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We analyze the behavior of stochastic approximation algorithms where iterates, in expectation, progress

towards an objective at each step. When progress is proportional to the step size of the algorithm, we

prove exponential concentration bounds. These tail-bounds contrast asymptotic normality results, which

are more frequently associated with stochastic approximation. The methods that we develop rely on a

proof of geometric ergodicity. This extends the result of Markov chains due to Hajek (1982) to stochastic

approximation algorithms. We apply our results to several different stochastic approximation algorithms,

specifically Projected Stochastic Gradient Descent, Kiefer-Wolfowitz, and Stochastic Frank-Wolfe algorithms.

When applicable, our results prove faster O(1/t) and linear convergence rates for Projected Stochastic

Gradient Descent with a non-vanishing gradient.

Key words : stochastic approximation, projected stochastic gradient descent, concentration bounds.

1. Introduction

We consider stochastic approximation algorithms where the expected progress toward the optimum

is proportional to the algorithm’s step size. For instance, a stochastic gradient descent algorithm

applied to a convex function will satisfy this property when bounded away from the optimum.

However, this property can continue to hold as an algorithm approaches the optimum. For instance,

a stochastic gradient descent algorithm applied to a convex function will satisfy this property when

bounded away from the optimum. However, this property can continue to hold as an algorithm

approaches the optimum. As we will discuss, this is true when the convex objective function is

sharp. Stated informally, these objectives have a V-shape at the optimum rather than a quadratic
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U-shape. The latter case is extensively studied. The asymptotic error has a normal distribution;

see Chung (1954), Fabian (1968). However, in the former case, little is known about the limit

distribution of the error. In these settings, we will show that the error for algorithms such as

Projected Stochastic Gradient Descent, Kiefer-Wolfowitz, and Frank-Wolfe have an exponential

concentration and a faster rate of convergence than would be anticipated by standard results for

stochastic optimization with a smooth objective. We develop methods which are typically used in

probability to analyze random walks or in applied probability to analyze queueing networks. For

stochastic approximation, our results establish new exponential concentration bounds.

We now summarize the background and problems where our results apply.

Stochastic Gradient Descent: Standard Asymptotic Results. Due to its applicability in machine

learning, there is now a vast literature on stochastic gradient descent (Bottou et al. 2018). The rate

of convergence found to the optimal point for a (projected) stochastic gradient descent procedure on

a convex objective has orderO(1/
√
t) of the optimum after t-iterations of the algorithm (Nemirovski

et al. 2009, Moulines and Bach 2011, Bottou et al. 2018). In this paper, we find conditions under

which the improved O(1/t) convergence rate holds, and developing on the work of Davis et al.

(2019), we also find linear convergence results. Our results apply to optimization problems where

the gradient does not vanish as we approach the optimum. A critical feature of our analysis is an

exponential concentration bound.

Asymptotic Normality, Exponential Bounds, and Reflected Random Walks. For stochastic approx-

imation, the normal distribution has long been known to characterize the limiting behavior of a

stochastic approximation procedure. See Fabian (1968) and Chapter 10 of Kushner and Yin (2003).

Such theories are statistically efficient for smooth optimization problems with and without con-

straints. See Duchi and Ruan (2021), Davis et al. (2023) and Moulines and Bach (2011) respectively,

and results are motivated by the asymptotic normality results for maximum likelihood estimators

(MLE) of Le Cam (1953) and Hájek (1972). However, one should note that such asymptotics may

not always lead to a Gaussian limit. For example, the MLE of a uniform distribution is not asymp-

totically normal but is instead exponentially distributed. (See Section EC.1 of the E-companion

for a proof.) The stochastic optimization algorithms considered in this paper are settings where

the normal distribution is not asymptotically optimal.

While asymptotic normality has a long history, the exponential bounds found here are not well-

understood and do not appear in stochastic approximation literature. We argue that when the

objective’s gradient is non-vanishing as we approach the optimum, the normal approximation will

not hold, and an exponential concentration bound is more appropriate.

We establish exponential concentration bounds using a geometric Lyapunov bound. These argu-

ments are commonly employed to establish the exponential ergodicity of Markov chains. See
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Kendall’s Renewal Theorem in Chapter 15 of Meyn and Tweedie (2012). Hajek (1982), in particu-

lar, provides a proof that converts a drift condition into an exponential Martingale that establishes

fast convergence rates for ergodic Markov chains. A key contribution of this paper is to extend this

argument to stochastic approximation.

These bounds are typically applied to queueing networks (Kingman 1964, Bertsimas et al. 2001)

because many queueing processes are random walks with constraints and non-zero drift. These

conditions lead to exponential distribution bounds (Harrison and Williams 1987). Kushner and

Yin (2003) discusses these connections when analyzing the diffusion approximation of stochastic

approximation procedures with constraints. Nonetheless, as we will discuss, diffusion analysis does

not fully recover the required exponential concentration. The concentration results proven here

are, to the best of our knowledge, new in the context of stochastic approximation.

Constrained Stochastic Gradient Descent, Sharp Functions, and Geometric Convergence. Our

results are applicable when the gradient of the function does not vanish. In particular, our results

can be applied to constrained stochastic approximation when the optimum lies on the boundary.

The text Kushner and Clark (1978a) analyses the convergence of stochastic approximation algo-

rithms on constrained regions. Buche and Kushner (2002) prove convergence rates. These authors

observe that analysis typically applied to unconstrained stochastic approximation does not readily

apply to the constrained case.

Boundary constraints are not a requirement of our analysis. Our results apply under a non-

vanishing gradient condition. This closely relates to the property of a function being sharp. Davis

et al. (2019) presents a variety of machine learning tasks for which the objective is sharp. We show

that our non-vanishing gradient condition is equivalent to sharpness for convex functions. Our

exponential concentration bounds are tighter than Gaussian concentration bounds. Applying this

concentration bound to the work of Davis et al. (2019) leads to an improved linear convergence

rate for projected stochastic gradient descent. Recent work by Davis et al. (2023) analyses the

asymptotic normality of stochastic gradient descent algorithms, which exhibit sharpness away from

a smooth manifold around the optimum.

Further Stochastic Approximation Algorithms. The main result of the paper considers a generic

stochastic algorithm with non-vanishing drift and sub-exponential noise (Conditions (C1) and

(C2)). For this reason, our results hold for other mainstream stochastic approximation algorithms.

We consider the Kiefer-Wolfowitz and the Frank-Wolfe (or conditional gradient algorithm) as

examples. See Kiefer and Wolfowitz (1952) and Frank and Wolfe (1956).

Kiefer-Wolfowitz is the primary alternative to the Robbins and Monro (1951) stochastic gradient

descent algorithm. Here, gradient estimates are replaced by a finite difference approximation. We
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prove that exponential concentration and linear convergence hold for Kiefer-Wolfowitz under a

non-vanishing drift condition.

Frank-Wolfe is a popular projection-free alternative to projected gradient descent algorithms.

See Jaggi (2013), Hazan and Kale (2012). The stochastic Frank-Wolfe algorithm is proposed and

analyzed in Hazan and Luo (2016). We provide conditions analogous to sharpness along with extra

critical conditions that ensure exponential concentration for the stochastic Frank-Wolfe algorithm.

Linear convergence analogous to Davis et al. (2019) can also occur for these algorithms.

The results as a whole establish a sequence of connections between stochastic modeling bounds

used in queueing and stochastic approximation. These exponential tail bounds differ from Gaussian

concentration bounds typically analyzed in unconstrained stochastic approximation. Moreover,

these results lead to faster convergence rates than standard stochastic approximation results.

1.1. Organization.

This article is structured as follows. Section 2 gives initial notation. (Further notation will be

introduced as we present each of our results.) Section 3 presents the paper’s main results. Sec-

tion 3.1 provides intuition on exponential concentration. Section 3.2 presents a generic Lyapunov

function result for exponential concentration. Section 3.3 applies our results to Projected Stochas-

tic Gradient Descent (PSGD). In Section 3.4, we provide an exponential concentration bound for

the Kiefer-Wolfowitz stochastic approximation algorithm. In Section 3.5, we give an exponential

concentration bound for the Stochastic Frank-Wolfe algorithm. A linear convergence result for

PSGD is presented in Section 3.6. Proofs for the results are given in Section 4, with later results

deferred to the E-companion. Numerical experiments are presented in Section 5. In Section 6, we

show that, although exponential concentration holds, the exponential distribution is not, in gen-

eral, the limiting distribution when gradients do not vanish. We discuss the interplay between the

normal approximation and exponential approximation, and we conjecture the asymptotic optimal

performance under sharpness.

2. Problem setting and initial assumptions

We provide some basic notation and assumptions that hold throughout this paper. The algorithms

and results considered will require some specific assumptions, which will be presented in the sections

relevant to those results.

Basic Notation. We apply the convention that Z+ = {n : n = 0,1,2, ...} and R+ = {x : x ≥ 0}.

Implied multiplication has precedence over division, that is, 2a/3bc= (2× a)/(3× b× c).
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Optimization Notation. Unless explicitly stated otherwise, we let X denote a nonempty closed

bounded convex subset of Rd. For a continuous function f :X →R, we consider the minimization

min
x∈X

f(x) . (1)

We let X ? be the set of minimizers of the above optimization problem. We let ΠX (x) denote

the projection of x onto the set X . That is ΠX (x) := arg miny∈X ||x− y||2, where || · || denotes

the Euclidean norm. We let d(x,X ) denote the distance from a point to its projection. That is

d(x,X ) := miny∈X ||x−y||. We let relint(X ) denote the relative interior of X . We let F be the gap

between the maximum and minimum of f(x) on X , that is

F := max
x∈X

f(x)−min
x∈X

f(x) .

Stochastic Iterations. We consider a generic stochastic iterative procedure for solving the optimiza-

tion problem (1). Consider a random sequence {xt}∞t=0 adapted to a filtration {Ft}∞t=0 with xt ∈X

for each t∈Z+. The sequence {αt}∞t=0 determines the distance between successive terms. We define

ct := (xt−xt+1)/αt and thus

xt+1 =xt−αtct . (2)

3. Main Results

In this section, we present our main results, as well as intuition and counter-examples.

3.1. Informal description of the main result

The normal distribution is typically associated with the dispersion of a random walk. However,

when a random walk is constrained, the exponential distribution is the limiting distribution. So,

while the Gaussian concentration is applied in the analysis of smooth stochastic approximation

algorithms, exponential concentration we show occurs in non-smooth problems.

With reference to Figure 1, the high-level intuition for this behavior in a stochastic gradient

algorithm is as follows. Consider a projected stochastic gradient descent algorithm with a small

but fixed learning rate. When the optimum is in the interior of the constraint set and the objective

is smooth, the algorithm’s progress will slow as the iterates approach the minimizer in a manner

that is roughly proportional to the distance to the optimum. In this regime, the process is well

approximated by an Ornstein-Uhlenbeck (OU) process, for instance, see Chapter 10 of Kushner

and Yin (2003). An OU process is known to have a normal distribution as its limiting stationary

distribution. This stationary distribution determines the rate of convergence to the optimum; see

Chen et al. (2022). If we consider the same iterates, but instead, these are now projected to belong to

a constraint set, then the gradient of iterates need not approach zero as we approach the optimum.
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(a) Unconstrained Stochastic Gradient Descent
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(b) Constrained Stochastic Gradient Descent

Figure 1 The above plots a simulation of a stochastic gradient descent algorithm with a constant step size on the

function f(x) = (x+ 1)2. Figure 1(a): When the objective is unconstrained the density of the location

of iterates is well approximated by a normal distribution with variance σ2 =O(α), where α is the step

size of the algorithm. The distance to the optimum is O(α1/2). Figure 1(b): When the value of x is

constrained to the positive orthant the gradient no longer vanishes. The distribution of iterates away

from zero now has an exponential decay with rate λ=O(α−1). So for step size, α, the distance to the

optimum is O(α). This paper proves that exponential concentration holds more generally for stochastic

approximation procedures with non-vanishing gradients.

See Figure 1b). The resulting process behaves in a manner that is approximated by a reflected

Brownian motion. When the gradient is non-zero on the boundary, it is well known that a reflected

Brownian motion with negative drift has an exponential distribution as its stationary distribution,

see Harrison and Williams (1987). We seek to establish bounds that exhibit this exponential,

stationary behavior while allowing for time-dependent step sizes. This provides intuition for the

exponential concentration results found in this paper.

To summarize, strongly convex functions are approximately quadratic around their optimum;

this leads to the normal approximation. Think of such functions being U-shaped. However, for

exponential concentration, the function is V-shaped at the optimum. Such functions are sharp con-

vex functions. (See Remark 1 for a discussion on sharpness.) Here, the gradient does not approach
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zero as we approach the optimum. We show that when a convex function is sharp, a stochastic

gradient descent algorithm has an exponential concentration around its optimum, leading to much

faster convergence.

3.2. An Exponential Lyapunov Bound

We consider a general stochastic optimization algorithm and show that exponential concentration

holds when the expected progress towards its objective is proportional to the learning rate αt. This

leads to the following condition.

Assumption 1 (Drift Condition). The sequence {xt}∞t=0 satisfies

E[f(xt+1)− f(xt)|Ft]≤−2αtκ (C1)

whenever f(xt)− f(x?)≥ αtB for some κ> 0 and some B > 0.

We also assume that noise is sub-exponential.

Assumption 2 (Moment Condition). There exists a constant λ > 0 and a random variable Y

such that

[
|f(xt+1)− f(xt)|

∣∣Ft]≤ αtY and E[eλY ]<∞ . (C2)

Condition (C1) states that the stochastic iterates will make progress against its objective when

away from the optimum. The Condition (C2) is a mild noise condition. For example, if f(X) is

Lipschitz continuous, then it is sufficient that ||ct|| has a sub-exponential tail. (See Lemma EC.1 in

E-companion EC.2.1.1 for verification of this claim.) Shortly we will establish the Conditions (C1)

and (C2) when applying projected stochastic gradient descent. However, for now, we leave (C1)

and (C2) as general conditions that can be satisfied by a stochastic approximation algorithm.

The main result of this section is as follows.

Theorem 1. For learning rates of the form αt = a/(u+ t)γ with a,u > 0 and γ ∈ [0,1], if Condi-

tions (C1) and (C2) are satisfied by a stochastic approximation algorithm, then

P(f(xt+1)− f(x?)≥ z)≤ Ie−
J
αt
z (3)

and

E[f(xt+1)− f(x?)]≤Kαt (4)

for time independent constants I, J and K.
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These results show that once the dependence on the system’s initial state has diminished, the

process f(xt) has an exponential concentration and will be within a factor of αt of the optimum.

We focus on learning rates of the form αt = a/(u+ t)γ ; however, a result for more general learning

rates is proved in Proposition 1 in Section 4.1.

It is worth remarking that Theorem 1 (and Proposition 1) hold for any algorithm for which the

generic Conditions (C1) and (C2) hold. The results are not intended to apply to any particular

stochastic optimization, nor do we place specific design restrictions on the algorithm. The result

emphasizes that a convergence rate may differ depending on the geometry of the problem at hand,

and this convergence may well be faster than anticipated.

3.3. Projected Stochastic Gradient Descent

In Theorem 1, we did not specify the stochastic approximation procedure used nor did we explore

settings where Conditions (C1) and (C2) hold. This section provides a standard setting where

our results apply. We consider projected stochastic gradient descent on the Lipschitz continuous

function l :X→R. That is we wish to solve the optimization problem:

minimize l(x) over x∈X . (5)

We analyze the Project Stochastic Gradient Descent (PSGD) algorithm:

yt+1 =xt−αtct (6a)

xt+1 = ΠX (yt+1) (6b)

where E
[
ct
∣∣Ft]=∇l(xt) andαt = a/(u+ t)γ for a> 0, u∈R+, γ ∈ [0,1]. Above ∇l(x) can be either

the gradient or a sub-gradient of l. We let X ? = arg minx∈X l(x) be the set of optimizers of (5).

Previously, we required Conditions (C1) and (C2), which jointly placed assumptions on the

iterates and objective. Now that we have specified the iterative procedure, we can decouple to give

conditions that only depend on the properties of the objective function.

Assumption 3 (Gradient Condition). There exists a positive constant κ > 0 such that for all

x∈X

∇l(x)>(x−x?)≥ κ‖x−x?‖, (D1)

where x? = ΠX?(x).

Assumption 4 (Sub-Exponential Noise). There exists a λ> 0 such that

sup
t∈N

E[eλ||ct|||Ft]<∞ . (D2)
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(a) Gradient Condition (D1). (b) Convexity and Sharpness (D1′)

Figure 2 Under the gradient condition (D1), the objective need not be convex nor continuously differentiable. We

require the derivative in the direction of the optimum to be non-zero. Under convexity and sharpness

(D1′), the envelope of the function is bounded below by a cone. Here condition (D1) is satisfied.

Conditions (D1) and (D2) replace Conditions (C1) and (C2). Let’s interpret these new conditions.

Firstly, (D1) states that the (unit) directional derivative in the direction from x to x? is bounded

above by −κ. I.e. we require strictly negative slope in the direction of the minimum. Note that that

this does not require convexity of our objective functionl. (See Figure 2.) Condition (D2) assumes

that the tail behavior of the gradient estimates is sub-exponential. (See Lemma EC.1.)

We can prove the following result that holds as a consequence of Theorem 1.

Theorem 2. If Condition (D1) and (D2) hold and αt = a/(u+ t)γ for a,u > 0 then PSGD satisfies

P
(

min
x?∈X?

‖xt+1−x?‖ ≥ z
)
≤ Je−

I
αt
z, E

[
min

x?∈X?
‖xt+1−x?‖

]
≤Kαt, E

[
l(xt+1)−min

x∈X
l(x)

]
≤Lαt

where above J, I,K,L are positive constants.

For Stochastic Gradient Descent (SGD), the expected distance from xt to the set of optima X ?

is known to converge at rate Ω(1/
√
t). The convergence rate found in Theorem 2 is faster than

that typically assumed for SGD. Notice this improved convergence is not due to any change in the

algorithm but due to the geometry of the problem. (If we happen to know the problem geometry

in advance, we can adjust the algorithm to significantly improve performance; see Section 3.6 and

Davis et al. (2019).) The above result holds because of tighter exponential concentration occurs

around the optimum in such cases. While the Gaussian concentration around the optimum for

smooth convex objectives has been known for around 70 years (Chung (1954), Fabian (1968)), the

exponential concentration found here does not appear in prior work on PSGD.

Remark 1 (Convexity and Sharpness.). Sharpness is a condition which, stated informally,

ensures that an objected function has a V-shape around its optimum. This is considered in the

paper of Davis et al. (2019). A close relationship exists between our gradient condition (D1) and

the sharpness condition. In particular, the two conditions are equivalent for convex optimization

problems. (See Figure 2.)
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A function l(x) is sharp if for all x∈X

l(x)− min
x?∈X

l(x?)≥ κ′ min
x?∈X?

‖x−x?‖. (D1′)

The lemma below proves that the gradient condition (D1) implies sharpness and, for convex func-

tions, the two properties are equivalent:

Lemma 1. If the function l(x) is absolutely continuous then the gradient condition (D1) implies

the function is sharp, (D1′). Moreover, if the function l(x) is convex, then the gradient condition

(D1) is equivalent to the function being sharp (D1′).

We prove Lemma 1 in Section EC.2.1.2 of the E-companion. The immediate consequence of this

lemma is that Theorem 2 holds for sharp convex functions. So, there is a tighter exponential

concentration for sharp convex objectives when compared with the Gaussian concentration bounds

found for smooth convex objectives.

Remark 2 (Smooth Functional Constraints). Suppose the optimization (5) takes the form

minimize l(x) subject to li(x)≤ 0, i= 1, ...,m over x∈Rd , (7)

where l(x) and li(x) are smooth convex functions defining the bounded constraint set X = {x ∈

Rd : li(x)≤ 0, i= 1, ...,m}. It is argued that a stochastic approximation algorithm obeys a central

limit theorem if there are m0 active constraints at the optimum with m0 < d. See Kushner and

Clark (1978b), Shapiro (1989), Duchi and Ruan (2021), Davis et al. (2023). However, if m0 ≥ d,

the normal approximation degenerates. In this case, our results can be applied. With the following

lemma and Theorem 2, we see that PSGD obeys an exponential concentration bound rather than

a normal approximation.

Lemma 2. Suppose that at the optimum −∇l(x?) ∈ relint NX (x?) , where NX (x?) := {v : v>(x?−

y) ≤ 0 ,∀y ∈ X} and ∇l(x?) 6= 0 and that there are at least d active constraints at x? (w.l.o.g.

i= 1, ..., d) and

{∇li(x?) : i= 1, ..., d} are linearly independent (D1′′)

then the function f is sharp at x? and Assumption (D1) holds.

A proof of Lemma 2 is given in Section EC.2.1.3 of the E-companion. The premise of the above

lemma is taken from Assumption B from Duchi and Ruan (2021). However, rather than a Gaussian

approximation as found in Duchi and Ruan (2021) for m0 < d constraints, a consequence of the

above Lemma is that exponential concentration will hold for PSGD if there are m0 ≥ d linearly

independent, active constraints at the optimum. Because of the degeneracy indicated in prior
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works, the Gaussian approximation is not asymptotically optimal when (D1) holds, i.e. the normal

vectors to the set of active constraints has full rank. Essentially, there is insufficient smoothness at

the optimum for a central limit theorem to hold. Large deviation effects will likely determine the

asymptotically optimal concentration at the optimum. When the Gaussian approximation fails, the

theory of asymptotic optimality for stochastic optimization with constraints appears to be open.

See Section 6 for further discussion.

Remark 3 (Projection). Although projection is a common requirement for stochastic gradient

descent, the projection step (6b) can present computational overhead, so we discuss that here.

There are settings such as sharp objective functions where the optimum belongs to the interior

of the constraint set. In this case, a finite number of projections are required. (A proof is given in

Proposition EC.1 in the E-companion.)

Some constraints exhibit low complexity projection. It is common to select a set X that allows

simple projection e.g. a box or disk containing X ?. For convex constraints {z : gj(z)≤ 0, j = 1, .., d},
the dual of a constraint set is Rd+ = {x : x ≥ 0} and thus the dual has simple projection. Low

complexity projections exist for single constraint problems such as projection onto the probabil-

ity simplex (Michelot (1986), Duchi et al. (2008)). Chapter 7 of Hazan et al. (2016) gives several

examples of fast projection available with conditional gradient algorithms. We will analyze stochas-

tic conditional gradient algorithms shortly. See also Bertsekas (2015) for further examples of low

complexity projection.

There are practical general projection algorithms. The cyclic projection algorithm of Bregman

(1967) can be used for the intersection of a finite number of convex sets. Here, Bregman also pro-

poses other non-Euclidaen distances that can be used to simplify projection. Mandel (1984) proves

Bregman’s algorithm converges linearly for polytope constraints. A number of linear convergent

and parallelizable projection algorithms are given in Censor and Zenios (1997).

Projection is a standard requirement in the analysis of SGD. However, projection is not a require-

ment of our general result Theorem 1; instead, we require iterates to be bounded. For instance, we

will apply our results to Stochastic Frank Wolfe as a non-projective alternative to PSGD shortly.

In general we find the boundedness of X can be removed when learning rate is constant, αt ≡ α.

(See Lemma (EC.6) in the E-companion statement and proof.) From this we see that our linear

convergence results apply Stochastic Gradient Descent (without projection). So neither projection

nor bounded iterates are required for linear convergence.

3.4. Kiefer-Wolfowitz Algorithm: Exponential Concentration

So far, we have applied the concentration bound in Theorem 1 to Projected Stochastic Gradient

Descent (PSGD). In this section, we consider the Kiefer-Wolfowitz algorithm. The Kiefer-Wolfowitz
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is a well-known alternative to Robbins and Monro’s Stochastic Gradient Descent algorithm. Here,

gradient estimates are replaced by noisy finite difference operators.

We consider the Kiefer-Wolfowitz algorithm under the analogous sharpness in noise conditions we

thought for a PSGD. Typically, the Kiefer-Wolfowitz algorithm has a worse rate of convergence than

PSGD. However, under the non-vanishing gradient condition, we show that the Kiefer-Wolfowitz

algorithm with an appropriate finite difference estimator will have the same concentration and

asymptotic convergence rate as PSGD.

Consider the optimization:

minimize l(x) :=Eŵ[l(x, ŵ)] over x∈X , (8)

where ŵ is a random variable. For ν ∈ R, we define the vector l(x+ ν,w) := (l(x+ νei,w) : i =

1, ..., d) where ei is the ith unit vector. The Kiefer–Wolfowitz (KW) algorithm is as follows:

ct =
l(xt +ν, ŵ+

t )− l(xt−ν, ŵ−t )

2ν
(9a)

yt+1 =xt−αtct (9b)

xt+1 = ΠX (yt+1) (9c)

where αt = a
(u+t)γ

for a> 0, u∈R+, γ ∈ [0,1]. Above ŵ+
t , ŵ

−
t are IIDRVs equal in distribution to ŵ.

Notice the main change from the PSGD algorithm is that ct is no longer an unbiased estimator of

∇l(xt). However, for sufficiently well-behaved functions, there exists a constant c such that for all

x∈X ∥∥∥∇l(x)− l(x+ν)− l(x−ν)

2ν

∥∥∥≤ cd 1
2 ν2 . (D3)

(Above we include d to emphasize the dependence on the dimension of X .)

We further assume that the random variable l(x, ŵ) has a uniformly bounded variance over

x ∈ X . This is a standard assumption for the analysis of the KW algorithm. See Fabian (1967).

We will assume Conditions (D1) and (D2) hold, with ct as defined in (9a). Ordinarily, convergence

of the KW algorithm requires ν to decrease with time. However, we see that this is not necessary

for sharp functions. The parameter ν needs to be below a certain threshold, and once satisfied,

exponential concentration results hold.

Theorem 3. If Conditions (D1), (D2), (D3) hold and if

ν ≤
(

κ

3cd
1
2

) 1
2

then the Kiefer-Wolfowitz algorithm satisfies

P
(

min
x∈X?

‖xt+1−x‖ ≥ z
)
≤ Ĵe−

Î
αt
z, E

[
min
x∈X?

‖xt+1−x‖
]
≤ K̂αt, E

[
l(xt+1)−min

x∈X
l(x)

]
≤ L̂αt

where above Ĵ , Î, K̂, L̂ are positive constants.
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The proof of Theorem 3 is given in Section EC.2.3 of the E-companion.

If we take αt = 1/t, then we see that the Kiefer-Wolfowitz algorithm has a convergence rate

E‖xt−x?‖=O(1/t). This is faster than the O(1/t1/3) rate, which is typically found to be optimal

for the KW algorithm. Again, typically, KW iterations follow a normal approximation. For instance,

see Ruppert (1982). However, again, an exponential concentration is more appropriate than a

normal approximation if there is non-vanishing drift. Interestingly, a constant finite difference

approximation can be used to obtain results and the rate is now the same as PSGD.

3.5. Stochastic Frank-Wolfe: a non-Projective Algorithm

We now investigate exponential concentration in stochastic algorithms that do not require pro-

jection. Non-vanishing negative drift is the main requirement for exponential concentration, not

projection or boundary effects. We emphasize this by proving the exponential concentration for

a projection-free algorithm, specifically, the Stochastic Frank-Wolfe algorithm. Here we require

further assumptions in addition to sharpness conditions.

The Frank-Wolfe algorithm or Conjugate Gradient algorithm, as it is sometimes called, is pro-

posed as the standard “projection-free” alternative to projected gradient descent algorithms, see

Jaggi (2013) and Hazan and Kale (2012). We form an analysis of the Stochastic Frank-Wolfe

(SFW) algorithm, as described by Hazan and Luo (2016). This is a standard implementation of

Frank-Wolfe with a sample estimate of the gradient. As with the PSGD and KW algorithms, we

choose a standard stochastic optimization algorithm. Our aim is not algorithm design but instead

to emphasize that exponential (rather than normal) concentration can naturally occur in stochastic

approximation depending on the geometry of the problem.

Consider the same setting from Section 3.3. That is we wish to solve the optimization

minimize l(x) over x∈X . (10)

For a sequence of positive integers (mt ∈N : t∈N) and a sequence (αt ∈ (0,1) : t∈N), the Stochastic

Frank-Wolfe algorithm is defined as follows

ct =

mt∑
i=1

cit
mt

(11a)

vt ∈ arg min
x∈X

c>t x (11b)

xt+1 = (1−αt)xt +αtvt . (11c)

Above, where cit are random variables, independent (after conditioning on xt) with a uniformly

bounded variance such that E[cit|Ft] =∇l(xt) . We continue to assume that X is a closed bounded

set. In addition to condition (D1) and (D2), we add the following conditions.
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Assumption 5 (Smooth convex square-error). For the error ε(x) := l(x)− l(x?),

ε(x)2 is a smooth convex function. (E1)

Assumption 6 (Interior Optimum). The set of optima belongs to the interior of the set X .

That is

X ? ⊂X ◦. (E2)

We briefly discuss these two conditions. Assumption (E1) is a non-standard cone condition.

Analogous to a smoothness convex function having quadratic behavior at the optimum, Condition

(E1) requires that the objective function has a behavior that behaves like the distance function

to the optimum. We illustrate this with Lemma EC.3 in the E-companion. Here, we show that

Condition (E1) is satisfied if we take l(x) to be the distance to the desired set of optimal points:

dX?(x) = min
x?∈X?

‖x−x?‖S .

Here S is a positive semi-definite matrix.

Condition (E2) requires that the optimum is in the interior. The rate of convergence found on the

boundary is typically slower see Proposition EC.2 in the E-companion. When analyzing projected

stochastic gradient descent, one case we discussed is when the optimum is on the boundary of

the constraint set. Interestingly, the case of the Stochastic Frank-Wolfe algorithm is different: the

algorithm will converge faster when the optimum is not on the boundary. (If it is known in advance

that the optimum is not in the interior we would recommend running PSGD due to its faster

convergence, see Section EC.2.2 in the E-companion.) Nonetheless, Frank-Wolfe is a non-projective

optimization algorithm, the results of this section emphasize that exponential concentration is not

the property of projection on a specific boundary type but is really about non-vanishing drift at

the optimum.

The main result of this subsection is given below. It gives sufficient conditions for exponential

concentration for the Frank-Wolfe algorithm.

Theorem 4. For learning rates of the form αt = a/(u+ t)γ with a,u > 0 and γ ∈ [0,1], if Con-

ditions (D1), (D2), (E1) and (E2) hold and if mt ≥ (3σ/καt)
2 then the stochastic Frank-Wolfe

algorithm satisfies

P
(
l(xt+1)−min

x∈X
l(x)≥ z

)
≤ Ie−

J
αt
z ,

for constants I,J .

The proof of Theorem 4 can be found in Section EC.2.4 of the E-companion.
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3.6. Linear Convergence under Exponential Concentration

We have seen that, without adjusting the algorithm, the convergence of the stochastic approx-

imation procedure improves under exponential concentration. However, if we know exponential

concentration holds, then we can further adjust the algorithm to give even faster convergence.

The linear convergence of Projected Stochastic Gradient Descent (PSGD) on convex objectives

is established in Theorem 3.2 of Davis et al. (2019). This result relies on a normal approximation

concentration result (Davis and Drusvyatskiy 2019, Theorem 4.1), which is not as tight as the

exponential concentration bound in Theorem 2 above. Thus, below in Theorem 5, we provide an

improvement to Theorem 3.2 of Davis et al. (2019). We give a general version of the linear conver-

gence that can be proven under the conditions of Theorem 1. The result does not require the set

X to be bounded. From this, extensions of these linear convergence results hold for the Projected

Stochastic Gradient Descent, the Kiefer-Wolfowitz algorithm, and the stochastic Frank-Wolfe algo-

rithm. Here we present the result for PSGD. The futher for the Kiefer-Wolfowitz algorithm, and

the stochastic Frank-Wolfe algorithm results are stated in Section EC.2.6 of the E-companion.

We wish to solve the optimization problem (5). We consider a Stochastic Approximation algo-

rithm (2) implemented over several stages, s= 1, ..., S. We let ts be the number of iterations in the

sth stage. The idea is that within each stage s, the learning rate α̂s is fixed and is chosen so that

the error of the stochastic approximation algorithm should be halved by the end of each stage.

Specifically, we let x̂s be the state at the end of stage s. We define Ts =
∑s

s′=1 ts′ and

x̂s =xTs , and αt = α̂s, for Ts−1 ≤ t < Ts, and s= 1, ..., S . (12)

The following theorem gives choices for α̂s and ts to ensure a linear rate of convergence.

Theorem 5. We assume that X is a convex set that may be unbounded. Assume Conditions (C1)

and (C2) hold for a stochastic approximation procedure with rates given in (12):

a) If, for ε̂ > 0 and δ̂ ∈ (0,1), we set

S = log

(
F

ε̂

)
, α̂s =

2−sFκ

E log
(
RS

δ̂

) , and ts =

⌈
2

κ2
log

(
RS

δ̂

)⌉

then with probability greater than 1− δ̂ it holds that minx∈X? ‖x̂S −x‖ ≤ ε̂ . Moreover, the number

of iterations (12) required to achieve this bound is⌈
log2

(F
ε̂

)⌉⌈ 2

κ2
log

(
R

δ̂

)
+ log

(⌈
log2

(F
ε̂

)⌉)⌉
.

(Above F = minx?∈X? ‖x0 −x?‖ and R and E are time-independent constants that depend on the

constants given in Conditions (C1) and (C2).)
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b) For α̂s = a
2s log(s+1)

and ts = log2(s+ 1), there exists positive constants A and M such that

∀δ̂ ∈ (0,1) if a≥A/δ̂ then

P
(

min
x∈X?

‖x̂s−x‖ ≤ 2−sM, ∀s∈N
)
≥ 1− δ̂ .

The proof of Theorem 5 is given in Section EC.2.6 of the E-companion. We apply an improved

exponential concentration bound and make some adjustments; however, other than that, the argu-

ment largely follows that of (Davis et al. 2019, Theorem 3.2.), so we refer the reader to Davis et al.

(2019) also.

For PSGD, (Davis et al. 2019, Theorem 3.2) proves a sample complexity bound of

order O(δ̂−2[log ε̂−1]3). The bound in Theorem 5a) above improves this and has an order

O(log ε̂−1
[
log log ε̂−1 + log δ̂−1

]
). The above bound is the same order as the best bound found in

Davis et al. (2019), namely Theorem 3.8, which holds for an ensemble method consisting of three

adaptively regularized gradient descent algorithms. The sample complexity is improved for the

PSGD case because the exponential concentration bound is tighter that Gaussian bound Theorem

3.2 Davis et al. (2019). Other than this our proof follows the ideas laid out in Davis et al. (2019).

We find that similar results hold for Kiefer-Wolfowitz, and Frank-Wolfe.

Unlike Theorem 2, Theorem 5a) suggests that we require a refined understanding to calibrate

parameters to improve convergence. The implementation of Theorem 5b) only requires one param-

eter, a, which needs to be chosen sufficiently large. (For instance, experiments could increase the

parameter a until convergence is observed.) So, although there is some cost to the algorithm’s com-

plexity, we do not require detailed knowledge of the problem at hand to implement a geometrically

convergent algorithm. Further, Theorem 5b) holds for a stronger mode of convergence, in that the

geometric convergence holds for all time with arbitrarily high probability.

We note that the above bound applies when the function f and constraint sets X are unbounded.

This is because we apply Lemma 4 under constant step sizes. For this result, the bounded constraint

assumption is not required.

4. Proofs

This section proves our main result Theorem 1. We then apply this to Projection Stochastic

Gradient Descent to prove Theorem 2. The proofs of the remaining results are contained in the

E-companion.

4.1. Proof of Theorem 1

Several constants are introduced in the proof of Theorem 1. For later reference, these are listed in

Section EC.3.1 of the E-companion.
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The proof of Theorem 1 relies on Proposition 1, which is a somewhat more general yet more

abstract version of Theorem 1. This result establishes that once the sum
∑t

s=1αs is sufficiently

large, the error of stochastic iterations is of the order of αt. Much like Theorem 1 the key observation

is that α−1t (f(xt)− f(x?)) has an exponential concentration rather than the normal concentration

of α
−1/2
t (f(xt)− f(x?)).

For the stochastic iterates described in Section 2, we will assume that {αt}t≥0 is a deterministic

non-increasing sequence such that

∞∑
t=0

αt =∞, lim inf
t→∞

α2t

αt
> 0 and lim

t→∞

αt−αt+1

αt
= 0 . (13)

We do not need to assume that αt → 0. Later we consider small but constant step sizes. This

condition is satisfied by any sequence of the form αt = a/(u+ t)γ for a,u > 0 and γ ∈ [0,1].

Proposition 1. When Conditions (C1) and (C2) are satisfied, there exist positive constants

E,G,H,T0 independent of t such that

P(f(xt+1)− f(x?)≥ z)≤ e−
κGn

2Eαt
(z−αtB−F−α0B+

∑t
s=bt/2nc αs

κ
2 )

+He
− κGn

2Eαt
(z−αtB)

. (14)

for any n with t/2n > T0. Further, for any t such that
∑t

s=bt/2ncαsκ≥ 2(F + α0B) there exists a

constant C such that

E[f(xt+1)− f(x?)]≤Cαt . (15)

4.1.1. Proof of Proposition 1. Here, we briefly outline the proof of Proposition 1. The

proof uses Lemma 3, Lemma 4, Lemma 5, and Proposition 2, which are stated below. Lemma 3,

although not critical to our analysis, simplifies the drift Condition (C1) by eliminating some terms

and boundary effects. Lemma 4, on the other hand, is an important component of our proof. It

converts the drift Condition (C1) into an exponential bound, which we then iteratively expand.

The lemma extends Theorem 2.3 from Hajek (1982) by allowing for adaptive time-dependent step

sizes. Proposition 2 applies standard moment generating function inequalities to the results found

in Lemma 4. Lemma 5 is a technical lemma used in the proof of Proposition 2. After Proposition

2 is proven, the proof of Proposition 1 follows.

We now proceed with the steps outlined above. We let

Lt := f(xt)− f(x?)−αtB (16)

where αt satisfies (13). First, we simplify the above Conditions (C1) and (C2) to give the Lyapunov

conditions (17) and (18) stated below. The following is a technical lemma.
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Lemma 3. Given Conditions (C1) and (C2) hold, there exists a deterministic constant T0 such

that the sequence of random variables (Lt : t≥ T0) satisfies

E
[
Lt+1−Lt

∣∣Ft]I[Lt ≥ 0]<−αtκ, (17)

and

[|Lt+1−Lt||Ft]≤ αtZ where D :=E[eλZ ]<∞ . (18)

The proof can be found in the E-companion, Section EC.3.2.

Given Lemma 3, we will now assume (17) and (18) hold in place of (C1) and (C2). We will

convert the drift condition (17) into an exponential bound and then iterate to give the bound

below.

Lemma 4. For any t and t̂ with t≥ t̂≥ T0 and for any η > 0 such that αt̂η≤ λ then

E[eηLt+1 |Ft̂]≤E[eηLT1 |Ft̂]
t∏
k=t̂

ρt +D
t+1∑

τ=t̂+1

t∏
k=τ

ρk ,

where ρt = e−αtηκ+α
2
t η

2E, and E :=E [(eλZ − 1−λZ)/λ2]<∞.

Proof of Lemma 4. Let Zt = (Lt+1−Lt)/αt. From (18), we have [|Zt||Ft]≤Z where E[eλZ ]<∞.

From (17), we have E[Zt|Ft]≤−κ on the event {Lt ≥ 0}. Thus, on the event {Lt ≥ 0} the following

holds:

E[eη(Lt+1−Lt)|Ft] =E[eαtηZt |Ft] = 1 +αtηE[Zt|Ft] +α2
tη

2E
[
eαtηZt − 1−αtηZt

α2
tη2

∣∣∣Ft]
≤ 1 +αtηE[Zt|Ft] +α2

tη
2

∞∑
k=2

1

k!
E[|Zt|k|Ft]ηk−2αk−2t

≤ 1−αtηκ+α2
tη

2

∞∑
k=2

1

k!
E[Zk]λk−2

= 1−αtηκ+α2
tη

2E
[
eλZ − 1−λZ

λ2

]
(19)

= 1−αtηκ+α2
tη

2E

≤ e−αtηκ+α
2
t η

2E =: ρt . (20)

We apply a Taylor expansion and the (conditional) Monotone Convergence Theorem in the first

inequality above, see (Williams 1991, 9.7e)). In the second inequality, we apply (17) and (18)

above, and also recall that αt is decreasing. In the final inequality, we applied the standard bound

1 +x≤ ex. We note that ρt as define above satisfies ρt < 1 whenever αt <κ/ηE. We note that E is

finite since by assumption E[eλZ ]<∞. Also from the expansion given in (19) (which holds by the

Monotone Convergence Theorem), it is clear that E is positive.
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The bound (20) holds on the event {Lt ≥ 0}. Now notice

E[eηLt+1 |Ft] =E[eη(Lt+1−Lt)|Ft]eηLtI[Lt ≥ 0] +E[eη(Lt+1−Lt)|Ft]eηLtI[Lt < 0]

≤ ρteηLtI[Lt ≥ 0] +E[eηαtZ ]eηLtI[Lt < 0]

≤ ρteηLtI[Lt ≥ 0] +DI[Lt < 0]

≤ ρte
ηLt +D .

The first inequality applies the above bound (20) and the second inequality applies the boundedness

condition (18). Taking expectations above gives

E[eηLt+1 |Ft̂]≤ ρtE[eηLt |Ft̂] +D.

By induction, we have

E[eηLt+1 |Ft̂]≤E[eηLT1 |Ft̂]
t∏
k=t̂

ρt +D
t+1∑

τ=t̂+1

t∏
k=τ

ρk ,

as required. �

Note that the above lemma does not require the set of values X to be bounded (or convex). This

is a point that we will later utilize in the proof of Theorem 5. The following is a technical lemma.

Lemma 5. If αt, t∈Z+, is a decreasing positive sequence, then

min
s=t̂,...,t

{∑t

k=sαk∑t

k=sα
2
k

}
=

∑t

k=t̂αk∑t

k=t̂α
2
k

. (21)

Moreover, if αt, t∈Z+ satisfies the learning rate condition (13) then

1

αbt/2nc
≥ Gn

αt
and min

s=bt/2nc,...,t

{∑t

k=sαk∑t

k=sα
2
k

}
≥ Gn

αt
(22)

for some constant G∈ (0,1] and for n∈N such that t/2n > 1.

A proof is given in Section EC.3.2 of the E-companion. Looking ahead to the proof of Theorem

1, for step sizes of the form αt = a/(u+ t)γ , we have G= 1/4γ and we will take n= 1 for γ < 1.

For γ = 1, we need to have to be more careful choosing n, which will be a constant depending on

a,u,B and F .

With the moment generating function bound in Lemma 4 and the bound in Lemma 5, we can

bound the tail probabilities and expectation of Lt.

Proposition 2. For any sequence satisfying (13), there exists a constants H and Q such that

P(Lt+1 ≥ z)≤ e
−QG

n

αt
(z−F−α0B+

∑t
s=bt/2nc αs

κ
2 )

+He−
QGn

αt
z (23)



Law, Walton, and Yang: Exponential Concentration in Stochastic Approximation
20 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

for z ≥ 0 and for n ∈N such that t/2n > T0. Further, for t is such that
∑t

s=bt/2ncαs
κ
2
≥ F +α0B,

then

E[Lt+1]≤
(1 +H)

QGn
αt .

Proof of Proposition 2. By Lemma 5, we see that

λ

αbt/2nc
≥ λGn

αt
and min

bt/2nc≤s≤t

{ ∑t

k=sαkκ

2
∑t

k=sα
2
kE

}
≥ κGn

2αtE

for a constant G> 0. So that η lower bounds the above two expressions, we take

η=Q
Gn

αt
where Q= λ∧ (κ/2E) .

We apply Lemma 4 which gives

P(Lt+1 ≥ z)≤ e−ηzE[eηLt+1 ]

≤ e−ηzE[eηLbt/2nc ]
t∏

k=bt/2nc

ρt + e−ηzD
t+1∑

τ=bt/2nc+1

t∏
k=τ

ρk

= e−ηzE[eηLbt/2nc ]e
∑t
k=bt/2nc−αkηκ+α

2
kη

2E
+ e−ηzD

t+1∑
τ=bt/2nc+1

e
∑t
k=τ −αtηκ+α

2
t η

2E . (24)

Notice, for η as defined above, it holds that

t∑
k=τ

−αkηκ+α2
kη

2E ≤−1

2

t∑
k=τ

αkηκ≤−
1

2
(t− τ)αtηκ, ∀τ = bt/2nc, ..., t .

Applying this to (24) gives

P(Lt+1 ≥ z)≤ e−ηzE[eηLbt/2nc ]e
∑t
k=bt/2nc−αkη

κ
2 + e−ηzD

t+1∑
τ=bt/2nc+1

e−(t−τ)αtη
κ
2

≤ e−ηzE[eηLbt/2nc ]e
∑t
k=bt/2nc−αkη

κ
2 + e−ηzD

eαtη
κ
2

1− e−αtη κ2
(25)

In the 1st inequality above we note that αk ≥ αt for all k ≤ t. In the 2nd inequality, we note that

the summation over τ are terms from a geometric series, so we upper bound this by the appropriate

infinite sum.

Thus, the bound (25) becomes

P(Lt+1 ≥ z)≤E
[
e
QGnLbt/2nc

αt

]
e
−QG

n

αt
(z+

∑t
s=bt/2nc αs

κ
2 )

+ e−
QGn

αt
zD

e
κQGn

2

1− e−κQG
n

2

.

Noting that Lbt/2nc ≤ maxx∈X f(x)−minx∈X f(x) + α0B = F + α0B, by the definition of F . We

simplify the above expression as follows

P(Lt+1 ≥ z)≤e
QGn

αt
[F+α0B−z−

∑t
s=bt/2nc αs

κ
2 ]

+ e−
QGn

αt
zD

e
κQGn

2

1− e−κQG
n

2

≤ e
−QG

n

αt
(z+

∑t
s=bt/2nc αs

κ
2−F−α0B)

+He−
QGn

αt
z . (26)
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Above we define H :=De
κQGn

2 /(1− e−κQG
n

2 ). This gives (23).

Notice if t is such that F + α0B −
∑t

s=bt/2ncαs
κ
2
≤ 0, then the above inequality (26) can be

bounded by

P(Lt+1 ≥ z)≤ (1 +H)e−
QGn

αt
z.

Thus

E[Lt+1]≤E[Lt+1 ∨ 0] =

∫ ∞
0

P(Lt+1 ≥ z)dz ≤ (1 +H)

∫ ∞
0

e−
QGn

αt
z dz = (1 +H)

αt
QGn

,

as required. �

With Proposition 2 in place we can prove Proposition 1.

Proof of Proposition 1. From Proposition 2

P(Lt+1 ≥ z′)≤ e
−QG

n

αt
(z′−F−α0B+

∑t
s=bt/2nc αs

κ
2 )

+He−
QGn

αt
z′

for z′ ≥ 0 where f(xt+1) =Lt+1 +αt+1B+ f(x?). Taking z′ = z−αt+1B, gives

P(f(xt+1)− f(x?)≥ z) = P(Lt+1 ≥ z−αt+1B)

≤ e−
QGn

αt
(z−αtB−F−α0B+

∑t
s=bt/2nc αs

κ
2 )

+He−
QGn

αt
(z−αtB) ,

which gives (14) as required. Also by Proposition 2, we thus taking C = [(1 +H)/2QGn +B], the

required bound (15) holds. �

4.1.2. Proof of Theorem 1. We can now prove Theorem 1.

Proof of Theorem 1. We notice that the bound
∑t

s=bt/2ncαs
κ
2
≥ α0B+F can be achieved for

all t≥ T1 for fixed constants T1 and n. This holds since
∑t

s=bt/2ncαs→∞ as t→∞. (See Lemma

(EC.7) in the E-companion for verification of this and a concrete choice of T1 and n.) Thus applying

bound (14) from Proposition 1 with T2 = max{T0, T1}, we see that

P(f(xt+1)− f(x?)≥ z)≤ e−
QGn

αt
(z−αtB−F−α0B+

∑t
s=bt/2nc αs

κ
2 )

+He−
QGn

αt
(z−αtB)

≤ (1 +H)e−
QGn

αt
(z−αtB) for t≥ T2

≤ Ie−
J
αt
z for t≥ 0 .

Thus we see that (3) holds for t≥ 0 with suitable choice of I and J (e.g. I = (1 +H)eQG/(F/αT2−B)

and J =QGn). Integrating the bound (3) then gives

E[f(xt+1)− f(x?)]≤
∫ ∞
0

Ie−(J/αt)zdz =
I

J
αt .

�



Law, Walton, and Yang: Exponential Concentration in Stochastic Approximation
22 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

4.2. Proof of Theorem 2

Typical Stochastic Gradient Descent proofs use ‖xt−x?‖2 as a Lyapunov function. However, we

want to use ‖xt − x?‖ instead. We start with the standard SGD drift argument and then take

a square root to gain our drift condition for ‖xt − x?‖. We can then apply Theorem 1, which

goes through the mechanics of converting a linear Lyapunov drift condition into an exponential

Lyapunov function. The idea of converting linear drift into an exponential Lyapunov function is

reasonably well-known in the Markov chains analysis but currently not for SGD. Our proof shows

how to adapt and apply these ideas. The basic mechanics to apply Theorem 1 are the same as for

other SA procedures, for example, Kiefer-Wolfowitz and Stochastic Frank-Wolfe.

Proof of Theorem 2. In this proof, we will apply Proposition 1 with the choice f(x) :=

minx?∈X? ‖x−x?‖ . We also define x?t := arg minx∈X? ‖xt−x‖. Now observe that

f(xt+1)
2 =
∥∥xt+1−x?t+1

∥∥2 ≤ ‖xt+1−x?t‖
2

= ‖ΠX (xt−αtct)−ΠX (x?t )‖
2

≤ ‖xt−αtct−x?t‖
2

= ‖xt−x?t‖
2− 2αtc

>
t (xt−x?t ) +α2

t ‖ct‖
2
. (27)

Condition (D2) implies all moments of ‖ct‖ are uniformly bounded. In particular, suppose σ is

such that E[‖ct‖2|Ft]<σ2 for all t. On the event where ‖xt−x?‖ ≥ αt σ
2

κ
> 0 then (27) gives

f(xt+1)≤ ‖xt−x?t‖

√
1− 2αtc>t

(xt−x?t )
‖xt−x?t‖

2 +α2
t

‖ct‖2

‖xt−x?t‖
2

≤ ‖xt−x?t‖

(
1−αtc>t

(xt−x?t )
‖xt−x?t‖

2 +
α2
t

2

‖ct‖2

‖xt−x?t‖
2

)
.

Above the first inequality follows from (27) and in the second inequality we note that
√

1 +x≤

1+ x
2
. Taking expectations on both sides shows that, on the event {‖xt−x?‖ ≥ αt σ

2

κ
}, it holds that

E
[∥∥xt+1−x?t+1

∥∥ |Ft]≤ ‖xt−x?t‖−αt∇l(xt)> (xt−x?t )
‖xt−x?t‖

+
α2
t

2

E[‖ct‖2 |Ft]
‖xt−x?t‖

≤ ‖xt−x?t‖−αtκ+αt
κ

2

Or in other words E[f(xt+1)− f(xt)|Ft]≤−αt κ2 whenever f(xt)− f(x?)≥ αt σ
2

κ
. Thus we see that

Condition (C1) holds.

We now verify Condition (C2). Projections reduced distances, specifically, if ‖xt−x?t‖ ≤ ‖xt+1−

x?t+1‖ then

f(xt+1)− f(xt) = ‖xt+1−x?t+1‖−‖xt−x?t‖ ≤ ‖xt+1−x?t‖−‖xt−x?t‖ ≤ ‖xt+1−xt‖= αt‖ct‖

(The analogous argument follows if ‖xt+1 − x?t+1‖ ≤ ‖xt − x?t‖.) As discussed in Section 3.3, the

MGF condition on ‖ct‖ now implies (C2). (See Lemma EC.1 for a proof.)
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We can now apply Theorem 1 which gives:

P
(

min
x∈X?

‖xt+1−x‖ ≥ z
)
≤ Îe−

Ĵ
αt
z and E

[
min
x∈X?

‖xt+1−x‖
]
≤ K̂αt

for constants Î, Ĵ and K̂. Since we also assume in addition that l :X →R is Lispchitz continuous

(with Lipschitz constant L̂/K̂) we have, as required,

E
[
l(xt+1)−min

x∈X
l(x)

]
≤ L̂

K̂
E
[

min
x∈X?

‖xt+1−x‖
]
≤ L̂αt .

�

5. Applications and Numerical Examples

We present several numerical results on the phenomena proven above. (In addition to supplemen-

tary files, associated code can be accessed on GitHub; see Yang (2025).)

A Circle Constraint. We consider minimizing an objective function l(x) = ||x−x∗|| for x∗ = (7,7)

over a large circle with center (0,0) and radius 15. The Frank-Wolfe, PSGD and Kiefer-Wolfowitz

algorithms are applied. For the Kiefer-Wolfowitz, we assume the objective function is observed

with noise following N(0,0.01). The optimum is in the interior. No projection is required in our

simulation. Figure 3 shows the constraint set and the rate O(1/t) with γ = 1 for the three algo-

rithms.
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(a) Circle Constraint
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(b) Convergence of Algorithms
Figure 3 Convergence of Frank-Wolfe, PSGD, and Kiefer-Wolfowitz algorithms on the circle constraint example.

Figure 3(a): the black dot is the optimal solution (7,7). Figure 3(b): The expectation is computed

over 20 realizations. The stochastic gradients for Frank-Wolfe and PSGD are computed with batch size

B = 10. The parameter v = 0.8 is chosen for Kiefer-Wolfowitz. The parameters of step size are chosen

as a = 0.9, u = 1 and γ = 1 such that αt = 1/(1 + t). The fitted slope is −1.00, −1.00 and −1.10 for

Frank-Wolfe, PSGD and Kiefer-Wolfowitz.
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Three Spherical Constraints. Davis et al. (2023) consider a normal approximation on PSGD

with two spherical constraints. We add a third spherical constraint. Specifically, we minimize the

objective l(x) =−x1 + ŵixi, ŵi ∼N(0,1) for i= 1,2,3 over the intersection of spheres with center

(1,0,0), (−1,0,0) and (0,1,0), and radius 2 using PSGD and Kiefer-Wolfowitz algorithm. See Figure

4(a) for the constraint set. The optimal solution is taken at (0,0,
√

3). Bregman’s cyclic algorithm is

applied for projection. Rather than O(1/
√
t), Figure 4(b) shows the rate O(1/t) with γ = 1 for both

the PSGD and the Kiefer-Wolfowitz algorithm. Further, we study PSGD and Kiefer-Wolfowitz

convergence when halving the step size every T = 20 iterations. As suggested in Section 3.6, linear

convergence occurs. See Figure 5.
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(b) Convergence of Algorithms
Figure 4 Convergence of PSGD and Kiefer-Wolfowitz algorithms on the three spherical constraints problems.

Figure 4(a): the black dot is the optimal solution (0,0,
√

3). Figure 4(b): The expectation is computed

over 20 realizations. The stochastic gradients for PSGD are computed with B = 10. The parameter v= 1

is chosen for Kiefer-Wolfowitz. The parameters of step size are chosen as a = 1, u = 1 and γ = 1 such

that αt = 1/(1 + t). The fitted slope is -1.01 and -1.00 for PSGD and Kiefer-Wolfowitz.

Non-Negative Ridge Regression. Duchi and Ruan (2021) consider the normal approximation

with constraints for a non-negative least square problem and for ridge regression. We consider

non-negative ridge regression and find that the normal approximation is no longer valid. We apply

l(x) = 1
2
|aTx− b|2 as the objective with a constraint set {x ∈R2

+ : ‖x‖ ≤
√

0.9}, where a and b are

observed with bi ∼ aix+ +ξi for x+ = (1,−1), ai ∼N(0, I2) and ξi ∼N(0,1). The optimal solution is

taken at (
√

0.9,0). Figure 6 shows the rate O(1/t) with γ = 1 for the PSGD and Kiefer-Wolfowitz.

Linear Programs and Markov Decision Processes. All the theoretical results and simulations

so far consider non-linear constraints and objectives. We limit all discussion of linear programs to

this paragraph and the E-companion. First, all linear programs are sharp (see Lemma EC.8 in the

E-companion for proof). Second, linearly convergent (and parallelizable) algorithms can calculate
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Figure 5 Linear convergence of PSGD and Kiefer-Wolfowitz for the three spherical constraints problem. The

expectation is computed over 20 realizations. The stochastic gradients are computed with B = 10. The

parameter v = 10 is chosen for Kiefer-Wolfowitz. The simulations are conducted with learning rates

divided by 2 every 20 steps.
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Figure 6 Non-negative least square example. The expectation is computation over 20 realizations. The parameter

v = 1 is chosen for Kiefer-Wolfowitz. The parameters of step size are chosen as a= 1, u= 1 and γ = 1

such that αt = 1/(1 + t). The fitted slope is −1.00 and −1.00 for PSGD and Kiefer-Wolfowitz.

projections onto linear constraints. Hildreths’s Projection algorithm is a first-order algorithm that

converges linearity, see Iusem and De Pierro (1990). Further, Dos Santos (1987) shows the algo-

rithm can be parallelized and adapted to non-linear constraints. Proved in the results of Section

3.6, Figure 7 demonstrates linear convergence of PSGD on a linear program with unbounded con-

straints. Markov Decision Processes can be expressed as linear programs, with PSGD on the dual

corresponding to a simple policy gradient algorithm. Given this, we solve a general three-state,
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two-action MDP, and Blackjack (See, Sutton and Barto (2018)). More detailed discussions can be

found in Section EC.4 of the E-companion.

(a) Linear Constraints (b) Linear convergence of PSGD

Figure 7 Linear convergence of PSGD. Costs are normally distributed with mean (4,6) and covariance

(25,0; 0,25). The simulation is conducted with learning rates divided by 1.1 every 2 steps.

6. Further Discussions

We have established exponential concentration in stochastic optimization algorithms. Via examples,

counter-examples, and heuristics, we present several different directions for future exploration.

Firstly, we discuss convergence in distribution when exponential concentration occurs. Similar to

the classical Gaussian approximation, a natural question arises: is the exponential distribution the

limit family distributions? From a counter-example, we argue that there is no simple parametric

family characterizing limit behaviour. Second, we discuss the impact of exponential concentration

when combined with the Gaussian approximation. Again, through an example, we show that both

the exponential concentration and Gaussian limit distributions impact the value of the objective

function in a stochastic gradient descent algorithm. Third, we discuss lower bounds that impact the

convergence rate of sample average approximation under sharpness. Since the Fisher-Information

might not fully describe the optimality of sharp objectives, the aim is to establish some character-

istics of asymptotic optimality for constrained stochastic optimization.

The full resolution of these issues is certainly beyond the scope of the present work. However,

these do represent promising research directions arising from non-Gaussian behavior in stochastic

approximation and offer directions for further advancements in the field.

6.1. The Exponential Approximation

The limit distribution of stochastic approximation is a normal distribution when the shape of

the objective around the optimum is approximately quadratic, e.g. like ‖x‖2. When the curvature
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behaves as ‖x‖, our analysis proves exponential tail behavior. A natural question is whether the

limiting distribution of iterates away from the optimum is exponentially distributed under the

constant drift condition? That is do we have convergence in distribution:

xt−x?

αt

D−−−→
t→∞

X,

where X is exponentially distributed? The short answer is no. In general, the limit distribution

is not exponential. For a simple counter-example, consider projected stochastic gradient descent

where X = R+ and ct are i.i.d. random variables with ct =−1 with probability p and ct = 1 with

probability 1 − p. If we fix α, we can already see that an exponential distribution limit is not

possible since the process xt/α belongs to the set Z+. If p > 1/2, then the limit distribution is

geometrically distributed, not exponential. For general distributions of ct, the limit distribution

is given by an integral equation. See Lindley’s Integral Equation (Asmussen 2003, Corollary 6.6).

However, the resulting distributions all exhibit exponential tail bounds. (See Kingman’s Bound c.f.

Kingman (1964))

Convergence in distribution likely holds. However, the limit X is unlikely to be an exponential

distribution, and it is unlikely to have a simple form. We cannot aggregate fluctuations in the same

manner as found in the normal approximation. We cannot expect a simple statistic like the Fisher

Information to determine the directions of statistical error because the stochastic approximation

process is much more concentrated. A theory of asymptotic optimality is likely to be characterized

in terms of exponents rather than distributions. Sharpness is a natural condition for a convex

function in much the same way as smoothness is. However, different techniques are required here

because errors and stepsizes are of the same order of magnitude, so exponential tail bounds are

not seen in prior literature on stochastic approximation. However, as this article shows, we can

understand convergence behavior by constructing these exponential concentration bounds.

6.2. Exponential and Gaussian Bounds

Exponential concentration occurs for locally linear objectives, which are, thus, informally stated,

V-shaped, whereas Gaussian concentration occurs in locally quadratic objectives, or U-shaped. We

briefly discuss, by example, what we expect to happen when the objective is both V- and U-shaped.

We then discuss issues that might occur in a more general theory.

Consider the optimization

min l(x, y) := x2 + y over x∈R y ∈R+.

Suppose that we apply stochastic gradient descent and that the noise for both the x and y com-

ponents is Gaussian with mean 0 and variance 1. This applies to the following update:

xt+1 = xt−α(2xt +Gx
t ) , yt+1 = max{yt−α(1 +Gy

t ),0} .
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These can be seen as the Euler-Maruyama approximations to the following stochastic differential

equations:

dX(t) =−2X(t)dt+
√
αdBx(t) , dY (t) =−dt+

√
αdBy(t) + dL(t) .

Here Bx(t) and By(t) are independent standard Brownian motions and L(t) is the local-time of

the process Y (t) at zero. See the text of Stroock and Varadhan (1997) for a proof of convergence

for the standard diffusion case and see Stroock and Varadhan (1971) for the case with reflection.

Notice that the X(t) above is an Ornstein-Uhlenbeck process, and Y (t) is a reflected Brownian

motion. Also, X and Y are independent. The stationary distributions are Gaussian X ∼N (0, α)

and exponentially distributed Y ∼ exp(2/α), respectively. Thus, if we consider the convergence of

these stationary distributions, then

α−1/2(Xα, Yα)
D−−−→

α→0
(X,0) where X ∼N (0,1) . (28)

This result is consistent with prior results on the asymptotic optimality of stochastic approximation.

However, if we examine the limit of our objective function, we begin to see significant differences.

Notice

α−1l(X,Y )
D−−−→

α→0
X2 +Y where X2 ∼ χ2(1), and Y ∼ exp(2) . (29)

Notice that from (28), we see the distance to the optimum not affected by the exponential concen-

tration in Y . However, we see in (29) that there is an impact on the objective function from both

Gaussian and Exponential terms. So, while an SGD algorithm can have an asymptotically optimal

distance to the optimum, it may be that the performance concerning the optimization objective is

not optimal due to the impacts of boundary constraints.

So, both the normal approximation and exponential concentration provide insight into the per-

formance of PSGD algorithms. It should be noted. However, it appears we can’t only consider

normal and exponential tail behavior. There are attributes reached from a stochastic approximation

algorithm that are neither normal nor exponential. For instance, a variety of stationary dynamics

can be reached for objectives of the form |x|α or when there are multiple optima Harrison and

Reiman (1981). So, a complete characterization of the limiting distribution set for constrained

stochastic gradient descent is undoubtedly challenging and will require appropriate assumptions

for a general theory. However, we can conclude from this discussion that the behavior of SGD

on smooth convex objective function with smooth convex constraints is meaningfully impacted by

non-Gaussian asymptotic phenomena.
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6.3. Asymptotically optimal rates of convergence

There is a well-developed theory of asymptotic optimality under the normal approximation. For

example, the inverse Fisher Information gives the best form of asymptotic variance that can be

achieved by a statistical procedure. In the case of exponential concentration, it is reasonable to also

consider the best concentration rate. Here, we briefly indicate the form of exponential concentration

under the best possible policy and provide characteristics of a theoretical result. A complete theory

of asymptotic optimality under sharpness is beyond the scope of the present work.

Consider the following optimization and its sample average approximation:

x? ∈ arg min
x∈X

E[l(x; ξ)] , and x̂t ∈ arg min
x∈X

1

t

t∑
s=1

l(x; ξt)

where ξ is a random variable and ξt are independent identically distributed random variables. Also

x? and x̂t respectively solve the optimizations

x? ∈ arg min
x∈X

−x>E[∇l(x, ξ)] , and x̂t ∈ arg min
x∈X

−x> 1

t

t∑
s=1

∇l(x, ξt) .

Given the above two optimizations, we ask what is the likelihood of a perturbation in the gradients

∇̂t :=− 1
t

∑t

s=1∇l(x?, ξ), which differs sufficiently from their mean of the random variable ∇? :=

−∇l(x?, ξ), so that leads x̂t is not equal to x?.

Recall from Lemma 2, we define NX (x?) := {v : v>(x? − y) ≤ 0 ,∀y ∈ X} and, given that our

objective is sharp, we can assume E[∇?] ∈ NX (x?)◦ and that NX (x?) is closed. Then x̂t will be

different from x? on the event {∇̂t /∈NX (x?)}. We can characterize the exponential concentration

of this event, specifically, by Cramer’s Theorem [See (Dembo and Zeitouni 2009, Theorem 2.2.30)]:

lim inf
t→∞

1

t
logP(x̂t 6=x?)≥ lim inf

t→∞

1

t
logP(∇̂t /∈NX (x?))≥− inf

∇/∈NX (x?)
D(∇;∇?)

where

D(∇;∇?) = sup
φ∈Rd

{
φ>∇− log(E[eφ

>∇? ])
}
.

It would seem that for sharp functions that sample average approximations cannot achieve an

exponential concentration of rate larger than inf∇/∈NX (x?)D(∇;∇?). A natural question to ask is

if this provides a tight bound for asymptotic optimality for constrained stochastic approximation

under sharpness.

7. Conclusions

Motivated by results on the exponential distributions found for queueing networks, we have estab-

lished convergence rates for constrained stochastic approximation algorithms. Our results extend
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the findings on Markov chains by Hajek (1982) to stochastic approximation. To the best of our

knowledge, these techniques from the theory of Markov chains have not been applied in stochastic

approximation.

Asymptotic normality is classical in stochastic approximation, whereas exponential concentration

is poorly understood. This paper identifies situations where the asymptotically optimal solution

is not Gaussian and provides methods to establish bounds when exponential concentration holds.

Our results prove that faster convergence is a potential benefit of exponential concentration.
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E-companion

EC.1. Appendix to Introduction: Exponential Limit for Uniform MLE

For X1, ...,Xn ∼U [0, θ], θ > 0, the joint density at (x1, ...xn) is
n∏
i=1

1

θ
I
[
0≤ xi ≤ θ

]
=

1

θn
I
[
0≤ min

i=1,...,n
xi ≤ max

i=1,...,n
xi ≤ θ

]
From the above, we see that the maximum likelihood is given by θ̂n = maxi=1,...,nXi. For a nor-

mal approximation, we would typically analyse
√
n(θ̂n − θ). However, instead we analyse a more

concentrated asymptotic n(θ− θ̂n). For this observe

P(n(θ− θ̂n)≥ z) = P
(

max
i=1,...,n

Xi ≤ θ−
z

n

)
=
(

1− z

nθ

)n
−−−→
n→∞

e−
z
θ

From the above, we see that

n(θ− θ̂n)
D−−−→

n→∞
exp(θ−1)

So the limit here is not normally distributed under a
√
n normalization but is order n and is

exponentially distributed.

EC.2. Appendix to Section 3: Main Results

EC.2.1. Appendix to Section 3.3

EC.2.1.1. Sub-exponential noise (D2) implies Condition (C1)

Lemma EC.1. For a Lispchitz continuous function f , if Condition (D2) holds, that is

sup
t≥0

E
[
eλ‖ct‖|Ft

]
<∞

then Condition (C2) holds that is[
|f(xt+1)− f(xt)|

∣∣Ft]≤ αtY , with E[eηY ]<∞ (EC.1)

for some η > 0.

Proof. Since f(x) is Lipschitz

|f(xt+1)− f(xt)| ≤K‖xt+1−xt‖ ≤ αtK||ct|| .

Since Condition (D2) holds, we take M ≥ suptE
[
eλ‖ct‖

∣∣Ft]. We let Y be the random variable with

CCDF: P(Y ≥ y) = 1∧ (Me−
λ
K y). Thus for y ∈R+

P
(
|f(xt+1)− f(xt)| ≥ αty

∣∣∣Ft)≤ P
(
‖ct‖ ≥ y/K

∣∣∣Ft)
≤ min

{
1, e−(λ/K)yE

[
eλ‖ct‖

∣∣Ft]}≤ P(Y ≥ y)

Above, we apply a Chernoff bound. From this inequality above, we see that Condition (C2) follows

from Condition (D2). �
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EC.2.1.2. Proof of Lemma 1: sharpness is equivalent to non-vanishing gradient for

convex functions. We now prove Lemma 1.

Lemma 1. If the function l(x) is absolutely continuous then the gradient condition (D1) implies

the function is sharp, (D1′). Moreover, if the function l(x) is convex, then the gradient condition

(D1) is equivalent to the function being sharp (D1′).

Proof. First let’s assume condition (D1) holds. Let x(t) =x? + (1− t)(x−x?). Thus we have

l(x)− l(x?) =

∫ 1

0

dl(x(t))

dt
dt

=

∫ 1

0

∇l(x(t))(x(t)−x?)dt

≥
∫ 1

0

κ‖x(t)−x?‖dt

=

∫ 1

0

(1− t)κ‖x−x?‖dt

=
κ

2
‖x−x?‖

The first equality follows since absolute continuity implies the fundamental theorem of calculus

holds. The second equality holds by the chain rule. The third equality follows by the gradient

condition (D1). We then apply the definition of x(t) and integrate. Thus as required, we see that

condition (D1) implies (D1′).

If we also suppose that the function l(x) is convex and that (D1′) holds then

l(x?)− l(x)≥∇l(x)(x?−x) .

So

∇l(x)(x−x?)≥ l(x)− l(x?)≥ κ′‖x−x?‖

The first inequality rearranges the convexity definition above. The second inequality applies the

Sharp Condition (D1′). So we see, as required, for a convex function, the Sharp Condition (D1′)

implies the gradient condition (D1). �

EC.2.1.3. Proof of Lemma 2: with d or more active constraints, SGD is not normally

distributed. Duchi and Ruan (2021) is designed for smooth problems with fewer active con-

straints than the problem dimension. Once the number of active constraints exceeds the dimension

of the problem, then the normal approximation no longer holds. With the Lemma below, we can say

that the limiting distribution has an exponential concentration for PSGD. Calculations can specu-

late the form of the asymptotic optimality; however, the general theory of asymptotic optimality of

stochastic optimization is incomplete, particularly in settings where the normal approximation is

invalid. As we indicate, it requires a better understanding of asymptotic optimality in the presence

of Sharpness.



e-companion to Law, Walton, and Yang: Exponential Concentration in Stochastic Approximation ec3

Lemma 2. Suppose that at the optimum −∇l(x?) ∈ relint NX (x?) , where NX (x?) := {v : v>(x?−

y) ≤ 0 ,∀y ∈ X} and ∇l(x?) 6= 0 and that there are at least d active constraints at x? (w.l.o.g.

i= 1, ..., d) and

{∇li(x?) : i= 1, ..., d} are linearly independent (D1′′)

then the function f is sharp at x? and Assumption (D1) holds.

Proof. Let x∞ be such that ‖x‖∞ < x∞ for all x ∈ X . Let c=∇l(x?). Let ci =∇li(x?) and

bi = c>i x
?. Let P = {x : c>i x≥ bi, i= 1, ..., d,‖x‖∞ ≤ x∞}. Notice that by convexity

X ⊆P. (EC.2)

Notice by linear independence x? is the unique point such that c>i x
? = bi, i= 1, ..., d. That is x?

is an extreme point of the polytope P. Since −∇l(x?) ∈ relint NX (x?), x? miniminizes c>x over

x∈P. Thus by Lemma EC.8

c>(x−x?)≥K‖c‖‖x−x?‖, ∀x∈P . (EC.3)

By convexity

l(x)− l(x?)≥ c>(x−x?) (EC.4)

combining (EC.2), (EC.3) and (EC.4) we see that

l(x)− l(x?)≥K‖c‖‖x−x?‖ , ∀x∈X .

Thus we see that the function l(x) is sharp on X . Condition (D1) then follows by Lemma 1 since

the function l(x) is convex. �

EC.2.2. Finite number of Projections for Interior Optimum.

We say a projection step is trivial if x ∈X and thus ΠX (x) = x. Otherwise, we say the projection

at x is non-trivial. We can show that in instances where the optimum is in the interior only a finite

number of non-trivial projections are required.

Proposition EC.1. Under the assumptions of Theorem 2, if X ? belongs to the interior of X ,

then the number of (non-trivial) projection steps required by Projected Stochastic Gradient Descent

is finite and bounded in expectation.

Proof. Let the random variable N denote the number of non-trivial projections. By Theorem

2, we have that

P
(

min
x?∈X?

‖xt+1−x?‖ ≥ z
)
≤ Je−It

γz .
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We let z̃ be the distance from the set of optima to the boundary of X , that is,

z̃ = min
x∈X?,y/∈X

‖x?−y‖ .

Since X ? belongs to the interior of X , we have that z̃ > 0. Note that if a projection is non-trivial

then minx?∈X? ||x−x?|| ≥ z̃. Thus

N ≤
∞∑
t=0

I
[

min
x?∈X?

‖xt+1−x?‖ ≥ z̃
]

and so, as required,

E[N ]≤
∞∑
t=0

P
(

min
x?∈X?

‖xt+1−x?‖ ≥ z̃
)
≤
∞∑
t=0

Je−It
γz <∞ .

�

EC.2.3. Kiefer-Wolfowitz: Proof of Theorem 3

We now restate and prove Theorem 3.

Theorem 3. If Conditions (D1), (D2), (D3) hold and if

ν ≤
(

κ

3cd
1
2

) 1
2

then the Kiefer-Wolfowitz algorithm satisfies

P
(

min
x∈X?

‖xt+1−x‖ ≥ z
)
≤ Ĵe−

Î
αt
z, E

[
min
x∈X?

‖xt+1−x‖
]
≤ K̂αt, E

[
l(xt+1)−min

x∈X
l(x)

]
≤ L̂αt

where above Ĵ , Î, K̂, L̂ are positive constants.

Proof. The proof here combines the proof ideas for Kiefer-Wolfowitz, see Fabian (1967) (or,

more recently, Broadie et al. (2011)), with the proof in Theorem 2. As with the proof of Theorem

2 our goal is to verify Conditions C1 and C2, so that we can apply Theorem 1.

We can write the KW recursion as

yt+1 =xt−αt∇l(xt) +αtδt +αtεt (EC.5)

xt+1 = ΠX (yt+1) (EC.6)

where

δt =∇l(x)− l(xt +νt)− l(xt−νt)
2νt

εt =
l(xt +νt)− l(xt−νt)

2νt
− l(xt +νt, ŵ

+
t )− l(xt−νt, ŵ−t )

2νt
.
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Letting x?t be the projection of xt onto X ?, then

‖xt+1−x?t+1‖2 ≤ ‖xt+1−x?t‖2

≤ ‖yt+1−x?t‖2 = ‖yt+1−xt +xt−x?t‖2

= ‖xt−x?t‖2− 2αt∇l(xt)>(xt−x?t ) + 2αtδ
>
t (xt−x?t ) + 2αtε

>
t (xt−x?t ) + ‖yt+1−xt‖2 .

The first inequality above follows since x?t+1 is a projection. The second follows since xt+1 is a

projection. We then expand.

We let Et be the positive number defined below in (EC.16). On the event {‖xt−x?t‖ ≥Et }, we

have

‖xt+1−x?t+1‖

≤‖xt−x?t‖

√
1− 2αt∇l(xt)>

(xt−x?t )
‖xt−x?t‖2

+ 2αtδ>t
(xt−x?t )
‖xt−x?t‖2

+ 2αtε>t
(xt−x?t )
‖xt−x?t‖2

+
‖yt+1−xt‖2
‖xt−x?t‖2

≤‖xt−x?t‖

−αt∇l(xt)>
(xt−x?t )
‖xt−x?t‖

(EC.7)

+αtδ
>
t

(xt−x?t )
‖xt−x?t‖

(EC.8)

+αtε
>
t

(xt−x?t )
‖xt−x?t‖

(EC.9)

+
‖yt+1−xt‖2

2‖xt−x?t‖
. (EC.10)

We now analyse the conditional expectation of the four terms above. Term (EC.7) is bounded

using to the sharpness condition (D1)

−∇l(xt)>
(xt−x?t )
‖x−x?‖

≤−κ . (EC.11)

Term (EC.8) is bounded by the Taylor approximation condition (D3). Specifically

δ>t
(xt−x?t )
‖xt−x?t‖

≤ ‖δt‖=

∥∥∥∥∇l(x)− l(xt +ν)− l(xt−ν)

2ν

∥∥∥∥≤ cd 1
2 ν2 . (EC.12)

Term (EC.9) has zero mean

E
[
ε>t

(xt−x?t )
‖xt−x?t‖

∣∣∣Ft]= 0 . (EC.13)

For Term (EC.10), yt+1 =xt−αtct

E
[
‖yt+1−xt‖2

‖xt−x?t‖

∣∣∣Ft]≤ α2
t

Et
E
[
||ct||2

∣∣Ft]≤ α2
tσ

2
l

2Etν2
(EC.14)
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Since the variance of l(x, ŵ) is bounded (by σ2
l ), the variance of ||ct|| is bounded. Above, we

let σ2
l /ν

2 define this upper bound. Applying bounds (EC.11), (EC.12), (EC.13) and (EC.14)

respectively to the terms (EC.7), (EC.8), (EC.9) and (EC.10) gives

E
[
‖xt+1−x?t+1‖

∣∣Ft]≤ ‖xt−x?t‖−αtκ+αtcν
2 +

α2
tσ

2
l

2Etν2
. (EC.15)

Notice if we choose

ν ≤
√

κ

3cd
1
2

and Et =
3σ2

l

4ν2κ
αt , (EC.16)

then application to (EC.15) gives

E
[
‖xt+1−x?t+1‖

∣∣Ft]≤ ‖xt−x?t‖−αtκ3 on the event
{
‖xt−x?t‖ ≥

3σ2
l

ν4κ
αt

}
.

This verifies that Condition (C1) of Theorem 1 holds.

We must also verify Condition (C2). (The argument that follows is more-or-less identical to the

verification of (C2) in Theorem 2.) For this notice that

‖xt+1−x?t+1‖ ≤ ‖xt+1−x?t‖ ≤ ‖yt+1−x?t‖ ≤ ‖yt+1−xt‖+ ‖xt−x?t‖= αt‖ct‖+ ‖xt−x?t‖ .

and

‖xt−x?t‖ ≤ ‖xt−x?t+1‖ ≤ ‖xt−xt+1‖+ ‖xt+1−x?t+1‖

≤ ‖yt+1−xt‖+ ‖xt+1−x?t+1‖= αt‖ct‖+ ‖xt+1−x?t+1‖ .

Thus ∣∣∣‖xt+1−x?t+1‖−‖xt−x?t‖
∣∣∣≤ αt‖ct‖ (EC.17)

Since Condition (D2) holds, we take M ≥ suptE
[
eλ‖ct‖

∣∣Ft]. We let Y be the random variable

with CCDF: P(Y ≥ y) = 1∧ (Me−λy). Thus for y ∈R+

P
(
|f(xt+1)− f(xt)| ≥ αty

∣∣∣Ft)≤ P
(
‖ct‖ ≥ y

∣∣∣Ft)
≤ min

{
1, e−λyE

[
eλ‖ct‖

∣∣Ft]}≤ P(Y ≥ y)

Above, we apply (EC.17) and a Chernoff bound. From this inequality above, we see that Condition

(C2) follows from Condition (D2).

We can now apply Theorem 1 which gives:

P
(

min
x∈X?

‖xt+1−x‖ ≥ z
)
≤ Îe−

Ĵ
αt
z and E

[
min
x∈X?

‖xt+1−x‖
]
≤ K̂αt

for constants Î, Ĵ and K̂. Since we also assume in addition that l :X →R is Lispchitz continuous

(with Lipschitz constant L̂/K̂) we have, as required,

E
[
l(xt+1)−min

x∈X
l(x)

]
≤ L̂

K̂
E
[

min
x∈X?

‖xt+1−x‖
]
≤ L̂αt .

�
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Figure EC.1 Here we give the x, x? and y terms from Lemma EC.2. Here we take x project onto X ? to give

x?, then y is the boundary value on the line passing from x to x?

EC.2.4. Stochastic Frank-Wolfe: Proof of Theorem 4

The main aim of this section is to prove Theorem 4. We also show that the distance function

satisfies the conditions of our main theorem. This suggests that if the objective function behaves

linearly rather than quadratically near the optimum, we should anticipate faster convergence. We

also discuss how linear convergence can hold for Stochastic Frank-Wolfe in the same manner that

we proved for Projected Stochastic Gradient Descent.

Before proceeding with the proof of Theorem 4 we require a couple of lemmas. Lemma EC.2 is

used to show that there is sufficient negative drift in the Frank-Wolfe algorithm.

Lemma EC.2. If Condition (D1) and Condition (E2) hold then there exists a κ̂ > 0 such that for

all x∈X\X ? there exists y ∈X such that

(y−x)>∇l(x)≤−κ̂ .

Proof. The idea of the proof is as follows. The derivative from x and x? at x bounded above

by −κ, by Assumption (D1). Since x? is in the interior by (E2), we can increase the directional

derivative further by replacing x? with y, where y is the point on the boundary of X on the line

between x and x?. See Figure EC.1. We now proceed with the formal argument.

By Condition (E2), there exists a constant d> 0 such that

min
x?∈X?,y∈∂X

‖y−x?‖ ≥ d . (EC.18)

(Here ∂X := X̄ \X ◦ is the boundary of X .) By Condition (D1), for all x /∈X ? there exists x? ∈X ?

(x?−x)>

‖x?−x‖
∇l(x)≤−κ . (EC.19)

We let y(t) =x+ t(x?−x) for t∈R. Notice that

(y(t)−x)>

‖y(t)−x‖
=

(x?−x)>

‖x?−x‖
(EC.20)



ec8 e-companion to Law, Walton, and Yang: Exponential Concentration in Stochastic Approximation

Letting t? = max{t : y(t)∈X}, we see that

y := y(t?)∈ δX (EC.21)

Combining (EC.18-EC.21), we see that

(y−x)>∇l(x) = ‖y−x‖(x?−x)>

‖x?−x‖
∇l(x)≤−dκ=:−κ̂

as required. �

We now restate and prove Theorem 4

Theorem 4. For learning rates of the form αt = a/(u+ t)γ with a,u > 0 and γ ∈ [0,1], if Con-

ditions (D1), (D2), (E1) and (E2) hold and if mt ≥ (3σ/καt)
2 then the stochastic Frank-Wolfe

algorithm satisfies

P
(
l(xt+1)−min

x∈X
l(x)≥ z

)
≤ Ie−

J
αt
z ,

for constants I,J .

Proof of Theorem 4. The proof here combines ideas from Theorem 2 with the adjustments for

stochastic effects for the Frank-Wolfe algorithm given in Theorem 3 from Hazan and Luo (2016).

In the proof we define D := maxx,v ‖x−v‖ and we let ε(xt) = l(xt)− l(x?) and we define σ such

that

E
[
‖∇l(xt)− cit‖2

]
≤ σ2 ∀i, t.

(Note that σ is finite by the moment generating function condition (D2))

By Condition (E1)

ε(xt+1)
2

2
− ε(xt)

2

2
≤ ε(xt)

(
xt+1−xt

)>∇ε(xt) +
K

2
‖xt+1−xt‖2

= αtε(xt)(vt−xt)>ct +αtε(xt)(vt−xt)> [∇ε(xt)− ct] +
K

2
α2
t‖vt−xt‖2 .

(EC.22)

We now consider the event where the following bound holds{
ε(xt)≥

3αtKD
2

2κ

}
. (EC.23)

Thus

ε(xt+1)

≤
√
ε(xt)2 + 2αtε(xt)(vt−xt)>ct + 2αtε(xt)(vt−xt)> [∇ε(xt)− ct] +Kα2

t‖vt−xt‖2

= ε(xt)

√
1 + 2

αt
ε(xt)

(vt−xt)>ct + 2
αt
ε(xt)

(vt−xt)> [∇ε(xt)− ct] +K
α2
t

ε(xt)2
‖vt−xt‖2

≤ ε(xt) +αt(vt−xt)>ct +αt(vt−xt)> [∇ε(xt)− ct] +
K

2

α2
t

ε(xt)
‖vt−xt‖2

≤ε(xt) +αt(yt−xt)>ct +αt‖vt−xt‖‖∇ε(xt)− ct‖+
αtκ

3

≤ε(xt) +αt(yt−xt)>ct +αtD‖∇ε(xt)− ct‖+
αtκ

3
(EC.24)
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In the first inequality, above we rearrange the expression (EC.22). In the second inequality, we apply

the inequality
√

1 + z ≤ 1 + z/2. In the third equality, we note that v>t ct ≤ y>t ct, by the definition

of vt (11b). Here we let yt ∈X be as defined in Lemma EC.2. Also, we apply the Cauchy-Schwarz

Inequality and the bound (EC.23). In the final inequality we note that ‖vt−xt‖ ≥D.

Taking the conditional expectation of (EC.24), we see that, on the event (EC.23), the following

holds

E [l(xt+1)− l(xt)|Ft] =E [ε(xt+1)− ε(xt)|Ft]

≤ αt(yt−xt)>E[ct|Ft] +αtDE [‖∇ε(xt)− ct‖|Ft] +
αtκ

3

≤−αtκ̂+αtDE [‖∇l(xt)− ct‖|Ft] +
αtκ

3
. (EC.25)

Notice that, since mt ≥ (3σD/κ̂αt)
2 ,

E
[
‖∇l(xt)− ct‖ |Ft

]
≤
√

E [‖∇l(xt)− ct‖2 |Ft]≤
σ
√
mt

≤ κ̂

3D
.

Now applying this inequality to (EC.25) gives

E
[
l(xt+1)− l(xt)|Ft

]
≤−αt

κ̂

3

on the event l(xt)− l(x?)≥ 3KD/ακ̂. Thus Condition (C1) is met.

For Condition (C2), since l is Lipschitz continuous and the set X is bounded we have

‖l(xt+1)− l(xt)‖ ≤L‖xt+1−xt‖ ≤ αtL‖vt−xt‖ ≤ 2αtLmax
x∈X
‖x‖ .

Thus we see that Condition (C2) holds with a constant upperbound Y = 2Lmaxx∈X ‖x‖ .

Here we see that the conditions of Theorem 1 are met, and thus we have that

P (l(xt+1)− l(xt)≥ z)≤ Ie−
J
αt
z ,

as required. �

EC.2.4.1. Cones satisfy Condition (E1) Below we recall that we define the matrix norm

‖ · ‖S for a positive semi-definite matrix S by

‖x‖S :=
√
x>Sx

Lemma EC.3. For a symmetric positive definite matrix S, the distance function

dX?(x) = min
x?∈X?

‖x−x?‖S

satisfies Condition (E1).
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Proof. We must show that the function

dX?(x)2 = min
x?∈X?

‖x−x?‖2S

is strongly convex.

Given x, we let x? = arg minx?∈X? ‖x−x?‖S. By the Envelope Theorem,

∇dX (x)2 = 2S(x−x?) (EC.26)

Also

‖x−y‖2S ≤ λmax(S)‖x−y‖2 (EC.27)

where λmax(S) is the maximum eigenvalue of S.

Now for any y and x,

dX?(y)2 = min
y?∈X?

‖y−y?‖2S ≤ ‖y−x?‖2

= ‖y−x+x−x?‖2S

= ‖x−x?‖2S + 2(y−x)>S(x−x?) + ‖y−x‖2S

≤ dX?(x)2 + (y−x)∇d2X?(x) +λmax(S)‖x−y‖2

In the first inequality, we apply the sub-optimality of x? with respect to the point y. In the second

inequality, we apply (EC.26) and (EC.27). Thus from the above inequality we see that dX?(x)2 is

a λmax(S)–smoothly convex function, as required. �

EC.2.5. Stochastic Frank-Wolfe Boundary case

Proposition EC.2. For learning rates of the form αt = a/(u+ t)γ with a,u > 0 and γ ∈ [0,1), if

Conditions (D1), (D2), (E1) and (E2) hold and if mt ≥ (2σE/KDαt)
2 then the stochastic Frank-

Wolfe algorithm satisfies

limsup
t→∞

1
√
αt

E [l(xt+1)− l(x?)]<∞,

Proof. The proof here combines ideas from Theorem 2 with the adjustments for stochastic

effects for the Frank-Wolfe algorithm given in Theorem 3 from Hazan and Luo (2016).

In the proof we let ε(xt) = l(xt)− l(x?) and we define σ such that

E
[
‖∇l(xt)− cit‖2

]
≤ σ2 ∀i, t.

(Note that σ is finite by the moment generating function condition (D2)). We define D :=

maxx,v ‖x−v‖ and E := maxx ε(x).
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By Condition (E1)

ε(xt+1)
2

2
− ε(xt)

2

2

≤ ε(xt)
(
xt+1−xt

)>∇ε(xt) +
K

2
‖xt+1−xt‖2

= αtε(xt)(vt−xt)>ct +αtε(xt)(vt−xt)> [∇ε(xt)− ct] +
K

2
α2
t‖vt−xt‖2

≤ αtε(xt)(x?−xt)>ct +αtε(xt)‖vt−xt‖‖∇ε(xt)− ct‖+
K

2
α2
t‖vt−xt‖2

≤ αtε(xt)(x?−xt)>ct +αtED‖∇ε(xt)− ct‖+α2
t

KD2

2
(EC.28)

Notice that, since mt ≥ (2σE/KDαt)
2 ,

E
[
‖∇l(xt)− ct‖ |Ft

]
≤
√

E [‖∇l(xt)− ct‖2 |Ft]≤
σ
√
mt

≤ αt
KD

2E
. (EC.29)

Taking expectations in (EC.28) gives

E
[
ε(xt+1)

2

2

]
−E

[
ε(xt)

2

2

]
≤ αtE

[
ε(xt)c

>
t (x?−xt)

]
+αtEDE [‖∇ε(xt)− ct‖] +α2

t

KD2

2

≤ αtE
[
ε(xt)∇ε(xt)>(x?−xt)

]
+αtEDE [‖∇ε(xt)− ct‖] +α2

t

KD2

2

≤ αtE
[(∇ε(xt)2

2

)>
(x?−xt)

]
+α2

tKD
2

≤−αt
ε(xt)

2

2
+α2

tKD
2

In the third equality above, we apply (EC.29). In the final equality, we apply the convexity of

ε(x)2. Thus, we see that

E
[
ε(xt+1)

2

2

]
≤ (1−αt)E

[
ε(xt)

2

2

]
+α2

tKD
2 .

Consequently, by Lemma EC.5 (and Lemma EC.4) given below

limsup
t→∞

1

αt
E[ε(xt+1)

2/2]<∞

Thus

limsup
t→∞

E[ε(xt+1)]√
αt

≤
(
E[ε(xt+1)

2]

αt

)1/2

<∞ .

�

We require the following techincal lemma which we then extend.
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Lemma EC.4. If ξn is a positive sequence such that

ξn+1 ≤ ξn
(

1−Aαn
)

+αnB

and
∞∑
n=1

αn =∞, limsup
n→∞

αn ≤ 0

then

limsup
n→∞

ξn ≤
B

A
.

Proof. Rearranging gives

ξn+1− ξn ≤−αn(Aξn−B).

If ξn >B/A+ ε for some ε > 0 then

ξn+1− ξn ≤−αn(Aξn−B)≤−αn(A[B/A+ ε]−B) =−αnAε .

So ξn is decreasing when ξn >B/A+ε holds and, since
∑

nαn =∞, there exists N s.t. ξN ≤B/A+ε.

Let N0 be the first value of N where ξN ≤B/A+ ε occurs.

Notice, ξn can only increase when ξn ≤B/A+ ε, and since ξn is a positive then

ξn+1 ≤ ξn +αnB .

Thus, we see that

ξn ≤
B

A
+ ε+αnAε, ∀n≥N0 .

Therefore

limsup
n→∞

ξn ≤
B

A
+ ε+ limsup

n→∞
αnB ≤

B

A
+ ε .

Since ε is arbitrary the results holds. �

The following is an extension of the above lemma. Note for βn = αn = a/(u+ t)γ below and ,

for γ < 1, we can take C = 0 below. (We can consider the case γ = 1, but we require to take a

sufficiently small.)

Lemma EC.5. If ξn is a positive sequence such that

ξn+1 ≤ ξn
(

1−Aαn
)

+αnβnB

and
∞∑
n=1

αn =∞, lim
n→∞

αn = 0,
βn
βn+1

≤ (1 +Cαn)

with A>C then

limsup
n→∞

ξn
βn
≤ A−C

B
.
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Proof. Since limn→∞αn = 0, take N such that αn < δ for all n≥N .

Now defining ξ′n = ξn/βn for n≥N gives

ξ′n+1 =
ξn+1

βn+1

≤ βn
βn+1

(
1−Aαn

)
ξ′n +αn

βn
βn+1

B

≤ (1 +Cαn) (1−Aαn) ξ′n +αn (1 +Cαn)B

≤ (1− (A−C + δ)αn) ξ′n +αn(1 +Cδ)B

=(1−A′αn)ξ′n +αnB
′

where we define A′ =A−C + δ and B′ = (1 +Cδ)B. Applying Lemma EC.4 gives

limsup
n→∞

ξ′n ≤
A′

B′
,

which recalling the definitions of ξ′n, A′,B′ and recalling that δ is arbitrary gives the result. �

EC.2.6. Appendix to Section 3.6 : Linear Convergence Proofs

As discussed, our proof follows the main argument of Theorem 3.2 of Davis et al. (2019). We

divide the procedure into S stages. We consider PSGD with constant step size within each stage,

as defined in (12). The task of each stage is to half the error with the optimum. We apply our

bound Lemma EC.6, which is a stronger concentration bound than Theorem 4.1, used in Davis

et al. (2019). This leads to some improvements in the bounds found there.

EC.2.6.1. Exponential Concentration for constant step-size and unbounded state-

space. Below, we state an exponential concentration bound for constant step sizes. We do not

require the function f(x) or the set X to be bounded (or constrained) for this result to hold.

Lemma EC.6. For constant step sizes α

P(f(xt+1)− f(x?)≥ z|F0)≤ e−
Q
α z

{
e
Q
α (f(x0)−f(x?))e−t

Q
α κ/2 +D

eQκ/2

1− e−Qκ/2
eQB

}
.

Proof. There are no boundedness assumptions placed in Lemma 4. We restate the conclusion

of that result here:

E[eηLt+1 |FT0 ]≤E[eηLT1 |FT0 ]
t∏

k=T1

ρt +D
t+1∑

τ=T1+1

t∏
k=τ

ρk , (EC.30)

for t≥ T1 ≥ T0. If we consider the above terms for constant step sizes α= αt then

Lt+1 = f(xt+1)− f(x?)−αB

ρt = ρ := e−αηκ+α
2η2E ≤ e−αη κ2 for αη≤Q

T0 = min{t :
αt−αt+1

αt
≤ κ

2B
}= 0

T1 = 0 ,
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also
t∏

k=0

ρk = ρt+1 ≤ 1 and
t+1∑
l=1

t∏
k=l

ρk =
t+1∑
l=1

ρt−l ≤
∞∑

l=−1

ρl =
ρ−1

1− ρ
.

with these terms the above expression (EC.30) gives the requied bound

E[eη(f(xt+1)−f(x?))|F0]≤ eη(f(x0)−f(x?))ρt+1 +D
ρ−1

1− ρ
eαηB .

Applying Markov’s inequality gives

P (f(xt+1)− f(x?)≥ z)≤ e−ηz
{
eη(f(x0)−f(x?))ρt+1 +D

ρ−1

1− ρ
eαηB

}
.

Taking η=Q/α gives the required bound. �

EC.2.6.2. Linear Convergence under Exponential Concentration We note that while

we generally assume that the set X is bounded, the above lemma and the linear convergence results

of this section apply to unbounded constraint sets. We now prove Theorem 5.

Theorem 5. We assume that X is a convex set that may be unbounded. Assume Conditions (C1)

and (C2) hold for a stochastic approximation procedure with rates given in (12):

a) If, for ε̂ > 0 and δ̂ ∈ (0,1), we set

S = log

(
F

ε̂

)
, α̂s =

2−sFκ

E log
(
RS

δ̂

) , and ts =

⌈
2

κ2
log

(
RS

δ̂

)⌉

then with probability greater than 1− δ̂ it holds that minx∈X? ‖x̂S −x‖ ≤ ε̂ . Moreover, the number

of iterations (12) required to achieve this bound is⌈
log2

(F
ε̂

)⌉⌈ 2

κ2
log

(
R

δ̂

)
+ log

(⌈
log2

(F
ε̂

)⌉)⌉
.

(Above F = minx?∈X? ‖x0 −x?‖ and R and E are time-independent constants that depend on the

constants given in Conditions (C1) and (C2).)

b) For α̂s = a
2s log(s+1)

and ts = log2(s+ 1), there exists positive constants A and M such that

∀δ̂ ∈ (0,1) if a≥A/δ̂ then

P
(

min
x∈X?

‖x̂s−x‖ ≤ 2−sM, ∀s∈N
)
≥ 1− δ̂ .

Proof of Theorem 5. First, we recall some notation: f(x̂s) := minx∈X? ‖x̂s − x‖ and F =

f(x0)−minx∈X f(x) . The constants D and E are the moment generating function constants as

defined in Lemma 3 and Lemma 4, respectively.

We define the event Es := {f(x̂s)≤ 2−sF} . So P(E0) = 1. We inductively analyze P(Es). Notice

P(Es)≥ P(Es|Es−1)P(Es−1) = (1−P(Ecs |Es−1))P (Es−1)≥ P(Es−1)−P (Ecs |Es−1) . (EC.31)
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By Lemma EC.6, for x̂s−1 such that f(x̂s−1)≤ 2−s+1F we have

P (Ecs |x̂s−1) = P
(
f(x̂s)≥ 2−sF |x̂s−1

)
≤ e−

Q
α̂s
z

[
e
Q
α̂s

(f(x̂s−1)−f(x?))e−t
Q
α̂s
κ/2 +D

eQκ/2

1− e−Qκ/2
eQB

]
≤ e−

Q
α̂s
z

[
exp

{
Q

α̂s
2−s+1F − t Q

α̂s
κ/2

}
+D

eQκ/2

1− e−Qκ/2
eQB

]
.

(Here we apply Lemma EC.6 for times t= Ts−1, ..., Ts−1 with expectation E[·] given by E[·|x̂s−1].)
Notice that the term in curly brackets above is negative iff ts ≥ 2−s+1F/κα̂s. If this holds then

P (Ecs |Es−1)≤Re−2
−sFκ/2Eα̂ where R := 1 +D

eQκ/2

1− e−Qκ/2
eQB .

Applying this to (EC.31), P (Es)≥ P (Es−1)−P (Ecs |Es−1)≥ P (Es−1)−Re−2
−sFκ/2Eα̂s . So we have

P (ES)≥ 1−
S∑
s=1

Re−2
−sFκ/2Eα̂s . (EC.32)

The total number of computations/samples required is
∑S

s=1 ts ≥
∑S

s=1 2−sF/κα̂s .

We now prove part a). Given the bounds above, we can optimize the number of samples to

achieve a probability 1− δ̂. That is we solve

minimize
S∑
s=1

2−s+1F

κα̂s
such that

S∑
s=1

Re−2
−s+1Fκ/2Eα̂s ≤ δ̂ over α̂s > 0 .

A short calculation shows that this is minimized by α̂s = 2−sFκ/E log(RS/δ̂) and thus since ts ≥
2−s+1F/κα̂s we define ts =

⌈
2
κ2

log
(
RS

δ̂

)⌉
and the number of samples required here is S× ts which

equals S
⌈

2
κ2

log
(
RS

δ̂

)⌉
. Since for an ε̂ approximation, we require S to be such that ε̂≥ 2−SF , we

take S = dlog2(F/ε̂)e. Thus we see that an ε̂ approximation can be achieved with a probability

greater than 1− δ̂ in a number of samples given by⌈
log2

(F
ε̂

)⌉⌈ 2

κ2
log

(
R

δ̂

)
+ log

(⌈
log2

(F
ε̂

)⌉)⌉
.

This gives the part a) of Theorem 5.

Notice, we can make the sum (EC.32) finite for S =∞. Specifically if we take α̂s = a/2s log(s+1)

and ts = (log(s+ 1))2 then the Condition (C1) holds ∀s≥ s0 for s0 = de2F/κe+ 1 and thus

∞∑
s=s0

Re−2
−s+1Fκ/2Eα̂s =

∞∑
s=s0

R
1

(s+ 1)aFκ/2E
≤R

∫ ∞
s0

1

saFκ/2E
ds≤ 2RE

aFκ
· 1

s
aFκ/2E
0

≤ 2RE

aFκ
.

The above sum is less than δ̂ for a≥RE/2δ̂Fκ. Letting A= 2RE/Fκ and M = 2s0F , we see that

for a≥A/κ̂ gives

P
(
∃s∈N s.t. min

x∈X?
‖xs−x‖ ≥ 2−sF

)
≤
∞∑
s=1

P
(
Ecs ∪

(
∩s′≤s Es′

))
≤
∞∑
s=1

P (Ecs |Es−1)≤
∞∑
s=1

Re−
2sFκ
2Eα̂ ≤ δ̂ .

Thus for learning rates α̂s = a/2s log(s + 1) with a ≥ M/δ̂ if it holds that

P (∀s,minx∈X? ‖xs−x‖ ≤ 2−sM)≥ 1− δ̂ . This gives the 2nd part of Theorem 5. �
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EC.2.6.3. Application to Specific Stochastic Approximation Algorithms. The fol-

lowing is the equivalent linear convergence result for Kiefer-Wolfowotiz

Corollary EC.1 (Linear Convergence in Projected Stochastic Gradient Descent).

We assume that X is a convex set that may be unbounded. Assume Conditions (D1) and (D2)

hold for PSGD with rates given in (12). If, for ε̂ > 0 and δ̂ ∈ (0,1), we set

S = log

(
F

ε̂

)
, α̂s =

2−sFκ

E log
(
GS

δ̂

) , and ts =

⌈
2

κ2
log

(
GS

δ̂

)⌉

then with probability greater than 1− δ̂ it holds that minx∈X? ‖x̂S −x‖ ≤ ε̂ . Moreover, the number

of iterations (12) required to achieve this bound is⌈
log2

(F
ε̂

)⌉⌈ 2

κ2
log

(
G

δ̂

)
+ log

(⌈
log2

(F
ε̂

)⌉)⌉
.

Corollary EC.2 (Linear Convergence of Kiefer-Wolfowitz). Assume Conditions (D1),

(D2), (D3) hold. For the KW algorithm, (9), with step-sizes given in (12): If, for ε̂ > 0 and δ̂ ∈ (0,1),

we set

S = log

(
F

ε̂

)
, α̂s =

2−sFκ

E log
(
GS

δ̂

) , νs =

√
κ

3c
and ts =

⌈
2

κ2
log

(
GS

δ̂

)⌉

then with probability greater than 1− δ̂ it holds that minx∈X? ‖x̂S −x‖ ≤ ε̂ . Moreover, the number

of iterations (12) required to achieve this bound is⌈
log2

(F
ε̂

)⌉⌈ 2

κ2
log

(
G

δ̂

)
+ log

(⌈
log2

(F
ε̂

)⌉)⌉
.

The proof of Corollary EC.2 is identical to the proof of Theorem 5.

Corollary EC.3 (Linear Convergence of Stochastic Frank-Wolfe). We assume that X is

a convex set that may be unbounded. Also, Assume Condition D1, D2, E1 and E2 hold. For the

SFW algorithm with step-sizes given by (12). If we set

S = log

(
F

ε̂

)
, α̂s =

2−sFκ

E log
(
GS

δ̂

) , ms :=

⌈( 3σ

κα

)2
⌉
, and ts =

⌈
2

κ2
log

(
GS

δ̂

)⌉

then with probability greater than 1− δ̂ it holds that minx∈X? ‖x̂S −x‖ ≤ ε̂ . Moreover, the number

of iterations (12) required to achieve this bound is⌈
log2

(F
ε̂

)⌉⌈ 2

κ2
log

(
G

δ̂

)
+ log

(⌈
log2

(F
ε̂

)⌉)⌉
.
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EC.3. Appendix to Theoretical Results

EC.3.1. List of Notations for Theorem 1

There are several time-independent constants (usually denoted with a capital letter) in Theorem

1. We list these here.

B Bound where the drift condition holds. See (C1).

C =
(1 +H)

2QGn
+B Constant in Proposition 1

D=E[eλZ ] =E[eλ[Y+κ/2]] Moment Generating Function, see (18).

E =E
[
eλZ − 1−λZ

λ2

]
See Lemma 4

F = max
x∈X

f(x)−min
x∈X

f(x)

G=
1

4γ
, for αt =

a

(u+ t)γ
See Lemma 5 and Proof in Section 4.1.2

H =De
κQGn

2 /(1− e−
κQGn

2 ) Constant in Proposition 1 Defined after (26).

I = (1 +H)eQG/(F/αT2−B) Constant in Theorem 1

J =QGn Exponent in Theorem 1

K =
I

J
Constant in Theorem 1

n=

{
1 for γ < 1

dα0B+F
a log 2

e for γ = 1

Q= λ∧ (κ/2E)

T0 = min
{
t≥ 0 :

(αs−αs+1)

αs
<κ/2B,∀s≥ t

}
See Lemma 3 and its proof.

T1 =

{
α0B+F

a
1−γ

[
1− 1

21−γ

] for γ < 1

u2n for γ = 1

T2 = T0 ∨T1

Y Sub-exponential Random Variable defined in C2

Z = Y +
κ

2
Random Variable defined in Lemma 3

EC.3.2. Technical Lemmas for the Proof of Proposition 1

Lemma 3. Given Conditions (C1) and (C2) hold, there exists a deterministic constant T0 such

that the sequence of random variables (Lt : t≥ T0) satisfies

E
[
Lt+1−Lt

∣∣Ft]I[Lt ≥ 0]<−αtκ, (17)

and

[|Lt+1−Lt||Ft]≤ αtZ where D :=E[eλZ ]<∞ . (18)
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Proof of Lemma 3. Applying the definition of Lt and the drift Condition (C1) gives

E[Lt+1−Lt|Ft] =E[f(xt+1)− f(xt)|Ft] + (αt−αt+1)B

≤− 2αtκ+ (αt−αt+1)B

≤− 2αtκ [1− (αt−αt+1)B/αtκ]

Since (αt−αt+1)/αt→ 0, there exists a constant T0 such that (αt−αt+1)/αt <κ/2B for all t≥ T0.

Specifically we can take T0 = min{t≥ 0 : (αs −αs+1)/αs < κ/2B,∀s≥ t}. This gives the first drift

condition (17).

For the second condition, for t≥ T0 with T0 as just defined:

[
|Lt+1−Lt|

∣∣Ft]≤ [|f(xt+1)− f(xt)|
∣∣Ft]+ |αt+1−αt|B

≤αtY +αt
(αt−αt+1)

αt
B

≤αt(Y +κ/2) .

Taking Z = Y +κ/2, it is clear that condition (18) holds for Z as an immediate consequence of the

boundedness condition on Y in (C2). �

Lemma 5. If αt, t∈Z+, is a decreasing positive sequence, then

min
s=t̂,...,t

{∑t

k=sαk∑t

k=sα
2
k

}
=

∑t

k=t̂αk∑t

k=t̂α
2
k

. (21)

Moreover, if αt, t∈Z+ satisfies the learning rate condition (13) then

1

αbt/2nc
≥ Gn

αt
and min

s=bt/2nc,...,t

{∑t

k=sαk∑t

k=sα
2
k

}
≥ Gn

αt
(22)

for some constant G∈ (0,1] and for n∈N such that t/2n > 1.

Proof of Lemma 5. It is straight-forward to show that for a,a′,A,A′ > 0

a

a′
≤ A

A′
if and only if

a+A

a′+A′
≤ A

A′
. (EC.33)

[Note that both expressions above are equivalent to AA′+ aA′ ≤AA′+ a′A.]

Take positive numbers as, a
′
s, s= 1, ..., t. If

as
a′s
≤ ak
a′k

for k= s+ 1, ..., t, then
t∑

k=s+1

a′kas ≤
t∑

k=s+1

aka
′
s. (EC.34)
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Thus,
as
a′s
≤
∑t

k=s+1 ak∑t

k=s+1 a
′
k

.

Thus applying (EC.33) with A=
∑t

k=s+1 ak and A′ =
∑t

k=s+1 a
′
k gives∑t

k=s ak∑t

k=s a
′
k

≤
∑t

k=s+1 ak∑t

k=s+1 a
′
k

. (EC.35)

Finally, taking ak = αk and a′k = α2
k, we see that (EC.34) holds since αt is decreasing. Thus, from

(EC.35), we see that the result (21) holds.

If the condition (13) holds then lim inft→∞α2t/αt > 0 implies

αt
αbt/2c

>
√
G (EC.36)

for some 1≥G> 0. Thus

αt
αbt/2nc

=
αt

αbt/2c
× ...×

αbt/2n−1c

αbt/2nc
≥Gn

2 ≥Gn . (EC.37)

Since the sequence is decreasing and (EC.36) holds, we have that∑t

k=bt/2ncαk∑t

k=bt/2ncα
2
k

≥ (t−bt/2nc)αt
(t−bt/2nc)α2

bt/2nc
=

α2
t

α2
bt/2nc

1

αt
=

α2
t

α2
bt/2c

× ...×
α2
bt/2n−1c

α2
bt/2nc

1

αt
≥ Gn

αt
.

Applying this to (21) with s= bt/2nc gives

min
s=bt/2nc,...,t

{∑t

k=sαk∑t

k=sα
2
k

}
≥ Gn

αt
.

Thus the above along with (EC.37) proves that (22) holds as required. �

Lemma EC.7. For αt = a/(u+ t)γ with 0≤ γ < 1 Taking

n=

{
1, for γ < 1,

1 +
⌈
α0B+F
a log 2

⌉
, for γ = 1,

and T1 =

{
u+ 21+γ

au−γ [α0B+F ] , for γ < 1,

u2n, for γ = 1,

it holds that
t∑

s=bt/2nc

αs ≥ α0B+F , ∀t≥ T1 . (EC.38)

Proof. We consider the case of γ < 1 separately from the case where γ = 1.

First we take γ < 1 and n= 1. In the following expression, we take t= xu with x≥ 1,

t∑
s=bt/2c

αs ≥
t

2
αt =

a

2

t

(u+ t)γ
=
a

2
u1−γ x

(1 +x)γ
≥ au1−γ

21+γ
x= a

u−γ

21+γ
t (EC.39)

Thus, t= ux with x≥ 1 and right-hand side of (EC.39) is greater than α0B+F for

T1 =
21+γ

au−γ
[α0B+F ] +u ,
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and for any t such that t≥ T1. This completes the proof for γ < 1

Second, we take γ = 1. We assume that t≥ T1 := 2nu and we will take n= 1 +
⌈
α0B+F
a log 2

⌉
.

t∑
s=bt/2nc

αs ≥
∫ t

t/2n

a

u+ s
ds= a log

(
u+ t

u+ t2−n

)
= an log 2 + a log

(
u+ t

u2n + tk

)
≥ an log 2 + a log

1

2
.

The last inequality above holds since t≥ T1 := 2nu. Notice that

an log 2 + a log
1

2
= a(n− 1) log 2≥ α0B+F , for n= 1 +

⌈
α0B+F

a log 2

⌉
.

Thus the required bound (EC.38) holds for n and T1 as specified for γ = 1. �

EC.4. Appendix to Applications and Numerical Examples

This section aims to provide a simple application of the main results of Theorem 1 and Theorem

2. Given the importance of Linear Programming (LP) and Markov Decision Processes (MDP)

in operations research, we briefly explore these problem settings. However, we emphasize that

linear objectives are a special case of the results proven in Theorem 1 and Theorem 2. The results

are proved under conditions that apply to non-smooth, non-convex objectives and general convex

constraints. We refer to Birge and Louveaux (2011) and Shapiro et al. (2021) as standard texts

on stochastic linear programming. For the linear programming formulation of MDPs, we refer to

Schweitzer and Seidmann (1985).

EC.4.1. Linear Programming

Here we consider a linear program in which the cost function that we wish to minimize must be

sampled and where the optimization constraints are deterministic. We are interested in solving a

linear program of the form

minimize c̄>x subject to Hx≤ b over x∈Rd , (EC.40)

where c̄∈Rd\{0}, H ∈Rp×d and b∈Rp. We assume X = {x∈Rd :Hx≤ b} is a bounded polytope.

We suppose that the constraint set X is deterministic and known, however, the cost vector c̄ is

unknown but can be sampled.

Specifically, we let ct, t ∈ Z+, be an independent, mean c̄, sub-exponential random vectors in

Rd. That is

E[ct|Ft] = c̄ and sup
t∈Z+

E
[
eλ‖ct‖

∣∣Ft]<∞ (EC.41)

for some λ> 0. We then apply projected stochastic gradient descent (6). Notice that Condition (D1)

is satisfied by (EC.41). Further Condition (D2) holds for any linear program. This is a consequence

of the following technical lemma.



e-companion to Law, Walton, and Yang: Exponential Concentration in Stochastic Approximation ec21

Lemma EC.8. If X is a bounded polytope and X ? = argminx∈X c̄
>x., then there exists a constant

K > 0 such that
c̄>(x−x?)
||c̄||||x−x?||

≥K,

for x? the projection of x onto X ?. Thus Condition (D2) holds for PSGD applied to the LP

(EC.40).

The proof of Lemma EC.8 requires some careful bounding between optimal solutions and sub-

optimal extreme points. The proof is given below. The result bounds the angle between optimal

and sub-optimal points for a polytope.

Proof of Lemma EC.8. We assume without loss of generality that c̄>x? = 0 and ||c̄||= 1. Let

E be the extreme points of X . Let E? be the extreme points in X ?. Then let E ′ := E \ E? and X ′ is

the convex closure of E ′. Let a := minx∈X ′ c̄
>x and D := maxx?∈X?,x′∈X ′ ||x? −x′||. We will show

we can take K := a/D.

For all x∈X \X ?, xmust be a convex combination of a point in X ? and a point in X ′. Specifically,

x= (1− p)x0 + px1, (EC.42)

for x0 ∈X ? and x1 ∈X ′ and p∈ (0,1]. Then, as required,

c̄>x

||x−x?||
≥ c̄

>(x−x0)

||x−x0||
=
c̄>(x1−x0)

||x1−x0||
≥ a

D
=K > 0 .

The first inequality above uses the fact that x? is closest to x. The equality applies (EC.42). Then

finally, we apply the definitions of a, D and K. �

Thus, we see that both Theorem 2 and Theorem 5 hold in the context of linear programming

problems with an unknown objective function.

EC.4.1.1. Polytope Example We consider the problem with two variables with the con-

straints being the polytope in Figure EC.2(a). We assume that the cost vector c̄= [4,6]> is unknown

but can be sampled from a joint Gaussian distribution of independent random variables with mean

vector c̄ and variance 1. This problem is analytically tractable. Given the costs, we can calculate

the reference solution to be x? = [2,1]T .

The convergence rate for the PSGD and Kiefer-Wolfowitz should be O(1/tγ) in expectation

when the error is measured by the L1−norm. Evidence for the convergence rate is shown in Figure

EC.2(b). Increasing the batch size above 50 substantially reduces the noise of sampling costs, and

the algorithm may perform better than O(1/t). In this case, the algorithm converges, reaching

the optimum solution after 7 iterations. This occurs because the chance of observing any sample

perturbing the stochastic gradient descent algorithm away from the optimal point is a rare event.

However, when there is a non-negligible probability of an iteration leaving the optimal point, then

the O(1/t) is found as anticipated.
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(b) Convergence for batch size B = 5
Figure EC.2 Polytope of the two variables linear programming problem and convergence of projected stochastic

gradient descent on the two variables linear programming example. In Figure EC.2(a), the shaded

area is the bounded polytope and the cross is one of the points of iterations, and the black point is

the corresponding projection. In Figure EC.2(b), expectation is computed over 1000 realizations.

The parameters of step size are chosen as a= 1, u= 1 and γ = 1 such that αt = 1/(1 + t). The costs

ct are computed with batch size B = 5. The parameter v = 1 is chosen for Kiefer-Wolfowitz. The

fitted slope is -1.02 and -1.05 for PSGD and Kiefer-Wolfowitz.

EC.4.1.2. Probability Simplex This section considers a higher dimension for the optimiza-

tion over the probability simplex as an example. There are simple, efficient algorithms for projection

onto the probability simplex (Duchi et al. 2008). The problem that we solve is formulated as follows

minimize p1c̄1 + p2c̄2 + ...+ pnc̄n = c̄Tp subject to
n∑
i=1

pi = 1 over pi ≥ 0, ∀i= 1, ..., n,

where c̄1 < c̄2 < ... < c̄n and n= 50. We label the polytope due to the constraint as P and suppose

that the cost vector c̄ is unknown but can be sampled from a normal distribution with a certain

mean vector and covariance matrix. In particular, for t ∈ Z+, we apply the stochastic gradient

descent iteration: pt+1 = ΠP(pt − αtct), where ct ∼ N (c̄,1) and αt = a/t with a > 0. According

to the special settings above, the minimum of this problem is p∗ = (1,0, ...,0). We expect that

E [|c̄Tpt− c̄Tp∗|] =O (1/t) . Figure EC.3(a) confirms that the PSGD and Kiefer-Wolfowitz converge

with an order of −1.

However, a itltohught falls somewhat outside the scope of this paper’s results, it is also possible

to consider the multi-armed bandit variation of this problem. Here, the natural generalization of

the projected gradient descent algorithm applies importance sampling. Here we sample an index it

according to the distribution pt and apply the updated pi,t+1 = pi,t−αt
ci,t
pi,t

I[i= it] for i= 1, ..., n.

Simulations suggest a rate of convergence of the order of O(1/
√
t), see Figure EC.3(b).
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(a) Probability simplex example
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(b) Multi-arm bandit problem
Figure EC.3 Convergence of projected stochastic gradient descent on the probability simplex example and multi-

arm bandit problem. Expectations are computed over 100 realizations. The parameter v = 1 is

chosen for Kiefer-Wolfowitz. The step size parameter is chosen as a= 1 such that αt = 1/t for both.

In Figure EC.3(a), the fitted slope is -1.01 and -1.01 for PSGD and Kiefer-Wolfowitz. In Figure

EC.3(b), the fitted slope is -0.475.

EC.4.2. Markov Decision Processes

We now optimize a discounted Markov Decision Process (MDP) using the results from the last

section. Here we use a linear programming approach to give the convergence of a simple policy

gradient algorithm for an MDP in which the system dynamics are known but the costs are unknown.

An MDP can be formulated as a linear program, where the primal form of this linear program

solves for the optimal value function, and the dual form finds the optimal occupancy measure. In

this linear programming formulation, the dual problem takes the form:

minimize
∑
s∈S

∑
a∈A

c̄(s, a)x(s, a) (Dual)

subject to
∑
a∈A

x(s′, a) = ξ(s′) +β
∑
s∈S

∑
a∈A

x(s, a)P (s′|s, a), ∀s′ ∈ S

over (x(s, a) : s∈ S, a∈A)∈RS×A+ .

Here (ξ(s) : s ∈ S) is a positive vector. We assume that the dynamics as given by (P (s′|s, a) : a ∈

A, s, s′ ∈ S) are known but costs (c̄(s, a) : a ∈ A, s ∈ S) are unknown and must be sampled, then

above we have a linear program with an unknown objective and known constraints. For this reason,

we can apply the analysis developed in the last section.

Here we assume that we can sample costs ĉ= (ĉ(s, a) : s∈ S, a∈A) where the states and actions

are distributed according to some predetermined probability distribution π = (π(s, a) : a ∈ A, s ∈

S). There are several ways of sampling the cost vector ct for each t. The most straightforward one

is as follows. For each t, the cost ct = (ct(s, a) : s∈ S, a∈A) is sampled by first taking IID sample
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(st, at), with distribution π = (π(s, a) : s ∈ S, a ∈A) where π(s, a)> 0 for all s ∈ S and a ∈A, and

then defining

ct(s, a) =
ĉ(st, at)

π(st, at)
I[(st, at) = (s, a)] . (EC.43)

We allow for the possibility of averaging batches of costs of the form (EC.43). We then consider

the projected gradient descent algorithm xt+1 = ΠX
(
xt−αtct

)
. The projection above is onto the

constraint set of the dual problem (Dual). Our above observation on Linear Programs holds here.

Specifically, Theorem 2 and Theorem 5 hold for this PSGD algorithm.

EC.4.2.1. Three-state two-action Markov decision process We now consider the first

reinforcement learning application of our results, a relatively simple MDP. We consider an MDP

with three states S = {s1, s2, s3}. In each state, there are two actions A= {a1, a2}, corresponding

to move anticlockwise (a1) and clockwise (a2). Figure EC.4(a) shows the states and actions. When

we choose to take an action, the probability of going to the desired state is 2/3; otherwise, one

of the states uniformly at random. We assume that the costs c(s, a) are independent normally

distributed with c(si, aj) ∼ N(i,1), for i = 1,2,3. The states and actions are sampled according

to the predetermined probability distribution π = (π(s, a) = 1/6 : s ∈ S, a ∈ A). Figure EC.4(b)

demonstrates the correct convergence rate as predicted.

(a) Three-state two-action MDP graph
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(b) Three-state two-action MDP example
Figure EC.4 The three-state two-action MDP graph and convergence of projected stochastic gradient descent

on the three-state two-action MDP example. In Figure EC.4(b), the expectation is computed over

20 realizations. The costs ct(s, a) are computed with batch size B = 200. The parameters of step

size are chosen as a= 0.1, u= 1 and γ = 1 such that αt = 0.1/(1 + t). The fitted slope is -1.29.
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EC.4.2.2. Blackjack We now consider a larger tabular reinforcement learning problem for

the game of Blackjack. Blackjack is a simple card game where a player is initially dealt two cards.

The player is dealt cards sequentially before deciding to stop. The player must attempt to reach a

total that is more than the dealer but not more than 21. The problem is described in more detail

in Sutton and Barto (2018). The states of the problem depend on three factors which are: the

player’s current points (4–22); usable ace (with or without); dealer’s showing card (1–10), which

gives 290 states in total.

We label the states in sequence starting with s1 being no usable ace, the player’s current points

4 and dealer’s showing card 1, and ending with s290 being usable ace, the player’s current points 21

and dealer’s showing card 10. The actions simply consist of hitting (a1) and sticking (a0). Denote

the collection of states S = {si : i= 1, ...,290} and the collection of actions A= {ai : i= 0,1}.

We assume that the reward r̄ = (r̄(s, a) : s ∈ S, a ∈ A) can be sampled for each iteration of the

projected stochastic gradient descent by carrying on the following procedure. We first simulate

IID samples (sit, a
i
t), i= 1, ...,B from the distribution π = (π(s, a) = 1/580 : s∈A, a∈A) and then

define the cost similar as Equation (EC.43) with c̄(sit, a
i
t) = −r̄(sit, ait). In addition, according to

the rules, it is reasonable to set the discount factor β = 1. Applying the PSGD with the learning

rate of the form αt = a/(b+ t)γ , for a, b > 0 and γ ∈ [0,1], the projected stochastic gradient descent

converges with a rate of O(1/tγ) in expectation. The rate O(1/t) with γ = 1 is shown in Figure

EC.5.
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Figure EC.5 Convergence of projected stochastic gradient descent on the Blackjack example. The expectation

is computed over 10 realizations. The costs ct(s, a) are computed with batch size B = 200. The

parameters of step size are chosen as a= 0.1, u= 1 and γ = 1 such that αt = 0.1/(1 + t). The fitted

slope is -1.23.
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