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Abstract. In preparation for the next generation of galaxy redshift surveys, and in par-
ticular the year-one data release from the Dark Energy Spectroscopic Instrument (DESI),
we investigate the consistency of a variety of effective field theory models that describe the
galaxy-galaxy power spectra in redshift space into the quasi-linear regime using 1-loop per-
turbation theory. These models are employed in the pipelines velocileptors, PyBird, and
Folpsν. While these models have been validated independently, a detailed comparison with
consistent choices has not been attempted. After briefly discussing the theoretical differences
between the models we describe how to provide a more apples-to-apples comparison between
them. We present the results of fitting mock spectra from the AbacusSummit suite of N-body
simulations provided in three redshift bins to mimic the types of dark time tracers targeted by
the DESI survey. We show that the theories behave similarly and give consistent constraints
in both the forward-modeling and ShapeFit compressed fitting approaches. We additionally
generate (noiseless) synthetic data from each pipeline to be fit by the others, varying the scale
cuts in order to show that the models agree within the range of scales for which we expect
1-loop perturbation theory to be applicable. This work lays the foundation of Full-Shape
analysis with DESI Y1 galaxy samples where in the tests we performed, we found no system-
atic error associated with the modeling of the galaxy redshift space power spectrum for this
volume.
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1 Introduction

The evolution of structures in the Universe is a powerful observational tool that holds a wealth
of information about its initial conditions and expansion history. Large Scale Structure (LSS)
can be probed with spectroscopic surveys that use galaxies, quasars, the Lyα forest, etc. as
tracers of the underlying matter distributions. The completed Sloan Digital Sky Survey
(SDSS; [1]) consisting of the Baryon Oscillation Spectroscopic Survey (BOSS; [2–5]) and the
SDSS-IV extended Baryon Oscillation Spectroscopic Survey (eBOSS; [6, 7]) is the largest,
public galaxy redshift survey to date. However, it has only scanned a small fraction of
the observable Universe. Therefore, much of the information on fundamental physics and
the Universe’s history we can potentially gain from LSS observations lies ahead of us with
upcoming surveys such as the Dark Energy Spectroscopic Instrument (DESI; [8–12]), Euclid
[13], and beyond [14].

In parallel with the design of new instruments is also the development of more sophis-
ticated analysis pipelines to interpret the increasingly more constraining data. In galaxy
clustering analyses, the most common approach is to employ methods based on cosmological
perturbation theory. Such theories have a history dating back decades (see e.g. ref. [15] for an
early review and references to the original literature) but have seen continual development to
the present day (see e.g. ref. [16] for a recent review). Modern perturbation theories include
contributions from non-linear dynamics [15], broadening of features by long-wavelength fields1

[19–23], redshift-space distortions [24, 25], galaxy bias [26, 27] and ‘counterterms’ to mitigate
sensitivity to small-scale physics [16]. Such models can be formulated in either a Lagrangian
or Eulerian framework and are able to self-consistently describe a wide range of cosmological
observables.

There are four main versions of these perturbative models that have been implemented
in efficient codes and are typically applied to data. These will be introduced in some detail
below. In principle, these codes all agree on a ‘unique’ prediction for the low-order statistics
of biased tracers in redshift space, for both configuration-space and Fourier-space statistics.
However, in practice, these models are normally applied to data or simulations with different
datasets or assumptions about window functions, nuisance parameters, fitting range, priors
and other details. This makes understanding the degree of agreement between the models
difficult, and can erroneously give the impression that the models are inconsistent in some way.
In order to dispel this misconception, and in anticipation of the upcoming Y1 data release
from DESI [28–36] for which these models will be employed, it is important to understand how
differences in constraints between modeling pipelines are driven by internal priors and to show
that the different codes perform similarly under the same assumptions. The purpose of this
paper is to compare the constraints on ΛCDM and compressed parameters generated by three
Fourier-space models that will be used on upcoming DESI data analyses, and show that under
consistent assumptions these models do in fact agree in their constraints. This issue has been
partially investigated for the PyBird, class-pt, and CLASS-OneLoop models in Refs. [37, 38].
However, those models are based on the same theory and differ only in their prior choices.
The models we compare here (velocileptors, Folpsν, and PyBird) additionally differ in
their theoretical frameworks and resummation schemes. We also compare the behavior of our

1This frequently goes under the name “IR resummation”, because it involves summing the contributions of
long-wavelength perturbations to higher order than other terms. A comparison of the Eulerian and Lagrangian
approaches can be found in Appendix A of ref. [17], and the close numerical correspondence of the approaches
can be found in Fig. 3 of ref. [18].
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models within two different fitting techniques, where one (“Full-modeling”) directly varies the
parameters within a given cosmological model (e.g. ΛCDM) while the other (“ShapeFit”) uses
a single reference linear power spectrum and then varies compressed parameters that control
the shape information and late-universe dynamics. The comparison in this paper focuses on
Fourier space (power spectrum) models, but a similar comparison is underway that compares
the predictions of these models, transformed to configuration space, to those of the purely
configuration space model EFT-GSM [39].

The outline of the paper is as follows. In §2 we describe the mock galaxy catalogs that
are used in the bulk of this work to test the agreement of the models on complex datasets
for which the ‘true’ cosmology is known. In §3 we first give an overview of the Eulerian and
Lagrangian Perturbation Theory (EPT and LPT) formalisms before introducing each model
under consideration. We note that detailed descriptions of these models can be found in their
respective individual papers and only a brief summary of their relevant features are discussed
here. We then describe two parametrization choices (minimal and maximal freedom) for the
bias terms that we will employ in our comparisons and then conclude the section with a
short summary of the key differences between the models. Then, in §4 we briefly describe
the Full-modeling and ShapeFit fitting methods. In §5, we present results both on Abacus
simulations data as well as on noiseless theoretical mock power spectra created by the models
themselves. Finally, we present our conclusions in §6.

2 Data

In this paper, we present a comparison between theories using mock data generated from N-
body simulations and from the theories themselves. The N-body data represent plausible and
complex galaxy populations that the models should all be able to fit with the advantage of
knowing the ‘true’ cosmology from which they were drawn. Data generated from the theories
themselves is essentially noiseless and thus allows us to compare the theories in great detail.

The galaxy clustering simulations we use are from the AbacusSummit [40] suite, which
were created on the Summit supercomputer, located at the Oak Ridge Leadership Computing
Facility, using the Abacus [41] N-body code. We focus on the 25 realizations with a fixed
cosmology, each in a cubic box geometry of 8 [h−3Gpc3] in volume. In order to reduce
sample variance ‘noise’ in the power spectra we average over the 25 realizations and work
with the mean Pℓ(k), corresponding to a volume of 200 [h−3Gpc3]. In this paper we focus on
HOD samples calibrated to reproduce the power spectra of the luminous red galaxies (LRG)
at a redshift of z = 0.8, emission line galaxies (ELGs) at z = 1.1, and QSOs at z = 1.4
[42, 43]. The mock data power spectra are shown in the left panels of Fig. 1 for each of
the three tracers. We only use the monopole (P0(k)) and quadrupole (P2(k)) data, as we
only focus our comparison within the standard ΛCDM model for which the hexadecapole
does not significantly influence constraints[44–46]. In the right panels we show comparisons
of predictions from each of the three EFT models with ΛCDM parameters fixed to the true
input values of the mocks. These will be discussed further in §5.3

In our fits, we assume a Gaussian likelihood, and so we need an estimate of the covariance
matrix. Our covariance matrix is obtained by Monte-Carlo using 1000 “effective Zel’dovich
approximation” mocks (EZmocks; [47]). Since it is numerically computed from mocks, we do
not assume the covariance to be Gaussian and thus there are nonzero off-diagonal terms. In
principle we can also compute analytic covariances for these samples following the methods
of Ref. [48], where assumptions about Gaussianity are relevant, but we do not do so here.
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As we are fitting the combined volume of 25 Abacus realizations, the covariance matrix for a
single-box volume can be rescaled by a factor of up to 1/25 before we expect to see statistically
significant shifts in the parameters just from fluctuations in the (mean) data vector. While the
implied statistical precision in this case exceeds the convergence that has been demonstrated
for the N-body simulations themselves [49, 50], we currently see no evidence of a bias that
projects into the subspace of the cosmological parameters. We discuss results from fitting
data with both rescaled and unrescaled covariance, and specify which is used with the labels
V25(200 [h−3Gpc3]) and V1(8 [h−3Gpc3]) respectively.

We also employ the theoretical models themselves as noiseless “data”, to be fit by the
other modeling codes. This can aid in analyzing the behavior of bias, stochastic, and coun-
terterms of each model when the true values are known. In addition, we have more freedom
in scaling up/down the covariance rather than being limited by the number of mocks and
possible inaccuracies in the simulations.

3 Theory and Models

3.1 Overview of EPT and LPT

As stated in the introduction, cosmological perturbation theory comes in two flavors, Eulerian
(EPT) and Lagrangian (LPT). In the Eulerian formulation, the cold dark matter and baryons
are treated as a perfect, pressure-less fluid which obeys the continuity, Euler and Poisson
equations. Defining the overdensity, δ = ρ/ρ̄ − 1, and velocity, v, fields these equations
become [15, 16, 51]:

∂τδ +∇ · [(1 + δ)v] = 0 (3.1)
∂τv +Hv + v · ∇v = −∇Φ (3.2)

∇2Φ =
3

2
H2δ, (3.3)

where H is the conformal Hubble parameter. These equations can be solved perturbatively
by expanding δ and the velocity divergence, θ = ∇·v, in powers of their lowest-order (linear)
solutions:

δ(k, z) =

∞∑
n=1

anδ(n)(k), , θ(k, z) = H
∞∑
n=1

anθ(n)(k), (3.4)

in which

δ(n)(k) =

∫
d3k1 · · · d3kn

(2π)3n
(2π)3δD(

∑
ki − k)δ(1)(k1) · · · δ(1)(kn)Fn(k1, ...,kn,k), (3.5)

and similarly for θ(n). In these equations, we have followed the standard practice of approx-
imating the time-dependence of each term as an and factoring this out of the δ(n) and θ(n).
This will be an excellent approximation for our purposes [52, 53].

By contrast, Lagrangian Perturbation Theory treats cold dark matter as collisionless
particles whose observed (Eulerian) coordinates, x, are related to their initial (Lagrangian)
positions, q, via the displacement field such that x(q) = q + Ψ(q). Nonlinear dynamics is
then governed by a second order differential equation in the displacement field:

∂2
τΨ+H∂τΨ = −∇xΦ(q +Ψ(q)) . (3.6)
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where τ is the conformal time. The matter overdensity is then derived from number conser-
vation as

1 + δ(x) =

∫
d3q δD(x− q −Ψ) ⇒ 1 + δ(k) =

∫
d3q eik·(q+Ψ(q)). (3.7)

Expanding the above exponential as a Taylor series, as well as expanding the displacement
field Ψ = Ψ(1) +Ψ(2) +Ψ(3) + · · · gives expressions for δ(n)(k) that agree with the Eulerian
case at each order. That the Eulerian and Lagrangian approaches agree to all orders in
perturbation theory, while the behavior of the two systems that they model disagree2 when
trajectories of fluid elements or particles cross, is a hint that we will need to include beyond-
PT contributions to our model [54].

Since the galaxy redshift surveys target galaxies as tracers of the matter density field
we need a ‘bias model’ to connect the two [27]. We follow standard practice and express
the galaxy overdensity as a functional of the matter field that can include all combinations
allowed by the symmetries. Specifically, we use a Taylor expansion, with bias coefficients that
are free parameters when modeling data. In the Eulerian prescription, the galaxy biasing is
a function of the non-linear matter field at x:

δg(x) = c1δm(x) + c2(δ
2
m(x)−

〈
δ2m(x)

〉
) + cs(s

2(x)−
〈
s2(x)

〉
) + ... (3.8)

The Lagrangian case is expanded in the initial density field at Lagrangian coordinate q:

1 + δg(k) =

∫
d3q eik·(q+Ψ)F [δ(1)(q)], (3.9)

with the bias functional F [δ(1)(q)], written as F (q) for convenience, given by

F (q) = 1 + b1δ0 +
1

2
b2(δ0(q)

2 −
〈
δ20
〉
) + bs(s

2
0(q)−

〈
s2
〉
). (3.10)

Finally, the “effective” field theories employed in the models include additive corrections
that correspond to the sensitivity to small-scale physics that can not be described pertur-
batively. Couplings of short wavelength modes are included in the form of counterterms
(∼ k2Plin) and stochastic terms within each model.

With these preliminaries understood, we now turn to the different models that we shall
compare in this paper.

3.2 Velocileptors

The first model we consider is the fully resummed, 1-loop, LPT pipeline implemented in
velocileptors3 [55, 56]. The redshift space power spectrum is computed using the biasing
scheme of eq. 3.10 and the overdensity of eq. 3.9 such that:

PLPT
s (k) =

∫
d3q

〈
eik·(q+∆s)F (q1)F (q2)

〉
q=q1−q2

, (3.11)

2In a collisional fluid when two fluid elements cross a shock converts kinetic energy into thermal energy. In
a collisionless system of particles, the crossing of trajectories implies multi-streaming, and the velocity field
becomes multivalued at a given x.

3github.com/sfschen/velocileptors
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Full-Modeling ShapeFit LPT Bias Stoch/Counter
Min. F. Max. F.

H0 fσ8 (1 + b1)σ8 α0

U [55, 79] U [0, 2] U [0.5, 3.0] —
ωb α∥ b2 α2

N [0.02237, 0.00037] U [0.5, 1.5] N [0, 10] U [−15, 15] —
ωcdm α⊥ bs SN0

U [0.08, 0.16] U [0.5, 1.5] 0 U [−15, 15] —
log(1010As) m b3 SN2

U [2.03, 4.03] U [−3.0, 3.0] 0 U [−15, 15] —

Table 1. Velocileptors LPT priors on parameters used in the Full-Modeling (ΛCDM) and ShapeFit
fitting methods. The ΛCDM model involves H0, Ωb,ωcdm, log(1010As) and all of the bias, stochastic,
and counterterms. The ShapeFit method fits fσ8, α∥, α⊥, m as well as the same bias, stochastic and
counterterms. The entries U [min,max] and N [µ, σ] refer to uniform and Gaussian normal distribu-
tions, respectively. For the bias terms we show both minimal and maximal freedom cases, defined in
§ 3.5.

where ∆s = Ψs(q1) − Ψs(q2) and the “s” subscripts denote the redshift space displacement
fields. We use the “Full LPT” model in velocileptors which resums both the long-wavelength
displacement and velocity contributions.

The integrals in eq. 3.11 are done using FFTs (see Appendix D of [55]). The model also
includes stochastic contributions and counter terms. These terms enter the power spectrum
with σn and αn coefficients, respectively, such that the final LPT power spectrum is:

Ps(k) = PLPT
s (k) + k2(α0 + α2µ

2 + α4µ
4)Ps,Zel(k) +R3

h(1 + σ2k
2µ2 + σ4k

4µ4), (3.12)

where Ps,Zel(k) refers to the linear Zeldovich approximation and µ is the cosine of the angle
between k and the line-of-sight (assumed fixed). For the stochastic contributions we use the
parametrization SN0 = R3

h, SN2 = R3
hσ2, and SN4 = R3

hσ4 where Rh is a characteristic scale
of halo formation. In Table 1 we report the priors used on parameters in our velocileptors
model that enter the monopole and quadrupole components of the power spectra. We note
that when excluding the hexadecapole from our analysis, we set α4 = SN4 = 0.

velocileptors also includes a model based on EPT, with the terms collected in a way
informed by LPT but with resummation handled in a different way to the LPT module. This
makes it an interesting counterpoint to the LPT model and the “natively EPT” models we
discuss below. This EPT model is constructed from the LPT expressions but with the IR
scale, kIR → 0 and bias parameters remapped to the Eulerian prescription of ref. [57]. The
IR resummation scheme then involves applying a damping factor to the BAO signal of the
power spectrum prediction by separating it from the smooth part via a wiggle/no-wiggle split
using the sine transform method of Refs. [58, 59].

3.3 PyBird

The next model is based on 1-loop Eulerian perturbation theory. PyBird4 (The Python code
for Biased tracers in redshift space) employs an effective field theory formalism that is very
similar to CLASS-PT [60]. The derivation for the EFT in PyBird can be found in ref. [61, 62],

4github.com/pierrexyz/pybird
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Full-Modeling ShapeFit Bias Stoch/Counter
H0 fσ8 b1 cct

U [55.36, 79.36] U [0, 1] U [0.0, 4.0] —
ωb α∥ b2 cr,1

N [0.02237, 0.00037] U [0.9, 1.1] 1 —
ωcdm α⊥ b3 cr,2

U [0.08, 0.16] U [0.9, 1.1] 1 0

log(1010As) m b4 cϵ,1
U [2.0364, 4.0364] U [−1.0, 1.0] U [−15.0, 15.0] —

w cϵ,mono

U [−1.3,−0.7] —
cϵ,quad

—

Table 2. The priors of Shapefit and Full-Model parameters for PyBirdẆe use U (N ) to denote
the uniform (Gaussian) prior. The first number is the lower bound (mean), and the second number
is the upper bound (standard deviation). This configuration is the minimum freedom (“MinF")
configuration. We use this configuration to match with other pipelines in DESI. The value for b2, b3,
and b4 are obtained through the co-evolution relation. The detailed derivation is given in section 3.5.
For the maximum freedom configuration, we put an infinite flat prior on b3 and a U [−10, 10] prior on
b3 and b4.

so we will not repeat it here. The redshift-space galaxy power spectrum up to one-loop order
is given by [61, 62]:

Pg(k, µ) = Z1(µ)
2Plin(k) + 2

∫
d3q

(2π)3
Z2(q,k− q, µ)2Plin(|k− q|)Plin(q)

+ 6Z1(µ)Plin(k)

∫
d3q

(2π)3
Z3(q,−q,k, µ)Plin(q) + 2Z1(µ)Plin(k)×

×
(
cct

k2

k2M
+ cr,1µ

2 k
2

k2M
+ cr,2µ

4 k
2

k2M

)
+

1

ng

(
cϵ,1 + cϵ,2

k2

k2M
+ cϵ,3fµ

2 k
2

k2M

)
(3.13)

where Plin is the linear power spectrum, cct, cr,1, cr,2 are the counterterms, cϵ,1, cϵ,2, cϵ,3 are the
stochastic terms, f is the linear growth rate of structure, ng is the number density of galaxies
in the survey, and the redshift space kernels are given in eq. (2.2) of ref. [62], following
[15, 63]. By default the scale that suppresses higher order derivatives in the bias expansion
is set to kM = 0.7hMpc−1. In addition to the counter terms and stochastic terms, PyBird
has 4 bias parameters: b1, b2, b3, b4. This is the bias parameterization described in Ref. [61],
often referred to as the ‘West Coast’ (WC) parameterization in the literature [37, 64, 65].
For the stochastic terms, the main difference between PyBird and velocileptors is that
PyBird has an additional k2/k2M term but does not include k4µ4. For the counter terms,
velocileptors uses the Zeldovich approximation while PyBird uses the redshift space linear
power spectrum Z1(µ)Plin(k). When the difference between the two power spectra is small,
cct = α0, cr,1 = α2 and cr,2 = α4. For later use we define cϵ,mono = cϵ,1 + (2f/3)cϵ,2, and
cϵ,quad = (4f/15)cϵ,3..
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Full-Modeling ShapeFit Bias Stoch/Counter
Min. F. Max. F.

H0 fσ8 b1 α0

U [50, 90] U [0, 1] U [0, 10] —
ωb α∥ b2 α2

N [0.02237, 0.00037] U [0.8, 1.4] U [−50, 50] —
ωcdm α⊥ bs2 αshot

0

U [0.05, 0.20] U [0.8, 1.4] = −4
7(b1 − 1) Uninformative —

log(1010As) m b3nl αshot
2

U [2.0, 4.0] U [−3.0, 3.0] = 32
315(b1 − 1) Uninformative —

Table 3. Folpsν priors in both Full-Modeling and ShapeFit analyses for minimal (Min. F.) and
maximal (Max. F.) freedom settings. We utilize uninformative priors for the EFT counterterms α0

and α2, as well as for the stochastic variables αshot
0 and αshot

2 . However, we analytically marginalize
over these parameters.

3.4 FOLPSν

Our final EPT model, Folpsν5 [66], is a Python code based on a perturbative model, with the
added value of accounting for the presence of massive neutrinos [66–68]. As for the previous
models, Folpsν is based on EPT up to one-loop. The redshift space power spectrum is given
by:

PEFT
s (k, µ) = Pδδ(k) + 2f0µ

2Pδθ(k) + f2
0µ

4Pθθ(k) +ATNS(k, µ) +D(k, µ)

+ (α0 + α2µ
2 + α4µ

4)k2Plin(k)

+ Pshot

[
αshot
0 + αshot

2 (kµ)2
]
. (3.14)

where each of these terms is defined in detail in ref. [66]. A key feature of Folpsν is that it
employs beyond-EdS kernels (called fk-kernels [68, 69]) to properly account for the effects of
the free-streaming scale introduced by massive neutrinos rather than making the ων ≪ ωcdm

approximation made in the other codes. The first line on the right hand side of eq. (3.14)
gives the perturbative, non-linear, redshift-space power spectrum as for the other models.
The second and third lines are the counterterms and stochastic terms, respectively. We
employ the biasing scheme first introduced in [57, 70], and generalized to cosmologies with
additional scales (such as the neutrino free streaming scale) in [67]. For simplicity, we adopt
the approximate bias treatment outlined in Appendix A.1 in ref. [71].

Folpsν also accounts for large scale bulk flows via the IR-resummations technique of
refs. [72, 73], and computes the multipoles using the IR-resummed EFT power spectrum, as
specified in equations (2.20) and (2.24) in Ref. [45].

In this work, we keep the total mass of neutrinos fixed at its fiducial value Mν = 0.06 eV,
for which differences in results between EdS- and fk-kernels are small. Folpsν demonstrates
its full potential in the neutrino mass constraints, as explored in ref. [45] using synthetic data
mimicking DESI Year-1 and Year-5 tracers and error bars, revealing a significant enhancement
in the neutrino mass constraints of around 14% when switching from the usual EdS kernels
to the accurate fk-kernels.

5https://github.com/henoriega/FOLPS-nu. With JAX: https://github.com/cosmodesi/folpsax.
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3.5 Minimal and Maximal freedom bias parametrizations

One of the difficulties in comparing the theories above is that they employ different con-
ventions for the bias parameters that relate fluctuations in the matter density to galaxy
overdensities. While the translation is known in principle, in practice it is not easy to find
direct mappings from the biasing scheme of one model to that of all the others as one code
can group terms in ways that cannot be reproduced with simple transformations of bias pa-
rameters in the other codes. This also makes it more difficult to be fully consistent in the
priors applied to bias parameters in each model. We can mitigate this problem, however,
by comparing our models within two opposing parameterizations, which we call minimal and
maximal freedom. For the maximal freedom case, all four bias parameters of each model are
allowed to vary freely, with very wide uninformative priors. While this does not mean that
all models perform identically, it ensures that any differences are kept small.

We define the minimal freedom, or “coevolution” case by assuming that at initial times
the bias is purely given by the linear (b1) and second-order bias (b2), and that non-local
bias (bs) as well as third-order bias (b3) terms emerge at later times only through non-linear
evolution due to gravity. Since the Lagrangian picture defines the biases at initial coordinates
q, we assume specifically that the Lagrangian biases bLs and bL3 are fixed to zero, while bL1 and
bL2 are allowed to vary. In the Eulerian picture, the bias parameters are defined at the observed
positions and time and thus depend on the combination of initial (Lagrangian) values and
the evolution of the density fields. Therefore, when the Lagrangian bLs and bL3 biases are
zero, the corresponding Eulerian biases are directly proportional to bL1 = bE1 − 1. While we
can define a “minimal freedom” parameterization within each model that involves only two
bias parameters, these are not the exact same parameters in each model but rather linear
combinations of each other. Nonetheless, the minimal freedom or “coevolution” parameter
choice allows us to reduce the number of terms responsible for the different behavior between
models.

Between the velocileptors LPT and EPT models, a linear mapping exists at one-loop
order to relate the two bias schemes [74]. These bias relations imply that coevolution in the
velocileptors EPT model involves setting

bE2 = bL2 +
8

21
bL1 , bEs = −2

7
(bE1 − 1) , bE3 = bE1 − 1. (3.15)

Meanwhile, in Folpsν one fixes the tidal bs2 and 3rd order b3nl biases to coevolution via
[75–77]

bs2 = −4

7
(bE1 − 1) and b3nl =

32

315
(bE1 − 1). (3.16)

The connection with the PyBird parameters is slightly more complex, and is most easily
accomplished using the “monkey bias” formalism of [78]. Using bL3 = bLs = 0 we have

b̃1 = bv1 + 1

b̃2 =
7

2

(
2

7
+ bLs

)
= 1

b̃3 =
7(42− 145bv1 − 21bv3 + 630bLs )

441
=

294− 1015(b1 − 1)

441

b̃4 = −7

5
(b1 − 1)− 7

10
bv2 (3.17)

– 9 –



After the conversion, the only two free parameters are b1 and bv2. To simplify the equations
further, instead of putting priors on bv2 and then finding b4 we put a flat prior on b4 directly.
The range of this flat prior is determined by the prior on b1 and bv2 in velocileptors.

3.6 Overview of key model differences

While the models have been derived by different groups, starting from different assumptions
and proceeding in different ways, they arise from a systematic procedure for capturing the
effects of dynamics, redshift-space distortions and biasing. The end result should thus be
consistent predictions for the redshift-space power spectrum of biased tracers once we account
for different conventions. Any remaining differences should arise only at 2-loop order or be
due to the addition of higher-order counterterms6. With this in mind, in this section, we try
to summarize the key differences between the models.

Perhaps the easiest differences to see are that the LPT flavor of velocileptors has its
counterterms of the form k2PZel

7, while the other models use k2Plin. These differ at high-k
by terms that are formally 2-loop order. PyBird includes an extra, isotropic stochastic term
of the form k2/k2M that the other models do not include.

The resummation of long-wavelength modes is handled quite differently in the different
codes. In velocileptors the long-wavelength components of the displacements are expo-
nentiated while the short-wavelength components are treated perturbatively. The split is
governed by a parameter kIR. For reasonable volumes, the choice of kIR has little effect, how-
ever, if errors corresponding to the (physically unrealizable) 200h3Gpc−3 volume are used
we see differences. This is expected, as the implied errors are small enough that 2-loop ef-
fects cannot be ignored in any of the models. A similar procedure is done for PyBird. By
contrast, the EPT variant of velocileptors and the Folpsν model split the linear theory
spectrum into a “wiggle” and “no-wiggle” piece, and then damp only the “wiggle” component.
The results for the final sum are quite insensitive to the precise decomposition. The depen-
dence on the precise wiggle/no-wiggle decomposition methods (e.g the methods described in
Refs. [59, 79, 80]) has been tested in Ref.[46], while tests on the choice of IR cutoff scale are
presented in Refs. [46, 56].

4 Fitting methods

There are two primary methods for fitting power spectra that we consider here. The first,
“ShapeFit” (SF; [81]), extends the standard template fitting used in many previous galaxy
clustering analyses. For the standard template fitting it is assumed that the shape of the
power spectrum is well-determined by early Universe measurements (e.g. CMB anisotropies)
and late-time effects do not alter the shape of this spectrum. A fiducial cosmology, and thus
a fiducial linear power spectrum, Plin, is picked and held fixed in the fits. The parameters
being varied, corresponding to changes in “late time cosmology” are the amplitude fσ8 and

6Different parameterizations can also correspond to different priors, but we try to minimize this issure
through the minimal and maximal freedom choices

7In Ref. [44] a reparameterization of the counterterms is used that changes changes slightly the definition
of αn parameters and additionally uses k2Plin. This gives identical results as it doesn’t change the theory but
slightly modifies how priors are chosen on αn. This is not important here because we choose infinite priors on
counterterm parameters for all models
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the distance scalings,

α∥ =
Href(z)

H(z)

(
rrefd

rd

)
, α⊥ =

DA(z)

Dref
A (z)

(
rrefd

rd

)
, (4.1)

where H(z), DA(z), and rd are the comoving Hubble parameter, angular diameter distance,
and sound horizon scale at drag epoch. These distance scalings are driven by both the
Alcock-Paczinsky effect (AP;[82]), which is the anisotropic distortion when the true cosmology
differs from the fiducial in the conversion of angles and redshift to physical distances, and
the changes in rd with varying cosmology. Varying these parameters effectively changes the
power spectrum without the need to recompute Plin in its entirety. One disadvantage of
the template fit is that one sacrifices information contained in the shape of Plin, and so
obtains sub-optimal constraints on parameters affecting its shape when not combining with
e.g. CMB measurements. The ShapeFit method aims to maintain some of the simplicity of
the standard template fit, while also capturing some of the information from the shape of Plin

via two additional compressed parameters m and n, defined through

P ′
lin(k) = Plin(k) exp

{
m

a
tanh

[
a ln

(
k

kp

)]
+ n ln

(
k

kp

)}
. (4.2)

The scale-dependent m parameter above modulates the shape of the power spectrum and
aims to mimic the effect that different ωm and ωb values have on the shape of Plin(k). We
use for the amplitude a = 0.6 and pivot scale kp = 0.03 hMpc−1, as suggested in Ref. [81].
These constants are chosen in order for changes in m to best replicate how ωm and ωb in-
fluence Plin(k). The scale-independent n parameter changes the slope in a way that exactly
reproduces the effect of different ns when computing Plin(k), i.e. n = ns−nref

s . The inclusion
of the shape parameters therefore makes ShapeFit more constraining than the standard tem-
plate fit, which is particularly evident when only LSS data are analysed, not in combination
with CMB data or priors. It is one of the primary methods that will be used in analyzing
power spectra/correlation function data in DESI, especially when studying the impact of
systematic effects. All models in this paper implement the ShapeFit method by sampling
in the parameters (fσ8, α∥, α⊥,m)8 with the same Plin(k) in order to obtain the observable
power spectrum multipole predictions. In velocileptors a Taylor series emulator is used in
order to improve the evaluation of theory multipoles, while Folpsν and PyBird use as default
settings an approximation for the loop integrals [81]:∫

d3qP ′
lin(q)Fn(...) ≈

(
P ′
lin(k)

Plin(k)

)∫
d3qPlin(q)Fn(...), (4.3)

with Fn kernels defined in the beginning of §3. Under this approximation the loop integrals
only need to be computed once and then are simply rescaled as m is varied. This allows for
fast evaluation of theory multipoles in lieu of an emulator. The robustness of the emulator

8In this paper we keep n fixed to its fiducial value. This parameter is directly related to the spectral tilt
ns. In full-shape analyses, ns is a weakly constrained parameter and historically has been kept fixed to the
e.g. CMB-measured value. While the increased constraining power of DESI and beyond allows us to vary ns

going forward, an informative prior is still needed, and for DESI its width is chosen such that constraints on
other parameters are unaffected[32]. Since this paper focuses on the comparison between different effective
field theories, we do not find the inclusion of such a prior-dominated parameter to provide any additional
insights. However, the effect of varying it is explored in companion DESI papers[39, 44, 45] and the relevance
of projection effects when varying n (for SF) and ns (for Full-Modeling) will be discussed in Ref. [32].
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for velocileptors is shown in Appendix E in Ref. [44] and the stability of the above ap-
proximation used for PyBird and Folpsν is tested in Appendix B of Ref. [45]. Since both the
emulator and the approximation show neglibible differences in constraints on Abacus mocks
when compared to direct computations, we do not expect these implementation choices to
contribute to any disagreements between EFT models.

The second method used in our comparison is based on a more direct approach and
involves choosing a cosmological model, e.g. ΛCDM, and directly varying the underlying pa-
rameters of this model, predicting the data and comparing the prediction to the measurement.
This direct-fitting approach, hereafter referred to as Full-Modeling (FM), captures informa-
tion from both the early and late universe as the parameters of the model, (H0, ωb, ωcdm

and log(1010As) in our examples) control the shape of Plin as well as the late-time dynam-
ics/geometry. While this method does involve generating a new linear power spectrum at
every step of a Markov Chain Monte Carlo (MCMC), the use of emulators can speed up
the computation enough that differences in convergence time between FM and compressed
parameters are insignificant. The Full-modeling method also takes into account the AP ef-
fect through the scaling parameters q∥,⊥ are related to α∥,⊥ but absent the factors of rrefd /rd
because the changes in BAO scale are implicit when varying cosmological parameters. The
purely geometrical q∥,⊥ parameters are not sampled in this modeling method but are derived
and applied to the power spectrum predictions as the cosmological parameters are varied. The
actual implementation of the AP distortion is consistent in all models and involves re-scaling
the power spectrum to observed coordinates using q∥,⊥ (for FM) or α∥,⊥(for FM) via:

P obs
s (kobs) = q−2

⊥ q−1
∥ Ps(k) , kobs∥,⊥ = q∥,⊥ k∥,⊥. (4.4)

Finally, for all models and modeling methods, we compute the linear theory power
spectrum, Plin from CLASS [83] or CAMB [84] before constructing the 1-loop EFT power
spectrum multipoles.

5 Results

5.1 Fixed-cosmology fits

We begin by showing in Fig. 1 the LRG (z = 0.8), ELG (z = 1.1), and QSO (z = 1.4)
simulated data that we are fitting with our models. In the left panels we show the monopole
and quadrupole data for each tracer type along with theoretical models generated with each
pipeline with ΛCDM parameters fixed to truth and nuisance parameters varied to best match
the data up to kmax = 0.25h−1Mpc. We allow all four bias parameters to vary, and use
the covariance rescaled to the 200 (h−1Gpc)3 volume of the 25 mock realizations. The error
bars of the data reflect this covariance, but we also show shaded regions corresponding to
the error bars of the data from a single cubic box volume of 8 (h−1Gpc)3 that more closely
resembles the constraining power of a typical survey. In the right-hand panels of Fig. 1 we
show the difference between the data and the models at each k-bin. It is instructive to see
how the nonlinear terms in the models behave when the linear power spectrum and cosmology
dependence are fixed. We observe similar trends from each of the models, most noticeably
in the LRG quadrupole, where all three of them show the same bump in ∆P

(data−model)
2 at

k ∼ 0.1h−1Mpc. Additionally, all three models seem to diverge from the data the same way
near k ∼ 0.25h−1Mpc, which sets the range of validity of these models. For both of the LRG
multipoles as well as the monopole ELG curves, we see that the velocileptors and PyBird
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Figure 1. Abacus LRG, ELG, and QSO mock data along with each Fourier space model’s prediction
with ΛCDM parameters fixed to truth but allowing the nuisance parameters to vary to best fit the
data. The error bars on the data reflect the rescaled covariance with 200 (h−1Gpc)3 volume, while
the shaded region shows the covariance corresponding to a single cubic box with 8 (h−1Gpc)3 volume,
which is more similar to the constraining power of a physical survey.

predictions overlap pretty closely, whereas the Folpsν model is slightly more offset from the
data for some k ranges.

5.2 Tests on Mock data

We show in Fig. 2 a comparison between each model’s posteriors fitting to the LRG mocks
with free parameters and priors described in Tables 1-3, with the “Maximal freedom” choice of
bias parameters. While all models give constraints within around 1σ of the true values, there
are noticeable disagreements between the models for both the ShapeFit and Full-modeling
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Figure 2. Comparison between the three Fourier space models using the Full-Modeling method (left)
and ShapeFit method (right), fitting the mean of the Abacus LRG (z = 0.8) simulations. In both fits
we show the constraints in the “maximal” freedom parametrization where the four bias parameters are
allowed to vary independently in each model. The results shown use the full covariance with the 1/25
rescaling from the single-box volume. In both cases we use scale cuts of 0.02 ≤ k ≤ 0.18 hMpc−1 for
all models.

methods. These shifts between models can be driven by differences in the handling of counter
or stochastic terms, bias parametrization, IR-resummation schemes, or even numerical effects
in the code that may become important in extremely constraining data sets. Indeed, we note
that the covariance used here reflects a survey volume of 200 (h−1Gpc)3, which far exceeds
that of any physically achievable survey on our past lightcone to these redshifts. At such a
volume, the data has a statistical error on the order of a third of a percent at each point in
the k data vector, a level of precision at which we could well be dominated by systematic
uncertainties in the N-body simulations. On the other hand, our goal in performing tests of
our models on the Abacus simulations is to detect systematic uncertainties in our models
that will be relevant in the DESI-Y5 data; and given the size of the Y5 footprint this is not
achievable without a very large simulation volume. We therefore present the “full volume”
results with the understanding that some hard-to-quantify level of discrepancy between the
models and true values is expected, while focusing on ensuring that our models agree at the
level of precision attainable at volumes relevant to a physical survey. For this reason, we use
Fig. 2 simply to demonstrate the level of agreement we currently have at the full volume,
but for the remainder of this paper will restrict our attention to fits using the covariance
of a single box (V = 8 (h−1Gpc)3), which is more comparable to the volumes spanned by
a realistic survey. However, the data vectors we fit to remain the ones computed from the
average of 25 abacus boxes in order to reduce the noise.

As discussed in § 3.5, the bias terms and how they are defined can differ between theories,
making it difficult to convert between biasing schemes and by extension use consistent priors.
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Figure 3. Comparison between Folpsν, velocileptors (LPT and EPT), and PyBird full-modeling
(top row) and ShapeFit (bottom row) constraints on the mean of the mock LRG data, respectively.
In the left panels we show the “minimal” freedom parametrization, in which Eulerian bs2 and b3nl
parameters are fixed to coevolution and the corresponding Lagrangian parameters fixed to zero. In
the right panels we employ the “maximal” freedom parameter choice for which all bias parameters
vary independently with uniform priors. These fits used the single-box covariance volume without
any rescaling. We use a scale cut of 0.02 ≤ k ≤ 0.18 hMpc−1 for all fits shown.

Choices made by the user about which parameters to vary and which to fix also affect the
volume of the parameter space and can narrow/widen constraints purely from a degrees-
of-freedom standpoint. This can greatly complicate the comparisons as the baseline settings
preferred for each model as described in Refs. [44–46] are quite different: the Folpsν model is
often used with a coevolution parametrization in which the tidal and third order parameters,
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bs2 and b3nl, are determined by b1, so only two bias parameters are varying freely. Meanwhile,
the velocileptors results often have Lagrangian b3 fixed with the remaining three free. For
PyBird it is common to fix b4 to anticorrelate with b2. We thus compare the constraints
between Fourier space models while taking more care to standardize the amount of freedom
afforded to the bias terms. We show in Fig. 3 comparisons in the Full-Modeling and ShapeFit
constraints on LRG data, respectively, with both “maximal” (Max. F) and “minimal” (Min.
F) freedom settings, which are defined in § 3.5. We see that in both cases there is very good
agreement between the two velocileptors models, Folpsν, and PyBird in the ShapeFit
and Full-Modeling methods. We find that the models generally agree better in the minimal
freedom case, and this is a more well-defined parametrization that can be applied consistently
to each theory. In the maximal freedom case, we observe slight differences in the widths of
the logAs posteriors in Full-modelling. In ShapeFit the PyBird model has a wider posterior
in the m parameter, and explores more negative m values than the other theories.

We next show the results for the ELG and QSO tracers for Full-modeling and ShapeFit
methods in Figs. 4 and 5, respectively. For minimal freedom, we observe consistent constraints
on the QSO data between pipelines for both modeling methods. However, when fitting the
ELG data, the PyBird model constrains the power spectrum shape slightly differently from
the other models. We observed this through a small shift in Ωm and m constraints for Full-
modeling and ShapeFit respectively. In the maximal freedom case, we see better consistency
between theories in Full-Modeling than in ShapeFit. Similarly to the LRG tracer, we find that
the PyBird model has more freedom in exploring larger negative values of the m parameter.
These extreme values for m correspond to nonphysical ΛCDM models and are therefore
disfavored in the Full-modeling fit. We find that in PyBird these large negative values of
m are accompanied by large negative b3 (around −100), resulting in canceling effects to
the power spectrum such that a moderately high likelihood is still obtained. In order to
prevent this effect we introduce a Gaussian prior on b3 centered on zero with a width of 10,
and show the result in the left hand plot of Fig. 6. We find that with a more informative
prior on b3, the tail of the m posterior distribution goes away and the PyBird model agrees
more closely with the others. We still find a slightly wider posterior in the m parameter
for velocileptors LPT compared to the other models. This can also be attributed to the
amount of freedom allowed in the bias parameters, in this case both Lagrangian bs and b3. If
we include Gaussian priors N [0, 5] on both bLs and bL3 , the constraints on ShapeFit parameters
tighten enough that velocileptors LPT matches the constraining power of the other models,
as shown in the right-hand side of Fig. 6. One can make the case that this is no longer a
“maximal” freedom scenario as we have added several informative priors in order to get the
best agreement between all models. We note however that models with bias parameters in
the tens or hundreds are not theoretically self-consistent, and we would not be able to trust
our results or theory if the posteriors peaked at such values for a given data set. In our case,
we do not observe any preference (i.e. shifts in the posterior peaks) towards extreme values
when allowing more freedom in the bias parameters, but these regions are still allowed by the
likelihood. We are therefore justified in cutting out those regions via Gaussian priors. If such
priors turn out to be informative, then this should be noted, i.e. the data alone are not able
to fully constrain the model without additional information. Our priors should be as broad
as possible, and consistent with the model and the data. We refer readers to the appendix of
Ref. [44] for a detailed discussion of projection effects and priors relevant to DESI fullshape
modeling, along with additional references cited therein that encounter similar issues in other
areas of cosmology.
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Figure 4. Comparison between Folpsν PyBird and velocileptors (LPT and EPT) full-modeling
constraints on the mean of the mock ELG and QSO data, respectively. In the left column we show the
“minimal” freedom parametrization and the right column shows the “maximal” freedom. These fits use
the single-box covariance volume without any rescaling. We use a scale cut of 0.02 ≤ k ≤ 0.18 hMpc−1

for all fits shown.

5.3 Tests on noiseless theoretical model

We next turn to fits of data that are generated from our theoretical models. This “data” is
shown in Fig. 1 and is generated by fixing the ΛCDM parameters to their true Abacus values
and then varying the nuisance parameters to best fit the mock data up to kmax = 0.25h−1Mpc.
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Figure 5. Comparison between Folpsν PyBird and velocileptors (LPT and EPT) ShapeFit
constraints on the mean of the mock ELG and QSO data, respectively. In the left columns we show
the “minimal” freedom parametrization and on the right we show the “maximal” freedom case. These
fits use the single-box covariance volume without any rescaling. We use a scale cut of 0.02 ≤ k ≤
0.18 hMpc−1 for all fits shown.

These data vectors are noiseless, which allows for cleaner comparisons between the theories
without being obscured by cosmic variance or systematics of the simulations. While the
previous section compared the performance of the different models on simulations, i.e. their
ability to constrain parameters to their truth, the purpose of this section is to quantify the
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Figure 6. ShapeFit constraints on the QSO data in the maximal freedom case, but introducing priors
on some of the bias parameters for PyBird and velocileptors LPT. In the left plot a Gaussian prior
N [0., 10.] is applied to the b3 parameter of the PyBird model only, while the other models still have
uniform priors on all parameters. In the right plot we additionally introduce Gaussian priors N [0., 5.]
on both Lagrangian bs and b3 parameters in the velocileptors LPT model. We use a scale cut of
0.02 ≤ k ≤ 0.18 hMpc−1 for all fits shown.

agreement of theories. To that end, we cycle through each of the theoretical data sets and
perform fits using the two pipelines that were not used to produce said data. We perform
these tests as a function of kmax in order to observe how the predictions of the models diverge
as higher k-modes are included in the fits. We generally expect the models to agree better at
lower k ≲ 0.1hMpc−1 (larger scales) as the physics at these scales is well-described by linear
theory, which is the same in all of the models. The models differ in their handling of higher-
order nonlinear terms, which are more important at higher k ≳ 0.1hMpc−1. For these tests,
we use the single-box covariance that was also used for the Abacus mocks in the previous
section, and we restrict our attention to the minimal freedom parameterization. These tests
have been repeated with maximal freedom but the results show the same behavior, so we
restrict our discussion to the minimal freedom case for simplicity.

In Fig. 7 we show comparisons of constraints between the LPT and EPT velocileptors
and Folpsν models while fitting to the theoretical spectra generated by PyBird to imitate
LRG mocks. We present both the Full-Modeling and ShapeFit results. For both methods,
the models agree up to a kmax ∼ 0.24h−1Mpc (both with each other and with the PyBird
data). For Full-Modeling, see Folpsν shift upwards by ≳ 1σ from truth in logAs at kmax ∼
0.26h−1Mpc, while in the ShapeFit method the velocileptors LPT and Folpsν models disagree
with each other in α∥ by ≳ 1σ only at kmax ∼ 0.28h−1Mpc and above. However, both
velocileptors EPT and Folpsν already deviate from the true PyBird value by ∼ 1σ at kmax ∼
0.26h−1Mpc. We also note that the velocileptors EPT model follows the trends of Folpsν in
α∥,⊥ at higher kmax rather than agreeing more closely with velocileptors LPT, which does not
deviate from the truth by more than 1σ for any Full-Modeling or ShapeFit parameter until
kmax ∼ 0.3h−1Mpc.
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We next repeat this test with noiseless data generated by the Folpsν model in Fig. 8,
focusing only on Full-modeling for simplicity. In this case, the velocileptors LPT constraint
on logAs begins to deviate from the truth by 1σ at kmax ≳ 0.26hMpc−1, while the EPT model
remains unbiased for the whole range of kmax. For the PyBird model, we observe similar
offsets in logAs in the same direction as the velocileptors LPT results. Finally, we show in
Fig. 9 the comparison of Full-Modeling constraints from fitting to the data vector generated
by the velocileptors LPT model. For the kmax ≤ 0.28hMpc−1 fits the PyBird model is
consistent with the velocileptors LPT data whereas the Folpsν model begins to deviate
by 1σ in logAs for kmax ≳ 0.26hMpc−1. From Figs. 7-9 we notice a trend that at lower k all
models behave similarly while at higher k the velocileptors LPT and PyBird models are
more consistent with each other, whereas Folpsν agrees better with velocileptors EPT. We
can also see this to some extent in the power spectrum predictions shown in the right-hand
panels of Fig. 1, where the velocileptors LPT and PyBird curves match each other more
closely than Folpsν. This may be due to the differences in IR-resummation schemes between
the models. As noted in § 3.6, PyBird and velocileptors LPT use a similar resummation
procedure of exponentiating long-wavelength displacements while perturbatively expanding
the short-wavelength modes, while velocileptors EPT and Folpsν both use the wiggle-
no wiggle split procedure. Our results suggest that the similarities between velocileptors
LPT and PyBird (and Folpsν with velocileptors EPT) at high k are related to the IR-
resummation methods employed by the models (see ref. [56] for further discussion).

In Appendix A we perform similar tests as those described here for theoretical data
vectors produced from fits to the ELG and QSO Abacus mocks. Our conclusions mimic those
above, and show that our models agree with one another in the range of scales9 appropriate
for Full-Shape analyses using 1-loop perturbation theory.

Finally, we find the maximum likelihood values from velocileptors LPT and EPT when
fit to the theoretical data sets generated by Folpsν and PyBird to kmax = 0.18 hMpc−1.
For each FM and SF parameter, the average shift between best-fit and truth provides a
rough estimate for the theoretical-systematic error of the models that can be compared to
the statistical errors, σ. For FM we obtain systematic errors of ≲ 0.02σ in Ωm, H0 and
log(1010As). For SF we find systematic errors of ≲ 0.05σ for fσs8, α∥ and α⊥, while in m we
get a systematic error of 0.17σ.

6 Conclusion

Analyses of two-point statistics from previous galaxy redshift surveys (e.g. BOSS and eBOSS)
using effective field theories (EFT) of Large Scale Structure have often obtained constraints
on cosmological parameters, such as σ8, that are in mild tension with one another. These
differences can usually be attributed to the settings of pipelines used and modeling choices
(see e.g. [37, 38, 65, 85]) but could have given the erroneous impression that different effective
field theories are not well understood and inconsistent. In anticipation of the Y1 data release
of the Dark Energy Spectroscopic Instrument, this paper aims to show that various EFT
models/pipelines used for fitting galaxy power spectra in redshift space are actually consistent
at the level of precision of a physical survey– as long as one handles with care the freedom
afforded to bias/counter/stochastic terms in the models and is consistent with choice of scale
cuts. We focus our attention on three such models: velocileptors, Folpsν, and PyBird

9The dependence on scale cuts of each model using Abacus mocks is presented and discussed in Refs. [39, 44–
46]
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Figure 7. Comparison of 1D constraints of Full-Modeling and ShapeFit fits from velocileptors (EPT
and LPT) and Folpsν to the theoretical model generated by PyBird. The theoretical model has
ΛCDM fixed to the true abacus cosmology and nuisance parameters shifted to best-fit the LRG mock
data.

and show that, despite relying on different theoretical frameworks (Eulerian vs Lagrangian
perturbation theories, EFT corrections, IR resummation schemes), the predictions from these
models are in close agreement with one another up to scales of kmax ≃ 0.25hMpc−1 and at
the level of precision of 8 (h−1Gpc)3 survey volumes. Compared to the full DESI footprint
the simulation volume used in this comparison is larger than those of the BGS (0.1 < z < 0.4)
and two of the LRG (0.4 < z < 0.6,0.6 < z < 0.8) redshift bins, whose volumes are rougbly
2,3,and 5 (h−1Gpc)3 respectively. The third DESI LRG bin (0.8 < z < 1.1), both ELG bins
(0.8 < z < 1.1, 1.1 < z < 1.6), and the QSO (0.8 < z < 2.1) are all larger with volumes
of 10, 20, and 60 (h−1Gpc)3, and the total comoving volume up to z = 2.1 is around 70
(h−1Gpc)3[86].

We compare our models within two bias parametrization choices, “minimal” and “maxi-
mal” freedom, where the first assumes tidal and third-order biases to be fixed to coevolution
and the latter allows all four bias parameters to vary independently with wide, uninformative
priors. We show that when fitting Abacus simulations provided in 8 (h−1Gpc)3 cubic boxes
with three types of tracers (LRG, z = 0.8; ELG, z = 1.1; QSO, z = 1.4), the cosmological
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constraints are consistent between models in both minimal and maximal freedom cases. We
perform this comparison using both parameter compression (“ShapeFit”) and direct fitting
(“Full-Modeling”) methods. Despite finding close agreement between the models, we note a
degeneracy between the third-order bias and the ShapeFit parameter, m, in the PyBird model
that results in a tail in the posterior distribution of m for the fits to the quasar sample. By in-
cluding a Gaussian prior on the b3 parameter, we can minimize this effect without biasing the
cosmological constraints. Our conclusions on model consistency are in agreement with those
of previous work [37, 38]. In particular, Ref. [37] performed a comparison between PyBird and
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CLASS-PT using BOSS data and found that the primary effect driving the differences between
the two models is the different bias parameterizations, and that controlling these differences
results in a significant improvement in model consistency. In this paper we come to a similar
conclusion, but given the more substantial theoretical differences between theories considered
here, do not have a direct mapping of bias parameters between all models available to us.
However, the minimal and maximal freedom choices were sufficient in controlling the effect
of having different parameterizations between models. The effect of applying Gaussian vs
flat priors on b3 in PyBird is not directly explored as the comparison used Guassian priors
on higher order biases by default. In Ref. [38] comparisons between CLASS-ONELOOP and
CLASS-PT were only made at the level of power spectrum predictions and not constraints on
a data set. However, their comparison of Pℓ(k) predictions show similar levels of agreement
as the model predictions shown in Fig. 1 in this paper.10

In addition to fitting cubic mock samples, we generate noiseless data using best-fitting
predictions from each model. For each data vector generated by one model, we run fits using
the other models for a variety of kmax values. We show that significant deviations of model
predictions only occur when raising the scale cuts to kmax ∼ 0.26hMpc−1 or higher. Since the
physics at such small scales (high k) is already known to be sensitive to two-loop effects that
are not included in our models, we conclude that the stronger restriction on kmax comes from
the limitation of one-loop perturbation theory and not from disagreements of the theories
themselves. For the range of scales, i.e. 0.02 < k ≲ 0.2hMpc−1, that will be the fiducial
setting for the DESI Y1 analysis, the EFT models all give consistent cosmological constraints.

While the settings (priors, bias parametrization, etc.) chosen in this paper allow for
better comparison between models, they are not necessarily the optimal settings with which
one may use the pipelines in future analyses. Our aim in this work is simply to demonstrate
that these theories agree when consistent assumptions are made and pave the way towards
the study of modeling systematics for Full-Shape analysis with DESI. A similar comparison
of these models along with EFT-GSM is also being performed in configuration space[39]. We
have thus far focused our analysis on ΛCDM models only with ns fixed. Additional tests
have been performed that open up the parameter space beyond ΛCDM and study/mitigate
the parameter projection effects that arise in more exotic models. These will be presented in
future publications([39, 44–46]).

7 Data availability

Chains from the plots in this paper are available on Zenodo as part of DESI’s Data Manage-
ment Plan (DOI: https://doi.org/10.5281/zenodo.10823206). The data used in this analysis
will be made public along the Data Release 1 (details in https://data.desi.lbl.gov/doc/releases/)
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A Tests on noiseless data for ELG and QSO redshift bins

We repeat the above tests with noiseless data mimicking the ELG and QSO mock samples
in Figs. 10-12, this time with fewer kmax points just to see if any new behavior shows up at
higher redshifts. We observe that all models are more consistent with each other up through
kmax = 0.26hMpc−1 than for the LRG case, and that the maximum kmax for which our
models agree is not as restricted for ELG and QSO tracers as the LRGs. That being said,
even for the LRG tests the models behave consistently for kmax ≲ 0.24hMpc−1, which is a
looser bound on kmax than what we observe when fitting each model to the actual abacus
mock data sets (see individual papers [39, 44–46]). We therefore conclude from this section
that the EFT models discussed in this paper are consistent for the range of scales that will
be used in the analysis of real DESI data, and that any significant deviations between models
only occur at scales where real data is already known to not be well-described by one-loop
theories.
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and PyBird to the theoretical model generated by Folpsν. The theoretical model has ΛCDM fixed
to the true abacus cosmology and nuisance parameters shifted to best-fit the ELG (top) and QSO
(bottom) mock data.
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Figure 11. Comparison of 1D constraints of Full-Modeling fits from velocileptors (EPT and LPT)
and Folpsν to the theoretical model generated by PyBird. The theoretical model has ΛCDM fixed
to the true abacus cosmology and nuisance parameters shifted to best-fit the ELG (top) and QSO
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