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 A B S T R A C T

The Material Point Method (MPM) has been shown to be an effective approach for analysing 
large deformation processes across a range of physical problems. However, the method suffers 
from a number of spurious artefacts, such as a widely documented cell crossing instability, 
which can be mitigated by adopting basis functions with higher order continuity. The larger 
stencil of these basis functions exacerbate a less widely discussed issue - small cuts. The small cut 
issue is linked to the arbitrary interaction between the physical body and the background mesh 
that is used to assemble and solve the governing equations in the MPM. There is the potential 
for degrees of freedom near the boundary of the body to have very small contributions from 
material points, which causes two problems: (i) artificially large accelerations/displacements at 
the boundary and (ii) ill conditioning of the global linear system. This paper provides a new 
mesh Aggregated MPM, or AgMPM, that mitigates the small cut issue by forming aggregated 
elements, tying the ill-behaved degrees of freedom to well posed interior elements. Implicit 
quasi-static and explicit dynamic formulations are provided and demonstrated through a series 
of numerical examples. The approach does not introduce any new numerical parameters and 
can be applied to implementations that adopt a lumped mass matrix. Aggregation is shown to 
significantly improve the stability of implicit implementations of the MPM, often at a lower 
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computational cost compared to standard, non-aggregated, implementations. The technique 
improves the energy conservation and the stress field of explicit dynamic MPMs.

1. Introduction

The Material Point Method (MPM) was proposed by Sulsky et al. [1] as an extension of Particle In Cell (PIC)/FLuid Implicit 
Particle (FLIP) approaches to solid, history-dependent materials. Over the last 30 years it has gained widespread traction in modelling 
large deformation problems where other mesh-based methods, such as the Finite Element Method (FEM), can struggle due to 
mesh distortion. The key concept is to remove the strong coupling between the physical body and the mesh that is used to 
solve the governing equations. The physical body, represented by a collection of material points, is allowed to deform through 
a background grid of finite elements, which is used to assemble and solve the governing equations. The method has parallels 
with immersed/unfitted FEMs [2], and the method can be grouped under the expression coined by Burman et al. [3] as ‘‘mesh-
free method[s] posed on a mesh’’. The methods have similar advantages but also struggle with some of the same issues, such as 
boundary representation [4–6], imposition of boundary conditions [4,7–13], accuracy of integration [14] and, the focus of this 
paper, instabilities caused by the arbitrary interaction between the body and the mesh.

Similar to immersed FEMs, the MPM suffers from stability and ill conditioning issues associated with small cuts. The first issue 
can result in physically spurious results close to the boundary, such as artificially large accelerations or displacements that impact 
on the quality of the stress field. The second issue impacts on the accuracy of the linear solution and the ability to use efficient 
iterative solvers, which are a requirement for large three-dimensional problems. The issue is linked to the arbitrary interaction 
between the physical body, defined by a collection of material points, and the background grid, which is used to construct and 
solve the governing equations. The stability issue was recognised by Sulsky et al. [15] and summarised as

‘‘...if a single material point crosses into an element and is close to the element boundary, then the value of a nodal basis function 
identified with a node at the opposite side of the element may be small. However, the internal force vector involves the gradient of 
the basis function, which does not approach zero for points near the element boundary. The result is that computed accelerations at 
outer nodes can occasionally be unphysical...’’

The problem is compounded by adopting basis functions that generate higher order continuity between elements, such as generalised 
interpolation (GIMPM, [16]) and B-Spline basis functions [10].  This compounding factor was also identified by the immersed FEM 
community, where ‘‘ill-conditioning problems become particularly apparent when higher-order methods’’ are adopted [17]. The use of 
higher order basis functions increases the potential for a small contribution to the resulting linear system of equations from degrees 
of freedom near the boundary of the physical domain, this can be due to the extended stencil of spline-based basis functions or 
simply the non-linear form of the functions having small values (or gradients) near element boundaries. It was also proved by 
Prenter et al. [17] that the condition number of the linear system is inversely proportional size of the smallest volume contribution 
(i.e. the smallest cut), which scales to the power of the polynomial order of the basis functions, 𝑝. 

In explicit MPM implementations the impact of the small cut issue can be reduced by adopting the Modified Updated Stress 
Last (MUSL, [15]) approach with a lumped mass matrix. Lumping means that inversion of the mass matrix to determine the nodal 
accelerations is trivial (avoiding the ill conditioning problem and removing the requirement for an efficient linear solver for large 
problems). Spurious accelerations can still be predicted close to the boundary (the stability issue), but these are damped by an 
additional momentum-based material point to node velocity projection step. This means that the spurious accelerations are weighted 
by the small masses that caused them, and a more reasonable velocity field is reconstructed prior to updating the stresses at the 
material points. Another explicit approach is to ignore [15] or redistribute [18] the small masses (and the associated forces) if they 
fall below a value which is deemed problematic. However, the definition of small is arbitrary and it has been shown that the technique 
does not stabilise the problem in all cases [19]. Wang et al. [20] was one of the first papers to recognise the stability issue within 
quasi-static implicit implementation of the MPM. They proposed including a soft stiffness integrated over the background grid using 
Gauss quadrature to improve the numerical stability. Interestingly, the soft stiffness approach has parallels with fictitious domain 
virtual stiffness adopted in some immersed FEMs [21,22], where a stiffness the material outside of the domain is set to a small value 
to avoid conditioning issues of the global matrix. However, this soft stiffness approach [20] is rather crude as, unlike the virtual 
stiffness approach, it is applied to the full domain, irrespective if elements are suffering from the small cut issue or are fully inside the 
physical body. An alternative solution was proposed by Chandra et al. [8] who suggested re-weighting the basis functions for implicit 
MPMs to mitigate the small cut issue. Similar to mass cut off approaches, the technique requires the definition of a threshold below 
which to cut and re-weight the basis functions. Yamaguchi et al. [10] proposed the use of  Extended B-Spline (EBS) basis functions 
to reduce the likelihood of the small cut problem occurring. The approach modifies the basis functions near the edge of the physical 
domain such that the ‘‘degenerated bases are replaced by the linear combination of those of the stable bases’’ [10]. This method is part 
of the wider group of basis function manipulation methods, where the functions are constrained to geometrically nearby functions 
(for example, Web-splines [23,24] and i-splines [25]) or by excluding them completely [17]. Recently, Coombs [19] recognised 
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the parallels between the MPM and immersed FEM communities in suffering from the small cut issue and adopted Burman’s Ghost 
stabilisation technique [26] to mitigate the problem for implicit and explicit MPMs. The approach has also been extended to bi-phase 
materials by Pretti et al. [27], who stabilised both the displacement and pressure field for a quasi-static 𝑢-𝑝 implicit MPM. However, 
the approach relies on the specification of an appropriate penalty, or stabilisation, parameter which depends on the equations being 
solved and the material being analysed. It also requires information on the face connectivity of the background mesh, which may 
not be available in many existing MPM implementations. Finally, the technique has zero impact on implementations that use a 
lumped mass matrix as the lumping of the stabilisation matrix (summation over each degree of freedom) results in a null matrix. 
Therefore, the approach cannot be applied to most explicit dynamic MPM implementations, where lumping of the mass matrix is 
the default option.

It is worth noting that specific preconditions have been developed to address the poor conditioning of the linear system equations 
(but not the underlying stability issue) that result from discretisations suffering from the small cut problem. Example papers in this 
area include [17,28–30], with Schwarz preconditioners being of particular interest in immersed/unfitted FEMs [31]. However, as 
far as the authors are aware, to date there has been little research on the use of immersed FEM-type preconditioners within the 
MPM to address the small cut issue. The likely reason for this is the dominance of lumped mass matrices in large explicit MPM 
analyses.

Cell aggregation or cell agglomeration techniques, such as the aggregated FEM, AgFEM [32], is an approach used in the 
immersed FEM literature, where cells with the small cut problem are merged with neighbouring full cells forming aggregates. 
FEM implementations of the technique have been shown to be successful at mitigating the small cut issue but they have yet to be 
applied within the MPM. As far as the authors are aware there is only one MPM paper that utilises the concept of aggregation. Zheng 
et al. [33] used an aggregation technique to reduce the cost of B-spline basis functions by aggregating internal degrees of freedom. 
However, the focus is on the cost of the analysis and not on the stabilisation of the method in terms of the small cut problem. In 
fact, we do not believe that approach would mitigate the problem due to the focus on internal degrees of freedom, which are not 
problematic in terms of numerical stability.

This paper represents the first time that cell/mesh aggregation techniques have been applied to the MPM with the specific 
intention to mitigate the small cut issue, resulting in the Aggregated MPM (AgMPM). The following sections explain key aspects 
of the adopted quasi-static implicit and dynamic explicit MPM formulations, the mesh aggregation technique and the adaptations 
required to implement the approach within the MPM. The proposed method is demonstrated on a number of test cases and compared 
with the ghost stabilisation technique as well as non-stabilised MPM implementations.

2. Material point method

The Material Point Method (MPM, [1]) is well established and this section does not attempt to provide a full description of the 
approach. The implementation adopted in this paper is based on the open-source AMPLE (A Material Point Learning Environment) 
code of Coombs and Augarde [34]. A basic outline of the approach is provided below along with the key equilibrium equations and 
a description of the adopted basis functions.

As shown in Fig.  1, a typical load (or time) step in the material point method requires the following steps:

(a) At the start of the current step, the physical body is represented by a number of material points (shown by the dark grey 
filled circles) which is positioned within a background grid of finite elements.

(b) Point-to-grid map: information about the physical body is mapped to the nodes of the background grid. The transferred 
information depends on the governing equations.  For example,  quasi-static stress analysis requires information about the 
stiffness, internal force and gravitational external forces at the material points to be mapped to the nodes of the background 
grid using the basis functions and spatial derivatives.

(c) Assemble the governing equations at the nodes (the white-shaded circles) of the background grid, where the material points 
act as quadrature points.

(d) Solve the governing equations at the nodes of the background grid with appropriate boundary conditions (imposed weakly 
or strongly at the nodes).

(e) Grid-to-point map: the nodal solution is mapped to the material points in terms of material point displacements, deformation 
state, etc.

(f) Update the positions of the material points and reset/replace the background grid. Return to step (a).

2.1. Large deformation continuum formulation

The form of the MPM adopted in this paper is based on the work of Charlton et al. [35] using the open source AMPLE code of 
Coombs and Augarde [34] but extended to include inertia. A brief outline of the updated Lagrangian large deformation continuum 
formulation is given below; interested readers are referred to the above papers for details. Within this approach, the Galerkin form 
of the updated Lagrangian weak statement of equilibrium over each background grid element, , is 

[∇𝑥𝑆𝑣𝑝]𝑇 {𝜎}d𝑉 + 𝜌[𝑆𝑣𝑝]𝑇 {�̇�}d𝑉 − [𝑆𝑣𝑝]𝑇 {𝑏}d𝑉 − [𝑆𝑣𝑝]𝑇 {𝑡}d𝑆 = {0}, (1)
∫𝜑𝑡() ∫𝜑𝑡() ∫𝜑𝑡() ∫𝜑𝑡(𝜕𝛺)

3 
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Fig. 1. Material point method steps.
Source: Adapted from Coombs and 
Augarde [34].

where 𝜑𝑡 is the motion of the physical body, [𝑆𝑣𝑝] is the basis/shape function matrix, which is used to transfer information between 
the material points (subscript 𝑝) and the vertices of the background grid (subscript 𝑣), [∇𝑥𝑆𝑣𝑝] is the strain–displacement matrix 
containing derivatives of the basis functions with respect to the updated (deformed) coordinates, {𝜎} is a vector representation of 
the Cauchy stress, 𝜌 is the density of the material, {�̇�} is the acceleration, {𝑏} is the body force per unit volume and {𝑡} is the surface 
traction acting over the boundary of the body, 𝜕𝛺, which does not necessarily coincide with the boundary of the element. In the 
MPM the material points act as quadrature points when integrating over the background grid. This means that the weak statement 
of equilibrium, (1), becomes 

𝐴
∀𝑝

(

[∇𝑥𝑆𝑣𝑝]𝑇 {𝜎𝑝}𝑉𝑝 + [𝑆𝑣𝑝]𝑇 {𝑣𝑝}𝑚𝑝 − [𝑆𝑣𝑝]𝑇 {𝑏}𝑉𝑝
)

− ∫𝜑𝑡(𝜕𝛺)
[𝑆𝑣𝑝]𝑇 {𝑡}d𝑆 = {0}, (2)

where 𝑉𝑝 and 𝑚𝑝 = 𝜌𝑉𝑝 are the volume in the updated frame and mass associated with the material point. The surface traction 
contribution  remains expressed in terms of the boundary of the physical body. The large deformation elasto-plastic continuum 
mechanics formulation used in this paper can be found in Charlton et al. [35]. In brief, the formulation multiplicatively decomposes 
the deformation gradient into elastic and plastic components and combines this Lee decomposition with a linear relationship between 
Kirchhoff stress and logarithmic elastic strain along with an exponential map of the plastic flow rule. This allows isotropic small 
strain plasticity algorithms to be used directly within a large deformation setting without modifying the stress update procedure [36]. 
The approach is widely used in large deformation finite element methods (see for example [37]), and in material point methods. 
Details of the specific constitutive models used in this paper are included as part of the numerical examples in Section 4.

2.2. Implicit quasi-static analysis

Quasi-static implementations neglect the acceleration term in (1) and (2). This means that the adopted large deformation elasto-
plastic continuum formulation, (2), is a non-linear equation in terms of the displacements of the background grid. Consistent with 
the AMPLE code [34], in this paper the quasi-static non-linear problem is solved using a Newton–Raphson approach which continues 
until the residual out of balance force of (2), defined as {𝑓𝑅}, converges to within a given tolerance. This requires repeating steps 
(b) through (d) in Fig.  1 and only once (2) is satisfied are the material point positions updated using the basis functions linking the 
material points and the vertices of the background mesh. See Coombs and Augarde [34] for details.
4 
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2.3. Explicit dynamics

Explicit dynamic implementations of the MPM predict the next state of the material based on information at the current state. 
Assuming that the accelerations of the material points can be obtained from the background grid accelerations, {�̇�𝑣}, via 

{�̇�𝑝} =
∑

∀𝑣
𝑆𝑣𝑝{�̇�𝑣}, (3)

and neglecting the external traction term, the accelerations of the background grid can be computed as 

{�̇�𝑣} = [𝑀]−1𝐴
∀𝑝

(

[𝑆𝑣𝑝]𝑇 {𝑏}𝑉𝑝 − [∇𝑥𝑆𝑣𝑝]𝑇 {𝜎𝑝}𝑉𝑝
)

(4)

where [𝑀] =𝐴∀𝑝

(

[𝑆𝑣𝑝]𝑇 [𝑆𝑣𝑝]𝑚𝑝
)

 is the consistent mass matrix. In practice the vast majority of explicit dynamics implementation 
of the MPM adopt a lumped mass matrix for the reasons outlined in the introduction.

Once obtained, the nodal accelerations can be used to provide a FLIP (FLuid Implicit Particle) update on the material point 
velocities 

{𝑣𝑝}𝑛+1 = {𝑣𝑝}𝑛 + 𝛥𝑡
∑

∀𝑣
𝑆𝑣𝑝{�̇�𝑣}, (5)

where 𝛥𝑡 is the time step, and 𝑛 and 𝑛+1 are the previous and current time steps, respectively. In order to update the material point 
positions the nodal velocities at the start of the time step are required, which are obtained through 

{𝑣𝑣}𝑛 = [𝑀]−1𝐴
∀𝑝

(

𝑚𝑝[𝑆𝑣𝑝]𝑇 {𝑣𝑝}𝑛
)

, (6)

which can be used to determine the updated nodal velocities {𝑣𝑣}𝑛+1 = {𝑣𝑣}𝑛 + 𝛥𝑡{�̇�𝑣} and the updated material point positions 

{𝑥𝑝}𝑛+1 = {𝑥𝑝}𝑛 + 𝛥𝑡
∑

∀𝑣
𝑆𝑣𝑝{𝑣𝑣}𝑛+1. (7)

There exist two options for explicit MPM implementations when updating the material point stress, with descriptive names: Update 
Stress First (USF) and Update Stress Last (USL). In USF approaches the stress at the material points is updated prior to determination 
of the nodal accelerations using the increment in the deformation gradient from the previous step. USL approaches update the stress 
state at the end of the current step. The Modified USL (MUSL), as the name suggests, is a modification to the USL approach that was 
described in the introduction. The approach includes an additional momentum-based determination of the nodal velocities using 
(6) with the updated material point velocities prior to updating the material point stress state. As described by Sulsky et al. [15], 
the aim of the MUSL is to mitigate unphysical accelerations at the boundary of the body by re-weighting by the small masses that 
caused the spurious values.

2.4. Basis functions

Generalised Interpolation Material Point Method (GIMPM, [16]) 𝐶1-continuous basis functions are adopted in this paper to 
mitigate the well-documented cell crossing instability. The basis functions can be expressed as 

𝑆𝑣𝑝 =
1
𝑉𝑑 ∫𝛺𝑝

𝜒𝑝𝑁𝑣𝑑𝑉 (8)

and are obtained by integrating the product of the basis functions associated with the background grid, 𝑁𝑣, with a characteristic 
function, 𝜒𝑝, over the rectangle defining the domain associated with the material point, 𝛺𝑝, normalised by the volume of the domain 
(see Fig.  2, plotted in terms of the undeformed coordinates at the start of a load or time step, �̃�). For GIMPM basis functions, 𝜒𝑝
is a unity hat function  of length 2𝑙𝑝 with a value of 1 inside the material point’s domain and zero elsewhere.  The integration of 
the background grid basis functions over the material point domain results in five equations for 𝑆𝑣𝑝, as identified by Regions A 
through E in Fig.  2 for Node 2 of the background grid (see [34] for the five basis function equations and spatial derivatives). If 
the material point domain is fully within an element (Regions B and D), 𝑆𝑣𝑝 will be equal to 𝑁𝑣, the other regions represent cases 
where the material point domain overlaps multiple elements. In these overlapping cases (Regions A, C and E) the basis functions 
are 𝐶1 continuous across element boundaries. Note that GIMPM basis functions are non-interpolatory at the nodal locations; 𝑆𝑣𝑝 ≠ 1
at �̃�𝑝 = �̃�𝑣. A key observation is that GIMPM basis functions extend the region of influence of the node to ℎ+ 𝑙𝑝, compared to ℎ in 
the case of conventional polynomials basis functions. This has the consequence of increasing the stencil of the basis functions and 
therefore the bandwidth within the resulting linear system of equations. The basis functions of the background grid can be recovered 
by setting 𝜒𝑝 to a Dirac delta function, such that 𝑆𝑣𝑝 = 𝑁𝑣 as in the original MPM [1]. Note that the integral is normalised by the 
domain volume, 𝑉𝑑 , as, depending on the domain updating procedure, it is not guaranteed this volume will be the same as 𝑉𝑝 (see 
Coombs et al. [38] for a discussion on domain updating procedures). Here the domains are updated according to the approach 
included in AMPLE [34].

Although GIMPM basis functions mitigate the cell crossing instability, they increase the possibility of a problem suffering from 
the small cut instability. This is due to the basis functions being obtained from the integral of the background grid basis over the 
material point domain. If a small overlap exists between a domain and a background grid element  (for example in Regions A or E 
5 
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Fig. 2. 1D basis functions: linear finite element basis functions, 𝑁𝑣 (bottom), and GIMPM basis functions, 𝑆𝑣𝑝 (top). The white-shaded circles are nodes of the 
background grid and the grey-shaded circle represents a material point. �̃� are the coordinates at the start of a load or time step.
Source: Adapted from [39],

of Fig.  2) this will result in very small basis function values between the material point and the vertices of the mesh. This is less of 
an issue for the original MPM, which uses the basis functions of the background grid sampled at the material point location; it is 
only when the material point is very close to an element boundary that the small cut problem manifests for the original MPM. The 
next section will detail how mesh aggregation can correct the small cut issue for both the original MPM and the GIMPM.

3. Mesh aggregation

Mesh aggregation or cell agglomeration techniques, such as the aggregated FEM, AgFEM [32], is an approach used in the 
immersed FEM community, where cells at the boundary of the domain with the small cut cell problem are merged with neighbour 
interior cells forming aggregates. The approach is designed to tackle both the ill conditioning issue and the stability problem 
introduced by small cuts, and relies on defining a discrete extension operator from degrees of freedom on well-posed elements 
to ill-posed (typically the cut) elements [31]. The approach has parallels with discrete extension operators [40], which stabilise the 
cut elements by modifying the finite element space close to the boundary through extension from stable interior elements.  As far 
as the authors are aware, AgFEM techniques have yet to be applied to the MPM.

It is important to highlight the differences between aggregation and Extended B-Spline (EBS) and other basis manipulation 
methods. As commented by Badia et al. [32], mesh aggregation

‘‘is related to the extension techniques in [24,41,42] in the sense that we also define linear constraints between each ill-conditioned 
DOF and a set of some well-behaved master DOFs. However, the way such constraints are built is completely different and it is not 
restricted to B-splines. In fact, the approach is quite insensitive to the functional space, since it relies on a geometrical aggregation of 
cells and a dof-to-cell map.’’

While the EBS and the aggregation pursue the same goal and share similarities (the stencil of the basis functions is modified for 
both techniques), there are also substantial differences between the methods. The EBS trims or extends the basis function stencils to 
exclude the poorly-integrated nodes and modifies the basis functions of well-integrated neighbouring nodes to ensure the partition 
of unity. The aggregation instead only extends a basis function’s stencil beyond their usual definition, creating macro-elements. In 
this fashion, the nodal values of displacements of well-behaved nodes can interpolate on bigger domains, encompassing those of 
elements with poorly-integrated nodes.

The  aggregation approach relies on first identifying the cut, or boundary, elements, 𝐵 , and then forming element aggregations 
with neighbouring interior elements, 𝐼 , from which the basis functions are extended to eliminate the potentially ill-posed degrees 
of freedom. The aggregation process is shown in Fig.  3. Fig.  3(a) shows the physical body being analysed, 𝛺,  within a computational 
domain. The boundary of the physical body intersects a number of cut or boundary elements, shown by the mid grey-shaded elements 
in Fig.  3(b), and contains a number of white-shaded interior elements. Elements fully outside of the body are inactive and shaded 
light grey with a dashed element boundary.1 The boundary elements need to be associated with an interior element in order to form 

1 Note that there is the potential for confusion when describing elements  ‘‘outside’’ the body, especially when considering basis functions with extended 
influence (such as B-spline basis functions). In this case, a more precise definition is to state that the inactive elements are the elements that have no influence 
on the solution in the physical body.
6 
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Fig. 3. Mesh aggregation definitions and steps.

an element aggregation. Each aggregate will contain one (and only one) interior element and one or more boundary elements [32], 
as shown in Fig.  3(c). Once the aggregates have been established, the active nodes that are attached to a boundary element but not 
an interior element (shown by the red circles in Fig.  3(c)) need to be tied to the nodes of their associated interior element. This 
involves extending the basis functions of the interior element to the position of the node that needs to be aggregated, linking the 
degrees of freedom of the exterior nodes to those of the interior nodes (the white circles in Fig.  3(c)). Note that in many cases the 
link between an exterior node and an interior element is non-unique as the exterior node may be connected to multiple boundary 
elements. As commented by Badia et al. [32], this is not important provided that each exterior node is tied to the degrees of freedom 
of the interior nodes.

The displacement of an aggregated node, {𝑢𝑏}, is removed as an independent variable and instead is obtained by extending the 
basis functions of the interior element, such that 

{𝑢𝑏} =
𝑛𝑒
∑

𝑎=1
𝑁𝑎({𝑥𝑏}){𝑢𝑎}, (9)

where 𝑛𝑒 is the number of nodes of the interior element, 𝑁𝑎 are the basis functions of the interior element, {𝑥𝑏} is the global location 
of the node being aggregated and {𝑢𝑎} are the displacements of the nodes of the interior element. The displacements of all of the 
external aggregated nodes can be compactly expressed as 

{𝑑ext} = [𝐶]{𝑑int}, (10)

where [𝐶] is a global constraint matrix that contains the basis functions that link the exterior to the interior elements. This allows 
the definition of an extension matrix with the form 

[𝐸] =
[

[𝐼]
[𝐶]

]

, such that
{

{𝑑int}
{𝑑ext}

}

= [𝐸]{𝑑int}, (11)

where [𝐼] is an identity matrix. [𝐸] has dimensions (𝑛int + 𝑛ext) by 𝑛int, where 𝑛int and 𝑛ext are the number of interior and exterior 
degrees of freedom, respectively.

3.1. Implementation

This section details key aspects of the implementation of mesh aggregation within the MPM, focusing on: (i) identification of 
boundary elements and nodes for aggregation, (ii) nodal aggregation, (iii) modification to the linear solution for implicit quasi-static 
aggregated methods and (iv) the changes required for an explicit dynamic MPM with mesh aggregation.

Boundary element and aggregated node identification
Determining the boundary elements is a necessary step for node aggregation. Compared to immersed/unfitted FEMs, a precise 

definition of the boundary is not usually available in the MPM, where the boundary of the physical body is implied by the distribution 
of material points. Therefore, an alternative approach is required for identifying the cut or boundary elements. Following the 
approach of Coombs [19], for each physical body:

(i) determine which elements are populated by the material points representing the body, that is the elements that are active in 
the analysis (the white-shaded elements in Fig.  4(b));

(ii) determine the faces on the boundary between the active and inactive parts of the mesh (faces where one of its associated 
elements is active and one that is inactive); and

(iii) using the faces from (ii), identify the boundary elements (the dark grey shaded elements in Fig.  4(c)).

These are the elements that potentially suffer from the small cut issue and need to be aggregated with the interior elements, as 
shown by the red shaded regions in Fig.  4(d). However, it is only the active nodes that are only connected to a boundary element 
that require aggregation (the red nodes in Fig.  4(e)). This set of aggregated (or boundary or exterior) nodes,  , can be determined 
𝐵
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Fig. 4. Physical boundary to node aggregation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

by comparing all of the active nodes, 𝐴, in the analysis with the nodes attached to the interior elements, 𝐼 , the nodes that 
require aggregation are ones in 𝐴 but not in 𝐼 , that is the set difference 𝐵 = 𝐴∖𝐼 .

In this paper it is assumed that any degree of freedom that is at the edge of the domain, and therefore has the potential to suffer 
from the small cut issue, should be aggregated with interior degrees of freedom. However, there may well be boundary elements 
that are well populated with material points and would behave without aggregation or stabilisation. A threshold could be introduced 
where aggregation is, or is not, applied depending on the distribution of the physical material within the boundary elements and/or 
the resulting nodal quantities (basis functions, mass, stiffness, etc.) once the MP information has been mapped to the nodes of the 
background grid. One example of the use of thresholds in the MPM is the approach of Ma et al. [18], where small masses and their 
associated forces are redistributed to neighbouring degrees of freedom. However, it has been shown that this technique is sensitive 
to the choice of the cut off threshold and fails when other stabilisation techniques succeed [19]. Yamaguchi et al. [10] introduced an 
occupation index, the ratio between the volume of physical material within an element of the background grid (i.e. the volume of MPs 
in the element) and element volume, for the application of extended B-Splines. They demonstrated that the approach is insensitive 
to a 0.25 – 0.75 threshold range on the occupation index, which is not surprising given the small cut issue is linked to very small 
interactions between MPs and degrees of freedom of the background mesh and volume occupation of 0.25 is relatively large in this 
context. However, it is important to note that the distribution of the material within the element is critical, not just the volume 
itself, when assessing if a degree of freedom is likely to suffer from the small cut instability. A key advantage of mesh aggregation 
is that it is fully parameter free, being simply based on the connectivity of the background grid. Therefore, this paper follows the 
approach of Coombs [19], where stabilisation is applied over all faces that may require stabilisation, and applies aggregation to all 
exterior degrees of freedom rather than introduce an arbitrary numerical parameter.

Aggregation
As  described above, the first step in mesh aggregation is to associate an interior element with each of the boundary elements. 

The basis functions of the interior element will be extended into the boundary element and used to constrain out the potentially 
problematic nodes from the linear system of equations. The interior (or connected) element associated with each boundary element 
is determined through the following steps:

(i) Loop over each face of the boundary element. IF the connected element is on the interior, mark the element as the boundary 
element’s connected element for aggregation.
8 
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Fig. 5. Aggregated basis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(ii) IF the boundary element does not share a face with an interior element, determine the closest interior element to the boundary 
element (in terms of element centres) and mark the element as the boundary element’s connected element for aggregation.2 
Note that this is the  ‘‘corner’’ case, where the boundary element shares faces with other boundary elements and a node with 
an interior element.

In both cases the operation is non-unique, but this is not important for the subsequent node aggregation, which is applied node by 
node.

For each of the boundary nodes in 𝐵

(i) Determine the local position of the node in the connected element, {𝜉𝐵}, using the following residual 
{𝑥𝐵} − [𝑁({𝜉𝐵})]{𝑥𝑐} = {0}, (12)

where {𝑥𝐵} is the global position of the boundary node, {𝑥𝑐} are the global coordinates of the nodes of the connected element, 
[𝑁] is the basis function matrix of the connected element defined in terms of the element’s local coordinates, {𝜉}. For a linear 
element the solution can be obtained in a single Newton–Raphson step, which has the added benefit of  providing the required 
basis function values.

(ii) Position the basis function values linking the boundary node to the nodes of the connected element into the global extension 
matrix, [𝐸].

The above operation is shown for a number of boundary nodes in Fig.  5. The left of the figure shows a situation where two boundary 
elements (labelled A and B) are associated with an interior element (defined by nodes 2, 5, 6, 3) and form an aggregation. In this 
case four nodes (the red nodes in Fig.  5) need to be aggregated. First, considering Node 4, due to the Cartesian nature of the 
boundary grid, only the nodes with the same global 𝑥-position as Node 4 will have a non-zero basis function value and in this case 
we will only consider Nodes 2 and 3 from the interior element, as labelled on the figure. The aggregation process can therefore 
be considered using the one-dimensional projection shown on the right of the discretised domain (centre of the figure), where the 
basis function of the red and white-shaded nodes are shown.

Considering the standard isoparametric local coordinate system of a linear two-noded element, 𝜉 ∈ [−1, 1] as shown on the right 
of Fig.  5, the position of the red node within the connected node’s local system is 𝜉4 = 3. Calculating the basis functions of the nodes 
of the connected element gives

𝑁2 =
1
2
(1 − 𝜉) = −1 and 𝑁3 =

1
2
(1 + 𝜉) = 2.

the basis functions of the other nodes of the connected element will be equal to zero. The extension matrix for Nodes 2, 3 and 4 
shown on the right of Fig.  5 follows as 

[𝐸([2,3,4],[2,3])] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 0 2 0
0 −1 0 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

2 It is also possible to take the closest interior element approach for all elements that require aggregation, which might be advantageous if face connectivity 
is not available in the code’s data structure. However, if the face information is available it is likely to be more efficient to first check the boundary element 
faces.
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 where the modified rows, those associated with Node 4 (the aggregated node), have been highlighted and represent elements of 
the constraint matrix, [𝐶], as shown in (11).

The other nodes requiring aggregation follow a similar process. It is worth highlighting Node 8, which will have non-zero 
aggregation values from four nodes as its local position associated with the interior element is (𝜉, 𝜂) = (3, 3). However, all nodes 
follow the same process in terms of determining the local position of the aggregated node and the associated basis functions of the 
interior element.

Implicit quasi-static linear solution
For implicit quasi-static analysis, once the global extension matrix, [𝐸], has been formed, it is applied in the linear solution of 

the non-linear problem. The aggregated stiffness matrix and out of balance residual force vector are defined as 
[𝐾A] = [𝐸]𝑇 [𝐾][𝐸] and {𝑓A𝑅} = [𝐸]𝑇 {𝑓𝑅}, (13)

which are used to obtain the aggregated displacement vector that contains the displacements of the interior nodes, {𝑑int}, where [𝐾]
and {𝑓𝑅} are the non-aggregated global stiffness matrix and residual force vector. The form of the aggregated stiffness and residual 
force are obtained by substituting (11) into the continuum weak statement of equilibrium. Galerkin’s method is then applied to 
obtain the discrete form of the weak equilibrium statement, which can be linearised for the unknown internal displacements, {𝑑int}
– see Appendix  A for a summary of the derivation. The full displacement vector is recovered from (11), that is 

{𝑑} = [𝐸]{𝑑int}. (14)

Iterations continue until the norm of the aggregated residual force vector, {𝑓A𝑅}, normalised by the norm of the external forces, 
converges within a given tolerance. Note that as [𝐸] is based on the basis functions, it does not change through the Newton–Raphson 
process and can be computed once per load step.

Explicit dynamic MPM with aggregation
Explicit dynamic implementations of the MPM with mesh aggregation require all operations that use the global mass matrix to 

be modified. This includes: (i) determining the nodal velocities based on the momentum of the material points; and (ii) calculation 
of the nodal accelerations from the dynamic force residual. The first operation is required twice for MUSL implementation, at the 
start of the time step and immediately prior to updating the material point stresses.

Nodal velocities: The aggregated global mass matrix is defined as 
[𝑀A] = [𝐸]𝑇 [𝑀][𝐸] (15)

where [𝑀] is the global mass matrix (consistent or lumped). A lumped mass matrix is used in all of the examples presented in this 
paper. The velocities of the interior nodes are obtained using 

{𝑣int} = [𝑀A]−1
{

[𝐸]𝑇𝐴
∀𝑝

𝑚𝑝{𝑣𝑝}[𝑆𝑣𝑝]
}

(16)

and the full nodal velocity vector recovered using 
{𝑣} = [𝐸]{𝑣int}. (17)

Nodal accelerations: The accelerations of  the interior the nodes are obtained from 
{�̇�int} = [𝑀A]−1{𝑓A𝑅}, (18)

where {𝑓A𝑅} is the residual external force vector (the difference between the external and internal forces). The full nodal acceleration 
vector recovered using 

{�̇�} = [𝐸]{�̇�int}. (19)

It is important to note that the process of aggregation results in off diagonal terms in [𝑀A], even if [𝑀] is a lumped (i.e. diagonal) 
matrix. This means that it is necessary to apply a linear solver when determining the nodal velocities and accelerations rather than 
simply dividing the forcing term by the lumped mass of the associated degree of freedom. When using a lumped matrix, [𝑀], the 
aggregated mass matrix, [𝑀A], will be block diagonal for the interior degrees of freedom that support external, aggregated nodal 
values.  The aggregated mass matrix, [𝑀A], will be symmetric positive definite provided that the lumped mass matrix does not 
contain any negative mass values, which could only occur if the basis functions are negative at material point locations.  Given 
that [𝑀A] is block diagonal, with the majority of the diagonal elements being 1 × 1 lumped entries (the degrees of freedom that 
are not attached to element aggregations), the matrix can be inverted block by block. This substantially reduces the cost of the 
inversion of [𝑀A] compared to a consistent mass matrix, which will have higher connectivity. It also makes the use of preconditioners 
unnecessary as the aggregated mass matrix scales very well; the solver time will be proportional to the maximum block size, rather 
than being strongly related to the problem size.3 As mentioned, interior degrees of freedom not part of element aggregations will 
have lumped entries and their associated velocities/accelerations can be determined directly from the lumped mass. 

3 The solver cost, will be ≈(𝑛) where 𝑛 is the global system size, with an additional, but small, cost (i.e. the cost of an efficient solver, such as Cholesky 
factorisation – (𝑛3 ), where 𝑛  is the block size) for resolving each aggregated block separately, which can be performed in parallel.
𝐵 𝐵
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Fig. 6. Rigid translation: problem definition.

It is noted that there appears to be a choice regarding when to apply lumping versus aggregation of the mass matrix. For example, 
it may seem advantageous to aggregate the consistent (or lumped) mass matrix and then apply diagonal lumping to recover a trivial-
to-solve linear system. However, it is not appropriate to lump the aggregated mass matrix as it has the potential to introduce negative 
values on the leading diagonal of the resulting matrix. This means that the matrix is no longer guaranteed to be positive definite, 
which is caused by the negative entries in the extension matrix, [𝐸]. These issues are revealed in Appendix  B using the case shown 
in Fig.  5. This example also shows that the only way to avoid negative definite matrices consists of aggregating the considered mass 
matrix (either lumped or consistent) and not altering it further. 

Global versus local aggregation
Note that in the above algorithm the extension matrix, [𝐸], has been expressed in terms of a global quantity however it is 

entirely possible to implement aggregation at a local aggregated element level and assemble the resulting aggregated quantities. In 
fact, entries in the constraint matrix, [𝐶], are by their nature, local operations considering the interaction between an exterior (or 
aggregated) node and its parent aggregated element. However, depending on the context, it might be better to assemble this matrix 
globally and multiply it with the other global matrices (e.g., the stiffness or the mass matrix) or swap the order of this procedure, 
that is multiply matrices locally and assemble the result in a global one. For implicit simulations, the former option seems preferable, 
as the matrix [𝐸] is constant within a load step, while the stiffness matrix changes at every iteration. Conversely, the better option 
for explicit simulations may be multiplying the local extension matrix by the local mass matrix, as this is performed only once per 
time step and avoids global multiplication operations. It is also acknowledged that details of the preferred implementation approach 
will also depend convenience within the base MPM code, and a local or global approach will not change the resulting system of 
equations. Implementation efficiency is another important consideration and the interested reader is referred to [43] for a highly 
efficient parallel implementation of AgFEM on distributed memory architectures.

4. Numerical examples

This section includes six numerical examples of increasing complexity to demonstrate the ability of the AgGIMPM approach to 
produce stable simulations of large deformation problems with non-linear material behaviour.

4.1. Rigid translation

This numerical example investigates the evolution of the condition number of the global stiffness matrix and global mass matrix 
with rigid body motion, or rather the range of condition numbers depending on the exact interaction of the physical body with 
the background mesh. A 4 × 1 m plane strain physical domain was discretised by 16 material points, each representing 0.25 m3

of material with a Young’s modulus of 𝐸 = 1 Pa, a Poisson’s ratio of 𝜈 = 0 and a density of 𝜌 = 1 kg/m3. A background grid 
comprised of ℎ = 1 m square bi-linear quadrilateral elements was used to construct the global matrices. The background grid nodes 
were constrained as shown in Fig.  6, where the grid nodes at 𝑦 = 0 m are constrained vertically and the node at 𝑥 = 3 m, 𝑦 = 0
m is also constrained horizontally. The focus of this example is on the impact of the material point positions on the global matrix 
conditioning, therefore the translation of the physical domain is imposed directly at the material points rather than being driven by 
any grid-based boundary conditions; the stiffness and mass matrix are assembled, but no governing equations are solved using the 
matrices.

Fig.  7 shows the evolution of the stiffness matrix condition number, 𝜅([⋅]) the ratio of the largest to smallest eigenvalue, of the 
reduced stiffness matrices (the stiffness matrices after the rows/columns associated with the constrained and inactive degrees of 
freedom have been removed) as the physical domain is translated by 𝑎∕ℎ = 4 over 5000 steps for the standard GIMPM, Ghost-
stabilised GIMPM (GsGIMPM) [19], where the stabilisation parameter is set to the Young’s modulus of the material, and Aggregated 
GIMPM (AgGIMPM). Note that for 𝑎∕ℎ ∈ [3, 4] the body is no longer constrained by the boundary condition that restricts rigid body 
motion in the 𝑥-direction and all of the method have conditions numbers above 1 × 1016.

Condition numbers above the reciprocal of the precision of the machine being used will cause accuracy problems when solving 
the linear system of equations. It is clear from Fig.  7 that the GIMPM suffers from instabilities when the boundary physical domain 
11 
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Fig. 7. Rigid translation: stiffness matrix conditioning (inset figure shows detail for 𝜅 ∈ [100 , 105]).

Fig. 8. Rigid translation: (a) mass matrix condition number and (b) CFL number.

is very close to a grid boundary. Spikes in the condition number above 1025 are seen at 𝑎∕ℎ = 1 and 2, which will cause problems for 
any double precision linear solver. This issue is corrected by both ghost stabilisation and mesh aggregation, with similar resulting 
condition numbers from both methods. The biggest difference between the two approaches is seen for 𝑎∕ℎ ∈ [2.7, 3.0], which is due 
to the difference in the influence of the boundary condition. The ghost stabilisation weakly constrains the gradient of the solution 
at the boundary of the physical domain, which has the effect of increasing the influence of the 𝑥-direction boundary condition.

The condition of the mass matrix has important consequences for dynamic explicit and implicit implementations of the MPM. 
The evolution of the condition number of the reduced mass matrix is shown in Fig.  8(a) for the standard GIMPM, GsGIMPM [19] 
(stabilisation parameter set to 𝛾𝑀 = 𝜌∕4) and AgGIMPM, along with the lumped matrix for GIMPM and AgGIMPM. As with the 
stiffness matrix, aggregation improves the condition number of the mass matrix and removes the spikes seen in the condition number 
of the GIMPM consistent and lumped mass matrices and offers a slight improvement over the GsGIMPM. Note that ghost stabilisation 
does not change the lumped mass matrix as the sum of the stabilisation terms over a given degree of freedom is equal to zero. This 
is an important distinction between mesh aggregation and ghost stabilisation; mesh aggregation can be applied to explicit MPMs 
that use a lumped mass matrix whereas ghost stabilisation has zero impact.

The conditioning of the stiffness and mass matrices have a combined impact on the maximum time step size for a dynamic 
analysis. The maximum time step size for an explicit time stepping algorithm is limited by the Courant–Friedrichs–Lewy (CFL) 
number, 𝐶CFL, via

𝛥𝑡 ≤ 𝛼𝐶 min(ℎ),
CFL
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Table 1
Rigid translation: minimum and maximum CFL numbers.
 GIMPM GsGIMPM AgGIMPM  
 max(𝐶CFL) 2.25 × 10−1 3.03 × 10−1 3.13 × 10−1 
 min(𝐶CFL) 1.30 × 10−14 2.21 × 10−1 2.21 × 10−1 

Fig. 9. Column under self weight: convergence with mesh refinement, and initial problem setup and deformed material point positions coloured according to 
the vertical stress, 𝜎𝑦𝑦 for GIMPM with ℎ = 6.25 m. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

where 𝛼 is a constant that depends on the time stepping algorithm [44]. The CFL number can be determined from

𝐶CFL =
1

ℎ
√

𝜆max
,

where 𝜆max is the largest eigenvalue of the generalised eigenvalue problem [𝐾]{𝑥} = 𝜆[𝑀]{𝑥}. Ideally 𝐶CFL should be independent 
of the position of the physical domain relative to the background mesh. Ill-conditioning of the mass and stiffness matrices can cause 
severe time step limitations [45], which is demonstrated in Fig.  8(b) and Table  1 for the standard GIMPM without stabilisation or 
aggregation where 𝐶CFL reduces by 13 orders of magnitude when the boundary physical domain is very close to a grid boundary. 
This problematic behaviour is corrected by both the ghost-stabilisation and the mesh aggregation, with a similar CFL range for both 
approaches.

4.2. Quasi-static column under self weight

This example considers the implicit analysis of a one dimensional quasi-static elastic column with an initial height of 𝑙0 = 50
m under its own self weight. The material had a Young’s modulus of 𝐸 = 10 kPa and a Poisson’s ratio of 𝜈 = 0. The background 
mesh was comprised of square elements with roller boundary conditions on the base and sides and the column was discretised by 
a 2 by 2 grid of equally spaced material points in each initially populated background grid element. A body force of 800 N/m2

(𝑔 = 10 m∕s2 and an initial density of 𝜌0 = 80 kg/m3) was applied over 40 equal load steps. The magnitude of the load causes the 
column to compress to approximately half of its initial height, as shown on the right of Fig.  9 for an analysis with a background 
size of ℎ = 6.25 m using the GIMPM.

The analytical solution for the normal stress in the vertical (𝑦) direction for this problem is 

𝜎𝑎𝑦𝑦 = 𝜌0 𝑔(𝑙0 − 𝑌 ), (20)

where 𝑌  is the original position of the point in the body and 𝑙0 is the original height of the column. Fig.  9 shows the convergence 
with background mesh refinement whilst maintaining 4 material points per initially populated element of the standard MPM and 
the GIMPM with and without aggregation. The reported normalised stress error is 

error =
𝑛𝑝
∑

𝑝=1

|𝜎𝑝𝑦𝑦 − 𝜎𝑎𝑦𝑦(𝑌𝑝)| 𝑉
0
𝑝

(𝑔𝜌0𝑙0)𝑉0
, (21)

where 𝑉 =
∑

𝑉 0 is the initial volume of the column and 𝜎𝑝  is the vertical stress at each of the material points.
0 𝑝 𝑦𝑦
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Fig. 10. Elastic beam: initial discretisation and boundary conditions with ℎ = 0.5 m and 22 MPs/element (only part of the background mesh is shown).

Table 2
Elastic beam stability for GIMPM, GsGIMPM (𝛾𝐾 = 𝐸) and AgGIMPM: for entries marked 7, the number indicates the final stable 
load step; for entries marked 3, the numbers indicate the total and (maximum) number of Newton iterations for the analysis.
 (a) GIMPM: total and (max.) iterations or final stable iteration
 MPs/elem. ℎ = 0.250 ℎ = 0.125 ℎ = 0.0625

 22 7 11 7 1 7 18
 32 3 215(8) 7 5 3 222(6)
 42 7 26 3 215(5) 7 15
 52 3 207(5) 3 214(5) 7 15
 62 3 207(5) 3 216(6) 3 217(5)
 mean 209.7(6) 215.0(5.3) 219.5(5.5)

 (b) GsGIMPM: total and (max.) iterations
 MPs/elem. ℎ = 0.250 ℎ = 0.125 ℎ = 0.0625  
 22 3 203(5) 3 205(5) 3 206(5)  
 32 3 204(5) 3 203(5) 3 201(5)  
 42 3 204(5) 3 201(5) 3 202(5)  
 52 3 203(5) 3 202(5) 3 202(5)  
 62 3 204(5) 3 202(5) 3 202(5)  
 mean 203.6(5) 202.6(5) 202.6(5)  
 (c) AgGIMPM: total and (max.) iterations
 MPs/elem. ℎ = 0.250 ℎ = 0.125 ℎ = 0.0625  
 22 3 203(5) 3 204(5) 3 205(5)  
 32 3 203(5) 3 204(5) 3 206(5)  
 42 3 203(5) 3 204(5) 3 206(5)  
 52 3 202(5) 3 204(5) 3 205(5)  
 62 3 203(5) 3 204(5) 3 205(5)  
 mean 202.8(5) 204.0(5) 205.4(5)  

As widely documented [19,35,38,39], Fig.  9 demonstrates that the standard MPM, irrespective of aggregation, does not converge 
with mesh refinement due to the cell crossing instability. The GIMPM and the AgGIMPM converge with mesh refinement, with only 
minor differences in the error values for a given mesh size, ℎ. The convergence rate is initially quadratic, but reduces to a linear rate 
as the mesh is refined. This is due to the accuracy of the solution is limited by the lowest order of the basis function; GIMPM basis 
functions are linear when a material point is fully within one element and quadratic when the  particle domain overlaps multiple 
elements. The limiting theoretical convergence rate of the stress error is the same as the basis order. Fig.  9 confirms that aggregation 
has a limited impact on the accuracy of the solution as the mesh is refined. It is important to note that due to the constrained nature 
of the problem (1D deformation) that stability is not an issue in this case. The impact of aggregation on a more challenging problem 
is explored by the next example.

4.3. Quasi-static elastic cantilever beam

This example considers the implicit quasi-static analysis of a large deformation beam as a challenging problem for the material 
point method due  to numerous small overlaps between the  material point domains and the background grid. The elastic cantilever 
beam was subjected to a point load at its free end and modelled using the generalised interpolation material point method. The 
beam was 𝑙0 = 10 m long and 𝑑0 = 1 m deep and the material had a Young’s modulus of 12 MPa, a Poisson’s ratio of 0.2 and was 
assumed to be weightless (𝜌 = 0). The 𝑓0 = 100 kN end point load was split between the two material points closest to the end of 
the beam either side of the neutral axis and applied over 50 equal load steps. The initial discretisation of the beam is shown in Fig. 
10 with ℎ = 0.5 m and with 22 material points per initially populated background grid cells. The loaded material points are shown 
by the black-filled circles.

Table  2 provides information on the stability of the quasi-static analysis with different numbers of generalised interpolation 
material points per element when aggregation, or ghost stabilisation, is and is not applied. The table reports different information 
depending on if an analysis was able to complete all load steps:
14 
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Table 3
Elastic beam run time distribution  (in seconds) for AgGIMPM with 32 MPs per element.
 process AgGIMPM

 ℎ = 0.250 ℎ = 0.125 ℎ = 0.0625

 initialisation 0.072 0.093 0.169
 MP search & basis calc. 6.166 27.247 175.810
 form [𝐾] and {𝑓 int} 9.943 40.257 168.046
 form {𝑓 ext} 0.154 0.553 2.297
 mesh aggregation  0.291  1.014  5.194
 linear solver 0.186 0.794 4.205
 MP update 0.392 0.568 6.212
 miscellaneous 0.141 0.568 2.397

 total 17.35 72.01 364.33

7 unstable analysis: the number indicates the final stable (converged) load step; and
3 stable analysis: the numbers indicate the total and (maximum) number of Newton–Raphson iterations for the analysis.

The tolerance on the normalised out of balance force was set to 1 × 10−6, with a maximum of 10 iterations in the Newton–Raphson 
(NR) algorithm.  Consistent with [19], for the GsGIMPM analysis the stabilisation parameter was set to the Young’s modulus of the 
material, 𝛾𝐾 = 𝐸. The key observation from Table  2 is that all of the AgGIMPM  and GsGIMPM analyses completed whereas seven 
out of the  15 GIMPM analyses failed to apply the full load. It is difficult to predict which GIMPM analyses will complete and which 
will fail, as there is no clear trend from the pattern of the failed simulations beyond that 22 material points is insufficient. Another 
observation is that  both AgGIMPM and GsGIMPM are relatively insensitive to the size of the background mesh and the number of 
material points in terms of the total and maximum number of NR iterations. The total number of iterations for the standard GIMPM 
tends to increase with mesh refinement.

Table  3 details the run time distribution for the AgGIMPM with three mesh sizes with 32 MPs per element. The aggregation 
step  (highlighted in bold) accounts for between 1.4 and 1.6% of the overall run time and scales approximately proportional to the 
number of degrees of freedom of the background mesh (or 1∕ℎ2).  Note that this is the only significant additional algorithm that 
is required to implement the mesh aggregation approach versus a standard GIMPM analysis. The linear solver step is also modified 
to calculate the aggregated stiffness matrix and residual force, Eq. (13), but this has almost zero impact on the run time, being 
balanced by the solution of a smaller, aggregated, linear system. For comparison, the run time for forming the ghost stabilisation 
matrix with ℎ = 0.0625 m and 32 MPs per element was 4.70 s and also scales approximately proportional to 1∕ℎ2. 

The normalised force–displacement response of the 15 AgGIMPM simulations is shown in Fig.  11 along with the  non closed-
form analytical displacement solution of Molstad [46] (white-filled markers) for both the horizontal and vertical displacements.4
The plotted displacement for the material point analyses is the mean of the displacement of the two material points closest to 
the end of the beam either side of the neutral axis (i.e. the mean displacement of the loaded material points). The resolution of 
the figure means that the responses of the 15 simulations are essentially the same and show good agreement with the analytical 
solutions, especially for the horizontal displacement.  Note that the closed-form solution provided by Molstad [46] makes a number 
of assumptions, namely: the direction of the tip load remains vertical, the length of the deformed beam is the same as the original 
length, and the beam has constant flexural rigidity. The first assumption is consistent with the numerical analyses in this paper, 
but the other two assumptions can explain the minor discrepancies between the MPM results and Molstad’s solution. A simulation 
for the standard GIMPM with ℎ = 0.25 m and 32 material points per element is also shown by the black-filled discrete points. The 
vertical displacement response is very similar to the AgGIMPM simulations. A more significant difference is seen for the horizontal 
displacement, with the AgGIMPM predicting a stiffer response than GIMPM.  GsGIMPM results are not included on the figure as the 
global force–displacement response of the simulations is essentially the same as that of the AgGIMPM analyses. The right of Fig.  11 
shows the final deformed configuration of the material points, which have been coloured according to the vertical normal stress, 
𝜎𝑦𝑦, for ℎ = 0.125 m and 32 material points per element.

4.4. Quasi-static elasto-plastic collapse

This example considers an implicit quasi-static analysis of the collapse of an elasto-plastic rectangular body of material subject 
to a gravitational body force. The initial discretisation of the problem is shown in Fig.  12 with 𝑙0 = 8 m, ℎ = 1 m and 22 material 
points per initially filled background cell (the grey-shaded region). Note that the size of the background grid and the number of 
material points per element are different in Fig.  12 than used in the analysis to help with clarity of the figure. Roller boundary 
conditions are imposed on the base and left-hand side of the background grid. The material is modelled using a  hyper-elastic 
Hencky, perfectly-plastic von Mises constitutive formulation with the following yield function

𝑓 =
√

𝑠𝑖𝑗𝑠𝑗𝑖 − 𝜌𝑦, where 𝑠𝑖𝑗 = 𝜎𝑖𝑗 −
𝜎𝑘𝑘
3
𝛿𝑖𝑗

4  Note that Molstad [46] also includes large deformation finite element simulations of this cantilever beam problem and the boundary conditions adopted 
in this paper are consistent with those analyses.
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Fig. 11. Elastic beam: normalised force–displacement response for all AgGIMPM analyses and a single GIMP analysis (ℎ = 0.25 m, 32 MPs) plus the analytical 
solution [46]; and final deformed beam for AgGIMPM with ℎ = 0.125 m and 32 MPs. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 12. Elasto-plastic collapse:  boundary conditions and illustrative discretisation with ℎ = 1 m and 32 MPs/element. Note that the actual analyses used ℎ = 0.25
m.

and a yield strength of 𝜌𝑦 = 20 kPa, a Young’s modulus of 1 MPa and Poisson’s ratio of 0.3.  The analysis was conducted with the 
standard GIMPM, GsGIMPM and AgGIMPM with a mesh size of ℎ = 0.25 m and 32 material points per initially populated element. A 
body force of 10 kN/m3 (density of 1000 kg/m3 and gravitational acceleration of 10 m∕s2) is applied over 40 equal loadsteps.  The 
ghost stabilisation penalty parameter for the GsGIMPM was set to 𝛾𝐾 = 𝐸

100 .
Fig.  13 shows the deformed material point positions at the end of the analysis shaded according to the material point’s shear 

stress, 𝜎𝑥𝑦, value for (a) the GIMPM and (b) the AgGIMPM. Two areas are highlighted in the figure by the dashed circles labelled A 
and B, where there are spurious stress oscillation at the boundary of the domain for the GIMPM analysis that are not present in the 
AgGIMPM analysis. These spurious stress oscillations are caused by artificially large incremental displacements of the nodes of the 
background grid in the GIMPM analysis.  These displacements can be seen in Figs.  13(c) and (d), where vectors of incremental nodal 
displacements are shown scaled according to their magnitude for load step 37 as a representative example. The incremental nodal 
displacement solution, {𝛥𝑑}, contains both the internal, {𝛥𝑑int}, and aggregated (or external) displacements, {𝛥𝑑ext}, that have been 
recovered from the internal displacements using (11). Therefore all active degrees of freedom have an incremental displacement 
solution vector. Note that size of the vectors in Fig.  13(d) are scaled by a factor of two to better visualise the incremental displacement 
of the nodes; no scaling is applied to Fig.  13(c).

Large nodal displacements in seemingly random directions are observed close to the boundary in Fig.  13(c) for the GIMPM 
analysis, caused by the small cut issue, and it is these displacements that cause the random fluctuations of the stress field near the 
boundary of the physical domain.  The maximum displacement magnitude of the nodes of the background mesh, max(|{𝑢𝑣}|) ∀ 𝑣, for 
all load steps is shown in Fig.  14(a) for GIMPM, GsGIMPM and AgGIMPM. Little difference is seen between the analysis until load 
step 23, where the maximum value for the GIMPM analysis increases by approximately two orders of magnitude, this coincides with 
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Fig. 13. Elasto-plastic collapse: shear stress distribution at the end of the analysis for (a) GIMPM and (b) AgGIMPM and nodal displacement vectors at load 
step 37 for (c) GIMPM and (d) AgGIMPM. ℎ = 0.25 m and 32 MPs/element for all cases. See supplementary information for an animation of all load steps.

Fig. 14. Elasto-plastic collapse: (a) maximum displacement magnitude of the nodes of the background mesh, max(|{𝑢𝑣}|) ∀ 𝑣, and (b) extent of the physical 
domain, max({𝑥𝑝}) ∀ 𝑝.

the start of the large deformation collapse mechanism and significant non-mesh conformity of the physical body. This is confirmed by 
Fig.  14(b), which shows the extent of the physical domain based on the maximum coordinates of the material points, max({𝑥𝑝}) ∀ 𝑝. 
GIMPM, GsGIMPM and AgGIMPM predict very similar overall deformation patterns, with only a 0.055% and 0.060% difference in 
the horizontal and vertical extents, respectively, across the three methods.

It is also worth noting that the GIMPM analysis had a total of 240 iterations whereas the AgGIMPM analysis had a total of 212 
iterations  (a 12% reduction), all of which had a maximum number of 8 iterations within any load step. Therefore, not only are 
the spurious nodal displacements, and associated oscillations in the stress field, removed but the cost of the analysis is also reduced 
despite requiring additional calculation steps.5

4.5. Quasi-static soil–structure interaction: cone penetration test

The final implicit quasi-static example is focused on axi-symmetric soil–structure interaction in the form of a Cone Penetration 
Test (CPT) using the rigid-deformable body contact approach of Bird et al. [47]. The predicted cone resistance is compared to 
experimental data obtained in a geotechnical centrifuge by Davidson et al. [48] and available from Cerfontaine et al. [49].

5 9.4% reduction: GIMPM run time 121.3 s, AgGIMPM run time 109.9 s. Software: MATLAB R2023b on MacOS Sonoma V. 14.7.1. Hardware: Apple M3 Pro, 
18 GB RAM.
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Table 4
CPT simulation information for 32 MPs/element and 0.75 MRF  (Mesh Refinement Factor). The 7 indicate analyses that failed 
to complete.
 final 𝑝∕𝑟𝑐 no. contact steps time (s) time

steps  (s) 
 GIMPM 0.881 7 27 – –  
 GsGIMPM (𝛾𝐾 = 𝐸min) 9.600 97 1407.0 14.51  
 GsGIMPM (𝛾𝐾 = 𝐸min

10
) 9.650 98 1516.7 15.47  

 GsGIMPM (𝛾𝐾 = 𝐸min

100
) 9.600 104 1718.3 16.52  

 GsGIMPM (𝛾𝐾 = 𝐸min

1000
) 1.528 7 43 – –  

 AgGIMPM 9.675 107 1843.2 17.23  

The material was modelled using a  hyper-elastic Hencky, perfectly-plastic non-associated flow constitutive formulation with a 
Drucker–Prager (DP) yield function of the form

𝑓 = 𝜚 − 𝛼
(

𝜉 − 𝜉𝑐
)

, where 𝜚 =
√

𝑠𝑖𝑗𝑠𝑗𝑖 and 𝜉 =
𝜎𝑘𝑘
√

3
.

𝛼 = tan(𝜙) is the opening angle of the DP cone, 𝜉𝑐 = 𝑐
√

3 cot(𝜙) is the tensile hydrostatic extent of the yield surface (the position 
of the cone apex on the hydrostatic axis), 𝜙 is the friction angle and 𝑐 the cohesion. The slope of the plastic potential surface is 
controlled by the dilation angle, 𝜓 , associated plastic flow is recovered when 𝜓 = 𝜙.

The Young’s modulus of the material varies with depth based on the relationship proposed by Schanz et al. [50] 

𝐸 = 𝐸∗
(

𝜎𝑣𝐾0
𝑝∗

)𝑚𝐸
where 𝜎𝑣 = 𝑑𝑝𝜌 (22)

is the vertical stress at the material point based on its depth within the sample, 𝑑𝑝, 𝐾0 = 1 − sin(𝜙) is the coefficient of lateral earth 
pressure at rest, 𝐸∗ is the reference Young’s modulus, 𝑝∗ = 100 kPa is the reference atmosphere pressure and 𝑚𝐸 is an exponent 
controlling the variation of stiffness with depth (see Brinkgreve et al. [51] for details). A sand with a Relative Density (RD) of 82% 
is considered, where the associated material properties are: density 𝜌 = 1820 kg/m3, reference Young’s modulus 𝐸∗ = 49.2 MPa, 
Poisson’s ratio 𝜈 = 0.3, stiffness exponent 𝑚𝐸 = 0.56, friction angle 𝜙 = 38.3◦, dilation angle 𝜓 = 8.3◦ and cohesion 𝑐 = 0.3 kPa. Most 
of these parameters are obtained from the relative density relationships provided by Brinkgreve et al. [51]. Two exceptions are the 
Poisson’s ratio, which is taken as a representative value for the type of sand, and the cohesion, which is set to the very small value 
of 0.3 kPa as a balance between numerical stability and the fact that this dry sand will essentially have zero cohesion.

An indicative background mesh is shown in Fig.  15, where the overall size of the initially populated background mesh is 12.5 m 
in diameter by 25.0 m high. The mesh is graded from a uniform fine 1.0 m by 10.0 m region (the grey shaded region in Fig.  15) in 
the immediate vicinity of the CPT penetration path towards the radial and lower limits of the mesh using a power law scaling rule. 
Roller boundary conditions were applied to the lower and outer radial limit of the mesh. Note that no boundary condition is applied 
at the line of symmetry, where 𝑟 = 0 m, as this would artificially constrain the movement of the material points when interacting with 
the rigid body. Any material points moving in the negative radial direction close to the line of symmetry will generate compressive 
normal stresses in the circumferential direction that will act to limit the movement of the material and stop it crossing the line of 
symmetry. The CPT probe had a tip angle of 60◦ and radius of 0.4 m, which is scaled from the geotechnical centrifuge radius of 
8 mm by the 50 g acceleration applied in the centrifuge tests. The CPT probe was moved 4 m vertically downwards over 100 steps, 
however the actual value of penetration will depend on the material point discretisation as penetration is measured from the first 
contact interaction with a material point. The level of penetration will also depend on the number of step size reductions required 
by the solver, as the displacement increment of the CPT is automatically halved if equilibrium is not obtained within a given load 
step. Once equilibrium is achieved the  following step size is doubled, but with a limit of the original equal displacement step size 
(0.04 m in this case). All analyses will continue until the CPT probe has been displaced by at least 4 m.

The CPT, due to its high stiffness compared to the soil, was assumed to be a rigid body and the frictional penalty contact approach 
of Bird et al. [47] was adopted to model the soil-rigid body interaction. In this approach the corners of the GIMPM domains are used 
to detect contact between the material points and the rigid body, which is discretised into a number of linear segments (or triangular 
facets in 3D, [52]). Overlaps between material point domains and the rigid body generate penalty reaction forces proportional to the 
penetration (or overlap) length, which are multiplied by user specified penalty parameters in the normal and tangential directions. 
The penalty forces are imposed on the overlapping corner of the material point domain before being mapped to the nodes of the 
background grid and included in the solution of the non-linear equilibrium equation. In the case of frictional interfaces, the maximum 
force in the tangential direction is limited by the normal reaction force and a coefficient of friction between the soil and the rigid 
body.  The contact the normal and tangential penalty parameters were set to 20𝐴𝑝𝐸𝑝 and 10𝐴𝑝𝐸𝑝, respectively, where 𝐸𝑝 is the 
Young’s modulus of the material point and 𝐴𝑝 is area of contact associated with the material point, which is taken to be diameter 
of that circle that encompasses the material point domain multiplied by the appropriate length in the out of plane direction (see 
Bird et al. [47] for details). The coefficient of friction between the material points and the rigid body was set to 0.3.

Fig.  16 shows the normalised penetration resistance (𝑓𝑐∕𝐸∗, where 𝑓𝑐 is the vertical resistive force acting on the CPT probe) 
versus normalised penetration depth (𝑝∕𝑟 , where 𝑝 is the penetration and 𝑟  the cone radius) response for the standard GIMPM, 
𝑐 𝑐
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Fig. 15. CPT: indicative discretisation (dimensions in m).

Fig. 16. CPT: normalised penetration resistance.

GsGIMPM and AgGIMPM for with various simulation parameters along with the centrifuge result. In Fig.  16(a) responses are 
compared between the methods with a fixed background mesh and material point discretisation. The standard GIMPM analyses 
fails to converge beyond a normalised penetration depth of 0.88 due to instabilities associated with the small cut problem. Fig. 
16(a) also includes GsGIMPM results for three levels of penalty parameter  (𝛾𝐾 = 𝐸min, 𝐸min

10  and 𝐸min
100 ), which are very similar but 

behave differently in terms of their stability, as summarised in Table  4. The 𝛾𝐾 = 𝐸min
1000  result is not included in Fig.  16(a) as the 

simulation failed to complete. It can be seen that the simulations require more step size reductions and take longer with reducing 
stabilisation parameter; the GsGIMPM results approach the AgGIMPM number of steps and run time as the stabilisation is reduced. 
The GsGIMPM analysis with 𝛾𝐾 = 𝐸min

1000  failed to converge beyond a normalised penetration of 1.53, with the additional stiffness 
insufficient to mitigate the small cut issue. It can also be observed in Fig.  16(a) that, as expected, reducing the ghost penalty 
parameter leads to a slightly less stiff response. The AgGIMPM result is slightly less stiff than the Ghost stabilised simulations, with 
both approaches providing a good prediction of the centrifuge result.

Fig.  16(b) shows the normalised penetration resistance versus normalised penetration depth response for AgGIMPM with different 
background meshes ( Mesh Refinement Factor (MRF), a relative measure of refinement between the different meshes, of 0.3, 0.5 
and 0.75, where larger numbers give finer meshes) and numbers of material points per element (32 and 62). All of the simulations 
produce a globally similar response but have varying levels of oscillations, caused by the discrete nature of material points coming 
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Table 5
CPT AgGIMPM simulation information, where MRF is the Mesh Refinement Factor.
 MRF 0.30 0.50 0.75

 no. nodes 826 1456 2489
 no. elements 754 1350 2340
 ℎmin (m) 0.333 0.200 0.125

 MPs/element 32 62 32 62 32 62  
 total no. MPs 4914 19,656 8550 34,200 14,580 58,320 
 final 𝑝∕𝑟𝑐 9.650 9.600 9.688 9.600 9.675 9.644  
 no. contact steps 99 96 101 97 107 104  
 run time (s) 404.8 1394.3 880.6 2810.2 1843.2 7083.4 

Fig. 17. CPT: deformed material point positions with 0.75 MRF and 62 MPs/element. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

into contact with the rigid CPT probe. The oscillations in the penetration resistance reduce with mesh and material point refinement 
as each material point is representing less volume and therefore generates less resistive force against penetration. As expected the 
run time of the simulations increase with mesh and material point refinement, as detailed in Table  5. It is also not surprising that 
the number of contact load steps (i.e. the number of times the step size is reduced) increases with mesh refinement as all simulations 
use the same maximum increment on the CPT probe vertical displacement.

The deformed material point positions for two different penetration depths are shown in Fig.  17 for the AgGIMPM analysis with 
a MRF of 0.75 and 62 MPs/element. The material points are coloured according to their vertical displacement, which is highly 
localised around the CPT. The impact of friction between the CPT and the material points can be observed by the blue region, 
showing material points being dragged downwards with the CPT as it penetrates the soil body. 

4.6. Dynamic elastic cantilever beam

This example considers the explicit forward Euler solution of an elastic cantilever beam under dynamic loading and is focused 
on the impact of mesh aggregation on stability, energy conservation and the quality of the stress field. The beam was 𝑙0 = 10 m 
long and 𝑑0 = 1 m deep and was subjected to a point load at its free end. The load was split between the two material points closest 
to the end of the beam either side of the neutral axis and increased linearly from zero to 𝑓0 = 500 kN over the first 25 s of the 
analysis. Beyond 25 s the force was removed and the beam allowed to oscillate until the end of the analysis at 150 s, over a total 
of 6000 equal time steps (𝛥𝑡 = 0.025 s). All analyses were run on a 11 m×16 m background grid of bi-linear square elements with 
ℎ = 0.25 m and 33 generalised interpolation material points per initially populated element. The material had a Young’s modulus of 
100 MPa, a Poisson’s ratio of 0.2 and a density of 𝜌 = 7750 × 103 kg/m3. The initial discretisation of the beam is shown in Fig.  10 
with ℎ = 0.5 m and with 22 material points per initially populated background grid cells. Note that the number of material points 
and the mesh size were selected for clarity of the illustration; ℎ = 0.25 m and 32 material points were used for all analyses. The 
loaded material points are shown by the black-filled circles.
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Fig. 18. Dynamic elastic beam: MUSL, USL and USF normalised horizontal and vertical tip displacement response with ℎ = 0.25 m, 32 MPs/element and 6000
time steps for (a) GIMPM and (b) AgGIMPM.

Fig. 19. Dynamic elastic beam with ℎ = 0.25 m, 32 MPs/element and 6000 time steps: (a) total energy USF, USL and MUSL for AgGIMPM and standard GIMPM, 
and (b) energy components for AgGIMPM USF.

The normalised displacement response of the tip of the beam and the total energy evolution over time is shown for six simulations 
in Fig.  18 and Fig.  19(a), respectively, representing the combinations of USF, USL and MUSL with standard and aggregated GIMPM, 
all using a lumped mass matrix. Note that the comparison does not include the ghost stabilisation technique as it has zero impact on 
a lumped mass matrix. One observation from Fig.  18 is that aggregation reduces the difference in the force–displacement response 
between the USF, USL and MUSL methods, with the AgGIMPM results almost indistinguishable for 𝑡 ∈ [0, 100] s. The grey-shaded 
region in Fig.  19 represents the period of time over which the external force is increased from zero to the maximum value; the force is 
removed at Point A. A key observation is that energy conservation is improved by mesh aggregation, with the dissipation/generation 
of energy reduced for each of the methods when comparing AgGIMPM with GIMPM.

Aggregation also improves the quality of the stress field in all cases, as shown in Fig.  20, where the deformed positions of the 
material points at the end of the analysis (𝑡 = 150 s) are shown shaded according to their horizontal normal stress value, 𝜎𝑥𝑥. The 
impact of aggregation on the stress distribution is particular evident for the USF and MUSL simulations. The dissipative nature 
of USL, and the associated damping of spurious accelerations, means that there is less impact of aggregation in this case. In the 
non-aggregated USF and MUSL simulations, artefacts in the acceleration field close to the boundary cause oscillations in the stress 
field that propagate through the beam.

The impact of the number of time steps on the stability and energy conservation of USF, USL and MUSL with standard and 
aggregated GIMPM with a lumped mass matrix is provided by Table  6. GsGIMPM with a stabilised consistent mass matrix is also 
included where, consistent with Coombs [19], the mass stabilisation parameter was set to 𝛾𝑀 = 1

4𝜌. The reported numbers are the 
relative change in the total energy from the point at which the external force is removed (𝑡 = 25 s, Point A in Fig.  19) and the end 
of the analysis (𝑡 = 150 s). The USL standard GIMPM analysis with 3000 time steps was unstable and failed at 𝑡 = 12.15 s (step 243), 
as indicated by the 7. Although they complete, the USF and MUSL analyses with 3000 time steps, irrespective of aggregation, are 
unstable and generate significant amounts of energy. For 6000 time steps and above, aggregation improves the energy conservation 
of USF, USL and MUSL, with the relative improvement reducing with increasing time steps. This is expected as lowering the time 
step will lessen the impact of spurious nodal accelerations at the boundary of the domain on the velocity and deformation field 
of the material points. Reducing the time step size will also help to mitigate the issue of the highly variable CFL number for the 
non-aggregated simulations.  The GsGIMPM simulations with a consistent mass matrix are less stable than both the AgGIMPM and 
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Fig. 20. Dynamic elastic beam: horizontal normal stress, 𝜎𝑥𝑥, distribution at the end of the analysis (𝑡 = 150 s) for ℎ = 0.25 m, 32 MPs/element and 6000 time 
steps. The inset figures show detail around the cantilever root.

the GIMPM analyses, requiring a time step size of less than 0.0125 s for all of the USF, USL and MUSL approaches to be stable. 
GsGIMPM is also less energy conserving compared to AgGIMPM except for the 𝛥𝑡 = 0.010 s USF analysis, where GsGIMPM marginally 
outperforms AgGIMPM. Combining GsGIMPM with MUSL leads to high levels of energy generation, even for the stable analyses.

Finally, mean run time (s) per time step for lumped GIMPM, lumped AgGIMPM and consistent mass GsGIMPM with ℎ = 0.25 m, 
32 MPs/element and 𝛥𝑡 = 0.01 s are given in Table  7 for the USF, USL and MUSL approaches. The GIMPM has the lowest run time 
per load step, but as shown by the previous results, GIMPM without stabilisation or aggregation is unstable and in the case of USL 
can lead to excessive energy dissipation. The lumped AgGIMPM, as well as being more stable, is more efficient than GsGIMPM in 
all cases.

5. Conclusion

The small cut problem is a serious issue for the material point method, but there are relatively few general approaches that 
mitigate the issue, especially in the case of implicit implementations. This paper has provided the first Aggregated Material 
Point Method (AgMPM) and demonstrated the efficacy of the method versus standard MPM and Ghost-stabilised MPM (GsMPM) 
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Table 6
Dynamic elastic beam: energy loss/gain compared to the energy at 𝑡 = 25 s (≈102 kJ) for AgGIMPM, GIMPM and GsGIMPM with 
ℎ = 0.25 m and 32 MPs/element. The 7 denotes a failed analysis, where the failed time step is reported. 
 no. time steps 3000 6000 9000 12,000 15,000  
 time step, 𝛥𝑡 (s) 0.0500 0.0250 0.0167 0.0125 0.0100  
 GIMPM USF +45.9% +11.1% +0.988% +0.321% +0.190%  
 GIMPM USL 243 7 −19.2% −16.4% −14.8% −13.2%  
 GIMPM MUSL +89.5% +16.2% +4.09% +0.885% +0.376%  
 AgGIMPM USF +45.9% +2.00% +0.363% +0.223% +0.161%  
 AgGIMPM USL −2.37% −2.69% −2.82% −2.87% −2.90%  
 AgGIMPM MUSL +89.5% +3.76% +0.841% +0.406% +0.244%  
 GsGIMPM USF 10 7 234 7 +9.48% +2.08% −0.143% 
 GsGIMPM USL 9 7 171 7 296 7 −3.18% −3.06%  
 GsGIMPM MUSL 9 7 235 7 +133% +77.2% +43.3%  

Table 7
Dynamic elastic beam: mean run time (s) per time step for 
lumped GIMPM, lumped AgGIMPM and consistent GsGIMPM 
with ℎ = 0.25 m, 32 MPs/element and 𝛥𝑡 = 0.01 s.
 USF USL MUSL  
 GIMPM 0.0643 0.0645 0.0674 
 AgGIMPM 0.0686 0.0665 0.0711 
 GsGIMPM 0.0764 0.0769 0.0819 

implementations. Similar to ghost stabilisation, mesh aggregation transforms the stability of the MPM and removes much of the 
uncertainty if an analysis will complete or not. Key advantages of the AgMPM versus GsMPM is that it can be applied to MPMs 
that use a lumped mass matrix and that no additional numerical parameters are required as it is simply based on the topology 
of the background mesh. It also does not require any face connectivity information to be stored  within an implementation’s data 
structure, which means it may be easier to implement within codes that do not routinely store this information. Although requiring 
additional operations, in the case of quasi-static implicit analysis, AgMPM is often more efficient than the standard MPM as the non-
linear equations require fewer iterations to solve and are generally more stable.  For explicit dynamic analysis, AgMPM improves 
the energy conservation properties and stress field representations for USF, USL and MUSL approaches as well as reducing the 
differences between the global structural response of the different methods. It has been shown that the AgGIMPM outperforms the 
GsGIMPM for explicit dynamic analyses in terms of stability, energy conservation and run time. Although this paper has focused on 
two-dimensional problems, it is straightforward to apply the technique to three-dimensional analysis, as it can be noted from the 
implementation details provided in Section 3.1.
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Appendix A. Aggregated weak form derivation

The starting point for deriving the discretised aggregated weak statement of equilibrium is the standard updated Lagrangian 
weak statement of equilibrium for dynamic stress analysis 

∫𝜑𝑡(𝛺)

(

𝜎𝑖𝑗 (∇𝑥𝜂)𝑖𝑗 − (𝑏𝑖 − 𝜌�̇�𝑖)𝜂𝑖
)

d𝑉 − ∫𝜑𝑡(𝜕𝛺)

(

𝑡𝑖𝜂𝑖
)

d𝑠 = 0, (A.1)

where �̇�𝑖 and 𝜑𝑡 are the acceleration and motion of the material body with current domain, 𝛺, which is subjected to tractions, 𝑡𝑖, 
on the boundary of the domain (with surface, 𝑠), 𝜕𝛺, and body forces, 𝑏𝑖, acting over the current volume, 𝑉  of the domain, which 
has a current density, 𝜌, and leads to a Cauchy stress field, 𝜎𝑖𝑗 , through the body. The weak form is derived in the current frame 
assuming a field of admissible virtual displacements, 𝜂𝑖. Introducing the standard finite element approximation, the displacements, 
velocities and accelerations can be expressed in terms of nodal values and basis functions, 𝑁𝑣, for example 

{𝜂} =
∑

∀𝑣
𝑁𝑣{𝜂𝑣} = [𝑁𝑣]{𝑑𝜂} and {𝑢} = [𝑁𝑣]{𝑑} (A.2)

where {𝑑𝜂} and {𝑑} are global vectors of nodal virtual and physical displacements. For aggregated methods, the global vector of 
displacements is expressed in terms of the interior nodes as

{𝑑𝜂} = [𝐸]{𝑑int𝜂 } and {𝑑} = [𝐸]{𝑑int}

where [𝐸] is the extension matrix. Neglecting the traction terms and introducing the aggregated finite element approximation yields 

∫𝜑𝑡()

( [

[∇𝑥𝑁𝑣][𝐸]{𝑑int𝜂 }
]𝑇

{𝜎} −
{

[𝑁𝑣][𝐸]{𝑑int𝜂 }
}𝑇 {{𝑏} − 𝜌[𝑁𝑣][𝐸]{�̇�int}

}

)

d𝑉 = 0. (A.3)

Eliminating the nodal virtual displacements 

∫𝜑𝑡()

(

[𝐸]𝑇 [∇𝑥𝑁𝑣]𝑇 {𝜎} − [𝐸]𝑇 [𝑁𝑣]𝑇
{

{𝑏} − 𝜌[𝑁𝑣][𝐸]{�̇�int}
}

)

d𝑉 = 0 (A.4)

and expanding out the terms gives 

∫𝜑𝑡()

(

[𝐸]𝑇 [∇𝑥𝑁𝑣]𝑇 {𝜎} − [𝐸]𝑇 [𝑁𝑣]𝑇 {𝑏} + 𝜌[𝐸]𝑇 [𝑁𝑣]𝑇 [𝑁𝑣][𝐸]{�̇�int}
)

d𝑉 = 0. (A.5)

Introducing the material point discretisation replaces the volume integral with an assembly operation over all of the material points 
in the analysis that represent the physical body results in 

𝐴
∀𝑝

(

[𝐸]𝑇 [∇𝑥𝑆𝑣𝑝]𝑇 {𝜎𝑝}𝑉𝑝 − [𝐸]𝑇 [𝑆𝑣𝑝]𝑇 {𝑏}𝑉𝑝 + 𝜌𝑉𝑝[𝐸]𝑇 [𝑆𝑣𝑝]𝑇 [𝑆𝑣𝑝][𝐸]{�̇�int}
)

= 0, (A.6)

which can be expressed as 

[𝐸]𝑇
{

𝐴
∀𝑝

(

[∇𝑥𝑆𝑣𝑝]𝑇 {𝜎𝑝}𝑉𝑝 − [𝑆𝑣𝑝]𝑇 {𝑏}𝑉𝑝
)

}

+
[

[𝐸]𝑇 [𝑀][𝐸]
]

{�̇�int} = 0. (A.7)

The combined assembly term is the force residual (the difference between the internal and external forces). [𝑀𝐴] = [𝐸]𝑇 [𝑀][𝐸] is 
the aggregated mass matrix.

A.1. Explicit dynamic analysis

For explicit dynamic analysis, (A.7) allows the nodal accelerations to be forward predicted using 

{�̇�int} = [𝑀𝐴]−1

aggregated force residual, {𝑓𝐴𝑅 }
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[𝐸]𝑇
{

𝐴
∀𝑝

(

[𝑆𝑣𝑝]𝑇 {𝑏}𝑉𝑝 − [∇𝑥𝑆𝑣𝑝]𝑇 {𝜎𝑝}𝑉𝑝
)

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
force residual, {𝑓𝑅}

. (A.8)

[𝑀𝐴] = [𝐸]𝑇 [𝑀][𝐸] is the consistent aggregated mass matrix, however most MPMs adopt a lumped mass matrix. For AgMPM, this 
is achieved by replacing [𝑀] with a lumped mass matrix, as is done in the examples presented in this paper.

A.2. Implicit quasi-static analysis

Neglecting the inertia term reduces the aggregated equilibrium equation, (A.7), to a quasi-state expression with the form 

[𝐸]𝑇
{

𝐴
(

[∇𝑥𝑆𝑣𝑝]𝑇 {𝜎𝑝}𝑉𝑝 − [𝑆𝑣𝑝]𝑇 {𝑏}𝑉𝑝
)

}

= 0, (A.9)

∀𝑝
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which in this paper is solved for the unknown aggregated nodal displacements using the conventional Newton–Raphson method. 
This requires linearisation of (A.9) with respect to the unknown aggregated nodal displacements, giving aggregated stiffness matrix 
as 

[𝐾𝐴] = [𝐸]𝑇
[

𝐴
∀𝑝

[∇𝑥𝑆𝑣𝑝]𝑇 [𝑎𝑝][∇𝑥𝑆𝑣𝑝]𝑉𝑝

]

[𝐸] = [𝐸]𝑇 [𝐾][𝐸], (A.10)

where 𝑎𝑖𝑗𝑘𝑙 = (𝜕𝜎𝑖𝑗∕𝜕𝐹𝑘𝑚)𝐹𝑙𝑚 is the spatial consistent tangent modulus of the material in its current state of deformation, where [𝐹 ]
is the deformation gradient (see Coombs and Augarde [34] for details), and [𝐾] is the stiffness matrix of the non-aggregated mesh.

Appendix B. Aggregation and lumping of the mass matrix

Explicit dynamic implementations of the MPM routinely adopt a lumped mass matrix, which makes inversion of the linear system 
of equations trivial. Lumping of the mass matrix is an algorithmic choice that alters the nature of the physical system of equations. 
Once this choice has been made the resulting system of equations needs to be solved, and this is when aggregation is applied to 
deal with the small cut issue. However, as discussed in Section 3.1, mesh aggregation reintroduces off diagonal terms into the 
lumped mass matrix, increasing the complexity and cost of solving the system of equations. It could be tempting to apply lumping 
to this aggregated mass matrix to recover a diagonal system. This appendix uses a simple problem to demonstrate that lumping 
after aggregation has the potential to lead to an unstable (and unphysical) system of equations.

Consider the problem shown in Fig.  5, and the associated extension matrix for Nodes 2, 3 and 4 

[𝐸([2,3,4],[2,3])] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 0 2 0
0 −1 0 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

 where the modified rows, those associated with Node 4 (the aggregated node), are highlighted. For illustrative purposes we can 
reduce this to an equivalent one-dimensional problem, where each node has a single degree of freedom. In this case the extension 
matrix becomes 

[𝐸([2,3,4],[2,3])] =
⎡

⎢

⎢

⎣

1 0
0 1

−1 2

⎤

⎥

⎥

⎦

.

 Assuming that the lumped mass matrix for Nodes 2, 3 and 4 has the form

[𝑀([2,3,4],[2,3,4])] = �̃�
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 �̃�

⎤

⎥

⎥

⎦

,

where �̃� is the mass associated with Node 4, normalised by mass of Node 2 or 3, which are equal to �̃� . Employing Sylvester’s 
criterion to assess when a symmetric matrix is positive definite (see, for instance, [53]), the above matrix satisfies this feature as 
long as �̃� > 0 and �̃� > 0 are satisfied. This is expected in any mass matrix employing strictly non-negative basis functions, such as 
those used in the standard MPM and the GIMPM.

Applying mesh aggregation results in the following aggregated mass matrix

[𝑀𝐴
([2,3],[2,3])] = [𝐸]𝑇 [𝑀][𝐸] = �̃�

[

1 + �̃� −2�̃�
−2�̃� 1 + 4�̃�

]

,

where additional mass has been added to the leading diagonal and coupling introduced between the degrees of freedom supporting 
the aggregated Node 4. Employing again Sylvester’s criterion, the above matrix is positive definite as long as �̃� (1 + �̃�) > 0 and 
5�̃� > −�̃� . Both these criteria are satisfied for strictly positive values of �̃� and �̃� . This suggests that lumping and successively 
aggregating does not result in negative semi-definite matrices as long as the initial lumped mass matrix is positive definite.

However, an interesting point to consider is what happens if lumping is applied to this aggregated mass matrix, which results 
in a diagonal matrix of the form

[�̄�𝐴
([2,3],[2,3])] = �̃�

[

1 − �̃� 0
0 1 + 2�̃�

]

.

This matrix is positive definite if �̃� < 1 and 1 + 2�̃� > 0. While the second requirement is not problematic, the first can lead to 
negative definite matrices. Subtracting the aggregated mass is fine when �̃� ≪ 1, but the requirement that �̃� < 1 has important 
consequences if �̃� is not small, which can (and does) occur in mesh aggregation techniques. Additionally, it should be noted that an 
interior node may be supporting multiple aggregated nodes and therefore receive multiple negative aggregated mass contributions. 
This means that there is the potential for small, or even negative, masses to be generated on the leading diagonal of [�̄�𝐴], making 
it unsuitable for general analysis.

It must also be noted that the same issue would manifest if the consistent mass matrix was aggregated and then lumped. This 
process could again lead to a resultant negative semi-definite matrix, and, as in the above-illustrated case, the root cause is the 
negative entries in the extension matrix, [𝐸].
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Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2025.118012.

Data availability

All data created during this research are openly available at https://dx.doi.org/10.15128/r1gm80hv42k.
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