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NEAR AND FULL QUASI-OPTIMALITY OF FINITE ELEMENT

APPROXIMATIONS OF STATIONARY SECOND-ORDER MEAN

FIELD GAMES

YOHANCE A. P. OSBORNE AND IAIN SMEARS

Abstract. We establish a priori error bounds for monotone stabilized finite
element discretizations of stationary second-order mean field games (MFG) on

Lipschitz polytopal domains. Under suitable hypotheses, we prove that the

approximation is asymptotically nearly quasi-optimal in the H1-norm in the
sense that, on sufficiently fine meshes, the error between exact and computed

solutions is bounded by the best approximation error of the corresponding

finite element space, plus possibly an additional term, due to the stabilization,
that is of optimal order with respect to the mesh size. We thereby deduce

optimal rates of convergence of the error with respect to the mesh-size for

solutions with sufficient regularity. We further show full asymptotic quasi-
optimality of the approximation error in the more restricted case of sequences

of strictly acute meshes. Our third main contribution is to further show, in the

case where the domain is convex, that the convergence rate for the H1-norm
error of the value function approximation remains optimal even if the density

function only has minimal regularity in H1.

1. Introduction

Mean field games (MFG), introduced by Lasry & Lions [23, 24, 25] and inde-
pendently by Huang, Caines & Malhamé [19], model Nash equilibria of rational
games of stochastic optimal control in which there are infinitely many players. The
equilibria are characterized by a system of partial differential equations (PDE) that
consist of a Hamilton–Jacobi–Bellman (HJB) equation for the the value function u
of the underlying optimal control problem faced by the players, and a Kolmogorov–
Fokker–Planck (KFP) equation for the the density m of players in the state space
of the game. We consider as a model problem a quasilinear elliptic MFG system of
the form

−ν∆u+H(x,∇u) = F [m](x) in Ω,(1.1a)

−ν∆m− div

(
m
∂H

∂p
(x,∇u)

)
= G(x) in Ω,(1.1b)

along with homogeneous Dirichlet boundary conditions u = 0 and m = 0 on ∂Ω.
Here Ω ⊂ Rd, d ≥ 2, denotes the state space of the game, which is assumed to be
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a bounded, connected, polytopal open set with Lipschitz boundary ∂Ω. Whereas
many works treat MFG with periodic boundary conditions and with zero source
term in (1.1b), we consider here Dirichlet conditions and nonzero source terms.
This model problem can be motivated as a steady-state solution for a game where
the players have an infinite horizon zero-discounted control problem with stopping
at the first-exit time from the domain Ω. For more details on how the Dirichlet
boundary conditions arise from the first-exit time stopping of the stochastic pro-
cesses see for instance [16, Chapter 4]. The first-exit stopping time models players
exiting the game upon reaching the boundary, which occurs for instance in appli-
cations to traffic flow and evacuation planning. The source term G in (1.1b) also
arises in situations where new players enter/exit the game, or possibly after trans-
formation of the problem from one with an inhomogeneous Dirichlet condition to
one with a homogeneous one. Note that for MFG systems with Dirichlet boundary
conditions, the player density m is usually not required to be a probability density.
The real-valued Hamiltonian H = H(x, p), x ∈ Ω, p ∈ Rd, in (1.1) originates from
the underlying optimal control problem, c.f. (2.3) below, and is generally a convex
function in its second variable. In many applications, it is also globally Lipschitz
continuous in the second variable, which results for instance from compactness of
the underlying set of controls and continuity of the stochastic dynamics with re-
spect to the controls. In this work, we assume in addition that H is everywhere
differentiable with respect to p with a partial derivative ∂H

∂p that is Lipschitz con-

tinuous with respect to p ∈ Rd, uniformly in x ∈ Ω. The diffusion parameter ν > 0
in (1.1) is a constant. The coupling operator F : L2(Ω) → H−1(Ω) is a component
of the running cost in the players’ optimal control problems, and our analysis allows
it to be either a local or nonlocal operator. Note that in contrast to many works on
MFG, we do not require that F be smoothing ; in fact F can even be of differential
type.

In this work, we are primarily interested in the a priori error analysis of numerical
approximations of the solutions of MFG systems. Existing results on error analysis
for MFG in the literature so far have primarily been of a qualitative kind, such as
proving that the error (in some norm) between exact and computed solutions van-
ishes in the small mesh/grid limit; this is often called plain convergence. For prob-
lems with differentiable Hamiltonians, there are results on the plain convergence of
methods on Cartesian grids, such as monotone finite difference methods [2, 1, 3, 20]
and semi-Lagrangian methods [10, 11, 12, 13, 5]. Convergence of semi-Lagrangian
methods has also been shown for fractional and nonlocal MFG in [14]. For prob-
lems with nondifferentiable Hamiltonians, we recently showed in [27, 28, 29] that
the MFG system can be generalized as a Partial Differential Inclusion (PDI), and
we proved the convergence of a monotone stabilized Finite Element Method (FEM)
with piecewise affine elements. Although the analysis in these works was of a more
qualitative nature, the quantitative performance of the FEM for MFG has been
shown through extensive numerical experiments in [26, 29, 27, 28]. Furthermore,
in [30], we analysed the connection between the MFG PDI for nondifferentiable
Hamiltonians and its classical PDE counterpart via regularization of the Hamilto-
nians.

In contrast to the range of qualitative results in the literature, quantitative re-
sults on the error analysis, such as bounds on the error on a given computational
mesh/grid, are rare. Some of the main challenges of the MFG system in this regard
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include the quasilinear coupling of the system and the general lack of coercivity
properties of the differential operators. To the best of our knowledge, quantitative
error bounds have so far only been obtained by Bonnans, Liu & Pfeiffer in [6].
In particular, in the context of a fully discrete finite difference scheme for some
second-order parabolic MFG systems, they showed that if the exact solution u and
m have C1+r/2,2+r regularity over the space-time domain for some r ∈ (0, 1), then
the error, as measured in the discrete maximum norm for the value function and a
discrete L∞(L1)-norm for the density, is of order hr (the time-step size ∆t does not
appear explicitly in the bound owing to their assumption that ∆t ≲ h2). Note that
[6] allows also for some Hamiltonians with superlinear growth. Besides the results
in [6], quantitative error bounds for the numerical approximation of solutions of
MFG systems appear to be largely untouched.

As our main contributions in this work, we show error bounds for the stabilized
piecewise affine FEM from [27, 28, 29] applied to the model problem (1.1). The mo-
tivation for considering stabilized FEM is, in a first instance, that the stabilization
leads to a discrete maximum principle and nonnegativity of the approximations
in the density, which is then used in the proof of well-posedness of the discrete
problems, see [27, 28, Theorem 5.3]. It is thus natural that the nonnegativity of
the density approximations also plays an important role in the analysis of the error
bounds. The stabilization also plays a role in uniform stability bounds for the dis-
cretized HJB and KFP equations, which are essential for the analysis of the MFG
system.

Our first main result, stated in Theorem 4.1 below, is an H1-norm error bound
for a class of stabilized FEM which covers the stabilizations of [29, 27, 28]. In
particular, when applied to the method of [29], our bound implies that for a shape-
regular sequence of computational meshes {Tk}k∈N that satisfies the Xu–Zikatanov
condition [34], the finite element approximation (uk,mk) ∈ Vk × Vk satisfies

(1.2) ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω)

≲ inf
mk∈Vk

∥m−mk∥H1(Ω)+ inf
uk∈Vk

∥u−uk∥H1(Ω)+∥hTk
∇m∥L2(Ω)+∥hTk

∇u∥L2(Ω),

for all k is sufficiently large, where Vk denotes the H1
0 -conforming finite element

space on the mesh Tk, where hTk
denotes the (elementwise) mesh-size function of

the mesh, and where the constant hidden in the inequality is independent of k ∈ N
(see Section 2 for details on the notation). The additional terms ∥hTk

∇m∥L2(Ω)

and ∥hTk
∇u∥L2(Ω) in (1.2) stem from the stabilization terms of the method that

are included to satisfy a discrete maximum principle. The bound (1.2) holds for
solutions (u,m) with the minimal H1-regularity that is guaranteed by the well-
posedness theory in [27, 28]. The main assumptions for the analysis are that the
Hamiltonian H has a Lipschitz continuous partial derivative w.r.t. the gradient
variable uniformly in space, that the coupling term F : L2(Ω) → H−1(Ω) is strongly
monotone, and that the source term G is nonnegative.

Recall that a numerical method is said to be quasi-optimal in a given norm if the
error between exact and computed solutions is bounded by a constant times the
best-approximation error from the same approximation space. It is asymptotically
quasi-optimal if the mesh/grid is additionally required to be sufficiently fine. Since
the additional terms in (1.2) are typically of same or higher order than the H1-
norm best-approximation error for piecewise affine elements, we therefore say that
the stabilized FEM considered here is nearly asymptotically quasi-optimal in the
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H1-norm. If a stronger condition is placed on the meshes, namely a strict acuteness
condition as in [27, 28], then these additional terms can be removed and the resulting
method is fully asymptotically quasi-optimal with

(1.3) ∥m−mk∥H1(Ω)+∥u−uk∥H1(Ω) ≲ inf
mk∈Vk

∥m−mk∥H1(Ω)+ inf
uk∈Vk

∥u−uk∥H1(Ω),

for all k sufficiently large. However, the fact that the Xu–Zikatanov condition
is less restrictive in practice than the strict acuteness condition means that the
bound (1.2) is likely the more relevant one in computational practice.

As a consequence of the bound (1.2), for sufficiently regular solutions, in Corol-
lary 4.4 below, we prove that the numerical approximations have optimal rates of
convergence with respect to the mesh-size. For instance, if both u,m are in H2(Ω),
then

(1.4) ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω) ≲ hk
(
∥m∥H2(Ω) + ∥u∥H2(Ω)

)
,

where hk = ∥hTk
∥L∞(Ω) is the maximum mesh-size across the domain, see Corol-

lary 4.4 below covering the more general case where the solution has regularity in
Sobolev spaces of fractional order. To the best of our knowledge, this is the first
proof of optimal rates of convergence for any numerical method for MFG systems
in the literature so far.

The second main contribution of this work is to analyse the rates of convergence
of the errors for the separate components of the solution. More precisely, we aim
to explain why it was observed in the numerical experiments of [27, 28] that the
convergence rate of the error ∥u− uk∥H1(Ω) for the value function approximations
was of optimal order hk even in cases where the density m has low regularity. This
observation is not explained by the bounds above, i.e. (1.4) requires m ∈ H2(Ω).
In order to illuminate this matter, we prove in Theorem 4.6 below that
(1.5)
∥m−mk∥L2(Ω)+∥u−uk∥H1(Ω) ≲ inf

uk∈Vk

∥u−uk∥H1(Ω)+hk
(
∥u∥H1(Ω) + ∥m∥H1(Ω)

)
,

for all k sufficiently large, which holds even if u and m have minimal regularity in
H1(Ω), under the additional assumption that Ω is convex. Note crucially that the
left-hand side of (1.5) involves only the L2-norm of the error for the density, rather
than the H1-norm as in (1.2), which is key for obtaining a sharper bound on ∥u−
uk∥H1(Ω). The bound (1.5) implies that the convergence rate of the value function
approximations does not generally depend on the regularity of m. For instance,
if u ∈ H2(Ω), then (1.5) implies that ∥m −mk∥L2(Ω) + ∥u − uk∥H1(Ω) is of order

hk, even for m with minimal regularity in H1. This result offers some insight into
earlier computational results, despite the difference that the experiments in [27, 28]
involved nondifferentiable Hamiltonians whereas the proof of (1.5) assumes that H
has a Lipschitz continuous derivative.

This paper is organized as follows. In Section 2 we set the notation and specify
the assumptions on the problem. In Section 3 we present the framework for dis-
cretization, including the general class of stabilized FEM covered by the analysis,
as well as two concrete instances from [27, 28, 29]. The statement of the main
results mentioned above are given in Section 4. The proofs of the main results are
then the subjects of Sections 5 to 8. In particular, Section 5 shows key stability
results for the discretized HJB and KFP equations. In Section 6, we consider the
near quasi-optimality of nonnegative approximations of the density function, and
the L2-norm stability of the discrete MFG system. We then apply these results in
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Section 7 to prove Theorem 4.1 and in Section 8 to prove Theorem 4.6. We conclude
the paper in Section 9 with numerical experiments that illustrate Corollary 4.4 of
Theorem 4.1 and the conclusion of Theorem 4.6 for problems involving nonsmooth
solutions.

2. Setting and Notation

Notation for inequalities. In order to avoid the proliferation of generic constants, in
the following, we write a ≲ b for real numbers a and b if a ≤ Cb for some constant C
that may depend on the problem data and some fixed parameters for the sequence
of meshes {Tk}k∈N appearing below, such as the shape-regularity parameter, but is
otherwise independent of the mesh Tk and the mesh-size hk. Throughout this work
we will regularly specify the particular dependencies of the hidden constants.

General notation. We denote N := {1, 2, 3, · · · }. For a Lebesgue measurable set
ω ⊂ Rd, d ∈ N, the inner product on L2(ω) and L2(ω;Rd) is denoted commonly
by (·, ·)ω, with induced norm ∥·∥ω. There is no risk of confusion here since the scalar
and vector cases of the inner-product and norm can then determined from their
arguments. Moreover, we equip the space L∞(ω;Rd×d) of bounded matrix-valued
functions on ω with the essential supremum norm ∥ · ∥L∞(ω;Rd×d) that is induced

by the Frobenius norm on Rd×d. We let | · |d−2 denote the (d − 2)-dimensional
Hausdorff measure, which we note reduces to the counting measure when d = 2.

Problem data. Let Ω be a bounded, connected, polytopal open subset of Rd with
Lipschitz boundary ∂Ω. Note that although we focus here on the case of polytopal
domains, a common procedure for the case of domains with curved boundaries
is to approximate the geometry via the meshes; this technique has been studied
extensively in the literature on numerics for surface PDEs [9]. For an integer s ≥ 0,
let Hs(Ω) denote the Sobolev space of order s, which consists of functions in L2(Ω)
that have weak partial derivatives of order up to and including s also in L2(Ω). Let
H1

0 (Ω) denote the space of functions in H1(Ω) with vanishing trace on Ω, and let
H−1(Ω) denote the dual space of H1

0 (Ω). Since Ω is assumed to have a Lipschitz
boundary, the Sobolev space Hs(Ω) can be defined for real s ≥ 0, for instance, by
interpolation of spaces, see [4, Chapter 7] and [7, Chapter 14].

We make the following assumptions on the data appearing in (1.1). Let the
diffusion ν > 0 be constant, and let G ∈ H−1(Ω) be of the form G = g0−∇· g̃ with
g0 ∈ Lq/2(Ω) and g̃ ∈ Lq(Ω;Rd) for some q > d. We assume that G ∈ H−1(Ω) is
nonnegative in the distributional sense, i.e. that ⟨G,ϕ⟩H−1×H1

0
≥ 0 for all functions

ϕ ∈ H1
0 (Ω) that are nonnegative a.e. in Ω. Next, let F : L2(Ω) → H−1(Ω) be a

Lipschitz continuous operator, i.e. that satisfies

(2.1) ∥F [w]− F [v]∥H−1(Ω) ≤ LF ∥w − v∥Ω ∀w, v ∈ L2(Ω)

for some constant LF ≥ 0. Note that F is allowed to be either a local or nonlocal
operator; and also that F is not necessarily of smoothing type; in fact F can even
be of differential type. We assume that F is strongly monotone in the sense that
there exists a constant cF > 0 such that

(2.2) cF ∥w − v∥2Ω ≤ ⟨F [w]− F [v], w − v⟩H−1×H1
0

∀w, v ∈ H1
0 (Ω).

Note that although the domain of F is L2(Ω), the monotonicity condition (2.2) is
needed only for arguments in the smaller space H1

0 (Ω). We refer the reader to [27,
28, Example 1] for several examples of operators F that satisfy the above conditions.
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The strong monotonicity condition (2.2) can be seen as a quantitative version of
the strict monotonicity condition on F that is employed to prove uniqueness of the
solution of the problem, see e.g. [25], and to prove plain convergence of numerical
approximations, see e.g. [27, 28].

In applications, the Hamiltonian H is usually specified in terms of the controlled
drift and running cost of the associated optimal control problem, so we assume that

(2.3) H(x, p) := sup
α∈A

(b(x, α) · p− f(x, α)) , ∀(x, p) ∈ Ω× Rd,

where we let the control set A denote a compact metric space, and we assume
that both the control-dependent drift b : Ω × A → Rd and the control-dependent
component of the running cost f : Ω × A → R are uniformly continuous. The
Hamiltonian H is then convex w.r.t. p uniformly in x ∈ Ω and satisfies the following
bounds

|H(x, p)| ≤ CH (|p|+ 1) ∀(x, p) ∈ Ω× Rd,(2.4a)

|H(x, p)−H(x, q)| ≤ LH |p− q| ∀(x, p, q) ∈ Ω× Rd × Rd,(2.4b)

with CH := max
{
∥b∥C(Ω×A;Rd), ∥f∥C(Ω×A)

}
and LH := ∥b∥C(Ω×A;Rd). We assume

that H is differentiable w.r.t. p with continuous derivative ∂H
∂p : Ω × Rd → Rd

satisfying the Lipschitz condition

(2.5)

∣∣∣∣∂H∂p (x, p)− ∂H

∂p
(x, q)

∣∣∣∣ ≤ LHp
|p− q| ∀(x, p, q) ∈ Ω× Rd × Rd,

for some constant LHp
≥ 0. Furthermore, we note that (2.4b) implies that ∂H

∂p is

uniformly bounded with

(2.6)

∣∣∣∣∂H∂p (x, p)

∣∣∣∣ ≤ LH ∀(x, p) ∈ Ω× Rd.

It is clear that the mappings H1(Ω) ∋ v 7→ H(·,∇v) ∈ L2(Ω) and H1(Ω) ∋
v 7→ ∂H

∂p (·,∇v) ∈ L2(Ω;Rd) are Lipschitz continuous. Furthermore, (2.6) implies

that ∂H
∂p (·,∇v) ∈ L∞(Ω;Rd) for each v ∈ H1(Ω). For given v ∈ H1(Ω), we will

often abbreviate these compositions by writing H[∇v] := H(·,∇v) and ∂H
∂p [∇v] :=

∂H
∂p (·,∇v) a.e. in Ω.

We conclude this section with a bound on the linearizations of the Hamiltonians
when composed with gradients of functions in Sobolev spaces.

Lemma 2.1. For any ϵ > 0, there exists a R > 0, depending only on ϵ, Ω, LH and
LHp , such that

(2.7)

∥∥∥∥H[∇v]−H[∇w]− ∂H

∂p
[∇w] · ∇(v − w)

∥∥∥∥
H−1(Ω)

≤ ϵ∥v − w∥H1(Ω),

whenever v, w ∈ H1(Ω) satisfy ∥v − w∥H1(Ω) ≤ R.

Proof. To alleviate the notation, let RH [∇v,∇w] := H[∇v] − H[∇w] − ∂H
∂p [∇w] ·

∇(v−w) for any v, w ∈ H1(Ω). We note that, for every v, w ∈ H1(Ω), RH [∇v,∇w]
is well-defined as a Lebesgue measurable function on Ω since H : Ω× Rd → R and
∂H
∂p : Ω × Rd → Rd are both continuous, and the linear growth property (2.4a)

and the uniform bound (2.6) imply that RH [∇v,∇w] ∈ L2(Ω). Define the real-
number s∗∈ (1, 2) by s∗ = 3/2 if d = 2 and s∗ := 2d

d+2 if d ≥ 3. Note that
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the Sobolev embedding theorem shows that H1
0 (Ω) is continuously embedded in

Ls
′
∗(Ω) where 1/s∗ + 1/s′∗ = 1. It then follows from the Hölder inequality that

Ls∗(Ω) is continuously embedded in H−1(Ω) and thus

(2.8) ∥RH [∇v,∇w]∥H−1(Ω) ≤ CΩ∥RH [∇v,∇w]∥Ls∗ (Ω)

for all v and w in H1(Ω), where we note that the embedding constant CΩ depends
only on Ω and RH [∇v,∇w] ∈ Ls∗(Ω) since L2(Ω) ⊂ Ls∗(Ω). We now derive an
upper bound for the term ∥RH [∇v,∇w]∥Ls∗ (Ω) as follows.

Let γ ∈ [0, 1], x ∈ Ω and p, q ∈ Rd be given. The Mean Value Theorem implies
the existence of θx,p,q ∈ (0, 1) such that

(2.9) H(x, p)−H(x, q)− ∂H

∂p
(x, q) · (p− q)

=

(
∂H

∂p
(x, θx,p,qp+ (1− θx,p,q)q)−

∂H

∂p
(x, q)

)
· (p− q).

Since θx,p,q ∈ (0, 1), the above identity (2.9), the Lipschitz condition (2.5) and the
uniform bound (2.6) together imply that

(2.10)

∣∣∣∣H(x, p)−H(x, q)− ∂H

∂p
(x, q) · (p− q)

∣∣∣∣
≤ (2LH)1−γLγHp

|p− q|γ+1 ∀(p, q) ∈ Rd × Rd, ∀x ∈ Ω

and for any γ ∈ [0, 1]. Consequently, for any v, w ∈ H1(Ω) and γ ∈ [0, 1], we have

(2.11) |RH [∇v,∇w]| ≤ (2LH)1−γLγHp
|∇(v − w)|γ+1

a.e. in Ω. Hence, we obtain from (2.11) the bound

(2.12) ∥RH [∇v,∇w]∥Ls∗ (Ω) ≤ (2LH)1−γLγHp
∥∇(v − w)∥1+γ

L(1+γ)s∗ (Ω)
.

We now choose γ = 1/9 if d = 2 and 0 < γ < 2/d if d ≥ 3, which ensures that
(γ + 1)s∗ ∈ (1, 2). Thus, by applying the Hölder inequality we obtain

(2.13) ∥∇(v − w)∥1+γ
L(1+γ)s∗ =

(∫
Ω

|∇(v − w)|(1+γ)s∗dx
) 1

s∗

≤
(∫

Ω

1 dx

) 1
s∗ − 1+γ

2

∥∇(v − w)∥1+γL2(Ω),

which, together with (2.8) and (2.12), implies

∥RH [∇v,∇w]∥H−1(Ω) ≤ C̃Ω,d(2LH)1−γLγHp
∥v − w∥γ+1

H1(Ω),(2.14)

for some constant C̃Ω depending only on Ω and d. Then, for any ϵ > 0, it is then

clear that (2.7) holds whenever ∥v−w∥H1(Ω) ≤ R forR :=
(
ϵ−1C̃Ω,d(2LH)1−γLγHp

)−1/γ

.

□

Remark 2.2 (Semismoothness of the Hamiltonian). Lemma 2.1 can be seen as a
special case (with a simpler proof) of a more general result on the semismoothness
of Hamilton–Jacobi–Bellman operators on function spaces, which was first shown
in [33, Theorem 13], where differentiability of the Hamiltonian is not required.
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2.1. Continuous Problem. The weak form of (1.1) is to find (u,m) ∈ H1
0 (Ω) ×

H1
0 (Ω) that satisfies∫

Ω

ν∇u · ∇ψ +H[∇u]ψ dx = ⟨F [m], ψ⟩H−1×H1
0
,(2.15a) ∫

Ω

ν∇m · ∇ϕ+m
∂H

∂p
[∇u] · ∇ϕ dx = ⟨G,ϕ⟩H−1×H1

0
,(2.15b)

for all ψ, ϕ ∈ H1
0 (Ω).

Remark 2.3 (Existence and uniqueness of weak solutions). By [27, 28, Theorem
3.3, Theorem 3.4], there exists a unique solution (u,m) to the continuous problem
(2.15), and we have the bounds

∥m∥H1(Ω) ≲ ∥G∥H−1(Ω),(2.16)

∥u∥H1(Ω) ≲ 1 + ∥G∥H−1(Ω) + ∥f∥C(Ω×A),(2.17)

where the hidden constants depend only on d, Ω, ν, LH , and LF . Furthermore,
the density function m is nonnegative a.e. in Ω owing to the assumption that G is
nonnegative in the sense of distributions.

Remark 2.4 (Essential boundedness of the density function). We have assumed
above that the source term G has the form G = g0 − ∇ · g̃ with g0 ∈ Lq/2(Ω)
and g̃ ∈ Lq(Ω;Rd) for some q > d. This allows us to apply [17, Theorem 8.15]
which shows that the density function m is essentially bounded in Ω and sat-
isfies ∥m∥L∞(Ω) ≲ ∥m∥Ω + ∥g0∥Lq/2(Ω) + ∥g̃∥Lq(Ω;Rd) where the hidden constant

depends only on d,Ω, LH , q and ν. In fact, the H1-norm bound (2.16) given in
Remark 2.3 further implies that there exists a constant M∞ of the form M∞ =
C
(
∥G∥H−1(Ω) + ∥g0∥Lq/2(Ω) + ∥g̃∥Lq(Ω;Rd)

)
, with a constant C depending only on

d,Ω, LH , ν, q and LF , such that

(2.18) ∥m∥L∞(Ω) ≤M∞.

We will use (2.18) in the analysis that follows.

3. Finite Element Discretization

Meshes. We let {Tk}k∈N denote a sequence of conforming simplicial meshes of the
domain Ω (c.f. [15, p. 51]) that are nested, which is to say that each element in Tk+1

is either in Tk or is a subdivision of an element in Tk. Note that the nestedness
assumption will not be used explicitly in the analysis in this paper, but rather only
implicitly in order to apply some existing results from earlier works, see Remark 3.3
below. For each k ∈ N and each element K ∈ Tk, let diamK denote the diameter
of K. We define the mesh-size function hTk

∈ L∞(Ω) by hTk
|K := diamK for each

element K ∈ Tk. For each K ∈ Tk, let ρK denote the radius of the largest inscribed
ball in K. We assume that the sequence of meshes {Tk}k∈N is shape-regular, i.e.
that there exists a δ > 1, independent of k ∈ N, such that hTk

|K ≤ δρK for all
K ∈ Tk and for all k ∈ N. We let hk := ∥hTk

∥L∞(Ω) denote the maximum element
diameter in Tk, which we assume satisfies hk → 0 as k → ∞.
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Vertices and edges. For each k ∈ N, we let Vk denote the set of all vertices of the
mesh Tk. We denote the set of vertices of Tk that lie in the interior of the domain
Ω by Vk,Ω = Vk ∩ Ω. Let {xi}cardVk

i=1 denote an enumeration of Vk which, without
loss of generality, we assume to be ordered in such a way that xi ∈ Vk,Ω if and only
if 1 ≤ i ≤ Mk := cardVk,Ω. We call two distinct vertices in Vk neighbours if they
belong to a common element of Tk. The set of neighbouring vertices of a given
vertex xi is denoted by Vk,i.

Given k ∈ N, the collection of all closed line segments formed by all pairs of
neighbouring vertices of the mesh Tk will be denoted by Ek. Thus, for each k ∈ N,
Ek is simply the set of edges of the mesh Tk. Note that in two space dimensions,
edges and faces of the mesh coincide, whereas they are distinct in three space
dimensions and above. For each edge E ∈ Ek, we let the set of elements of Tk
containing E be denoted by Tk,E := {K ∈ Tk : E ⊂ K}. An edge E ∈ Ek is called
an internal edge if there exists at least one vertex x∗ ∈ Vk,Ω such that x∗ ∈ E.
We denote the set of all internal edges by Ek,Ω. For each 1 ≤ i ≤ card Vk, we let
Ek,i := {E ∈ Ek : xi ∈ E} denote the set of edges containing the vertex xi ∈ Vk.
Given a simplex K ∈ Tk we define the set EK := {E ⊂ K : E ∈ Ek,Ω} which is the
collection of edges of K that are internal edges.

Approximation space. Let k ∈ N be given. We let {ξi}cardVk
i=1 denote the standard

nodal Lagrange basis for the space of all continuous piecewise affine functions on Ω
with respect to Tk, where ξi(xj) = δij for all i, j ∈ {1, . . . , cardVk} for the chosen

enumeration {xi}Vk
i=1 of Vk. Note that {ξi}cardVk

i=1 form a partition of unity on Ω.
As there is no risk of confusion, we omit the dependence of the nodal basis on the
index k of the mesh in the notation.

For each element K ⊂ Rd, let the vector space of d-variate real-valued polynomi-
als on K of total degree at most one be denoted by P1(K). For each k ∈ N, we let
the finite element space Vk of H1

0 -conforming piecewise affine functions be defined
by

(3.1) Vk := {vk ∈ H1
0 (Ω) : vk|K ∈ P1(K) ∀K ∈ Tk}.

We let the space Vk inherit the standard norm on H1
0 (Ω), and we denote the norm

by ∥ϕk∥Vk
:= ∥ϕk∥H1(Ω) for ϕk ∈ Vk. Note that {ξi}Mk

i=1 is the standard nodal basis
of Vk since xi ∈ Vk,Ω if and only if 1 ≤ i ≤ Mk := cardVk,Ω. Note also that the
union ∪k∈NVk is a dense subspace of H1

0 (Ω). Furthermore, the space of continuous
linear functionals on Vk is denoted by V ∗

k , where we let the duality pairing between
Vk and V ∗

k be denoted by ⟨·, ·⟩V ∗
k ×Vk

. We equip V ∗
k with the dual norm ∥·∥V ∗

k

defined by

(3.2) ∥g∥V ∗
k
:= sup

ϕk∈Vk:
∥ϕk∥H1(Ω)=1

⟨g, ϕk⟩V ∗
k ×Vk

∀g ∈ V ∗
k .

Given an operator L : Vk → V ∗
k we define its adjoint operator L∗ : Vk → V ∗

k by the
pairing ⟨L∗wk, vk⟩V ∗

k ×Vk
:= ⟨Lvk, wk⟩V ∗

k ×Vk
for all wk, vk ∈ Vk.

3.1. General stabilized methods. In order to accommodate a range of stabilized
methods such as those in [29, 27, 28], we consider the class of discretizations of (2.15)
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of the following form: given k ∈ N, find (uk,mk) ∈ Vk × Vk such that∫
Ω

Ak∇uk · ∇ψk +H[∇uk]ψk dx = ⟨F [mk], ψk⟩H−1×H1
0
,(3.3a) ∫

Ω

Ak∇mk · ∇ϕk +mk
∂H

∂p
[∇uk] · ∇ϕk dx = ⟨G,ϕk⟩H−1×H1

0
,(3.3b)

for all ψk, ϕk ∈ Vk. Here Ak ∈ L∞ (
Ω;Rd×dsym

)
, where Rd×dsym denotes the space of

symmetric matrices in Rd×d, is a numerical diffusion tensor defined as

(3.4) Ak := νId +Dk,

where Id denotes the d×d identity matrix, and Dk ∈ L∞ (
Ω;Rd×dsym,+

)
, where Rd×dsym,+

denotes the cone of positive semi-definite matrices in Rd×dsym , is a stabilization term
determined by the choice of method. In this work, we will consider two prime
examples of choices of Dk, namely the construction from [27, 28] for the case of
strictly acute meshes, and the construction from [29] for more general meshes that
satisfy the Xu–Zikatanov (XZ) condition, see Sections 3.2 and 3.3 below.

In order to give a unified analysis of the different stabilization methods, we for-
mulate the main features required for the analysis in the following two assumptions,
which we verify in the two examples of meshes satisfying the XZ condition and of
strictly acute meshes in the following subsections. Our first main assumption en-
sures that the stabilization term is of optimal order:

(H1) The matrix-valued function Dk ∈ L∞ (
Ω;Rd×dsym,+

)
for all k ∈ N and there

exists a constant CD, independent of k, such that |Dk| ≤ CDhTk
a.e. in Ω,

for all k ∈ N.
Our second main assumption ensures that the scheme (3.3) is monotone, due to

the satisfaction of a discrete maximum principle by the discretizations. Recall that
a linear operator L : Vk → V ∗

k is said to satisfy the discrete maximum principle
(DMP) provided that the following condition holds: if vk ∈ Vk and ⟨Lvk, ξi⟩V ∗

k ×Vk
≥

0 for all i ∈ {1, · · · ,Mk}, then vk ≥ 0 in Ω. For each k ∈ N, let W (Vk, Dk) denote
the set of all linear operators L : Vk → V ∗

k of the form

(3.5) ⟨Lvk, wk⟩V ∗
k ×Vk

:=

∫
Ω

Ak∇vk · ∇wk + b̃ · ∇vkwk dx ∀wk, vk ∈ Vk,

where Ak is given by (3.4), and where b̃ ∈ L∞(Ω;Rd) is a Lebesgue measurable

vector field that satisfies ∥b̃∥L∞(Ω;Rd) ≤ LH . Then, the second main assumption
ensures a discrete maximum principle:

(H2) For every k ∈ N, each L ∈W (Vk, Dk) and its adjoint L∗ satisfy the discrete
maximum principle.

This assumption leads to two important consequences which show that the scheme
(3.3) is monotone. Firstly, the DMP ensured by (H2) provides a discrete counterpart
of the Weak Maximum Principle (see e.g. [17, Theorem 8.1]), which allows one to
deduce the uniqueness of solutions to the discrete HJB equation (3.3a) for each
arbitrary source term in H−1(Ω). The uniqueness of solutions to the discrete HJB
equation is shown by study of its linearizations, which yield operators of the form
(3.5) (c.f. proof of [27, 28, Lemma 6.3]). We note that finite element discretizations
of HJB equations with DMP have been studied in the earlier works [22, 21], where
the convergence of the approximations to the viscosity solution was shown for classes
of degenerate fully nonlinear HJB and Isaacs equations.
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Secondly, (H2) is useful in ensuring that the approximations for the density func-
tion given by (3.3) are nonnegative everywhere without requiring a priori knowledge
of the vector field ∂H

∂p [∇uk] beyond its satisfaction of a suitable L∞-bound. Indeed,

we can rewrite (3.3b) in the form ⟨L∗
kmk, ϕ⟩V ∗

k ×Vk
= ⟨G,ϕ⟩H−1×H1

0
where Lk is the

operator of the form (3.5), with b̃ = ∂H
∂p [∇uk], because ∥b̃∥L∞(Ω;Rd) ≤ LH holds

by (2.6). Since the nonnegativity of G in H−1(Ω) also holds by hypothesis, we
conclude from the DMP that mk ≥ 0 in Ω.

The assumptions (H1) and (H2) are verified below in Lemmas 3.4 and 3.5 for the
stabilizations of [27, 28, 29]. Among the main consequences of these assumptions,
there is a uniform stability bound for the class operators W (Vk, Dk) of the form
given in (3.5).

Lemma 3.1. Assume (H1) and (H2). Then, for every k ∈ N, each operator
L ∈W (Vk, Dk) and its adjoint L∗ are invertible. Moreover, there exists a constant
Cstab independent of k ∈ N such that

(3.6) sup
k∈N

sup
L∈W (Vk,Dk)

max

{∥∥L−1
∥∥
L(V ∗

k ,Vk)
,
∥∥∥L∗−1

∥∥∥
L(V ∗

k ,Vk)

}
≤ Cstab.

Proof. The result is proved in [27, 28, Lemma 6.2] for the case of strictly acute
meshes. The argument in the proof of [27, 28, Lemma 6.2] only requires that Dk is
positive semi-definite a.e. in Ω for all k ∈ N, that (H2) holds, and that {Dk}k∈N
vanishes in L∞(Ω;Rd×d) in the limit as k → ∞. It is then clear that the result
extends to the current setting under the assumptions (H1) and (H2). □

In the analysis later on, we will often employ the fact that the uniform stability
bound (3.6) can be written equivalently as inf-sup stability bounds for operators in
W (Vk, Dk), k ∈ N, as follows: for each k ∈ N and L ∈W (Vk, Dk) there hold

C−1
stab ≤ inf

vk∈Vk\{0}
sup

ψk∈Vk:
∥ψk∥H1(Ω)=1

⟨Lvk, ψk⟩V ∗
k ×Vk

∥vk∥H1(Ω)
,(3.7a)

C−1
stab ≤ inf

wk∈Vk\{0}
sup

ϕk∈Vk:
∥ϕk∥H1(Ω)=1

⟨L∗wk, ϕk⟩V ∗
k ×Vk

∥wk∥H1(Ω)
,(3.7b)

or equivalently

∥vk∥H1(Ω) ≤ Cstab sup
ψk∈Vk:

∥ψk∥H1(Ω)=1

⟨Lvk, ψk⟩V ∗
k ×Vk

∀vk ∈ Vk,(3.8a)

∥wk∥H1(Ω) ≤ Cstab sup
ϕk∈Vk:

∥ϕk∥H1(Ω)=1

⟨L∗wk, ϕk⟩V ∗
k ×Vk

∀wk ∈ Vk.(3.8b)

Remark 3.2 (Dependencies of Cstab). It is clear that the constant Cstab appearing
in (3.6) will generally depend on d, Ω, δ, ν, LH , CD, etc. However, since the
constant Cstab appears frequently in the following analysis, it will often be simpler
and clearer for us to state how other constants depend on Cstab, rather than on
these other more primitive quantities.

Remark 3.3 (Well-posedness of discrete approximations and convergence). The ex-
istence and uniqueness of the numerical solutions is shown in [27, 28, Theorems 5.2
& 5.3] for the case of strictly acute meshes. Following the arguments of the proofs
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in these results, it is straightforward to show that existence and uniqueness of
the discrete solution also holds for the abstract class of methods considered here
of the form (3.3) under the assumptions (H1) and (H2). Moreover, in the cur-
rent setting where H is continuously differentiable, it is also straightforward to
extend [27, 28, Theorem 5.4, Corollary 5.5] on the convergence of the method to
deduce that {uk}k∈N, {mk}k∈N are uniformly bounded in theH1-norm with uk → u
and mk → m in H1

0 (Ω) as k → ∞. We note that we will use these results on plain
convergence of the method in the analysis that comes below. Since the analysis
from [27, 28] assumes that the finite element spaces are nested, we therefore make
the same assumption here.

Vanishing stabilization. In some cases, it is possible to design the numerical methods
such that stabilization becomes unnecessary once the mesh is sufficiently fine, i.e.
one can satisfy (H2) whilst also satisfying

(3.9) Dk ≡ 0 in Ω ∀k ≥ k∗,

for some k∗ ∈ N sufficiently large. Note that (3.9) trivially implies (H1). An impor-
tant example where (3.9) holds is the case of sequences of strictly acute meshes, see
Section 3.3 below. Situations where the stabilization vanishes are of special interest
since we will show below that these lead to the full quasi-optimality of error without
additional terms in the error bounds originating from stabilization, see Remark 4.3
below.

3.2. Xu–Zikatanov (XZ) condition [34].
Formulation of the condition. Let K ∈ Tk be given. For each vertex xi ∈ K, we let
FK,i denote the convex hull of all vertices of K except xi, i.e. FK,i is the (d − 1)-
dimensional face of K that is opposite xi. The dihedral angle between the faces
FK,i and FK,j is denoted by θKij . We say that the family of meshes {Tk}k∈N satisfies
the XZ condition [34] if the following holds: for any k ∈ N and for any internal
edge E ∈ Ek formed by neighbouring vertices xi and xj there holds

(3.10)
∑

K′∈Tk,E

|FK′,i ∩ FK′,j |d−2 cot(θ
K′

ij ) ≥ 0.

For instance, when d = 2, the condition (3.10) requires that the sum of the angles
opposite to any edge in the mesh should be less than or equal to π. More generally,
the XZ condition allows for some unstructured meshes with nonacute elements.
Note that under condition (3.10), the stiffness matrix for the Laplacian on Vk is an
M -matrix, see [34].

Construction of the stabilization. Given an interior edge E ∈ Ek,Ω, let ωk,E ≥ 0
denote a nonnegative weight that satisfies

(3.11)
δLH diamE

2(d+ 1)
< ωk,E ≤ CLH diamE,

for some fixed constant C independent of E and k. Recall that δ denotes here
the shape-regularity parameter of the sequence of meshes. For each E ∈ Ek,Ω, let
tE denote a fixed choice of unit tangent vector to E; the orientation of tE has no
effect on what is to follow. For sequences of meshes satisfying the XZ condition, the
stabilization matrix Dk ∈ L∞(Ω;Rd×d) introduced in [29] is defined element-wise
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over the mesh Tk by

(3.12) Dk|K :=
∑
E∈EK

ωk,E tE ⊗ tE ∀K ∈ Tk,

where we recall that EK ⊂ Ek,Ω denotes the edges of K that are internal edges,
and ⊗ denotes the outer-product of vectors, i.e. tE ⊗ tE := tEt

T
E ∈ Rd×d. It is

clear that Dk is well-defined since each summand in the right-hand-side of (3.12)
is independent of the choice of orientations of the tangent vectors tE . Moreover,
for each K ∈ Tk, Dk|K is a symmetric, positive semi-definite matrix in Rd×d since
the weights ωk,E are nonnegative.

Lemma 3.4 ([29]). Suppose that the family of meshes {Tk}k∈N satisfies the XZ
condition (3.10) and that, for each k ∈ N, the matrix-valued function Dk is given
by (3.12) with the weights satisfying (3.11). Then assumptions (H1) and (H2) are
satisfied.

Proof. See [29, Proof of Theorem 4.2, pp. 28–29]. □

3.3. Strict acuteness condition.
Formulation of the condition. We say that the family of meshes {Tk}k∈N is strictly
acute [8] if the following condition holds: there exists θ ∈ (0, π/2), independent of
k ∈ N, such that, for each k ∈ N, the nodal basis {ξ1, · · · , ξMk

} of Vk satisfies

(3.13) ∇ξi · ∇ξj |K ≤ − sin(θ) |∇ξi|K | |∇ξj |K | ∀1 ≤ i, j ≤Mk, i ̸= j,∀K ∈ Tk.
It is well-known that when d = 2 the strict acuteness condition (3.13) indicates
that the largest angle of a given triangle K ∈ Tk is at most π

2 − θ, while in the case
d = 3 this condition indicates that each angle formed by the six pairs of faces of any
tetrahedron K ∈ Tk is at most π

2 − θ (see [8]). Furthermore, the strict acuteness
condition implies the XZ condition.

Construction of the stabilization. In this case, we consider the stabilization method
given by artificial diffusion as in [27, 28]. More precisely, let µ > 1 be a fixed
constant and let k ∈ N be given. For K ∈ Tk, we denote by {ψKk,0, · · · , ψKk,d} ⊂
Vk the set of nodal basis functions associated with the d + 1 nodes of K. Let
σkK := (diamK)min0≤i≤d |∇ψKk,i| and σk := minK∈Tk

σkK . We note that, owing to

the shape regularity of the family of meshes {Tk}k∈N, there exist constants σ, σ > 0,
that are independent of k ∈ N, such that σ ≤ σk ≤ σ for all k ∈ N. We then define
Dk element-wise over Tk by

(3.14) Dk|K := max

(
µLHhTk

|K
σk sin(θ)

− ν, 0

)
Id ∀K ∈ Tk.

It is clear that Dk is in L∞ (
Ω;Rd×dsym,+

)
. Although the strict acuteness condition

is less general than the XZ condition, it is nonetheless a case of special interest.
Indeed, note if k ∈ N is sufficiently large, in particular if the mesh-size is sufficiently

small, then
µLHhTk

σk sin(θ)
≤ ν almost everywhere in Ω, and therefore (3.14) implies that

(3.9) holds whenever k is sufficiently large.

Lemma 3.5 ([27, 28]). Suppose that the family of meshes {Tk}k∈N satisfies the
strict acuteness condition (3.13) and that, for each k ∈ N, the matrix-valued func-
tion Dk is given by (3.14). Then assumptions (H1) and (H2) are satisfied. More-
over, there exists k∗ ∈ N such that (3.9) holds for all k ≥ k∗.

Proof. See [27, 28, Lemma 6.1], and also [8, Theorem 4.2] and [22, Section 8]. □
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4. Main results

4.1. Bounds for the H1-norm error of the density and value functions. We
now present our main result on a priori bounds for the H1-norm of the error for the
approximations of the solution of the MFG system (2.15). First, in Theorem 4.1
below, we give the main bound for the general abstract method of Section 3.1.
Then, in Remarks 4.2 and 4.3 below, we show how the bound of Theorem 4.1
applies to the stabilized methods of [29, 27, 28]. Then, in Corollary 4.4, we show
how the bound of Theorem 4.1 implies optimal rates of convergence of the error
with respect to the mesh-size for sufficiently smooth solutions.

Theorem 4.1 (A priori bound). Assume (H1) and (H2). Then, there exists a
k0 ∈ N such that

(4.1) ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω)

≲ inf
mk∈Vk

∥m−mk∥H1(Ω) + inf
uk∈Vk

∥u− uk∥H1(Ω) + ∥Dk∇m∥Ω + ∥Dk∇u∥Ω,

for all k ≥ k0. The hidden constant in (4.1) depends only on d, Ω, cF , LF , LHp ,
LH , ν, CD, Cstab, and M∞.

We stress that Theorem 4.1 does not require any additional regularity on the
solution. The proof of Theorem 4.1 is postponed to Section 7 below.

Remark 4.2 (Near quasi-optimality). As an immediate consequence of (4.1) and of
the bound |Dk| ≤ CDhTk

in Ω from (H1), we obtain

(4.2) ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω)

≲ inf
mk∈Vk

∥m−mk∥H1(Ω) + inf
uk∈Vk

∥u− uk∥H1(Ω) + ∥hTk
∇m∥Ω + ∥hTk

∇u∥Ω.

We then see from (4.2) that, for sufficiently refined meshes, the error of the stabi-
lized FEM is bounded by the best approximation error plus an additional term that
is of first-order with respect to the mesh-size function hTk

. Recall that a numerical
method is said to be quasi-optimal if the error between exact and computed solu-
tions is bounded by a constant times the best approximation error from the same
approximation space. Note that for piecewise affine elements, in general the con-
vergence rate of infmk∈Vk

∥m −mk∥H1(Ω) and infuk∈Vk
∥u − uk∥H1(Ω) with respect

to the mesh-size is generally at best of first-order, and may be lower for nonsmooth
solutions. Therefore, the additional terms ∥hTk

∇m∥Ω and ∥hTk
∇u∥Ω appearing

in (4.2) are of optimal order with respect to the mesh-size. This is why we shall
say that the method is asymptotically nearly quasi-optimal for the H1-norm of the
error. In particular, this applies to the stabilization for XZ meshes from Section 3.2.

Remark 4.3 (Full quasi-optimality for vanishing stabilization). In the case where
the stabilization terms vanish identically once the meshes are sufficiently refined,
i.e. if (3.9) holds, then Theorem 4.1 implies that

(4.3)

∥m−mk∥H1(Ω)+∥u−uk∥H1(Ω) ≲ inf
mk∈Vk

∥m−mk∥H1(Ω)+ inf
uk∈Vk

∥u−uk∥H1(Ω),

for all k sufficiently large. The bound (4.3) shows that the method is then asymp-
totically fully quasi-optimal in the H1-norm, i.e. without any additional terms. In
particular, this stronger result holds for the case of the stabilization for strictly
acute meshes from Section 3.3.
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As an immediate corollary of Theorem 4.1, we now show that the approximations
have optimal rates of convergence if the solution has sufficient regularity. Recall
that hk := ∥hTk

∥L∞(Ω) denotes the maximum element size of Tk.

Corollary 4.4 (Optimal convergence rates). Assume (H1) and (H2). Suppose also
that m and u are in H1+s(Ω) for some s ∈ [0, 1]. Then, there exists k0 ∈ N such
that

(4.4) ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω) ≲ hsk
(
∥m∥H1+s(Ω) + ∥u∥H1+s(Ω)

)
,

for all k ≥ k0.

Proof. To begin, we show that any v ∈ H1
0 (Ω) ∩H1+s(Ω), with s ∈ [0, 1], satisfies

(4.5) inf
vk∈Vk

∥v − vk∥H1(Ω) ≲ hsk∥v∥H1+s(Ω)

Proving this bound in the case s = 0 is trivial, while proof for the case s = 1
follows from well-known results for piecewise affine finite element approximation
of H2-regular functions by quasi-interpolation (see e.g. [32]). For the case where
s ∈ (0, 1), the bound (4.5) is a standard consequence of the theory of interpolation
between Banach spaces (see e.g. [7, Chapter 14]). We include the proof of (4.5) in
the case s ∈ (0, 1) for completeness.

For each k ∈ N, let Ik : H1(Ω) → H1(Ω) denote the Scott–Zhang linear quasi-
interpolation operator [32] associated with the shape-regular mesh Tk that is defined
in [7, Theorem (4.8.3.8)] and which satisfies Ikw = 0 on ∂Ω if w ∈ H1

0 (Ω). We then
have that Ikw ∈ Vk for each w ∈ H1

0 (Ω), and so, for each v ∈ H1
0 (Ω)∩H1+s(Ω) we

get

(4.6) inf
vk∈Vk

∥v − vk∥H1(Ω) ≤ ∥v − Ikv∥H1(Ω) ∀k ∈ N.

For each k ∈ N define the linear operator Qk : H1(Ω) → H1(Ω) via Qkw :=
w − Ikw for w ∈ H1(Ω). By applying [7, Theorem (4.8.12)] we obtain that, for all
w ∈ H2(Ω),

(4.7) ∥Qkw∥H1(Ω) ≲ hk|v|H2(Ω),

so Qk maps H2(Ω) into H1(Ω) with

(4.8) ∥Qk∥L(H2(Ω),H1(Ω)) ≲ hk ∀k ∈ N.

We also have by [7, Corollary (4.8.15)] that ∥Qkw∥H1(Ω) ≲ ∥w∥H1(Ω) for all w ∈
H1(Ω), so

(4.9) ∥Qk∥L(H1(Ω),H1(Ω)) ≲ 1 ∀k ∈ N.

We then apply the Banach space interpolation result [7, Proposition (14.1.5)] with
A0 = B0 = B1 = H1(Ω), and A1 = H2(Ω) to deduce that Qk maps H1+s(Ω) to
H1(Ω) with

(4.10) ∥Qk∥L(H1+s(Ω),H1(Ω)) ≤ ∥Qk∥1−sL(H1(Ω),H1(Ω))∥Qk∥
s
L(H2(Ω),H1(Ω)) ≲ hsk

after using (4.8) and (4.9). This then implies that

(4.11) ∥Qkv∥H1(Ω) = ∥v − Ikv∥H1(Ω) ≲ hsk∥v∥H1+s(Ω) ∀v ∈ H1+s(Ω)

This bound and (4.6) then give desired bound (4.5).
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The regularity assumptions on u and m, together with the bound (4.5), imply

inf
mk∈Vk

∥m−mk∥H1(Ω) ≲ hsk∥m∥H1+s(Ω),(4.12a)

inf
uk∈Vk

∥u− uk∥H1(Ω) ≲ hsk∥u∥H1+s(Ω).(4.12b)

Applying bounds (4.12a) and (4.12b) to (4.2) gives

∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω)

≲ hsk
(
∥m∥H1+s(Ω) + ∥u∥H1+s(Ω)

)
+ hk

(
∥m∥H1(Ω) + ∥u∥H1(Ω)

)
.

(4.13)

We then obtain (4.4) upon noting that hk(∥m∥H1(Ω)+∥u∥H1(Ω)) ≲ hsk(∥m∥H1+s(Ω)+
∥u∥H1+s(Ω)) since s ∈ [0, 1]. □

We note that the rate of convergence with respect to the mesh-size that is shown
in Corollary 4.4 is optimal in the sense that it cannot be improved for general u
and m in H1+s(Ω) when considering the H1-norm of the error. In particular, a
first-order convergence rate in the H1-norm is achieved for the case of s = 1, i.e.
when u, m ∈ H2(Ω), which is the maximum rate of convergence that is generally
possible for piecewise affine finite element approximations.

Remark 4.5 (Time-dependent problems). Although this work treats the case of
steady-state problems, the numerical method considered here has been extended
already to the case of time-dependent problems in [29], which employs a stabilized
finite element method in space coupled with implicit Euler discretizations of the
time derivatives with mass lumping. The plain convergence of the resulting method
is proved in [29]. The analysis of rates of convergence of finite element approxi-
mations of time-dependent problems will be the subject of future work. Recall
also that [6] obtains a rate of convergence for a finite difference approximation of
time-dependent MFG systems.

4.2. Bounds for the L2-norm error of the density function and H1-norm
error of the value function. In the numerical experiments of [27, 28], it was ob-
served that the convergence rate of ∥u−uk∥H1(Ω) can attain the maximum possible
convergence rate of order one, even for problems where m had low regularity, e.g.
m ̸∈ H2(Ω). We now give theoretical support to those experimental observations
by proving that the error ∥u−uk∥H1(Ω) has optimal rates of convergence even when

m has minimal regularity in H1(Ω), at least in the case where some additional el-
liptic regularity is available, such as on convex domains. Note that m ̸∈ H2(Ω) is
still possible when Ω is convex, owing to the distributional datum G ∈ H−1(Ω).
We also remark that the analysis here assumes differentiability of the Hamilton-
ian, in contrast to the computations in [27, 28], which involved nondifferentiable
Hamiltonians.

The main idea to show this is to seek bounds for a composite norm on the error
that involves the L2-norm error for the density and H1-norm error for the value
function, rather than the strongerH1-norm in both components that was considered
in the previous subsection. Our main result on this subject is in Theorem 4.6 below,
which gives an error bound in this composite norm for the general class of methods
of Section 3.1, without any regularity assumptions on the solution (u,m).
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Theorem 4.6. Assume (H1) and (H2). Suppose additionally that the domain Ω
is convex. Then, there exists k0 ∈ N such that

(4.14)

∥m−mk∥Ω+∥u−uk∥H1(Ω) ≲ inf
uk∈Vk

∥u−uk∥H1(Ω)+hk
(
∥u∥H1(Ω) + ∥m∥H1(Ω)

)
,

for all k ≥ k0. The hidden constant in the above bound depends only on d, Ω, cF ,
LF , LHp

, LH , ν, δ, CD, Cstab, and M∞.

We prove Theorem 4.6 in Section 8. We now show that Theorem 4.6 implies an
optimal asymptotic rate of convergence of the value function approximations that
is independent of the regularity of m.

Corollary 4.7. In addition to the hypotheses of Theorem 4.6, suppose that u ∈
H1+s(Ω) for some s ∈ [0, 1]. Then, there exists k0 ∈ N such that

(4.15) ∥m−mk∥Ω + ∥u− uk∥H1(Ω) ≲ hsk(∥m∥H1(Ω) + ∥u∥H1+s(Ω)),

for all k ≥ k0.

Proof. As explained in the proof of Corollary 4.4, if u ∈ H1+s(Ω) for s ∈ [0, 1] then
infuk∈Vk

∥u − uk∥H1(Ω) ≲ hsk∥u∥H1+s(Ω). Moreover, it is clear that hk(∥m∥H1(Ω) +
∥u∥H1(Ω)) ≲ hsk(∥m∥H1(Ω) + ∥u∥H1+s(Ω)). Applying these bounds to (4.14) then
yields (4.15). □

We note that Corollary 4.7 implies a rate of convergence in the total L2-H1 norm
in (4.15) that requires a regularity hypothesis only on u but not on m, in contrast
to Corollary 4.4. However, Corollary 4.4 implies a rate of convergence in the total
H1-norm in (4.4) without requiring Ω to be convex.

5. Stability of discrete HJB and KFP equations

In this section, we start the analysis of the approximations defined by discrete
MFG system (3.3) by showing the stability of the discrete HJB and KFP equations
considered separately. The stability of these discrete problems can be expressed in
terms of discrete residuals of the equations, which we now define. For each k ∈ N,
introduce the discrete residual operators R1

k, R
2
k : Vk × Vk → V ∗

k given by

⟨R1
k(mk, uk), ψk⟩V ∗

k ×Vk
:= ⟨F [mk], ψk⟩H−1×H1

0
−

∫
Ω

(Ak∇uk · ∇ψk +H[∇uk]ψk)dx,

(5.1a)

⟨R2
k(mk, uk), ϕk⟩V ∗

k ×Vk
:= ⟨G,ϕk⟩H−1×H1

0
−
∫
Ω

(
Ak∇mk · ∇ϕk +mk

∂H

∂p
[∇uk] · ∇ϕk

)
dx,

(5.1b)

for all mk, uk, ψk, ϕk ∈ Vk. Since the pair (mk, uk) ∈ Vk × Vk satisfies the discrete
problem (3.3), it is clear that R1

k(mk, uk) = 0 and R2
k(mk, uk) = 0 in V ∗

k .
We now show that the discrete residuals are bounded by the approximation error

plus some additional terms coming from the stabilization.

Lemma 5.1. Assume (H1). For all k ∈ N, and all uk,mk ∈ Vk, we have

∥R1
k(mk, uk)∥V ∗

k
≲ ∥m−mk∥Ω + ∥u− uk∥H1(Ω) + ∥Dk∇u∥Ω,(5.2a)

∥R2
k(mk, uk)∥V ∗

k
≲ ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω) + ∥Dk∇m∥Ω,(5.2b)

where the hidden constants depend only on d, Ω, LF , LHp
, LH , ν, CD, and M∞.
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Proof. Since (u,m) solves (2.15), we have

(5.3)

⟨R1
k(mk, uk), ψk⟩V ∗

k ×Vk
= ⟨F [mk]−F [m], ψk⟩H−1×H1

0
+

∫
Ω

Ak∇(u− uk) · ∇ψkdx

+

∫
Ω

(H[∇u]−H[∇uk])ψkdx−
∫
Ω

Dk∇u · ∇ψkdx,

for all ψk ∈ Vk. The Lipschitz continuity of F in (2.1) implies that ⟨F [mk] −
F [m], ψk⟩H−1×H1

0
≤ LF ∥mk −mk∥Ω∥ψk∥H1(Ω) for all ψk ∈ Vk. The definition of

Ak in (3.4) and the bound on Dk in from (H1) then imply that |
∫
Ω
Ak∇(u− uk) ·

∇ψkdx| ≲ ∥u− uk∥H1(Ω)∥ψk∥H1(Ω) for all ψk ∈ Vk, for some hidden constant that
depends only on d, ν, CD and on Ω. The Lipschitz continuity of H in (2.4b) implies
that |

∫
Ω
(H[∇u] −H[∇uk])ψkdx| ≲ ∥u − uk∥H1(Ω)∥ψk∥H1(Ω) for all ψk ∈ Vk. The

Cauchy–Schwarz inequality implies that |
∫
Ω
Dk∇u ·∇ψkdx| ≤ ∥Dk∇u∥Ω∥ψk∥H1(Ω)

for all ψk ∈ Vk. Combining these bounds then yields (5.2a).
Next, we have

(5.4)

⟨R2
k(mk, uk), ϕk⟩V ∗

k ×Vk
=

∫
Ω

Ak∇(m−mk) · ∇ϕk + (m−mk)
∂H

∂p
[∇uk] · ∇ϕkdx

−
∫
Ω

Dk∇m · ∇ϕkdx+

∫
Ω

m

(
∂H

∂p
[∇u]− ∂H

∂p
[∇uk]

)
· ∇ϕkdx,

for all ϕk ∈ Vk. We then obtain (5.2b) similarly as above, where we additionally
use the bound ∥∂H∂p [∇uk∥L∞(Ω,Rd) ≤ LH which follows from (2.6), along with the

Lipschitz continuity of ∂H∂p in (2.5) and the L∞-bound on m in (2.18). □

We now turn to the (local) stability of the discrete HJB equation (3.3a).

Lemma 5.2 (Stability of discrete HJB equation). Assume (H1) and (H2). There
exists a constant R > 0 that is independent of k ∈ N such that

(5.5) ∥uk − uk∥H1(Ω) ≲ ∥R1
k(mk, uk)∥V ∗

k
+ ∥mk −mk∥Ω,

for any mk ∈ Vk, and for any uk ∈ Vk satisfying ∥uk − uk∥H1(Ω) ≤ R. The hidden
constant in (5.5) depends only on LF and Cstab.

Proof of Lemma 5.2. Applying Lemma 3.1 to the operator L ∈ W (Vk, Dk) for the

case b̃ = ∂H
∂p [∇uk], we employ the equivalent inf-sup stability bound (3.8a) with

vk := uk − uk to get

∥uk − uk∥H1(Ω)

≤ Cstab sup
ψk∈Vk:

∥ψk∥H1(Ω)=1

[∫
Ω

Ak∇(uk − uk) · ∇ψk −
∂H

∂p
[∇uk] · ∇(uk − uk)ψkdx

]
.
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Using the discrete HJB equation of (3.3), we find that

∥uk − uk∥H1(Ω)

≤ Cstab sup
ψk∈Vk:

∥ψk∥H1(Ω)=1

[
⟨F [mk]− F [mk], ψk⟩H−1×H1

0
− ⟨R1

k(mk, uk), ψk⟩V ∗
k ×Vk

+

∫
Ω

(
H[∇uk]−H[∇uk]−

∂H

∂p
[∇uk] · ∇(uk − uk)

)
ψkdx

]
.

Hence, the Lipschitz continuity of F , c.f. (2.1), and the triangle inequality imply
that

(5.6) ∥uk − uk∥H1(Ω) ≤ Cstab∥R1
k(mk, uk)∥V ∗

k
+ CstabLF ∥mk −mk∥Ω

+ Cstab

∥∥∥∥H[∇uk]−H[∇uk]−
∂H

∂p
[∇uk] · ∇(uk − uk)

∥∥∥∥
H−1(Ω)

.

Next, we apply Lemma 2.1 with ϵ = (2Cstab)
−1 in order to absorb the last term on

the right-hand side of (5.6) into the left-hand side, and thereby deduce that there
exists R > 0 such that (5.5) holds whenever ∥uk − uk∥H1(Ω) ≤ R. □

We now consider the stability of the discrete KFP equation (3.3b).

Lemma 5.3 (Stability of discrete KFP equation). Assume (H1) and (H2). Then
for all k ∈ N and all mk ∈ Vk, we have

(5.7) ∥mk −mk∥H1(Ω) ≲ ∥R2
k(mk, uk)∥V ∗

k
,

where the constant depends only on Cstab.

Proof. Let k ∈ N and let mk ∈ Vk be arbitrary. Then, the equivalent inf-sup
stability bound (3.8b) implied by Lemma 3.1,with wk := mk −mk, gives

∥mk −mk∥H1(Ω)

≲ sup
ϕk∈Vk:

∥ϕk∥H1(Ω)=1

[∫
Ω

Ak∇(mk −mk)·∇ϕk + (mk −mk)
∂H

∂p
[∇uk]·∇ϕkdx

]

= sup
ϕk∈Vk:

∥ϕk∥H1(Ω)=1

[
⟨G,ϕk⟩H−1×H1

0
−

∫
Ω

Ak∇mk·∇ϕk +mk
∂H

∂p
[∇uk]·∇ϕkdx

]

= sup
ϕk∈Vk:

∥ϕk∥H1(Ω)=1

⟨R2
k(mk, uk), ϕk⟩V ∗

k ×Vk
= ∥R2

k(mk, uk)∥V ∗
k
,

where we have used the discrete KFP equation of (3.3) in the second line above. □

6. Nonnegative approximations of the density

It is well-known that the nonnegativity of the density and its discrete approxi-
mation respectively play important roles in the proofs of uniqueness of the solution
of the MFG system (2.15) and its discrete approximation (3.3), see e.g. [25] and
[27, 28]. It is therefore not surprising that nonnegative approximations of the den-
sity will play an important part in the error analysis.
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Let Vk,+ denote the set of functions in Vk that are nonnegative in Ω. First, we
show in Lemma 6.1 below that the density m can be approximated nearly quasi-
optimally, up to stabilization terms, by discrete functions in Vk,+. To this end, let
us assume (H1) and (H2). We define mk,+ ∈ Vk to be the unique solution of

(6.1)

∫
Ω

Ak∇mk,+ · ∇ϕk +mk,+
∂H

∂p
[∇u] · ∇ϕkdx = ⟨G,ϕk⟩H−1×H1

0
∀ϕk ∈ Vk.

Note that Lemma 3.1 implies that mk,+ is well-defined. Moreover, under the as-
sumption (H2), we further have mk,+ ∈ Vk,+ since G is nonnegative in the sense of
distributions. It is also straightforward to show that mk,+ satisfies ∥mk,+∥H1(Ω) ≲
∥m∥H1(Ω) for some constant that depends only on Ω, ν, LH , and Cstab. Indeed,
using the weak KFP equation (2.15b), we can rewrite (6.1) as

(6.2)

∫
Ω

Ak∇mk,+ · ∇ϕk +mk,+
∂H

∂p
[∇u] · ∇ϕkdx

=

∫
Ω

ν∇m · ∇ϕk +m
∂H

∂p
[∇u] · ∇ϕk dx ∀ϕk ∈ Vk.

It is clear by (2.6) that

(6.3) sup
ϕk∈Vk: ∥ϕk∥H1(Ω)=1

∫
Ω

ν∇m · ∇ϕk +m
∂H

∂p
[∇u] · ∇ϕk dx ≲ ∥m∥H1(Ω)

where the hidden constant depends only on ν and LH . We then immediately con-
clude from (6.2) and Lemma 3.1 that ∥mk,+∥H1(Ω) ≲ ∥m∥H1(Ω) for some constant
that depends only on Ω, ν, LH , and Cstab.

Lemma 6.1. Assume (H1) and (H2). Then, for all k ∈ N,
(6.4) inf

mk∈Vk,+

∥m−mk∥H1(Ω) ≲ inf
mk∈Vk

∥m−mk∥H1(Ω) + ∥Dk∇m∥Ω.

The hidden constant in (6.4) depends only on d, Ω, ν, LH , Cstab, and CD.

Proof. Since mk,+ ∈ Vk,+, it is clearly sufficient to show that ∥m − mk,+∥H1(Ω)

is bounded by the right-hand side of (6.4) above. Let mk ∈ Vk be arbitrary.
Then (6.1) implies that

∫
Ω

Ak∇(mk,+ −mk) · ∇ϕk + (mk,+ −mk)
∂H

∂p
[∇u] · ∇ϕkdx

=

∫
Ω

Ak∇(m−mk) · ∇ϕk + (m−mk)
∂H

∂p
[∇u] · ∇ϕkdx−

∫
Ω

Dk∇m · ∇ϕkdx

(6.5)

for all ϕk ∈ Vk. Using Lemma 3.1, for the case b̃ = ∂H
∂p [∇u], we apply the equivalent

inf-sup stability bound (3.8b) with wk := mk,+ −mk to find that

(6.6) ∥mk,+ −mk∥H1(Ω)

≲ sup
ϕk∈Vk:

∥ϕk∥H1(Ω)=1

[∫
Ω

Ak∇(m−mk) · ∇ϕk + (m−mk)
∂H

∂p
[∇u] · ∇ϕkdx

−
∫
Ω

Dk∇m · ∇ϕkdx
]

≲ ∥m−mk∥H1(Ω) + ∥Dk∇m∥Ω,
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where the second inequality is obtained by applying the Cauchy–Schwarz inequality
to the various terms, along with (2.6) and the bound on Dk from (H2). The
constant in (6.6) depends only on Cstab, d, Ω, ν, CD and LH . Since mk ∈ Vk is
arbitrary, we then deduce from the triangle inequality that ∥m − mk,+∥H1(Ω) ≲
infmk∈Vk

∥m−mk∥H1(Ω) + ∥Dk∇m∥Ω, which completes the proof of (6.4). □

We now prove the L2-norm stability in the density component for the discrete
MFG system (3.3), when restricted to the set of nonnegative functions in Vk,+.
This bound can be seen as a quantitative analogue to some of the inequalities used
in the well-known proofs of uniqueness of solutions due to Lasry and Lions in [25].

Lemma 6.2. Assume (H2). For each k ∈ N, any uk ∈ Vk and mk ∈ Vk,+, we have

(6.7) cF ∥mk−mk∥2Ω ≤ ⟨R1
k(mk, uk),mk−mk⟩V ∗

k ×Vk
−⟨R2

k(mk, uk), uk−uk⟩V ∗
k ×Vk

.

Proof of Lemma 6.2. Let uk ∈ Vk and mk ∈ Vk,+ be fixed but arbitrary. To abbre-
viate the notation, let

(6.8) Rk := ⟨R1
k(mk, uk),mk −mk⟩V ∗

k ×Vk
− ⟨R2

k(mk, uk), uk − uk⟩V ∗
k ×Vk

.

Since R1
k(mk, uk) = 0 and R2

k(mk, uk) = 0 in V ∗
k , we have that

(6.9) Rk = ⟨R1
k(mk, uk)−R1

k(mk, uk),mk −mk⟩V ∗
k ×Vk

− ⟨R2
k(mk, uk)−R2

k(mk, uk), uk − uk⟩V ∗
k ×Vk

.

Recall that (·, ·)Ω denotes the inner product on L2(Ω). Using the discrete HJB
equation (3.3a) and the discrete KFP equation (3.3b) we find that

(6.10) ⟨R1
k(mk, uk)−R1

k(mk, uk),mk −mk⟩V ∗
k ×Vk

= ⟨F [mk]− F [mk],mk −mk⟩H−1×H1
0
+

∫
Ω

(H[∇uk]−H[∇uk])(mk −mk)dx

+

∫
Ω

Ak∇(uk − uk) · ∇(mk −mk)dx,

and

(6.11) ⟨R2
k(mk, uk)−R2

k(mk, uk), uk − uk⟩V ∗
k ×Vk

=

∫
Ω

(
mk

∂H

∂p
[∇uk]−mk

∂H

∂p
[∇uk]

)
·∇(uk−uk)dx+

∫
Ω

Ak∇(mk−mk)·∇(uk−uk)dx.

Using the symmetry of Ak we then obtain from (6.9), (6.10) and (6.11) that

(6.12) Rk = ⟨F [mk]− F [mk],mk −mk⟩H−1×H1
0

+ (mk, RH [∇uk,∇uk])Ω + (mk, RH [∇uk,∇uk])Ω,

where we define RH [∇v,∇w] := H[∇v]−H[∇w]− ∂H
∂p [∇w] ·∇(v−w) for any v, w ∈

H1(Ω). Since H is convex and differentiable w.r.t. p, we have RH [∇v,∇w] ≥ 0 a.e.
for any v, w ∈ H1(Ω). Also, we have mk ≥ 0 in Ω from (H2) and mk ≥ 0 in Ω by
hypothesis. Therefore the terms (mk, RH [∇uk,∇uk])Ω and (mk, RH [∇uk,∇uk])Ω
in (6.12) are both nonnegative, and thus the strong monotonicity of F , c.f. (2.2),
implies that

(6.13) cF ∥mk −mk∥2Ω ≤ ⟨F [mk]− F [mk],mk −mk⟩H−1×H1
0
≤ Rk,

which shows (6.7). □
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7. Proof of Theorem 4.1

We now prove Theorem 4.1. The main ingredients of the proof are the separate
stability bounds for the discrete HJB and KFP equations given in Section 5 above,
along with the near quasi-optimality of nonnegative approximations and the L2-
stability bound for the discrete MFG system as shown in Section 6 above.

Proof of Theorem 4.1. Let R > 0 be the constant given in Lemma 5.2. As explained
in Remark 3.3, we have uk → u in H1

0 (Ω) as k → ∞. Therefore, there exists k0 ∈ N
such that for all k ≥ k0, we have uk ∈ Bk(u,R/2) where Bk(u,R/2) := {vk ∈
Vk; ∥vk−u∥H1(Ω) < R/2} is the restriction to Vk of the H1-norm ball of radius R/2
centred on u.

Consider now k ≥ k0, an arbitrary mk ∈ Vk,+ and an arbitrary uk ∈ Bk(u,R/2),
noting that Bk(u,R/2) is nonempty for all k ≥ k0. The triangle inequality then
implies that ∥uk − uk∥H1(Ω) ≤ R, so that each uk ∈ Bk(u,R/2), with k ≥ k0,
satisfies the hypotheses of Lemma 5.2.

We start by combining Lemma 5.3 and (5.2b) to obtain

(7.1) ∥mk −mk∥H1(Ω) ≲ ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω) + ∥Dk∇m∥Ω.

Therefore, the triangle inequality implies that

(7.2) ∥mk −mk∥H1(Ω) + ∥uk − uk∥H1(Ω)

≲ ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω) + ∥Dk∇m∥Ω + ∥uk − uk∥H1(Ω).

Since ∥uk − uk∥H1(Ω) ≤ R, we then apply Lemma 5.2 to the last term on the
right-hand side of (7.2) above to find that

(7.3) ∥mk −mk∥H1(Ω) + ∥uk − uk∥H1(Ω)

≲ ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω) + ∥Dk∇m∥Ω + ∥R1
k(mk, uk)∥V ∗

k
+ ∥mk −mk∥Ω

≲ ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω) + ∥Dk∇m∥Ω + ∥Dk∇u∥Ω + ∥mk −mk∥Ω,

where in passing to the last line above, we have applied (5.2a) from Lemma 5.1 to
bound ∥R1

k(mk, uk)∥V ∗
k
. Then, since by hypothesis mk ∈ Vk,+, we use the bound

for ∥mk −mk∥Ω in (6.7) (after taking square-roots) from Lemma 6.2 which implies
that

(7.4) ∥mk −mk∥H1(Ω) + ∥uk − uk∥H1(Ω)

≲ ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω) + ∥Dk∇m∥Ω + ∥Dk∇u∥Ω

+ ∥R1
k(mk, uk)∥

1
2

V ∗
k
∥mk −mk∥

1
2

H1(Ω) + ∥R2
k(mk, uk)∥

1
2

V ∗
k
∥uk − uk∥

1
2

H1(Ω).

Applying Young’s inequality to the last two terms on the right-hand side of (7.4)
and simplifying, we deduce that

(7.5) ∥mk −mk∥H1(Ω) + ∥uk − uk∥H1(Ω)

≲ ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω) + ∥Dk∇m∥Ω + ∥Dk∇u∥Ω
+ ∥R1

k(mk, uk)∥V ∗
k
+ ∥R2

k(mk, uk)∥V ∗
k

≲ ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω) + ∥Dk∇m∥Ω + ∥Dk∇u∥Ω,
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where the last inequality is obtained by applying Lemma 5.1 to bound ∥R1
k(mk, uk)∥V ∗

k

and ∥R2
k(mk, uk)∥V ∗

k
. It follows from (7.5) and the triangle inequality that

(7.6) ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω)

≲ ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω) + ∥Dk∇m∥Ω + ∥Dk∇u∥Ω.

Since mk was arbitrary in Vk,+ and uk was arbitrary in Bk(u,R/2), we consider
the infima in (7.6) over all such mk and uk to obtain

(7.7) ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω)

≲ inf
mk∈Vk,+

∥m−mk∥H1(Ω)+ inf
uk∈Bk(u,R/2)

∥u−uk∥H1(Ω)+∥Dk∇m∥Ω+∥Dk∇u∥Ω.

Since Bk(u,R/2) is nonempty, it is clear that

(7.8) inf
uk∈Bk(u,R/2)

∥u− uk∥H1(Ω) = inf
uk∈Vk

∥u− uk∥H1(Ω).

Thus, using this identity and using Lemma 6.1 in (7.7) yields (4.1), thereby com-
pleting the proof. □

8. Proof of Theorem 4.6

As explained in Section 4.1, we seek bounds for a composite norm on the error
that involves the L2-norm of the error for the density and H1-norm of the error for
the value function. The starting point for the analysis is in Lemma 8.1, which shows
that, when considering the specific approximation mk,+ ∈ Vk,+ defined in (6.1)
above, we obtain a sharper bound on the residual in the KFP equation which
involves the approximation error for the density function only in the L2-norm rather
than the H1-norm.

Lemma 8.1. Assume (H1) and (H2). Then, for any uk ∈ Vk,

(8.1) ∥R2
k(mk,+, uk)∥V ∗

k
≲ ∥m−mk,+∥Ω + ∥u− uk∥H1(Ω),

where the hidden constant depends only on LH , LHp and M∞.

Note that the right-hand side of (8.1) features only the L2-norm term ∥m −
mk,+∥Ω, in contrast to the right-hand side of (5.2b) which includes an H1-norm
approximation error term for the density.

Proof. Fix k ∈ N and let uk ∈ Vk be given. For any ϕk ∈ Vk, it follows from the
definition of mk,+ given in (6.1) that

⟨R2
k(mk,+, uk), ϕk⟩V ∗

k ×Vk

= ⟨G,ϕk⟩H−1×H1
0
−
∫
Ω

Ak∇mk,+ · ∇ϕk +mk,+
∂H

∂p
[∇uk] · ∇ϕkdx

=

∫
Ω

mk,+

(
∂H

∂p
[∇u]− ∂H

∂p
[∇uk]

)
·∇ϕkdx

=

∫
Ω

(mk,+ −m)

(
∂H

∂p
[∇u]− ∂H

∂p
[∇uk]

)
· ∇ϕk +m

(
∂H

∂p
[∇u]− ∂H

∂p
[∇uk]

)
· ∇ϕkdx.
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Consequently, we have for all ϕk ∈ Vk that

(8.2) |⟨R2
k(mk,+, uk), ϕk⟩V ∗

k ×Vk
|

≤
(
2LH∥mk,+ −m∥Ω +M∞

∥∥∥∥∂H∂p [∇u]− ∂H

∂p
[∇uk]

∥∥∥∥
Ω

)
∥∇ϕk∥Ω

where we have applied (2.6) and the fact that m ∈ L∞(Ω) by (2.18). Then the
Lipschitz condition (2.5) implies that

(8.3) ∥R2
k(mk,+, uk)∥V ∗

k
≤ 2LH∥m−mk,+∥Ω +M∞LHp∥u− uk∥H1(Ω),

which shows (8.1). □

Assuming that the domain Ω is convex, we use a standard duality argument to
give a bound on the L2 norm of the approximation error ∥m−mk,+∥Ω.

Lemma 8.2. Assume (H1) and (H2). Suppose also that Ω is convex. Then

(8.4) ∥m−mk,+∥Ω ≲ hk∥m∥H1(Ω),

where the hidden constant depends only on d, Ω, ν, LH , δ, Cstab, and CD.

Proof. To begin, for each k ∈ N, let zk be the unique function in H1
0 (Ω) such that

(8.5)

∫
Ω

ν∇zk · ∇ϕ+
∂H

∂p
[∇u] · ∇zkϕdx =

∫
Ω

(m−mk,+)ϕdx ∀ϕ ∈ H1
0 (Ω).

The existence and uniqueness of such zk for each k ∈ N is guaranteed by [17,
Theorem 8.3] and moreover ∥zk∥H1(Ω) ≲ ∥m−mk,+∥Ω with a constant depending
only on d, ν, LH , and on Ω, see also [27, 28, Lemma 4.5]. Since Ω is convex, and
since ∂H

∂p [∇u] ∈ L∞(Ω;Rd), the H2-regularity of solutions of Poisson’s equation on

bounded convex domains, see [18, Theorem 3.2.1.2], implies that zk ∈ H2(Ω) with
∥zk∥H2(Ω) ≲ ∥m −mk,+∥Ω. Now let zk ∈ Vk be any quasi-interpolant of zk that
satisfies the following approximation and stability bounds

(8.6) ∥zk − zk∥H1(Ω) ≲ hk|zk|H2(Ω), ∥zk∥H1(Ω) ≲ ∥zk∥H1(Ω).

For instance, one can use zk = Ikzk where Ik denotes the Scott–Zhang quasi-
interpolation operator [32, 7], see e.g. (4.8) and (4.9) above.

Then, using ϕ = m−mk,+ in (8.5), and using the definition of mk,+ from (6.1),
we eventually find that

(8.7) ∥m−mk,+∥2Ω =

∫
Ω

ν∇zk · ∇(m−mk,+) + (m−mk,+)
∂H

∂p
[∇u] · ∇zkdx

=

∫
Ω

ν∇(zk − zk) · ∇(m−mk,+) + (m−mk,+)
∂H

∂p
[∇u] · ∇(zk − zk)dx

+

∫
Ω

Dk∇mk,+ · ∇zkdx.

Combining (8.7) with (8.6), we obtain

(8.8) ∥m−mk,+∥2Ω ≲
(
hk∥m−mk,+∥H1(Ω) + ∥Dk∇mk,+∥Ω

)
∥zk∥H2(Ω)

≲ hk∥m∥H1(Ω)∥m−mk,+∥Ω,

where in the last line we used the bound on Dk from (H1), the stability bound
∥mk,+∥H1(Ω) ≲ ∥m∥H1(Ω), and the elliptic regularity of zk above. We then sim-
plify (8.8) to obtain (8.4). □
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We now prove Theorem 4.6, with the main idea being to compare the discrete
density approximation mk to the specific approximation mk,+ defined in (6.1)
above. Combining the L2-norm bounds above with the results in the previous
sections, we are then able to obtain a bound on the relevant composite norm for
the error.

Proof of Theorem 4.6. Similar to the proof of Theorem 4.1, we consider k0 suffi-
ciently large so that uk ∈ Bk(u,R/2) for all k ≥ k0, where R is the constant given
in Lemma 5.2. For each k ≥ k0, let uk ∈ Bk(u,R/2) be arbitrary, noting that
Bk(u,R/2) is nonempty. In the following, let Ek ≥ 0, k ∈ N, be the quantity
defined by

(8.9) Ek := ∥m−mk,+∥Ω + ∥u− uk∥H1(Ω) + ∥Dk∇u∥Ω + ∥Dk∇m∥Ω.

We stress that it is the L2-norm of m − mk,+ appearing in the definition of Ek
above. We start by noting that Lemmas 5.1 and 8.1 imply that

(8.10) ∥R1
k(mk,+, uk)∥V ∗

k
+ ∥R2

k(mk,+, uk)∥V ∗
k
≲ Ek.

Next, Lemmas 5.3 and 8.1 combined with (8.10) imply that

(8.11) ∥mk −mk,+∥H1(Ω) ≲ ∥R2
k(mk,+, uk)∥V ∗

k

≲ ∥m−mk,+∥Ω + ∥u− uk∥H1(Ω) ≤ Ek + ∥uk − uk∥H1(Ω),

where we have applied the triangle inequality in passing to the last inequality above.
Applying Lemma 5.2 to the last term on the right-hand side of (8.11) and combining
with (8.10), we thus obtain

(8.12) ∥mk −mk,+∥H1(Ω) + ∥uk − uk∥H1(Ω) ≲ Ek + ∥mk −mk,+∥Ω.

Then, Lemma 6.2 and (8.10) imply that

(8.13) ∥mk −mk,+∥2Ω
≲ ∥R1

k(mk,+, uk)∥V ∗
k
∥mk −mk,+∥H1(Ω) + ∥R2

k(mk,+, uk)∥V ∗
k
∥uk − uk∥H1(Ω)

≤ E2
k + Ek∥mk −mk,+∥Ω.

Applying Young’s inequality with a parameter, we deduce that

(8.14) ∥mk −mk,+∥Ω ≲ Ek.

Therefore, using (8.12), (8.14) and the triangle inequality, we get

(8.15) ∥m−mk∥Ω+∥u−uk∥H1(Ω) ≤ Ek+∥mk−mk,+∥Ω+∥uk−uk∥H1(Ω) ≲ Ek.

Finally, we apply Lemma 8.2 and (H1) to conclude that
(8.16)
∥m−mk∥Ω + ∥u− uk∥H1(Ω) ≲ Ek ≲ ∥u− uk∥H1(Ω) + hk(∥m∥H1(Ω) + ∥u∥H1(Ω)).

Since uk was arbitrary in Bk(u,R/2), we may then consider the infimum in (8.16)
and, recalling here (7.8), we conclude (4.14). □
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9. Numerical Experiments

In this section, we present numerical results that verify the optimal asymptotic
rates of convergence that are implied by Theorems 4.1 and 4.6, respectively, for some
concrete examples of the system (1.1) with explicit weak solutions (u,m). Recall
that the rate of convergence of the approximations for a given norm is called optimal
if it equals the rate of convergence of a sequence of best approximations from the
same sequence of approximation spaces and in the same norm. In particular, for
the first experiment where u is not H2-regular and m is smooth, we showcase
Corollary 4.4 of Theorem 4.1 on the rate of convergence of the total H1-norm
error ∥m − mk∥H1(Ω) + ∥u − uk∥H1(Ω). In the second experiment, we illustrate

the conclusion of Theorem 4.6 on the convergence rate of the composite L2-H1-
norm error ∥m −mk∥Ω + ∥u − uk∥H1(Ω). Both our experiments involve examples
where at least one of the solution components u or m has limited fractional Sobolev
regularity.

9.1. Set-up. For each experiment, we consider the system (1.1) where Ω = (0, 1)2 ⊂
R2 is the unit square, the diffusion ν = 1, and the Hamiltonian H : Ω×R2 → R is
defined by

(9.1) H(x, p) = sup
α∈B1(0)

(α · p+
√
1− |α|2)− 1 =

√
|p|2 + 1− 1 ∀(x, p) ∈ Ω×R2.

It is clear that LH = 1. In each experiment we specify the choices of the operator
F and the source term G. For each experiment we apply the FEM (3.3) along a
dyadic, nested sequence {Tk}9k=1 of shape-regular uniform meshes on Ω consisting
of right-angled simplicial elements. We note that the sequence {Tk}9k=1 satisfies the
XZ condition (3.10). The stabilization is given by the diffusion tensor (3.12) where
the weights are taken to be ωk,E = LHdiam(E) for all E ∈ Ek, k ∈ {1, · · · , 9}.
Therefore, hypotheses (H1) and (H2) are satisfied according to Lemma 3.4, which
ensures that the FEM (3.3) is monotone in these experiments. The computations
for each experiment were performed in Firedrake [31].

9.2. Experiment 1. (Test with nonsmooth value function)
The purpose of this experiment is to verify numerically the asymptotic rate of
convergence of the total H1-norm error ∥m−mk∥H1(Ω) + ∥u− uk∥H1(Ω) predicted
by Theorem 4.1, via Corollary 4.4, for a problem where at least one of u or m
is not H2-regular. To this end, we consider the problem (2.15) with model data
that yields a unique weak solution (u,m), where the value function u has limited
fractional order Sobolev regularity.

Let the operator F : L2(Ω) → H−1(Ω) take the form

(9.2) ⟨F [m], ψ⟩H−1×H1
0
:=

∫
Ω

mψdx+ ⟨F1, ψ⟩H−1×H1
0

∀ψ ∈ H1
0 (Ω),

where F1 ∈ H−1(Ω) is given by
(9.3)

⟨F1, ψ⟩ :=
∫
Ω

(√
|ṽ1|2 + 1− 1− xy ln(2− x) ln(2− y)

)
ψ+ṽ1·∇ψdx ∀ψ ∈ H1

0 (Ω),

with the vector field ṽ1 : Ω → R2 defined by

(9.4) ṽ1(x, y) :=
12.8

(xy(1− x)(1− y))0.2

(
(1− 2x)y(1− y)
x(1− x)(1− 2y)

)
,
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Figure 1. Experiment 1 – convergence plots for approximations
of the value function and density function. The asymptotic rate
of convergence for the total error in the H1-norm is close to order
3/10. This is due to the observed asymptotic rate of convergence
in the H1-norm for the approximations of the value function being
close to the optimal value of 3/10. The rate of convergence in
the H1-norm of the density function approximations is of optimal
order 1.

for (x, y) ∈ Ω. We take the source term G ∈ H−1(Ω) of the form

(9.5) ⟨G,ϕ⟩H−1×H1
0
:=

∫
Ω

ṽ2 · ∇ϕdx ∀ϕ ∈ H1
0 (Ω),

where ṽ2 : Ω → R2 is defined by
(9.6)

ṽ2(x, y) :=

(
ln(2− x)− x

2−x

)
y ln(2− y)

x ln(2− x)
(
ln(2− y)− y

2−y

)+
xy ln(2− x) ln(2− y)√

|ṽ1(x, y)|2 + 1
ṽ1(x, y),

for (x, y) ∈ Ω. It is clear that F defined by (9.2) via (9.3) and (9.4) is strongly
monotone in the sense of condition (2.2). By following the proof of [26, Lemma
3.3.1], one can show that G defined by (9.5) via (9.6) is nonnegative in the sense
of distributions in H−1(Ω), and that the unique solution to the weak formulation
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Figure 2. Experiment 2 – convergence plots for approximations
of the value function and density function. The asymptotic rate
of convergence in the total error ∥m − mk∥Ω + ∥u − uk∥H1(Ω) is

of optimal order 1. The convergence rate in the H1-norm for the
approximations of the density function is of order 1/2, which is
also optimal given the lower regularity of the density function.

(2.15) is given by

(9.7) u(x, y) := 16(xy(1− x)(1− y))4/5, m(x, y) := xy ln(2− x) ln(2− y),

for all (x, y) ∈ Ω. It can be shown that the value function u above lies in the
fractional order Sobolev space H13/10−ϵ(Ω), for all 0 < ϵ ≤ 13/10 while the density
function m above is clearly H2-regular. Theorem 4.1 and Corollary 4.4 imply a
rate of convergence for the total H1-norm error of order 3/10. Figure 1 confirms
this theoretical prediction, where we plot the total error in the H1-norm, as well
as its constituent parts, against the mesh size h. We observe that the convergence
rate for the total error is of order 3/10, as predicted. In addition, the convergence
rates in the errors ∥u − uk∥H1(Ω) and ∥m −mk∥H1(Ω), being of order 3/10 and 1
respectively, are also optimal in view of the corresponding regularity of u and m.

9.3. Experiment 2. (Test with nonsmooth density function)
The aim of this experiment is to illustrate the conclusion of Theorem 4.6 on the
the convergence rate of the total L2-H1-norm error ∥m −mk∥Ω + ∥u − uk∥H1(Ω).
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As such, we consider an example where u is smooth, but m has limited fractional
order Sobolev regularity. Let the operator F : L2(Ω) → H−1(Ω) take the form

(9.8) ⟨F [m], ψ⟩H−1×H1
0
:=

∫
Ω

mψdx+ ⟨F2, ψ⟩H−1×H1
0

∀ψ ∈ H1
0 (Ω),

where F2 ∈ H−1(Ω) is given by

(9.9) ⟨F2, ψ⟩ :=
∫
Ω

(√
|r̃1|2 + 1− 1− xy ln(x) ln(y)

)
ψ+ r̃1 ·∇ψdx ∀ψ ∈ H1

0 (Ω),

with the vector field r̃1 : Ω → R2 defined by

(9.10) r̃1(x, y) :=

(
16(1− 2x)y(1− y)
16x(1− x)(1− 2y)

)
,

for (x, y) ∈ Ω. We take the source term G ∈ H−1(Ω) of the form

(9.11) ⟨G,ϕ⟩H−1×H1
0
:=

∫
Ω

r̃2 · ∇ϕdx ∀ϕ ∈ H1
0 (Ω),

where r̃2 : Ω → R2 is defined by

(9.12) r̃2(x, y) :=

(
(1 + ln(x)) y ln(y)
x ln(x) (1 + ln(y))

)
+

xy ln(x) ln(y)√
|r̃1(x, y)|2 + 1

r̃1(x, y),

for (x, y) ∈ Ω. It is clear that F defined by (9.8) via (9.9) and (9.10) is strongly
monotone in the sense of condition (2.2). By following the proof of [26, Lemma
3.3.1], one can show that G defined by (9.11) via (9.12) is nonnegative in the sense
of distributions in H−1(Ω), and that the unique solution to the weak formulation
(2.15) is given by

(9.13) u(x, y) := 16xy(1− x)(1− y), m(x, y) := xy ln(x) ln(y),

for all (x, y) ∈ Ω. It is clear that the value function u above is H2-regular, while
the density function m above can be shown to lie in the fractional order Sobolev
space H3/2−ϵ(Ω), for all 0 < ϵ ≤ 3/2. Recall that the domain Ω in this experiment
is convex. We therefore deduce from Theorem 4.6 and Corollary 4.7, that the total
L2-H1-norm error ∥m−mk∥Ω+∥u−uk∥H1(Ω) should converge with a rate of order
1, despite the lower regularity ofm relative to u. In Figure 2, we see that the results
of the experiment are in agreement with the theoretical predictions. In particular,
the composite L2-H1 error converges with a rate of order 1, which is optimal due
to the H2-regularity of u. It is also seen that the density function approximations
converge to m in the H1-norm at the optimal asymptotic rate of order 1/2. The
results of this experiment thus illustrate how in particular the H1-norm error for
the value function approximations can converge with optimal rates, independently
of the lower regularity of the density function m of the weak solution.
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[23] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad.
Sci. Paris, 343 (2006), no. 9, 619–625. https://doi.org/10.1016/j.crma.2006.09.019.
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