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Significance

 In coastal flood hazard analysis, 
local factors like land subsidence 
from great earthquakes (>M8) are 
often overlooked. Along the 
Cascadia subduction zone 
(Washington to northern 
California), the next great 
earthquake will likely cause 0.5 to 2 
m of sudden subsidence and 
associated sea-level rise, 
dramatically expanding coastal 
floodplains. Earthquake 
deformation modeling and 
geospatial analysis show that 
subsidence from a great 
earthquake at Cascadia today 
could double the flood exposure of 
residents, structures, and roads. By 
2100, earthquake subsidence 
amplified by projected climate-
driven sea-level rise could more 
than triple the flood exposure of 
residents, structures, and roads. 
This study underscores the need to 
consider combined earthquake 
and climate impacts in planning for 
coastal resilience at the Cascadia 
subduction zone and globally.
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Climate-driven sea-level rise is increasing the frequency of coastal flooding worldwide, 
exacerbated locally by factors like land subsidence from groundwater and resource extrac-
tion. However, a process rarely considered in future sea-level rise scenarios is sudden 
(over minutes) land subsidence associated with great (>M8) earthquakes, which can 
exceed 1 m. Along the Washington, Oregon, and northern California coasts, the next 
great Cascadia subduction zone earthquake could cause up to 2 m of sudden coastal 
subsidence, dramatically raising sea level, expanding floodplains, and increasing the 
flood risk to local communities. Here, we quantify the potential expansion of the 1% 
floodplain (i.e., the area with an annual flood risk of 1%) under low (~0.5 m), medium 
(~1 m), and high (~2 m) earthquake-driven subsidence scenarios at 24 Cascadia estu-
aries. If a great earthquake occurred today, floodplains could expand by 90 km2 (low), 
160 km2 (medium), or 300 km2 (high subsidence), more than doubling the flooding 
exposure of residents, structures, and roads under the high subsidence scenario. By 2100, 
when climate-driven sea-level rise will compound the hazard, a great earthquake could 
expand floodplains by 170 km2 (low), 240 km2 (medium), or 370 km2 (high subsidence), 
more than tripling the flooding exposure of residents, structures, and roads under the 
high subsidence scenario compared to the 2023 floodplain. Our findings can support 
decision-makers and coastal communities along the Cascadia subduction zone as they 
prepare for compound hazards from the earthquake cycle and climate-driven sea-level 
rise and provide critical insights for tectonically active coastlines globally.

earthquake hazards | coastal subsidence | sea-level rise | subduction zone hazards |  
compound hazards

 Climate-driven 21st-century sea-level rise is exposing coastal populations, infrastructure, 
and ecosystems around the world to more frequent marine inundation ( 1     – 4 ). At many 
coastal locations, downward vertical land motion (i.e., land subsidence) sometimes exceed-
ing 5 mm/y is amplifying local relative sea-level rise (RSLR), defined as the change in sea 
level at a specific location relative to the land, and increasing flooding frequency ( 5         – 10 ). 
However, along much of the coast of Washington, Oregon, and northern California, 
gradual coastal uplift caused by crustal deformation during the interseismic phase of the 
current Cascadia subduction zone (CSZ) earthquake cycle locally mitigates the effects of 
climate-driven sea-level rise ( 11     – 14 ). Coastal uplift rates of 1 to 3 mm/y exceed the current 
rate of climate-driven sea-level rise at locations such as Astoria, OR, Port Orford, OR, 
and Crescent City, CA, with tide gauges recording RSL fall. At other locations, such as 
Yaquina Bay, OR, and Coos Bay, OR, where uplift rates are lower, tide gauges show 0.3 
to 1.2 mm/y of RSLR, well below the global sea-level rise rate of 4.5 ± 1 mm/y ( 14   – 16 ). 
An exception is Humboldt Bay in Northern California, where complex regional tectonics 
are causing gradual subsidence, resulting in the highest recorded Pacific-coast RSLR rate 
of 4.7 mm/y ( 17 ).

 The tectonic tempering of climate-driven sea-level rise along the Washington, Oregon, 
and northern California coasts is projected to be short-lived; by ~2030, rates of 
climate-driven sea-level rise are expected to outpace gradual uplift. By 2050, central (50th 
percentile) sea-level projections for a high emissions scenario [SSP3-7.0 ( 18 ) show 0.1 to 
0.3 m of RSLR. By 2100, sea levels are projected to rise 0.4 to 0.9 m. The acceleration of 
RSLR will require Washington, Oregon, and northern California residents and planners 
to contend with compromised roadways and bridges, more frequently and/or permanently 
inundated lifelines and critical infrastructure, increased high-tide flooding and vulnera-
bility to storm-surges, increased coastal erosion and barrier dune breaching, and eroding 
or inland-migrating coastal marshes ( 12 ,  19   – 21 ).
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 Yet, gradual climate-driven sea-level rise is not the only inun-
dation threat facing CSZ coastlines. Coastal subsidence from the 
next great (>M8) CSZ earthquake may produce >1 m of sudden 
RSLR much sooner than 2100 as evidenced in Cascadia’s intertidal 
wetland stratigraphy ( 22 ,  23 ). Stratigraphic evidence of 
earthquake-driven subsidence from the most recent great earth-
quake along the CSZ, which occurred on 26 January 1700 CE, 
indicates sudden (over minutes) 0.5 to 2 m RSLR, resulting in 
submergence of low-lying intertidal wetlands and floodplains that 
may persist for decades to centuries after an earthquake ( 23           – 29 ). 
Radiocarbon dating of plant fragments preserved within 
pre-earthquake peat or overlying mud suggests >11 great earth-
quakes along Cascadia’s coasts in the last 6 to 7 ka, recurring every 
~200 to 800 y ( 30 ).

 Earthquake-driven coastal subsidence following recent histor-
ical earthquakes has had severe consequences for communities, 
leading to permanent land loss, infrastructure damage, and forced 
relocation( 31 ,  32 ). The 1960 Chile earthquake caused up to 2.5 
m of coastal subsidence, permanently submerging coastal pine 
forests and farms and converting them to intertidal marshes ( 33 ), 
and flooding coastal towns and forcing residents to abandon 
homes and rebuild inland ( 34 ). In 1964, the Alaska earthquake 
lowered coastal areas by over 2 m, rendering roads, docks, and 
waterfront areas uninhabitable, in some cases necessitating relo-
cation of communities to higher ground or raising waterfront 
facilities and airstrips above high tide ( 35 ). The 2004 Sumatra–
Andaman earthquake caused land subsidence of up to a meter 
that led to chronic tidal flooding in waterfront areas used for 
aquaculture, resulting in oversalinization ( 36 ), and causing coastal 
erosion and land loss ( 36 ). Similarly, the 2011 Tōhoku earthquake 
in Japan caused up to 1 m of subsidence, disrupting ports ( 37 ), 
causing shoreline erosion ( 38 ), and permanently altering the mor-
phology of river mouths ( 39 ).

 At the CSZ, the National Seismic Hazard Model calculates a 
time-independent 15% probability of a M ≥ 8 rupture sometime 
in the next 50 y ( 40 ). Such an earthquake could suddenly lower 
coastal areas by 0.5 to 2 m, drastically altering shorelines and 
causing profound, lasting impacts to coastal populations, infra-
structure, and ecosystems. Unlike gradual climate-driven RSLR, 
this earthquake-driven RSLR will happen within minutes, leaving 
no time for adaptation or mitigation. Moreover, climate-driven 
sea-level rise will make coastal areas even more vulnerable to the 
effects of future earthquake-driven subsidence as it progresses 
paired with the increased probability (29%) of a M ≥ 8 earthquake 
occurring by 2100 ( 40 ).

 Here, we use earthquake rupture and deformation modeling in 
combination with geospatial analysis to quantify the projected 
expansion of coastal floodplains at 24 CSZ estuaries and surround-
ing communities if earthquake-driven subsidence occurs today 
(2023), or in 2100, when projected climate-driven RSLR will 
amplify flooding. We assess the impacts of expanded floodplains 
on land use, residents, structures, and roads, illustrating the impor-
tance of considering the compound hazards of earthquake- and 
climate-driven RSLR in coastal planning on the Pacific coast of 
the United States and other tectonically active coastlines. 

Results

Effects of Earthquake-Driven Subsidence Today. Using 2023 as a 
baseline, we use geospatial analysis to quantify the expansion of the 
1% floodplain area following earthquake-driven subsidence and 
its impact on land use, residents, structures, and roads (41–50) at 
24 CSZ estuaries and surrounding communities (Fig. 1A; see the 
Data Availability section and SI Appendix for geospatial dataset 

information). The 1% (100-y) floodplain includes land that is 
covered in water during a flood that has a 1% chance of being 
equaled or exceeded each year. We define the perimeter of the 1% 
floodplain as the 1% annual exceedance probability water level 
as measured at a series of National Oceanic and Atmospheric 
Administration (NOAA) tide gauges along the Washington, 
Oregon, and northern California coasts (51) (Materials and 
Methods). Our 1% floodplain perimeters are broadly aligned with 
the Federal Emergency Management Administration (FEMA) 
high-risk flood zones within which residents and businesses are 
required to have flood insurance (52). To depict the floodplains, 
we overlayed the local 1% annual exceedance probability water-
level boundary, which ranges from 1.08 to 1.23 m above mean 
higher high water (MHHW) (Fig.  1C and Table 1), on 10-m 
(1/3 arc-second) resolution digital elevation model (DEM) tiles 
(53) (Materials and Methods). We then adjusted the elevation of 
the 1% floodplain boundary upward by the modeled low (50th 
percentile), medium (10th percentile), and high (maximum 
recorded) earthquake-driven subsidence projections for each 
estuary defined in the FakeQuake Catalog, a forward modeling 
tool for earthquake ruptures used to simulate coseismic subsidence 
along the CSZ (54, 55) (Fig.  1 B and C and Table  1). These 
ruptures range in magnitude from 7.7 to 9.2 and were chosen 
due to their ability to match the coastal subsidence records 
correlated to the 1700 CE earthquake. The catalog includes fault 
slip heterogeneity and variable rupture areas, including both full-
margin and smaller partial-margin ruptures. At the CSZ estuaries 
analyzed, the modeled low subsidence ranges from 0.23 to 0.67 
m, the medium subsidence ranges from 0.46 to 1.34 m, and the 
high subsidence ranges from 0.93 to 2.67 m. For each subsidence 
scenario, we use a constant value of subsidence throughout the 
estuaries and limit our analysis to ~30 km inland from the coast 
due to the uncertainty in how coseismic subsidence will decay 
inland (56). Most sites analyzed lie within 10 km of the coastline, 
except for those in Washington, which extend out to our 30 km 
inland analysis limit. We note that we report the change in the 
floodplain area, rather than the total floodplain area before and 
after subsidence since some parts of the current 1% floodplain are 
already covered by water.

 Our analysis shows that if a CSZ earthquake occurred today, 
earthquake-driven subsidence would increase the area of the 1% 
floodplain at the 24 estuaries by 90 km2  (low subsidence), 160 
km2  (medium subsidence), or 300 km2  (high subsidence;  Table 2 , 
 Figs. 2  and  3  and SI Appendix, Figs. S1–S53 ). The land-use cate-
gories with the largest increase in land area within the 1% flood-
plain are parks and open space (340 km2  to 410 km2 ) and farm 
use (100 km2  to 160 km2 ) under the high subsidence scenario. 
Other notable impacts to land use under the high subsidence 
scenario include increased exposure to flooding of residential and 
rural residential (60 km2  to 100 km2 ) and commercial (100 km2  
to 120 km2 ) land.                

 Along with impacts to land use, earthquake-driven subsidence 
will cause significant impacts to coastal residents, structures, and 
roads ( Table 2 ,  Fig. 2  and  3  and SI Appendix, Figs. S1–53 ). 
Within the 2023 1% floodplain at the 24 estuaries, there are 8,120 
residents, 13,370 structures, and 700 km of roadway exposed to 
flooding. Following high-end earthquake-driven subsidence 
today, an additional 14,350 residents (177% increase), 22,500 
structures (168% increase), and 1,250 km of roadway (179% 
increase) are estimated in the 1% floodplain, more than doubling 
flood exposure.

 Postseismic land-level change occurring in the months to years 
after the next great CSZ earthquake could either temper or exac-
erbate coseismic subsidence. Luo et al. (2022) ( 58 ) modeled the D
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coseismic and postseismic deformation of the 1700 CE CSZ 
earthquake along coast-perpendicular profiles in southern 
Washington and northern Oregon and found that postseismic 
deformation from viscoelastic relaxation is negligible after 1 y, but 
afterslip—the slip that may occur between the Episodic Tremor 
and Slip zone and the seismogenic zone—could produce decim-
eters of uplift along the coast, depending on the downdip width 
of the afterslip. Also at the CSZ, high-resolution dating of 
post-1700 CE sediments shows the reestablishment of intertidal 
wetlands following coseismic subsidence takes centuries, suggest-
ing a sustained submergence of the coast ( 29 ).

 At other subduction zones, geodetic studies following the 2004 
Mw 9.2 Sumatra–Andaman earthquake and the 2011 Mw 9.0 
Tōhoku earthquake show that in some locations, coseismic sub-
sidence has been exacerbated by continued postseismic subsidence 
( 59   – 61 ), while other studies found that coastal locations recov-
ered between 10%-50% of their subsidence through postseismic 
uplift within years ( 61 ,  62 ). At the CSZ, the magnitude and 
direction of postseismic deformation following a future great 
earthquake is uncertain. For the purposes of our study, postseis-
mic land-level change may, for example, cause projected subsid-
ence to increase from the “medium” to “high” scenario, or decrease 
from the medium to “low” scenario, depending on postseismic 
land-level change.  

Amplified Impacts of Earthquake-Driven Subsidence Under 
Climate-Driven Sea-Level Rise. The probability of a CSZ 
earthquake increases with time, and with time, climate-driven sea-
level rise is projected to expand CSZ floodplains, compounding 
the impacts of earthquake-driven subsidence when it does occur. 
To explore this amplification effect, we use a central estimate 

(50th percentile) from the Intergovernmental Panel on Climate 
Change (IPCC) AR6 SSP3-7.0 localized RSLR projections (63) 
(18) (Fig. 1D) to depict the climate-driven expansion of the 1% 
floodplain at the 24 CSZ estuaries for the year 2100 (Figs. 2 and 
3). SSP3-7.0 assumes emissions and temperatures rise steadily and 
CO2 emissions roughly double from current levels by 2100 (63).

 The central estimates of RSLR for 2100 along the Washington, 
Oregon, and northern California coasts range from 0.4 to 0.9 m 
( Table 1 ). Our geospatial analysis shows that by 2100, climate- 
driven sea-level rise is projected to increase the land area within 
the 1% floodplain by 100 km2 . This expansion of the 1% flood-
plain would produce similar land-use impacts to the low 
earthquake-driven subsidence scenario described in the previous 
section ( Table 2 ).

 In addition to leaving CSZ shorelines more vulnerable to 
high-tide flooding and storm impacts ( 20 ), the expansion of the 
1% floodplain due to climate-driven RSLR will amplify the effects 
of earthquake-driven subsidence. If a CSZ earthquake occurs in 
2100, compared to the 2023 1% floodplain, combined 
climate-driven RSLR and earthquake-driven subsidence would 
increase the land area within the 1% floodplain by 170 km2  (low 
subsidence), 240 km2  (medium subsidence), or 370 km2  (high 
subsidence;  Table 2  and  Figs. 2  and  3 ). The land-use categories 
with the largest increase in land area within the 1% floodplain 
continue to be parks and open space (340 km2  to 430 km2 ), farm 
use (100 km2  to 180 km2 ), residential and rural residential (60 
km2  to 120 km2 ), and commercial (100 km2  to 130 km2 ) under 
the combined climate-driven SLR and high-subsidence scenario 
compared to the 2023 1% floodplain.

 The combined effects of climate-driven RSLR and earthquake- 
driven subsidence amplify the impact to coastal residents, structures, 
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and primary roads ( Table 2  and  Figs. 2  and  3 ). Compared to the 
2023 1% floodplain, high-end earthquake-driven subsidence ampli-
fied by climate-driven RSLR in 2100 more than triples flood expo-
sure. This most extreme scenario would expose an additional 17,710 
residents (218% increase), 29,060 structures (217% increase), and 
1,620 km of roadway (231% increase) to flooding.   

Discussion

 The Cascadia Rising Scenario conducted in 2016 and 2022 out-
lined the potential impacts of shaking, tsunami inundation, land-
slides, and liquefaction from a ~M9 CSZ earthquake in Oregon 
and Washington, projecting >30,000 casualties, 2,000 destroyed 
bridges, >170,000 damaged or destroyed coastal structures, and 
heavy damage to >75% of coastal roadways, >60% of coastal fire 
stations, >75% of coastal schools, and >80% of seaports, for a 
resulting economic impact of >$81 billion ( 64   – 66 ). However, the 
potential effects of earthquake-driven subsidence, which may per-
sist over decades to centuries, and the additional flooding exposure 
it will cause has not been previously quantified and could sub-
stantially increase the timeline to recovery.

 Our results demonstrate the significant and lasting effects that 
sudden earthquake-driven subsidence would have on low-lying 
coastal communities along the CSZ and, therefore, the need for 
considering subsidence in future hazard assessments. We also high-
light the role that 21st-century climate-driven RLSR will have in 

amplifying the impacts of a future earthquake. If a great CSZ 
earthquake occurred today, between 90 km2  (low subsidence) and 
300 km2  (high subsidence) of low-lying coastal land area would 
be lowered into the 1% floodplain by earthquake-driven subsid-
ence. The greatest impacts to people and infrastructure (i.e., struc-
tures and roads) are in the more densely populated areas of 
southern Washington, northern Oregon, and northern California. 
Farmlands developed for cattle grazing and farming through dik-
ing and draining in the early 20th century ( 42 ,  67 ) are one of the 
most heavily impacted land-use categories along the CSZ. More 
frequent marine inundation of farmlands will result in salination 
of agricultural soils and higher salt levels in groundwater, resulting 
in substantial economic losses ( 68 ,  69 ).

 In Oregon, our 2023 high-earthquake-driven subsidence sce-
nario depicts a similar amount of flooding as detailed in the 
Oregon Sea-Level Rise Inventory for Oregon’s estuaries ( 20 ) in 
2100, which shows that such an expansion of the 1% floodplain 
would impact 5 airports, 18 critical facilities (e.g., public schools, 
hospitals, fire stations, police stations, city halls, etc.), 8 waste-
water treatment plants, 1 electric substation, and 57 potential 
contaminant sources (animal feeding operations, gas stations, 
solid waste facilities, chemical storage, liquid waste storage). If 
the next earthquake occurs in 2100 (after climate-driven RSLR 
has already begun to impact the coast) and RSLR rates exceed 
postseismic and/or interseismic uplift rates, low-lying areas along 
the CSZ may never recover. Today, and more so in 2100, the 

Table 1.   *Low (50th percentile), medium (10th percentile), and high (maximum recorded) earthquake-driven subsid-
ence values modeled with the FakeQuakes module (Small and Melgar, 2021)

Earthquake-driven Subsidence* Starting elevation of 1% floodplain, 
relative to MHHW** in meters

Climate-driven sea-level 
rise in 2100 in meters***Site Low (m) Medium (m) High (m)

 Grays Harbor  0.45  0.90  1.80  1.20  0.44

 Willapa Bay  0.51  1.02  2.05  1.20  0.44

 Columbia  0.67  1.34  2.67  1.20  0.41

 Necanicum River  0.52  1.04  2.08  1.20  0.41

 Nehalem Bay  0.46  0.91  1.83  1.21  0.54

 Tillamook Bay  0.40  0.80  1.59  1.21  0.54

 Netarts Bay  0.36  0.73  1.45  1.22  0.54

 Sand Lake  0.37  0.75  1.50  1.22  0.54

 Nestucca River  0.36  0.73  1.45  1.22  0.54

 Salmon River  0.35  0.70  1.41  1.22  0.54

 Siletz Bay  0.38  0.75  1.51  1.23  0.54

 Yaquina Bay  0.34  0.67  1.35  1.23  0.59

 Alsea Bay  0.23  0.46  0.93  1.22  0.59

 Siuslaw River  0.31  0.62  1.25  1.19  0.54

 Umpqua River  0.35  0.70  1.41  1.16  0.56

 Coos Bay  0.28  0.57  1.14  1.14  0.52

 Coquille River  0.50  1.01  2.01  1.13  0.52

 Sixes River  0.50  1.01  2.01  1.12  0.51

 Elk River  0.50  1.01  2.01  1.12  0.51

 Rogue River  0.50  1.01  2.01  1.10  0.51

 Pistol River  0.50  1.01  2.01  1.09  0.51

 Chetco River  0.50  1.01  2.01  1.08  0.39

 Winchuck River  0.50  1.01  2.01  1.08  0.39

 Humboldt/Eureka  0.49  0.98  1.96  1.09  0.86
**MHHW. ***50th percentile value of the IPCC AR6 SSP3-7.0 local sea-level projections for each estuary in this study.
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immediate effect of earthquake-driven subsidence will be a delay 
in response and recovery to the earthquake due to compromised 
assets; long-term effects could render many coastal communities 
uninhabitable ( 70 ). Although we do not quantify damage to sea-
ports, previous reports suggest that earthquake-driven subsidence 
will also compromise jetties, inlets, and navigation channels, 
affecting port operations and disaster response ( 65 ). Additionally, 
liquefaction and lateral spreading could locally amplify subsidence 
in river valleys, waterfronts, and artificially filled coastal locations 

where critical assets along the CSZ coastline are often located 
( 66 ,  71 ).

 Beyond the direct impacts on infrastructure, sudden 
earthquake-driven subsidence can appreciably impact natural sys-
tems—particularly coastal estuaries, intertidal wetlands, and pro-
tective dunes and beaches. Wetland loss is a concern: Intertidal 
wetlands typically migrate inland in response to rising sea levels, 
but this inland movement can be constrained by topography and 
human development. This is especially true along the Oregon 

Table 2.   The change in the land area, residents, structures, and roads in the 1% floodplain today (2023) and in 2100, 
and the impact of low, medium, and high earthquake-driven subsidence at each time period

Change in 1% 
floodplain area 

(km2)

Permanent 
residents in 

1% floodplain
Total 

change % change
Structures in 
1% floodplain

Total 
change % change

Kilometers of 
primary roadway 
in 1% floodplain

Total 
change % change

﻿2023 1% 
Floodplain﻿

﻿  8120 ﻿ ﻿  13,370 ﻿ ﻿  700 ﻿ ﻿

 Low subsidence  90  11,100  2,980  37  18,180  4,810  36  990  290  41

 Medium 
subsidence

 160  14,740  6,620  82  23,830  10,460  78  1,300  600  86

 High subsidence  300  22,470  14,350  177  35,870  22,500  168  1,950  1,250  179

﻿2100 1% 
Floodplain﻿

 100  11,530  3,410  42  18,970  5,600  42  1,040  340  49

 Low subsidence  170  15,000  6,880  85  24,550  11,180  84  1,350  650  93

 Medium 
subsidence

 240  19,060  10,940  135  30,350  16,980  127  1,670  970  139

 High subsidence  370  25,830  17,710  218  42,430  29,060  217  2,320  1,620  231

Total change calculations are made relative to the starting 2023 value in each category. All values are rounded to the nearest 10.

Fig. 2.   Floodplain maps and bar graphs depicting the expansion of the 1% floodplain after earthquake-driven subsidence today (2023) and in 2100 when the 
earthquake-driven subsidence is amplified by climate-driven sea-level rise for (A) Grays Harbor, WA; and (B) Willapa Bay, WA. Bar graphs to the right of each 
map set show the amount of land area, number of residents, structures, roads, and different land-use types in the 1% floodplain following earthquake-driven 
subsidence today (2023) and in 2100, when the effects of earthquake-driven subsidence are amplified by climate-driven sea-level rise.D
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coast, where Brophy et al. (2018) ( 21 ) demonstrated that a 
sea-level rise of ~2.7 m could lower ~50% of existing Oregon 
intertidal wetlands to mudflat elevations, a result comparable to 
that in this study’s high-subsidence scenarios in 2100. Thorne 
et al. (2018) ( 72 ), who also considered intertidal wetland accretion 
rates, found that under ~1.4 m of RSLR, Oregon would lose all 
of its high and middle intertidal wetland environments. The loss 

of intertidal wetlands directly impacts ecosystem services such as 
water filtration, habitat for fisheries and shorebirds, and carbon 
storage capacity ( 72 ). Intertidal wetlands function as natural car-
bon sinks, and their erosion or conversion to tidal flats reduces 
their ability to sequester carbon ( 73 ). The erosion and drowning 
of coastal wetlands caused by earthquake-driven subsidence will 
also diminish their role as natural buffers against storm surges. 

Fig. 3.   Floodplain maps and bar graphs depicting the expansion of the 1% floodplain after earthquake-driven subsidence today (2023) and in 2100 when 
the earthquake-driven subsidence is amplified by climate-driven sea-level rise for the (A) Necanicum River, OR; (B) Yaquina Bay, OR; (C) Alsea Bay, OR; and (D) 
Humboldt Bay, CA. Bar graphs to the Right of each map set show the amount of land area, number of residents, structures, roads, and different land-use types 
in the 1% floodplain following earthquake-driven subsidence today (2023) and in 2100, when the effects of earthquake-driven subsidence are amplified by 
climate-driven sea-level rise.
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Intertidal wetlands can dissipate wave energy, keeping storm surges 
from penetrating inland and preventing sediment erosion and 
property damage ( 74 ,  75 ).

 Earthquake-driven subsidence also puts ocean-exposed sandy 
coastlines at risk. For example, during the 2015 to 2016 El Niño 
year, a modest RSLR of 7 to 17 cm along the Pacific coast of the 
United States resulted in substantial coastal erosion, with shoreline 
retreat 70% greater than during normal winter conditions ( 76 ). 
Sudden earthquake-driven subsidence can also increase the tidal 
range within an estuary, exacerbating issues such as high-tide 
flooding and the impacts of storm surges coinciding with high 
tides. A study in the Columbia River estuary showed that pro-
jected earthquake-driven subsidence could result in up to a 10% 
increase in the local tidal range ( 22 ).

 Finally, sudden earthquake-driven subsidence and climate-driven 
sea-level rise also need to be considered in tsunami inundation 
maps. The current tsunami inundation maps for Washington, 
Oregon, and California take into account the subsidence that will 
occur during the next CSZ earthquake and how this will increase 
tsunami inundation ( 77   – 79 ). However, tsunami hazard maps do 
not consider climate-driven sea-level rise and the amplification 
effect it will have on future tsunamis. ( 80 ) showed that under 
future climate-driven sea-level rise scenarios, tsunamis created by 
more common, smaller magnitude earthquakes can have the same 
coastal wave heights as rare, great-earthquake generated tsunamis. 
This lesser-considered effect of climate-driven RLSR, especially 
combined with earthquake-driven subsidence and tides, may 
imply increased flooding risk in future hazard assessments ( 80 ,  81 ).

 Our findings stress the importance of incorporating the effects 
of earthquake-driven subsidence into future flood hazard assess-
ments at the CSZ, as well as considering how climate-driven RSLR 
will amplify the impacts of a future earthquake and tsunami. 
Preparing for these compound hazards can minimize long-term 
damage, ensure resilient communities, and protect critical coastal 
ecosystems from permanent degradation. Given the global prev-
alence of subduction zones, these insights hold relevance beyond 
the CSZ, informing hazard assessments and mitigation strategies 
for tectonically active regions worldwide.  

Materials and Methods

Geospatial Analysis. To assess the impacts of potential earthquake-driven and 
climate-driven sea-level rise, we created a series of “bathtub” style 1% floodplain 
contour polygons on 10-m (1/3 arc-second) resolution DEM tiles from the U.S. 
Geological Survey (USGS) National Map 3DEP data collection (53). The contour 
polygon elevations were determined from combinations of potential earthquake-
driven subsidence and sea-level rise values. Site-specific 1% exceedance water 
level elevations are from the NOAA Tides and Currents database for sites at Astoria, 
OR, Charleston, OR, and South Beach, OR (51). For each site, we apply the closest 
1% exceedance water level value to define the perimeter of the 1% floodplain. The 
starting elevation of the 1% floodplain at each site is reported in Table 1 relative 
to MHHW. The 1% floodplain contours presented here closely correspond to the 
FEMA “still water” elevations (82), and likely represent the lower end of potential 
impacts, as additional impacts from river flow, snow melt cycles, precipitation, 
and wave action are not included.

To quantify earthquake-driven subsidence and sea-level rise impacts, contour 
polygons were intersected with a variety of data including state and county-
level land use zoning, road, structure footprint, and population data (41–50) 
(Dataset S1). To remove inconsistencies with land use data coding between states, 
a unified land use code was created for use in this study. Since a wide variety of 
subcategories existed within certain land zones like commercial and industrial, 
these subcategories were combined into a single category for the entire study 
area, eliminating regional coding discrepancies. We note that our starting 1% 
floodplain areas include open water and estuary land. Because of this, in the 
main text, we emphasize the change in land area in the 1% floodplain rather 

than the total area. For our land-use impacts analysis, we removed “shorelands” 
and “estuary” in order to focus more on on-land impacts. Despite open water 
sometimes being classified as “parks and open space”, we kept it in the dataset 
because the “parks and open space” category is also often found on land.

Sea-Level Rise Projections. The IPCC AR6 sea-level change projections used in 
this work are medium-confidence projections for the SSP3-7.0 emissions scenario 
(83). The medium-confidence projections use methods and assumptions about 
the individual processes that contribute to sea-level change that are assessed to 
have medium confidence or stronger by the IPCC and therefore do not include 
contributions that could lead to more extreme sea-level rise, but which have lower 
confidence levels (such as Marine Ice Cliff Instability). The sea-level rise projec-
tions are provided on both a 1×1 degree grid, and at 1,030 tide gauge locations 
from around the world. The sea-level rise projections are provided in decadal time 
steps starting in 2020 and extending to the year 2150; here, we focus on the 50th 
percentile of projections for the year 2100 (18, 63)—and therefore do not account 
for the possibility of more extreme, tail-area sea-level rise totals.

For this work, we use the publicly available NASA Sea Level Projection tool 
(83) to isolate the projected sea-level rise at points that are most relevant for 
our work. This allows us to select the best sea-level rise value for each location 
on a case-by-case basis, whether that value comes from the nearest 1×1 degree 
ocean grid cell in the gridded sea-level rise dataset or a tide gauge location 
along the Pacific coast. Because sea-level rise values from the gridded dataset 
will have interpolations that capture vertical land motion to varying degrees of 
success, this manual approach to selecting sea-level rise projection values allows 
us to ensure that we are using the best sea-level projection for each site, based 
on how well vertical land motion is captured within both the gridded data and 
the tide gauge dataset.

Modeled and Observed Earthquake Subsidence Estimates. Subsidence 
estimates are calculated at each site based on about 1,600 kinematic, stochastic 
slip rupture models (54) of varying magnitudes between 7.7 and 9.2. These 
models come from a larger catalog of 37,500 hypothetical ruptures (55). Each of 
these ruptures is unique from one another, with rupture area, amount of slip, and 
location of dominant slip patches varying between ruptures. These ruptures were 
initially chosen based on their abilities to match the coastal subsidence records 
correlated to the 1700 CE event (23, 57). Subsidence estimates for the 1700 CE 
event are distributed along the entire length of the CSZ, likely representing a 
full-margin rupture. To account for the possibility of shorter or segmented rupture 
scenarios, each kinematic rupture model must reproduce the observed 1700 CE 
subsidence for sites located within 50 km of the modeled rupture area. This allows 
for a wider range of subsidence estimates to be modeled.

For each kinematic rupture model, coseismic subsidence is calculated at each 
site using the analytical solution for angular dislocations for triangular subfaults 
in an elastic half space (84). Based on 1,600 model results, three coseismic sub-
sidence values are determined for each site: a small, medium, and high value. 
We base the high subsidence value on the largest subsidence modeled at each 
location to function as the “worst-case scenario.” Stated prior, modeled subsid-
ence values are validated with respect to coastal subsidence estimates previously 
determined for the 1700 CE event, although not all geologic sites with subsidence 
estimates are colocated with the 24 sites modeled in this study. As a result, mod-
eled sites closest to the geologic sites with estimated subsidence values more 
closely resemble the upper bounds of the 1700 CE geologic subsidence esti-
mates. Locations that are farther from sites with observed subsidence estimates 
are less constrained by the 1700 CE data, and as a result the models produced 
higher “worst-case scenario” subsidence estimates there (e.g., Sixes River, Elk 
River, Rogue River, Pistol River, Chetco River, Winchuck River, Oregon). Due to 
modeled subsidence estimates being unrealistically high at these locations, we 
used the closest, better constrained subsidence estimate (e.g., Coquille River) 
for these sites (Table 1). At the 24 sites, mean subsidence values are −0.4 m, 
−0.9 m, and −1.7 m for the low, medium, and high modeled subsidence values, 
respectively. The modeled subsidence values follow the low (50th percentile), 
medium (10th percentile), and high (maximum recorded) earthquake-driven 
subsidence values of the 1,600 ruptures for each site location.

Data, Materials, and Software Availability. All data integral to the 
stated conclusions are presented within the results, Materials and Methods, 
or SI  Appendix. All shapefiles generated in this study are available at  D
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https://github.com/DuraGEOSVT/Cascadia (85). Digital elevation models are 
publicly available at the following links: https://www.usgs.gov/the-national-
map-data-delivery (53) and https://www.usgs.gov/3d-elevation-program. 
Geospatial analysis datasets are publicly available at the following links: 
https://geohub.oregon.gov/datasets/oregon-geo::zoning/about (86) (Oregon 
Land Use and Land Cover), https://humboldtgov.org/276/GIS-Data-Download 
(87) (California Land Use and Land Cover), https://geo.wa.gov/datasets/wa-
geoservices::washington-state-land-use-2010/about (88) (Washington Land 
Use and Land Cover), https://www.arcgis.com/home/item.html?id=3bc7b-
d2ef9e54f66886f4c095a6eb63c (89) (Oregon Roads), https://humboldtgov.
org/276/GIS-Data-Download (90) (California Roads), https://www.co.pacific.
wa.us/gis/DesktopGIS/WEB/index.html (91) (Pacific County Roads), https://
www.graysharbor.us/departments/central_services/GISDataDownload.php 
(92) (Grays Harbor Roads), https://data.humdata.org/dataset/united-states-
high-resolution-population-density-maps-demographic-estimates (93), 
https://fema.maps.arcgis.com/home/item.html?id=0ec8512ad21e4bb-
987d7e848d14e7e24 - overview (94), and https://github.com/microsoft/
USBuildingFootprints?tab=readme-ov-file (95) (all site structures).
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