theory of
ionic solutions, J. Chem. Phys. 93, 8954 (1990).

[94] K. Nygård, S. Sarman, and R. Kjellander, Local order
variations in confined hard-sphere fluids, J. Chem. Phys.
139, 164701 (2013).

[95] Y. Jing, V. Jadhao, J. W. Zwanikken, and M. Olvera de la
Cruz, Ionic structure in liquids confined by dielectric
interfaces, J. Chem. Phys. 143, 194508 (2015).

[96] M. Dinpajooh, N. N. Intan, T. T. Duignan, E. Biasin, J. L.
Fulton, S. M. Kathmann, G. K. Schenter, and C. J. Mundy,
Beyond the Debye–Hückel limit: Toward a general theory
for concentrated electrolytes, J. Chem. Phys. 161, 230901
(2024).

[97] J. R. Henderson, Fundamentals of Inhomogeneous Fluids,
edited by D. Henderson (Dekker, New York, 1992).

[98] A. Voukadinova, M. Valiskó, and D. Gillespie, Assessing
the accuracy of three classical density functional theories
of the electrical double layer, Phys. Rev. E 98, 012116
(2018).

[99] D. Gillespie, Restoring the consistency with the contact
density theorem of a classical density functional theory of
ions at a planar electrical double layer, Phys. Rev. E 90,
052134 (2014).

[100] P. Cats and R. van Roij, The differential capacitance as a
probe for the electric double layer structure and the
electrolyte bulk composition, J. Chem. Phys. 155,
104702 (2021).

[101] A. T. Bui and S. J. Cox, A classical density functional
theory for solvation across length scales, J. Chem. Phys.
161, 104103 (2024).

[102] A. Gao, R. C. Remsing, and J. D. Weeks, Local molecular
field theory for Coulomb interactions in aqueous solutions,
J. Phys. Chem. B 127, 809 (2023).

[103] J. M. Rodgers and J. D. Weeks, Interplay of local hydro-
gen-bonding and long-ranged dipolar forces in simulations
of confined water, Proc. Natl. Acad. Sci. U.S.A. 105,
19136 (2008).

PHYSICAL REVIEW LETTERS 134, 148001 (2025)

148001-8

https://doi.org/10.1103/PhysRevE.110.L032601
https://doi.org/10.1103/PhysRevE.110.L032601
https://doi.org/10.5281/zenodo.15085645
https://doi.org/10.1063/1.1673684
https://doi.org/10.1063/1.1673684
https://doi.org/10.1073/pnas.2005847117
https://doi.org/10.1063/1.1670358
https://doi.org/10.1063/1.1670358
https://doi.org/10.1063/1.1669709
https://doi.org/10.1063/1.1669709
https://doi.org/10.1063/1.3276729
https://doi.org/10.1063/1.3276729
https://doi.org/10.1063/1.1672048
https://doi.org/10.1063/1.1672048
https://doi.org/10.1103/PhysRev.144.251
https://doi.org/10.1080/00268977500103051
https://doi.org/10.1038/nphys1185
https://doi.org/10.1103/PhysRevB.93.144201
https://doi.org/10.1103/PhysRevB.93.144201
https://doi.org/10.1103/PhysRevB.94.245309
https://doi.org/10.1080/00268976.2018.1431406
https://doi.org/10.1063/1.5099207
https://doi.org/10.1063/5.0022596
https://doi.org/10.1063/5.0022596
https://doi.org/10.1088/2515-7655/ab9d8c
https://doi.org/10.1063/1.436535
https://doi.org/10.1063/1.436535
https://doi.org/10.1016/S0022-0728(79)80459-3
https://doi.org/10.1103/RevModPhys.60.1075
https://doi.org/10.1103/RevModPhys.60.1075
https://doi.org/10.1063/1.459234
https://doi.org/10.1063/1.4825176
https://doi.org/10.1063/1.4825176
https://doi.org/10.1063/1.4935704
https://doi.org/10.1063/5.0238708
https://doi.org/10.1063/5.0238708
https://doi.org/10.1103/PhysRevE.98.012116
https://doi.org/10.1103/PhysRevE.98.012116
https://doi.org/10.1103/PhysRevE.90.052134
https://doi.org/10.1103/PhysRevE.90.052134
https://doi.org/10.1063/5.0064315
https://doi.org/10.1063/5.0064315
https://doi.org/10.1063/5.0223750
https://doi.org/10.1063/5.0223750
https://doi.org/10.1021/acs.jpcb.2c06988
https://doi.org/10.1073/pnas.0807623105
https://doi.org/10.1073/pnas.0807623105

	Learning Classical Density Functionals for Ionic Fluids
	cDFT of a short-ranged ``mimic'' ionic fluid
	Accounting for long-ranged electrostatics with LMFT
	The electric double layer and other ionic fluids
	Acknowledgments
	Data availability
	References


