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A B S T R A C T

Hybrid microgrids in spite of offering a promising solution to meet rising energy demands, have not received 

wider acceptance by power utilities because of the complexity of their protection schemes. Real-world micro-

grids are highly susceptible to disruptions, during extreme weather conditions resulting in frequent line outages 

and sensor failures. Further complications arise from the variations in operational dynamics caused by weather 

dependent intermittent behavior of solar and wind distributed energy resources (DERs). Failing to address these 

issues, hinders accurate fault detection/classification under extreme weather conditions, thereby impacting the 

microgrid resilience. In this regard, a protection framework using zero injection cluster (ZIC) and graph learning 

with resilience against contingency scenarios and weather intermittency is proposed for the hybrid microgrid. The 

present work incorporates the effect of ZIC to formulate the critical sensor identification problem with the aim of 

minimizing sensor installation costs while enhancing measurement redundancy. The same imparts scalability to 

the protection scheme with regard to the architecture and size of the microgrid. To accommodate intermittency 

and potential correlations between solar and wind DERs, a joint probabilistic approach, encompassing the uncer-

tainty present in both sources is considered. This work employs a spatiotemporal graph convolutional network 

classifier to detect and classify faults by integrating the network topology information into the protection frame-

work. Validation of the proposed scheme for varying fault and operating scenarios reveals its ability to attain 

high degree of accuracy in fault detection and classification with increased resilience and immunity.

1. Introduction

Incorporating the microgrid concept into the current distribu-

tion grid aims to enhance the way renewable distributed energy 

resources (DERs) are integrated to deliver clean and sustainable elec-

trical energy directly to consumers. Over time, advancements in

technology have facilitated the widespread deployment of solar and 

wind DERs into the microgrids. This transition has contributed signifi-

cantly to fostering sustainable economic growth and development [1,2]. 

Microgrids are commonly categorized as AC, DC, or hybrid systems [3]. 

Considerable attention has been devoted to the AC microgrids due to
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their straightforward design and the simplicity with which DERs can 

be integrated into the pre-existing AC utility grid with minimal modifi-

cations. Despite the long-standing presence of AC microgrids, they still 

face limitations concerning reactive power circulation and the require-

ment for DER synchronization. Despite the existence of AC microgrid 

from a very long time, it has certain limitations of the reactive power 

circulation and the need for synchronization of DERs. Conversely, DC 

microgrids have gained prominence in the distribution network owing 

to their enhanced efficiency and seamless integration with DC DERs. 

Nonetheless, the necessity for substantial modifications to the current 

distribution system, coupled with increased overall costs, often renders 

the deployment of a pure DC microgrid impractical. Hybrid microgrids, 

which feature a combination of AC and DC microgrid architecture, are 

gaining traction due to their versatility in directly integrating both AC 

and DC DERs, loads, and energy storage devices. This eliminates the 

need for multi-stage AC-DC and DC-AC conversions, leading to enhanced 

operational efficiencies and cost savings [4,5].

While hybrid microgrids present several benefits compared to AC 

and DC microgrids, their broader adoption and practical feasibility 

are significantly hindered by technical challenges associated with en-

suring protection against line faults [6]. Interconnecting AC and DC 

sub-grids that have differing characteristics presents practical difficulties 

for precise fault detection and classification. The direct applicability of 

protection algorithms designed for AC microgrids to hybrid microgrids 

encounters several obstacles. These include the lack of zero-crossing, 

the unipolar characteristics of waveforms, and the need for a robust 

grounding mechanism. Likewise, the alternating characteristics of the 

signals derived from sensors in the AC microgrids render the protection 

algorithms for the DC microgrid inapplicable. Moreover, the variation 

in short-circuit current levels in different microgrid operating modes 

(grid-connected and islanded) contributes to the intricacy of the protec-

tion scheme [7]. Changes in the network topology caused by unwanted 

DER connections/disconnections, line outages and load changes further 

complicate the protection task. Additionally, the stochastic behavior of 

solar and wind DERs which depends on weather conditions, significantly 

influences the performance of the protection algorithm [8].

The literature currently reports relatively few hybrid microgrid pro-

tection schemes [4,7,9,10]. The review studies conducted in references 

[4,7] delve into challenges and potential future directions in the area 

of hybrid microgrid protection. The work reported in [9], developed 

a protection scheme for hybrid microgrids featuring a low-bandwidth 

communication infrastructure. It aimed to minimize communication de-

lays and enhance immunity against converter faults. Also, the research 

outlined in [10], has formulated a protection scheme for identifying 

high impedance faults within hybrid microgrids. It offers resilience 

against solar irradiance intermittency and remains robust during N-1 

line contingencies.

Microgrid protection schemes in the literature predominantly assume 

a fixed network topology. However, real-world microgrids are highly 

susceptible to disruptions, during extreme weather conditions, such as 

heatwaves or freezing temperatures. These events often lead to line 

outages and sensor failures, resulting in network topology changes. In 

power networks, scenarios resulting from component failures are com-

monly referred to as contingencies in industry standards. The literature 

widely discusses two types of contingencies i.e. line outage contingency 

and sensor loss contingency [11,12]. The N-1 contingency criterion is 

widely studied in power systems because it addresses the most com-

mon and frequently occurring failure scenarios. In accordance with the 

NERC (North American Reliability Corporation) standards, N-1 contin-

gency is defined as the loss of any line (excluding radial lines), a source 

of generation or critical sensor [13]. To enhance microgrid resilience 

against extreme climate hazards, it is crucial to account for all practical 

contingencies when designing the protection algorithm. The only work 

reported in [10] focuses on enhancing the immunity of microgrid pro-

tection schemes and ensuring their adaptability to changes in network 

topology caused by N-1 line contingencies. One of the studies referenced

in [14] provides a comprehensive review of state-of-the-art strategies 

employing microgrids to enhance the resilience of power networks. To 

the best of the author’s knowledge, none of the studies in the literature 

on hybrid microgrid protection have aimed to provide immunity against 

contingency scenarios arising from either a single line outage or a single 

sensor loss. Apart from contingency events, the performance of the pro-

tection scheme is also hindered by the vulnerability of solar and wind 

DERs to weather conditions. As of now, the only work reported in [10] 

has incorporated the solar irradiance intermittency into the framework 

of hybrid microgrid protection. There is, however, no work that incorpo-

rates both solar irradiance and wind speed intermittency into the hybrid 

microgrid protection algorithms.

Upon reviewing the existing body of research on hybrid microgrid 

protection, it becomes evident that none of the articles have addressed 

all the challenges in a comprehensive manner:

1. Applicability to microgrids of varying topologies and sizes.

2. Providing high degree of robustness against both line outages as

well as sensor losses.

3. Incorporating the stochastic characteristics of solar as well as wind

DERs with increased immunity against weather intermittency.

Considering the aforementioned issues, the aim of this paper is to de-

velop a protection scheme for hybrid microgrid with improved resilience 

against contingency scenarios (i.e. single line outage or single sensor 

loss) and weather intermittency (i.e. solar irradiance and wind speed 

intermittency). Hence, a holistic framework leveraging a combined ap-

proach of joint probabilistic modeling and graph neural networks is 

developed for hybrid microgrid protection to enhance resilience against 

contingency scenarios and weather fluctuations.

To ensure high reliability and accuracy in protection, continuous 

monitoring of voltage and current signals is essential. This is achieved 

through sensors installed at relaying buses within the system. However, 

developing a protection strategy that incorporates real-time data from 

multiple sensors distributed across a large geographical area results in 

a significant increase in computational costs. Hence, it is crucial to 

identify a set of sensors (referred to as critical sensors) that guarantees 

system observability while minimizing the deployment costs associated 

with sensor installation. The set of such critical sensors contains the 

entire information regarding the network dynamics required for mon-

itoring. In addition to the identification of the critical sensors, to avoid 

system failures during extreme weather conditions, it is necessary to 

ensure that the sensors have sufficient measurement redundancy. In 

this context, the critical sensor identification (CSI) task is framed as a 

constrained optimization problem that balances between two compet-

ing objectives: minimizing the costs associated with sensor deployment 

and maximizing measurement redundancy using the set of sensors ob-

tained. While addressing the CSI problem, the impact of zero-injection 

buses (ZIBs), which is positively correlated with the number of reducible 

sensors, has been widely discussed in the literature [10,12,15]. The 

inclusion of zero-injection clusters (ZICs), defined as a set comprising 

a ZIB and all its incident buses helps to further optimize and reduce 

the number of required sensors. Some of the research works on op-

timal placement of phasor measurement units have used the concept 

of ZIC [16,17]. The present work also incorporates the effect of ZIC 

into the protection framework, aiming to minimize sensor installation 

costs while enhancing measurement redundancy for improved resilience 

against contingency events. The scalability with regard to accommo-

dating different operating and contingency scenarios for a wider class 

of microgrid networks has been achieved by formulating the problem 

of selecting the critical sensor information using ZIC. The inclusion of 

all possible N-1 contingencies within the framework of ZIC allows for 

identifying the critical sensor locations, whose information would suf-

fice for observability during both normal operations and contingency 

scenarios.
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To account for the inherent intermittency of solar and wind power 

generation, the proposed protection scheme adopts a joint probabilis-

tic approach that considers the uncertainty of solar irradiance and 

wind speed, and potential correlations that can be attributed to the 

microgrid’s smaller geographical span. Probabilistic modeling has been 

implemented into the protection framework for AC and DC microgrids, 

but not yet for hybrid microgrids [18,19]. Utilizing the statistical co-

variability between wind speed and solar irradiance, this article aims 

to develop a joint probability distribution model to execute protec-

tion tasks in the hybrid microgrid. By using the model and its joint 

probability, a range of different weather scenarios are incorporated to 

simulate various fault cases, considering all potential N-1 contingen-

cies. Following this, the current signals collected from the sensors are 

fed into a graph neural network (GNN), a type of deep neural net-

work classifier using graph-structured data to perform accurate fault 

detection and classification [20]. The literature reports on a variety of 

data-driven strategies employing deep learning architectures for fault 

diagnosis in microgrids [10,21]. However, the reported works have not 

embedded the microgrid system topology information during the train-

ing of the machine learning based protection algorithms. Unlike the 

traditional deep learning methods, GNN leverages the topological in-

formation inherent in microgrid networks during training, resulting in 

efficient feature extraction and strong generalization ability [22]. Some 

significant studies in the literature have used graph convolutional net-

works (GCN) to incorporate system topology information and post-fault 

data to carry out fault diagnosis in power transformers [23], transmis-

sion lines [24], and distribution systems [25]. In [26], a GCN-based 

approach has been adopted for detecting and classifying faults in low-

voltage DC microgrids. Nevertheless, these methods still exhibit certain 

limitations. For instance, certain methods necessitate precise line param-

eter data, a requirement challenging to fulfill in real-world microgrids. 

Furthermore, GCN solely relies on spatial structural information, result-

ing in the extraction of less effective post-fault features [27]. In this 

context, the present study introduces a novel protection scheme for hy-

brid microgrids utilising a spatiotemporal graph convolutional network 

(STGCN) approach. Without requiring exact line parameters, the pro-

posed graph-based approach incorporates microgrid network topology 

into the learning process of the protection algorithm. This results in cap-

turing deeper structural information from the data, rendering it more 

resilient to faults, contingencies, and weather scenarios [28].

The major contributions/highlights of the proposed work can be 

summarized as follows:

1. Development of a scalable protection framework for hybrid mi-

crogrids using ZIC (for CSI task) and graph learning (for fault 

detection/classification task).

2. Formulation of the CSI problem which includes maintaining a

trade-off between two competing objectives of minimizing sen-

sor installation cost and maximizing measurement redundancy 

ensuring system observability to facilitate protection tasks.

3. Enhancing the resilience of hybrid microgrid protection against

both line outages and sensor loss contingency scenarios resulting 

from extreme weather events.

4. Statistical modeling of solar and wind intermittency using time-

series data, and the inclusion of the same in the hybrid microgrid 

protection scheme based on a probabilistic approach.

The remainder of the paper is structured as follows: Section 2 briefly 

describes the hybrid microgrid system under study. Section 3 presents 

the formulation of CSI problem using ZIC. Section 4 introduces proba-

bilistic approach to model the solar irradiance and wind speed weather 

intermittency. The overview of GNN architecture and the framework 

of proposed STGCN-based protection scheme is discussed in Section 5. 

Section 6 validates the performance of the proposed protection scheme, 

while Section 7 presents the conclusion.

2. Hybrid microgrid system

The single-line diagram of the AC/DC hybrid microgrid system used 

in [10] is shown in Fig. 1 . It includes two AC microgrids and one DC mi-

crogrid. The model incorporates DERs such as solar generator (725 kW), 

wind generator (10.5 kW) and diesel generator (DG) (3 MW) to supply 

electricity to the system’s varied demands. The network is also equipped 

with two battery energy storage system i.e. BESS1 (three battery units of 

1.5 Ah each) and BESS2 (single battery unit of 800 Ah). The model under 

study is linked to the main grid via a point of common coupling (PCC) 

at 69 kV and 60 Hz. In Fig. 1, the various components of the system are 

labelled as distribution lines (Z1, Z2,…, Z14), buses (B-1, B-2,…, B-17), 
converters (C-1, C-2,…, C-6), loads (L2, L3,…, DC Load), and transform-

ers (T-1, T-2,…, T-8). The detailed specifications of the components are 

available in [10].

3. Formulation of CSI problem using ZIC

The extensive geographical span of the hybrid microgrid system 

makes the installation of sensors at every bus both impractical and cost-

prohibitive. To address this challenge, it is essential to identify a set of 

sensors that ensures system observability while minimizing deployment 

costs attributed to sensor installation. Maintaining observability is criti-

cal for effective monitoring of the system dynamics, enabling the timely 

detection and accurate classification of fault scenarios. As outlined ear-

lier, for a given network topology, the voltage and current information 

from certain specific buses (referred to as critical buses) is sufficient 

to monitor the entire network and ensure its observability. The data 

acquired by the critical sensors installed at the critical buses contain 

the intricacies of the entire network dynamics required for monitor-

ing. The CSI task is formulated as an optimization problem focused on 

minimizing the total cost of sensor installation and maximizing measure-

ment redundancy, while ensuring network observability. Furthermore, 

the formulation incorporates the effect of ZIC, which can significantly 

reduce the required number of sensors.

The objective function for the CSI task under normal operating con-

ditions, considering the effect of ZIC, can be framed using integer linear 

programming (ILP) as follows [29],

Minimize
𝑥 𝑖

𝐵
∑

𝑖=1
𝑐 𝑖(𝑛𝑜𝑚) 

𝑥 𝑖 

−
𝐵
∑ 

𝑖=1
𝑅 𝑖 

(1)

with 𝑐 𝑖(𝑛𝑜𝑚) =
𝑐 𝑖

∑𝐵
𝑖=1 𝑐 𝑖

Subject to: 𝑂 𝑖 

=
𝐵
∑ 

𝑗=1
𝑝 𝑖,𝑗𝑥 𝑗 −

𝐵 𝑧
∑ 

𝑧=1
𝑝 𝑖,𝑧 

𝑦 𝑧 −
𝐵 𝑧
∑ 

𝛾=1
𝑝 𝑖,𝛾 

𝑥 𝛾 ⩾ 𝜓 ∀𝑖 ∈ 𝐵 (2)

𝜂
∑ 

𝑖=1
𝑝 𝑖,𝑧 

𝑦 𝑧 ⩾ 𝜂 − 𝜂 𝑧 − 1 ∀𝑧 ∈ 𝐵 𝑧 (3)

where, 𝐵 denotes number of buses in the microgrid. In (1), 𝑐 𝑖(𝑛𝑜𝑚) 

is the 

normalized cost and 𝑐 𝑖 

is the cost of sensor installation at Bus-i , 𝑥 𝑖 

is the

binary vector representing whether or not a sensor is installed at Bus-i 

and 𝑅 𝑖 

denotes the redundancy of Bus-i

The two components ( 

∑ 

𝑐 𝑖(𝑛𝑜𝑚) 

𝑥 𝑖 and 

∑ 

𝑅 𝑖 

) in the objective function 

(1) refers to two different objectives i.e. 
∑ 

𝑐 𝑖(𝑛𝑜𝑚) 

𝑥 𝑖 

represents cost and
∑ 

𝑅 𝑖 

represents redundancy. In multi-objective optimization, multiple 

objectives with different units are combined by normalizing them to a 

common scale or by applying a suitable weighting factor. For the cost 

component in the present case, normalization has been carried out by

dividing the total sensor installation cost
∑𝐵
𝑖=1 𝑐 𝑖 

𝑥 𝑖 

(for a given config-

uration 𝑥 𝑖 

) by the maximum cost (when the sensors are installed at all 

the buses with 𝑥 𝑖 

= 𝑜𝑛𝑒𝑠(1, 𝐵)) i.e. 𝑐 1 

+ 𝑐 2 

+ 𝑐 3 

+ ⋯ + 𝑐 𝐵 

. Since 𝑥 𝑖 

is a

binary vector, 𝑥 𝑖 ∈ {0, 1}, the formulation of the objective function and
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Fig. 1. Single line diagram of a hybrid microgrid system [10].

its solution does not require the specific values (𝑐 1 

, 𝑐 2 

, 𝑐 3 

, ⋯ , 𝑐 𝐵 

) of the 

sensor installation cost in dollars, euros or any other unit. Their normal-

ized (unitless) values in the range of 0 to 1 can be used to minimize the 

objective function. In other words, the term 

∑ 

𝑐 𝑖(𝑛𝑜𝑚) 

𝑥 𝑖 

provides a rel-

ative assessment regarding installation cost for different configurations 

of sensor installation 𝑥 𝑖 

without quantifying the actual cost.

In (2), 𝑂 𝑖 denotes observability of Bus-i under normal operating 

conditions, 𝑝 𝑖,𝑗 

is the entry of the connectivity matrix given as,

𝑝 𝑖,𝑗 

= 

{

1 𝑖𝑓 𝑖 = 𝑗 𝑜𝑟 𝑖𝑓 𝐵𝑢𝑠 − 𝑖 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝐵𝑢𝑠 − 𝑗 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4)

The second term in (2) is included to account for the effect of ZIBs 

where, 𝐵 𝑧 

denotes the number of ZIBs, 𝑝 𝑖,𝑧 

is the binary variable equals 

1 if 𝑖 and 𝑧 are connected; it is 0 otherwise and 𝑦 𝑧 

denotes auxiliary 

variable to be added to each bus that belongs to ZIC. Similarly, the third 

term in (2) represents the effect of ZIB neighboring to ZIB-i where, 𝑝 𝑖,𝛾 

equals 1 if 𝑖 and 𝛾 are connected and both are ZIBs; it is 0 if 𝑖 = 𝛾 or 

otherwise and 𝑥 𝛾 

denotes the ZIB neighboring to ZIB-i. Also 𝜓 in (2) is 

the identity vector equals 0 if Bus-i is ZIB or Bus-i is connected to ZIB; 

1 otherwise. Eq. (3) represents the constraint associated with the auxil-

iary variable where, 𝜂 denotes the total number of buses within the ZIC, 

while 𝜂 𝑧 

represents the number of neighboring ZIBs in the ZIC.

In the present work, the effect of a group of ZIBs {5, 6} and a sin-

gle ZIB {7} is considered to solve CSI problem. Under normal operating 

conditions, installing sensors at only five buses (2, 6, 9, 11, 16) renders the 

complete system observable as depicted in Fig. 2(a).

However, as previously mentioned, the microgrid system may expe-

rience network topology changes due to line outage contingencies or 

sensor loss contingencies during extreme weather events. This results in 

loss of sensor-based measurements affecting the overall system monitor-

ing. In this regard, constraints ensuring post-contingency observability 

are incorporated into the present CSI problem and solved for N-1 contin-

gency scenario (single sensor loss or single line outage). The objective 

function for CSI under contingency scenarios with ZIC remains identi-

cal to that in (1). However, the inequality constraint (2) needs to be 

re-framed to incorporate contingency cases as,

𝑂 


𝑖 =

𝐵
∑ 

𝑗=1
𝑝 𝑖,𝑗 

𝑥 𝑗 −
𝐵 𝑧
∑ 

𝛾=1
𝑝 𝑖,𝛾𝑥 𝛾 

−
𝐵 𝑧
∑ 

𝑧=1
𝑝 𝑖,𝑧 

𝑦 𝑧 ⩾ 2𝜓 ∀𝑖 ∈ 𝐵 (5)

In Eq. (5), 𝑂 

 

𝑖 denotes observability of Bus-i under contingency

scenarios.

Considering the possibility of single line outage contingency, sen-

sors must be installed at bus locations 2, 4, 6, 9, 10, 11, 14, 16 and 17 

whereas for single sensor loss it needs to be installed at bus locations
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Fig. 2. Graphical Visualization of optimal sensor locations under (a) normal operating condition; (b) single line outage; (c) single sensor loss.

2, 4, 10, 11, 13, 14, 16 and 17 as depicted in Fig. 2(b) and (c) respectively 

to ensure that the system is fully observable.

The graphical visualization of optimal sensor locations derived for 

normal operating conditions, single line outage contingency and single 

sensor loss contingency is shown in Fig. 2. The sensors ensuring system 

observability are highlighted with yellow circles, ZIBs are marked with 

green circles, and a dark yellow circle represents a ZIB with an installed 

sensor. The external blue rings denote buses that cannot be directly ob-

served by sensors but are observable through ZIBs. Lines with sensors 

installed at both ends are highlighted in green, while those with sensors 

at only one end are marked in blue. Additionally, lines that are not di-

rectly measured by sensors but are observable through ZIBs are shown 

in red. The proposed CSI approach achieves a substantial reduction in 

sensor installation costs, lowering them by approximately 71 % during 

normal operations and 41 % under N-1 contingency scenarios. The lines 

with sensors installed at both ends can be reached by two sensors (line 

redundancy 2). Hence, with the set of sensors obtained the proposed 

approach effectively balances the competing objectives of minimizing 

sensor installation costs and maximizing measurement redundancy.

4. Modeling of weather intermittency using probabilistic 

approach

Solar and wind DERs display sporadic patterns attributed to changes 

in irradiance levels and wind speeds. This weather-related unpre-

dictability notably impacts the voltage–current characteristics within 

the microgrid system, which often leads to relay malfunctions. The 

current work aims to develop a protection scheme for hybrid micro-

grids, while considering the stochastic behavior of solar and wind DERs 

influenced by weather conditions. In this context, data sourced from 

National Renewable Energy Laboratory (NREL), specifically the National 

Solar Radiation Database (NSRDB), have been employed in the proposed 

microgrid model [30]. To accommodate renewable energy intermit-

tency and potential correlations, the proposed protection scheme adopts 

a joint probabilistic approach, encompassing the uncertainty present 

in both variables. This statistical modeling will provide protection 

measures for the microgrid, ensuring reliability even in unpredictable

weather conditions. It will analyze historical weather patterns and inte-

grate them into the protection system to anticipate potential risks and 

take proactive measures.

4.1. Joint probabilistic approach

Time-series historical data (annually recorded at hourly resolution), 

has been used to estimate the probability distribution functions for solar 

irradiance and wind speed variations. Initially, the fluctuation in irra-

diance levels is modeled using a Gaussian distribution function, while 

the uncertainty in wind speed is modeled using a Weibull distribution 

function. Furthermore, a joint probabilistic approach that considers the 

uncertainty in both variables is implemented.

4.1.1. Solar irradiance uncertainty modeling

The annual global horizontal irradiance (GHI) for the California re-

gion in the United States (US), recorded at hourly resolution for the 

year 2017, has been utilized [30]. These data were employed to model 

the intermittency in solar irradiance levels using a suitable probability 

distribution function (PDF), namely the Gaussian distribution function, 

because of its capability to mimic the behavior of solar irradiance 

fluctuations accurately over time. The randomness in the solar irradi-

ance (100–1000 W/m 

2 ) is modeled in Fig. 3(a) by utilizing the normal 

Gaussian distribution function as [31],

𝑓 (𝑔) = 

1
√ 

2𝜋𝜎2 

𝑒𝑥𝑝 

[

−0.5(𝑔 − 𝜇) 

2

𝜎 

2

] 

(6)

where 𝑔 denotes global horizontal irradiance (W/m 

2 ), 𝜇 represents mean 

of Gaussian distribution, and 𝜎 denotes standard deviation of Gaussian 

distribution.

4.1.2. Wind speed uncertainty modeling

Modeling wind speed uncertainty is facilitated by the Weibull distri-

bution function due to its ability to encompass a diverse array of wind 

speed distributions across different geographic locations and under vary-

ing atmospheric conditions. Firstly, the annual wind speed data (ranging 

from 2 to 20 m/s) for the California region in the US is captured at an
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Fig. 3. Uncertainty model of (a) Solar irradiance; (b) Wind speed.

hourly precision [30]. The uncertainty in wind speed is represented in 

Fig. 3(b) through the Weibull distribution function as [31],

𝑓 (𝑤) = 

𝛽
𝛼

(𝑤
𝛼

) 𝛽−1 

𝑒𝑥𝑝 

[ 

− 

(𝑤
𝛼

) 𝛽 

] 

(7)

where 𝑤 denotes the wind speed (m/s), 𝛼 represents the scale parameter 

of the Weibull distribution, and 𝛽 is the shape parameter of the Weibull 

distribution. The scale parameter determines the location of the distri-

bution along the wind speed axis, while the shape parameter impacts 

the overall shape of the distribution curve.

4.1.3. Joint probability distribution model

Understanding the correlation or statistical relationship between so-

lar irradiance and wind speed is of utmost importance in microgrids, 

particularly when evaluating the combined availability of solar and wind 

DERs. In this regard, historical data pertaining to specific locations has 

been analyzed, which indicate a complementary relationship between 

the two renewable energy sources. The overall impact of weather condi-

tions on the performance of microgrid protection algorithms for a certain 

geographical region due to proximity of solar and wind DERs can be rep-

resented using a two-dimensional joint probability model. The proposed 

joint probabilistic approach is formulated utilizing the individual PDFs

(6) and (7), representing solar irradiance and wind speed uncertainty. 

With solar irradiance and wind speed assumed to have discrete values, 

i.e. 𝑔 𝑚 

= 𝑔 1 

, 𝑔 2 

,… , 𝑔 𝑞 

and 𝑤 𝑛 

= 𝑤 1 

, 𝑤 2 

,… , 𝑤 𝑟 

, the joint probability of

occurrence can be expressed as,

P(𝑔 𝑚 

|𝑤 𝑛) =
𝑓 (𝑔 𝑚 

∩ 𝑤 𝑛)
∑𝑞
𝑚=1 𝑓 (𝑤 𝑚𝑛) 

{

1 ≤ 𝑚 < 𝑞
1 ≤ 𝑛 < 𝑟

(8)

[ 

P(𝑔 𝑚 

|𝑤 𝑛 

) 

] 

=

⎡ 

⎢ 

⎢ 

⎢ 

⎢ 

⎢ 

⎢ 

⎢ 

⎣

𝑓 (𝑔 1 

∩𝑤 1)
∑𝑞
𝑚=1 𝑓 (𝑤 𝑚1 

) 

𝑓 (𝑔 1∩𝑤 2 

)
∑𝑞
𝑚=1 𝑓 (𝑤 𝑚2 

) 

⋯ 

𝑓 (𝑔 1∩𝑤 𝑟 

)
∑𝑞
𝑚=1 𝑓 (𝑤 𝑚𝑟)

𝑓 (𝑔 2 

∩𝑤 1)
∑𝑞
𝑚=1 𝑓 (𝑤 𝑚1 

) 

𝑓 (𝑔 2∩𝑤 2 

)
∑𝑞
𝑚=1 𝑓 (𝑤 𝑚2 

) 

⋯ 

𝑓 (𝑔 2∩𝑤 𝑟 

)
∑𝑞
𝑚=1 𝑓 (𝑤 𝑚𝑟)

⋮ ⋮ ⋮
𝑓 (𝑔 𝑚 

∩𝑤 1)
∑𝑞
𝑚=1 𝑓 (𝑤 𝑚1 

)
𝑓 (𝑔 𝑚∩𝑤 2 

)
∑𝑞
𝑚=1 𝑓 (𝑤 𝑚2 

)
⋯ 

𝑓 (𝑔 𝑚 

∩𝑤 𝑟 

)
∑𝑞
𝑚=1 𝑓 (𝑤 𝑚𝑟)

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

(9)

Fig. 4 depicts the joint probability distribution for a given geo-

graphical region derived using (9). The elements in (9) indicate the 

likelihood that a specific set of solar irradiance and wind speed will 

occur. Similarly, each point on the joint probability distribution curve 

represents the probability corresponding to different weather scenar-

ios. The higher values correspond to the scenarios occurring more 

frequently, whereas lower values denote less frequent scenarios. Thus, 

joint probability distribution matrix in the protection algorithm enables

the consideration of any correlation between solar irradiance and wind 

speed, utilizing meteorological data. It shall be noted that, the num-

ber of fault scenarios considered during dataset generation have been 

simulated considering the joint probability distribution matrix includ-

ing changes in both renewable sources (i.e. solar irradiance and wind 

speed). The integration of the joint probability distribution approach 

into the hybrid microgrid protection framework using STGCN will be 

described in the subsequent section.

Fig. 4. Solar-Wind Joint Probability Distribution.
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5. Proposed STGCN-based hybrid microgrid protection scheme

Development of STGCN-based hybrid microgrid protection scheme 

with resiliency to N-1 contingency and renewable intermittency will 

be discussed in this section. This approach enables more accurate 

predictions and facilitates the implementation of enhanced protection 

measures.

5.1. Overview of GNN

In this subsection, the basic graph structure along with graph-related 

terminology and definitions are presented followed by brief introduction 

to GCN and STGCN.

5.1.1. Graph structure

Let’s consider a graph  = ( , ), where  represents the set of ver-

tices (nodes) and  represents the set of edges. Each node 𝜈 𝑖 

∈  is

associated with a feature vector  = 

{ 

𝜈 1 

, 𝜈 2 

,… , 𝜈 𝐵 

} 

, while each edge 

𝜖 𝑖𝑗 

= 

(

𝜈𝑖, 𝜈 𝑗 

) 

∈  denotes the connection between the nodes 𝜈 𝑖 and

𝜈 𝑗 . A typical graph structure can be described by an adjacency matrix

 ∈  

𝐵×𝐵 and degree matrix  ∈  

𝐵×𝐵 , where 𝐵 is the total number of 

nodes, 𝐵 = ||. The adjacency matrix for the undirected graph is defined 

as [32],

 𝑖𝑗 

= 

{

1 𝜈 𝑖, 𝜈 𝑗 

∈  and 𝑖 ≠ 𝑗
0 otherwise (10) 

The elements of (10) represent the connection between nodes 𝜈 𝑖 

and 𝜈 𝑗 .

The degree matrix is diagonal and can be represented as,

 𝑖𝑖 =
𝐵
∑ 

𝑗=1
 𝑖𝑗 (11)

A graph also possesses nodal features/attributes given by nodal feature 

matrix  ∈  

𝐵× , where  is the dimension of nodal feature matrix. In 

general, a graph structure is alternatively given by the Laplacian matrix

 as [32],

 =  −  (12) 

5.1.2. GCN

GCNs represent a type of GNN that combines graph theory with 

the intrinsic convolutional operations of convolutional neural networks 

(CNNs) to execute graph data processing tasks. GCNs can extract both 

spectral and spatial characteristics, hence they are classified as either 

spectral-based GCNs or spatial-based GCNs [31]. The nodes in the GCN 

update their features using convolutional layer which is defined as,

 

(𝑘+1) = 𝑅𝑒𝐿𝑈 (̂ 

𝑘  

𝑘 ) (13)

where 𝑅𝑒𝐿𝑈 (⋅) is an activation function,  

𝑘 is the input matrix with 

feature information at 𝑘𝑡ℎ layer,   

 

𝑘 is the learnable GCN weight matrix 

at 𝑘𝑡ℎ layer and ̂ is a self-normalized adjacency matrix derived from

 expressed as,

̂  = ̃ 

− 

1
2 ̃ ̃ 

− 

1
2 (14)

where ̃ 

 =  + , and  denotes identity
 

 matrix, ̃ 𝑖𝑖 = 𝑗 

̃ 

 𝑖𝑗 

.

This  

 self-normalized adjacency matrix ̂ determines how informa-

tion flows across the graph during convolutional operations. Similarly, 

a parameterised  

 weight matrix  

𝑘 for feature mapping facilitates the 

transformation of input node features into a higher-dimensional space. 

This process effectively captures the intricate structural patterns and re-

lationships inherent in the graph data. However, GCNs have a single

∑

adjacency matrix that depicts the static graph topology. This limits their 

ability to effectively capture temporal information and dynamic rela-

tionships within the data. Also, increasing the number of GCN layers, 

node features exhibit an average tendency known as over-smoothing. 

Hence, restrictions on the number of layers reduces GCN’s capacity for 

feature recognition [30].

5.1.3. STGCN

A spatiotemporal convolutional block (ST-conv block) is a key com-

ponent in STGCNs that is used to efficiently analyze spatiotemporal 

graph-structured input. Each ST-conv block is structured with two gated 

temporal convolution layers sandwiched between one spatial graph con-

volution layer. This block captures spatiotemporal dependencies and 

dynamics in graph-structured data using temporal graph convolutions 

and integrates information across different time steps, making it suit-

able for fault detection/classification tasks. The temporal convolution is 

given by,

𝑐𝑜𝑛𝑣 𝑎,𝑏 

=
𝑢𝑣
∑ 

𝑖=1
𝑑𝑖𝑤𝑖 (15)

where (𝑎, 𝑏) denotes the size of input feature, 𝑢𝑣 represents the size of 

convolutional kernel, 𝑑 signifies the weight of convolutional kernel, 𝑤 

represents the waveform feature, and 𝑖 is the index for both the kernel 

weight and the feature. The computation of the output feature  

(𝑘+1) 

𝑇 1 of 

the first temporal convolutional layer for the input  

(𝑘) of the ST-conv 

block is as follows:

 

(𝑘+1)
𝑇 1 = 𝜙 

 

𝑅𝑒𝐿𝑈 ℎ 

(𝑘+1)
𝑐1 + ℎ 

(𝑘+1)
𝑐2 + ℎ 

(𝑘+1)
𝑐3 (16)

ℎ 

(𝑘+1)
𝑐1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 

( 

 (𝑘) ∗  (𝑘+1)
𝑐1

)

(17)

ℎ 

(𝑘+1)
𝑐2 = 𝜙 

( 

 (𝑘) ∗  (𝑘+1)
𝑐2

)

(18)

ℎ 

(𝑘+1)
𝑐3 =  

(𝑘) ∗  (𝑘+1)
𝑐3 (19)

( ( ))

where 𝜙(⋅) denotes batch normalization operation;  (𝑘+1)
𝑐1 ,  (𝑘+1)

𝑐2 , and 

 (𝑘+1)
𝑐3 represent convolutional kernels of identical shapes; 𝑅𝑒𝐿𝑈 (⋅) and 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(⋅) denotes the activation functions; and operator (∗) signifies 

convolutional operation. Following the first temporal convolutional 

layer, the output feature of the spatial convolutional layer  

(𝑘+1)
𝑠 is

computed as follows,

 

(𝑘+1)
𝑠 

= 𝑅𝑒𝐿𝑈 ̂𝑧 

(𝑘+1) 

(𝑘+1)
5 (20)

𝑧 

(𝑘+1) = 𝑧 

(𝑘+1)
1 ∕∕𝑧(𝑘+1)2 ∕∕𝑧(𝑘+1)3 ∕∕𝑧(𝑘+1)4 (21)

𝑧 

(𝑘+1)
1 

= 𝑅𝑒𝐿𝑈 

(

 

(𝑘+1)
𝑇 1  

(𝑘+1)
1 + 𝑏 

(𝑘+1)
1

)

(22)

𝑧 

(𝑘+1)
2 

= 𝑅𝑒𝐿𝑈 

(

 

(𝑘+1)
𝑇 1  

(𝑘+1)
2 + 𝑏 

(𝑘+1)
2

)

(23)

𝑧 

(𝑘+1)
3 

= 𝑅𝑒𝐿𝑈 

(

 

(𝑘+1)
𝑇 1  

(𝑘+1)
3 + 𝑏 

(𝑘+1)
3

)

(24)

𝑧 

(𝑘+1)
4 = 𝑅𝑒𝐿𝑈 

(

 

(𝑘+1)
𝑇 1  

(𝑘+1)
4 + 𝑏 

(𝑘+1)
4

)

(25)

( )

 (𝑘+1)  (𝑘+1)  (𝑘+1)  (𝑘+1) (𝑘+1) (𝑘+1) (𝑘+1) ( +1)
where , 3 , 4 ,1 , and2 5  𝑏 1 , 𝑏2 , 𝑏 𝑘3 ,
(𝑏 𝑘+1) are4  the learnable parameters; the operator (∕∕) signifies fea-

ture splicing which allows combining features from different layers.
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Following, the spatial convolutional layer, the output feature  

(𝑘+1) of 

the second temporal convolutional layer is given by,

 

(𝑘+1) = 𝜙 

( 

𝑅𝑒𝐿𝑈 

( 

ℎ(𝑘+1)𝑠1 + ℎ 

(𝑘+1) 

𝑠2 + ℎ 

(𝑘+1)
𝑠3

))

(26)

ℎ 

(𝑘+1)
𝑠1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(

 (𝑘+1)
𝑠 ∗  (𝑘+1)

𝑠1

)

(27)

ℎ 

(𝑘+1)
𝑠2 = 𝜙 

(

 

(𝑘+1)
𝑠 ∗  (𝑘+1)

𝑠2

)

(28)

ℎ 

(𝑘+1)
𝑠3 =  

(𝑘+1)
𝑠 ∗  

(𝑘+1)
𝑠3 (29) 

(
where  𝑘+1)

𝑠 ,1   (𝑘+1) (𝑘+1)
,𝑠1  and  represent𝑠1  convolutional kernels of

identical shapes.

5.2. Graph structure in microgrid system

As mentioned earlier, accurate fault diagnosis in the proposed hy-

brid microgrid system requires incorporating topological information 

along with the voltage and current measurements collected from sensors 

installed at the buses. In this regard, STGCN can effectively establish 

the relationship between buses (nodes) and distribution lines (edges). 

It also embeds them in the protection algorithm to carry out fault de-

tection/classification and faulty line identification. In the present work, 

only node (bus) features i.e. the voltages and the currents corresponding 

to critical buses, have been taken into consideration. The use of infor-

mation from only the critical sensors allows for reducing the dimension 

of the feature vector used for the classifier without sacrificing network 

observability. The feature information i.e. the current 𝐼 and voltage 𝑉 

measurements obtained from sensors installed at the 𝑖𝑡ℎ critical bus can 

be given by,

(

𝐼𝑖 ,𝑉 𝑖
) =

(

𝐼𝑖1, 𝑉𝑖1, 𝐼𝑖2, 𝑉𝑖2, 𝐼𝑖3, 𝑉𝑖3
) 

∈  (30)

where 𝑖1, 𝑖2, and 𝑖3 correspond to three phases in a three-phase system 

at 𝑖𝑡ℎ bus.

The objective of the proposed protection scheme is to detect the 

faulty scenario, classify the fault type and also identify the faulty line 

using the feature information obtained from the sensors and physical 

connection between the buses of the microgrid network. The generalised 

objective function for the proposed fault diagnostic model can be framed 

as,

 (𝐹𝐷∕𝐶,𝐹 𝑍) 

= 𝐹 ,(𝐼,𝑉 ) 

 

(31)
( )

where  denotes the physical connection between the buses and updates 

the features in the graph convolutional layer.

5.3. Framework of STGCN-based protection scheme

The framework of the proposed STGCN-based protection scheme 

with resiliency against N-1 contingency and weather intermittency 

has been illustrated in Fig. 5. The protection algorithm initiates with 

the CSI task for acquiring the current and voltage measurements 

from certain optimal buses using observability analysis. Following a 

comprehensive observability analysis, the information from the buses 

2, 4, 6, 9, 10, 11, 13, 14, 16 and 17 is found to be sufficient to maintain the 

observability of the complete system during normal and N-1 contingency 

scenarios.

Following the CSI task, joint probability distribution matrix (9) is es-

timated considering the correlation between solar irradiance and wind 

speed historical data. Furthermore, the dataset generation is carried out 

for the proposed hybrid microgrid model in MATLAB/Simulink using 

joint probability distribution with a wide variation in operating scenar-

ios and fault parameters. Finally, the feature information obtained from 

the sensors and the topological information of the microgrid network

is input to the STGCN classifier modules for performing the protection 

tasks, i.e. to detect/classify faults and to identify the faulty line.

For the proposed work, two independent STGCN classifier modules 

are designed to perform fault detection/classification (FD/C) and faulty 

line identification (FZ). When the fault occurs in the microgrid network, 

the impact of fault at a particular bus depends upon the physical dis-

tance between the faulty line and the bus where the fault waveform 

is measured. Thus, faults have a greater impact on the buses directly 

connected to the faulty lines, so that faulty line identification becomes 

more dependent on microgrid network topology information. However, 

fault type classification relies mostly on the feature information ob-

tained from fault waveforms. A common ST-conv block which extracts 

the basic feature information necessary for executing protection tasks, 

is implemented as shown in Fig. 6. Additionally, two separate ST-conv 

blocks are constructed to aggregate the fault features required for FDC 

and FZ tasks. Using these two ST-conv blocks, two distinct classifiers 

are developed. Inclusion of the possibility of N-1 contingency during 

CSI formulation and during dataset generation allows for accurate fault 

detection/classification and faulty line identification even during sin-

gle sensor loss and single line outage, without any additional classifier 

module.

In the proposed model, the feature input data shape is (17, 241, 60), 
where 17 indicates the number of buses in the network, 241 represents 

the number of samples and 60 denotes the distinct features acquired 

from critical sensors. The fault detection/classification task can be re-

garded as a 12-class classification task with labels as A-G, B-G, C-G, 

AB, BC, AC, AB-G, BC-G, AC-G, ABC, ABC-G and NF corresponding to 

11 types of faults and one no-fault scenario. Similarly, the faulty line 

identification task can be regarded as a 14-class classification task with 

labels Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13 and Z14 

corresponding to 14 number of lines in the microgrid system.

6. Performance analysis

The efficacy of the proposed STGCN-based protection scheme has 

been evaluated in a hybrid microgrid system, demonstrating its ability 

to adapt to variations in network topology and weather fluctuations us-

ing the information from sensors installed at critical buses. Considering 

the entire variation in the range of fault parameters, weather attributes, 

possible fault types, types of DERs disconnected and loading conditions 

resulted in a total dataset comprising of 275,968 cases for the fault class 

and 784 cases for the no-fault class. Each case of the dataset corresponds 

to a particular operating/fault condition of the microgrid being repre-

sented by the simulated voltage and current waveforms. The dataset 

consisting of 276,752 cases (fault and no-fault) has been randomly split 

into training and testing data with a training/testing ratio of 75 %/25 %. 

Thus, the training dataset consists of 75 % of the samples (275,968 fault 

cases and 784 no-fault cases), while the testing dataset comprises the 

remaining 25 % of the samples (68,992 fault cases and 196 no-fault 

cases). To avoid possible overfitting during training, care was taken to 

maintain diversity in the dataset. The scheme has been validated for 

68,992 faulty scenarios corresponding to distribution line faults consid-

ering all possible single line and sensor outages with wide variations 

in fault types, fault parameters i.e. fault resistance (𝑅 𝑓 

), fault inception 

angle (𝜃 𝑓 

), fault location (𝐿 𝑓 

) and operating parameters i.e. solar irra-

diance (𝑔), wind speed (𝑤). In addition to this, 196 non-faulty scenarios 

have been simulated with wide variation in loading conditions i.e. ±5 % 

to ±40 % in steps of 5 %. The variation in fault and operating parame-

ters carried out for simulating faulty scenarios and variation in loading 

conditions for non-faulty dataset is shown in Table 1.

The performance of each STGCN classifier module has been analyzed 

in terms of its effectiveness in performing fault detection/classification 

(FD/C module) and faulty section identification (FZ module). In addi-

tion to accuracy, the performance of the classifier modules (FD/C and 

FZ) has been quantified in terms of the standard reliability indices i.e. de-

pendability and security. Also, the performance of the proposed scheme
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Fig. 5. Flowchart of STGCN based microgrid protection scheme.

has been evaluated for high resistance fault scenarios, different DER 

configurations, dynamic load variations, and different noise conditions.

6.1. STGCN module for fault detection/classification (FD/C)

In order to expedite relay response time and streamline the protec-

tion task, fault detection and classification are executed simultaneously 

utilizing a single module based on STGCN, known as FD/C module. The 

efficacy of the STGCN FD/C module has been analyzed for different types

of line faults occurring under normal as well as N-1 contingency scenar-

ios. The details of the test cases and the fault wise performance analysis 

of FD/C module in terms of accuracy are described in Table 2. The pro-

posed FD/C module is seen to accurately classify over 99.87 % of the 

test cases.

The performance comparison of the proposed STGCN-based scheme 

has also been carried out with GCN, long short-term memory (LSTM) and 

CNN classifiers as in Table 3 in terms of the reliability indices i.e. accu-

racy, dependability and security [33]. The increased level of accuracy,
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Fig. 6. Architecture of STGCN.

Table 1

Fault and operating parameters for dataset generation.

Fault scenario
Variation in fault and operating parameters

considered

Number of scenarios

Training data Testing data

Faulty Fault types- A-G, B-G, C-G, AB, AC, BC, AB-G, BC-G,

AC-G, ABC, ABC-G 

206,976 68,992

Fault resistances 𝑅 𝑓 

= 0.01−100Ω 

Fault inception angles 𝜃 𝑓 

= 0−90 

◦ 

Fault locations 𝐿 𝑓 = 0−6 𝑘𝑚 

Faulty lines- Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, 

Z11, Z12, Z13, Z14 

Global horizontal irradiance, 𝑔 = 100−1000 W/m 

2 

Wind speed, 𝑤 = 2−20 m/s 

DER outages- solar outage, wind outage, DG outage

Non-faulty Load variation in the range of ±5 % to ±40 % in

steps of 5 %

588 196
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Table 2 

Performance of STGCN-based FD/C module for different fault types.

Type of fault Actual test cases Accurately predicted

test cases

Misclassified test

cases

Accuracy of

FD/C (%)

Overall accuracy

(%)

Single-phase-G A-G 6272 6269 3 99.95 99.87

B-G 6272 6270 2 99.97

C-G 6272 6270 2 99.97

Phase-phase AB 6272 6268 4 99.94

BC 6272 6267 5 99.92

AC 6272 6268 4 99.94

Two-phase-G AB-G 6272 6267 5 99.92

BC-G 6272 6262 10 99.85

AC-G 6272 6264 8 99.87

Three-phase ABC 6272 6260 12 99.81

Three-phase-G ABC-G 6272 6243 29 99.54

No fault NF 196 195 1 99.49

Table 3 

Reliability analysis.

Protection schemes Accuracy (%) Dependability (%) Security (%)

STGCN 99.87 99.88 99.49

GCN 99.07 99.07 98.98

LSTM 98.78 98.78 98.47

CNN 97.54 97.54 98.47

dependability and security obtained is attributed to the effectiveness of 

the STGCN classifier in capturing deeper structural information along 

with the fault features. A high value of dependability and security relates 

to providing tripping only when intended (during faults) and avoiding 

false alarms (during healthy cases) respectively under various contin-

gency and weather intermittency scenarios. In order to showcase the 

effectiveness of the proposed classifier in dealing with fluctuations in 

solar irradiance and wind speed, the accuracy of the FD/C module us-

ing 3-D plot has been depicted in Fig. 7. The 3-D plot is generated by 

assessing the effectiveness of the STGCN classifier, which accurately 

categorizes fault scenarios under varying levels of solar irradiance and 

wind speed. The scheme achieves a classification accuracy above 97.5 % 

across the entire range of dataset considered in the study, with notably 

superior performance observed for 𝑔 > 200 W/m 

2 and 𝑤 > 5 m/s.
Additionally, certain prototypical scenarios to assess the suitability 

of the proposed approach in executing necessary relay response during 

weather intermittency are simulated. One such scenario correspond-

ing to low irradiance level 𝑔 = 700 W/m 

2 followed by A-G fault in

section Z1 at 𝑡 = 0.1002 s is depicted in Fig. 8. Fig. 8(a) illustrates

the variation in current waveform acquired at bus B-2 during fluctu-

ations in irradiance level and occurrence of a fault. Fig. 8(b) shows

the response of STGCN classifier for scenario in Fig. 8(a). It can be ob-

served that despite the reduced irradiance level, the proposed scheme

is able to provide the necessary relay response within 11.47 ms of fault

inception.

6.2. STGCN module for faulty line identification (FZ)

In the event of a fault, it is essential that the faulty section is iso-

lated and the supply is restored as soon as possible to minimize its 

impact. In this sub-section, the efficacy of the STGCN-based faulty line 

identification module (FZ) has been validated in terms of its ability to 

accurately identify the faulty section in the microgrid system during 

normal and contingency scenarios. The FZ module has been validated 

with the test cases simulated by considering variations in parame-

ters mentioned in Table 1. The accuracy of the section identification 

unit is depicted in Table 4. In comparison with GCN, LSTM and CNN 

classifier modules, STGCN-based FZ module demonstrates an increased 

accuracy of 99.88 %, indicating resiliency to weather changes and N-1 

contingencies.

The accuracy results reported in Table 4 has been obtained by imple-

menting the classifiers on the same dataset for the microgrid model of 

Fig. 1, while considering N-1 contingency. For the sake of uniform com-

parison, same training and testing dataset (Table 1) has been considered 

for all the classifiers in Table 4.

Fig. 7. Fault detection/classification accuracy of STGCN classifier under varying wind speed and solar irradiance.
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Fig. 8. Low solar irradiance (𝑔 = 700 W/m 

2 ) scenario followed by A-G fault in section Z1 at 𝑡 = 0.1002 s (a) Current waveform acquired at bus B-2 (b) Response of 

STGCN-based FD/C module.

Table 4 

Performance of STGCN-based FZ module for identifying faults in different sections.

Accuracy of faulty line identification module (FZ)

Faulty section No. test cases STGCN GCN LSTM CNN

Z1 4928 99.90 99.05 97.63 94.78

Z2 4928 99.88 99.01 97.85 95.58

Z3 4928 99.88 98.88 97.48 95.37

Z4 4928 99.92 98.94 97.48 95.58

Z5 4928 99.90 98.70 97.52 94.83

Z6 4928 99.90 98.62 97.35 94.73

Z7 4928 99.86 98.60 97.48 94.56

Z8 4928 99.84 98.88 97.71 94.56

Z9 4928 99.88 98.84 97.66 95.62

Z10 4928 99.90 98.60 97.69 95.40

Z11 4928 99.88 98.60 97.21 94.32

Z12 4928 99.84 98.90 97.42 95.70

Z13 4928 99.84 99.01 97.40 94.36

Z14 4928 99.88 99.01 97.40 94.93

Overall accuracy (%) – 99.88 98.83 97.52 95.02

6.3. Performance during high fault resistance scenarios

Detection of faults with high fault resistance is a challenge be-

cause the insignificant increase in the fault current may not be suf-

ficient to trigger the relaying scheme. Despite the fact that, there is 

no significant damage caused by low-magnitude fault currents, ener-

gized conductors can induce arcing, resulting in fires. As such, early 

diagnosis of high resistance faults is crucial. The scenario is more rel-

evant during islanding conditions. In this regard, the effectiveness of

the proposed scheme has been analyzed against fault scenarios with 

high fault resistances (𝑅 𝑓 

= 100−200 Ω) by considering wide vari-

ation in operating parameters i.e. solar irradiance and wind speed 

and line outages as shown in Table 5. It can be observed that in-

spite of the reduced solar irradiance and wind speed levels for some 

of the cases depicted in Table 5, the proposed scheme exhibits high 

selectivity against high fault resistance scenarios even during line 

outages.
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Table 5 

Response of STGCN-based protection scheme for high fault resistance scenarios.

High resistance fault scenarios Response of STGCN-based protection scheme

Faulty line

(Line outage)

Fault parameters Operating parameters Output of FD/C

module

Output of FZ

module
Relay response (ms)

𝑅 𝑓 (Ω) 𝜃 𝑓 (deg.) 𝐿 𝑓 (km) 𝑔 (W/m 

2 ) 𝑤 (m/s)

A-G in Z7 

(Z3 outage)

130 90 0.05 600 9 A-G Z7 15.2

B-G in Z4 

(No outage)

120 0 0.3 650 5 B-G Z4 14.9

C-G in Z6 

(Z1 outage)

175 90 0.2 700 13 C-G Z6 15.7

AB-G in Z3 

(Z2 outage)

150 90 0.1 450 7 AB-G Z3 16

BC-G in Z8 

(Z14 outage)

200 0 1.5 900 11 BC-G Z8 15.8

AC-G in Z10 

(Z11 outage)

185 90 4 850 16 AC-G Z10 16.2

ABC-G in Z14 

(Z8 outage)

115 0 1.8 500 16 ABC-G Z14 16.5

Table 6 

Response of STGCN-based protection scheme for dynamic load variations.

Input parameters Response of STGCN classifier

Fault type Fault parameters Operating

parameters

Variation

in loading

FD/C output FZ output Relaying action (relay

response)

Faulty scenarios 

ABC-G in Z4 𝑅 𝑓 = 1Ω,
𝜃 𝑓 = 90 

◦,

𝐿 𝑓 = 0.2 km

𝑔 = 600 W/m 

2,

𝑤 = 12 m/s

+40 % in L-4 ABC-G Z4 Trip signal to terminals a, b

and c (13.7 ms)

AC-G in Z1 𝑅 𝑓 = 0.1Ω,
𝜃 𝑓 = 90 

◦,

𝐿 𝑓 = 0.1 km

𝑔 = 700 W/m 

2,

𝑤 = 11 m/s

−30 % in L-2 AC-G Z1 Trip signal to terminals a

and c (12.4 ms)

B-G in Z8 𝑅 𝑓 = 0.01Ω,
𝜃 𝑓 = 90 

◦ ,

𝐿 𝑓 = 1 km

𝑔 = 500 W/m 

2,

𝑤 = 9 m/s

+35 % in L-9 B-G Z8 Trip signal to terminal b

(12.8 ms)

Non-faulty scenarios 

Load variation – 𝑔 = 650 W/m 

2,

𝑤 = 8 m/s 

−40 % in L-3 NF EXT No action

Load variation – 𝑔 = 800 W/m 

2,

𝑤 = 14 m/s

+20 % in L-10 NF EXT No action

6.4. Performance for dynamic load variations

During operations, microgrids undergo wide variations in the linear 

and non-linear loads. The similarity in voltage/current profiles occur-

ring due to load variations and distribution line faults often results in 

maloperation of relays. The ability of the protection scheme to avoid 

unnecessary tripping during abrupt variations in loading conditions has 

been evaluated in this section. For the sensor information acquired from 

the relaying buses during load variation up to ±40 %, the response of 

the protection scheme is reported in Table 6. In addition of correctly dis-

tinguishing between load encroachment and fault, the proposed scheme 

is able to execute the fault detection task promptly within one cycle.

6.5. Performance under different noise conditions

The current and voltage measurements at the relaying buses are of-

ten contaminated with noise resulting in unintended tripping of relays. 

To test the immunity of the proposed protection scheme against noisy 

signals, the current and voltage signals obtained from the critical sen-

sors are intentionally mixed with white Gaussian noise (WGN) having 

signal-to-noise ratio (SNR) in the range of 20–40 dB [34]. The perfor-

mance of the protection scheme decreases with lower values of SNR. 

A few random test cases have been contaminated with different levels 

of SNRs to check the effectiveness of the scheme with adaptiveness to

N-1 contingency (i.e. both line and DER outages) scenarios with wide 

variation in solar irradiance and wind speed as shown in Table 7. Fig. 9 

shows the performance of STGCN classifier for a scenario corresponding 

to varying irradiance level and wind speed followed by outage of line 

Z14 and ABC-G fault in line Z8 at t=0.1002 s with 25 dB WGN. Fig. 9(a) 

depicts three phase current waveform at bus B-9. Fig. 9(b) shows the out-

put of STGCN classifier and trip signal generation within 16.47 ms for 

noisy signal.

6.6. Comparison of STGCN approach with reported protection algorithms

The proposed STGCN-based protection algorithm has been evalu-

ated for its robustness against uncertainties in solar irradiance and wind 

speed. This evaluation involved a thorough comparison with other state-

of-the-art microgrid protection algorithms reported in the literature 

[18,19,35] using joint probability distribution approach. The compre-

hensive comparison illustrated in Table 8 is based on several parameters 

such as the microgrid system, protection algorithm, inclusion of net-

work topology information during the training, line and sensor outages, 

formulation of CSI task, robustness against noise, and protection tasks 

performed. The comparative analysis carried out reveals that the pro-

posed protection approach offers improved immunity against weather 

intermittency and N-1 contingency scenarios resulting from both line 

outages and sensor failures.
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Table 7 

Performance of STGCN-based protection scheme under different noise conditions.

Fault type Faulty zone Fault

parameters

Line/DER outage 𝑔 (W/s 

2 ) 𝑤 (m/s) SNR (dB) Relay response (ms)

B-G Z5 𝑅 𝑓 = 0.1Ω,
𝜃 𝑓 = 0◦,
𝐿 𝑓 = 0.2 km

Z1 line 450 9 30 15.6

ABC-G Z2 𝑅 𝑓 = 0.01Ω,
𝜃 𝑓 = 90 

◦,

𝐿 𝑓 = 0.15 km

solar DER - 12 20 15.3

ABC Z11 𝑅 𝑓 = 1Ω,
𝜃 𝑓 = 90 

◦,

𝐿 𝑓 = 2 km

No outage 600 10 25 13.2

C-G Z3 𝑅 𝑓 = 0.1Ω,
𝜃 𝑓 = 0 

◦,

𝐿 𝑓 = 0.1 km

Wind DER 700 - 35 14.9

BC-G Z8 𝑅 𝑓 = 0.001Ω,
𝜃 𝑓 = 90 

◦,

𝐿 𝑓 = 1.8 km

Z7 line 550 13 40 12.6

Fig. 9. Performance of STGCN classifier for varying solar irradiance and wind speed followed by outage of line Z14 and ABC-G fault in line Z8 at t=0.1002 s (a) 

Three phase current at bus B-9 (b) Trip signal generation for faulty signal in (a) contaminated with 25 dB WGN within 16.47 ms.

Applied Energy 391 (2025) 125927 

14 



A. Goyal Rameshrao, J. Jiang, E. Koley et al.

Table 8 

Comparison of proposed STGCN approach with other protection algorithms.

Parameters of 

comparison

Microgrid protection algorithms using joint probability distribution approach to model the uncertainty in solar and 

wind DERs

[18] [35] [19] Proposed approach

Microgrid system considered AC microgrid AC microgrid DC microgrid Hybrid microgrid

Protection algorithm adopted Wavelet transform and

Rotation forest classifier

Wavelet transform and

Random forest classifier 

CNN classifier STGCN classifier

Network topology informa-

tion embedded during the 

training

No No No Yes

Line outages considered No No No Yes

Sensor loss considered No No No Yes

Formulation of CSI task for 

sensor installation

Not considered Not considered Not considered Considered

Robustness against noisy 

signals 

Not considered Not considered Not considered Considered

Protection tasks performed FD/C and FZ 

∗ with resilience

against weather intermittency

FD/C and FZ 

∗ with resilience

against weather intermittency

FD/C and FZ 

∗ with resilience

against weather intermittency 

and DER outages

FD/C and FZ 

∗ with resilience

against weather intermittency 

and N-1 contingency (both 

line and sensor outages)

∗ FD/C-Fault detection/classification, FZ-Faulty line identification.

7. Conclusion

A novel scalable protection framework for hybrid microgrids aimed 

at improving fault detection/classification accuracy with enhanced re-

silience against contingency scenarios and weather intermittency is 

proposed in this work. In this context, the CSI task is formulated as an 

optimization problem aimed at achieving full system observability under 

both normal and contingency events. The concept of ZIC is incorporated 

which results in considerable reduction in sensor installation costs and 

enhanced measurement redundancy for single line outage and single 

sensor loss contingency. To accommodate intermittency and potential 

correlations between solar irradiance and wind speeds, a joint probabil-

ity distribution approach, encompassing the uncertainty present in both 

variables is adopted. With the feature information derived from critical 

sensors and the network topology information of the microgrid system, a 

set of STGCN classifier modules has been developed to perform the pro-

tection tasks. The high accuracy of 99.87 % achieved by the proposed 

scheme for fault detection/classification and faulty section identifica-

tion is attributed to the effectiveness of the STGCN classifier modules 

in embedding the network topology information during the training 

and hence perform accurate mapping in high-dimensional space. The 

effectiveness of the proposed scheme is also reflected by the high de-

gree of dependability (99.88 %) and security (99.49 %) attained for the 

protection tasks.
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