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1 | INTRODUCTION

We say f : N — Cis completely multiplicative if f(ab) = f(a)f(b) for all a,b € N. Let
M ={f : N> {+1,-1} : f is completely multiplicative}.

Recent works in the theory of completely multiplicative functions have proved fruitful in under-
standing the extremal behavior of bounded sequences, as in the Erdés discrepancy problem. In
1957, Erdés [2] conjectured that for any sequence {f(n)},,y consisting of +1, there is x, d € Nsuch
that

sup
x,d

Y. f(nd)

n<x

= 0.

In 2015, Tao [13] proved it by reducing {f(n)},cy to f € M’. Moreover, his result indicated that
every f € M’ satisfies
> f

n<x

lim sup = 0. (€))

X— 00
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One can find more works on classifying functions related to (1) in [1, 5-7].

Our main focus is about the pattern of {f(n)},cy for f € M'. We say that f € M’ is a length-k
function if k is the largest positive integer such that there exists n € N for which f(n +1) = --- =
f(n + k) = +1. It is natural to try to classify all f € M’ of length k, for each k > 2." Motivated by
the results of Lehmer and Lehmer [9] on the first appearance of consecutive quadratic residues,
Mills conjectured [11] that there are only two length-2 functions f, f,, for which

_J&  ifpts
fip) = {(—1)1' itp=3

where i = 1,2 and (3) is the Legendre symbol mod 3, and Schur [12] confirmed this. For k =
3, Hudson [4] conjectured that there are only 13 possibilities. This has recently been proved by
Klurman et al. [8].

Theorem 1.1 (Formerly Hudson’s conjecture [8, Theorem 2.4)). Let q € {5,7,11,13,53} and i =
1, 2. Define

D .
fanP) = {((3)1)1' l-fp te fapp) = {

&) ifpt4 g<p):{1 ifp +2,
ifp=gq

-1 ifp=2, -1 ifp=2
If f : N > {+1, -1} is a length-3 function, then f must be one of the above.

In light of Hudson’s conjecture, we want to classify functions of higher length, say k > 4. By the
above, we learn that there are finitely many length-2 and length-3 functions. For k > 4, conversely,
it is possible to construct infinitely many examples. For instance, we can construct a length-4
function f by

(5) ifp { Sandg,

f)=1-(2) itp=gq,
1 ifp=>5,

where g can be any odd prime with ¢ =2 mod 5. As there are infinitely many choices of
q, we can construct infinitely many length-4 functions f. Nevertheless, we believe that such
counterexamples can be constructed in a systematic way.

Let x, be areal character mod q. We define a modified character 3, € M’ at each prime by

_ . Jx(p)ifptgq,
Falp) = {n(p) if plg, where 7(p) € {+1,~1}

Our main result shows that the length of ¥, can be extended to at least k by altering its values at
a set of finitely many prime numbers p > k and p } q, which we call modified primes, whose size
is covered by Theorem 1.2. We will use §,(k) to denote the minimal number of modified primes
that are needed for the length of ¥, to be extended to at least k.

T There is no length-1 function, as either f(1) = f(2) = +1, or f(4) = f(5) = +1, or f(9) = f(10) = +1.
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Theorem 1.2. Let k be a positive integer and ¥, be a modified character mod q > 1. Then, we have
_ _1
(k) = I;leari( 8,(k) = Sk + O(log k).

Here, we briefly explain how the modified primes can extend the length of ¥,. Let I = {a +
1,..,a + k} C Nbe an interval of length k and (¥,(a + 1), ..., ¥,(a + k)) be the sign pattern of ¥,
on I, denoted by ¥, (I). We assume that the length of Xq1sless than k, that s, )Zq(I) #(+1,...,+1)
for all I. Since ¥, inherits some amount of periodicity from y,, by choosing an appropriate a
according to the choice of modified primes, we can find an interval I’ of length k such that for
all n € I’ with Xq(n) = —1, there is a unique p > k, p + g such that p” || n for some odd integer
v > 0. By modifying ¥,(p) to —¥,(p) for all modified primes p, all the values of —1 in (I "y will
turn to +1, and hence the length of )Zq is extended to at least k. Lemma 2.1 is based on this idea.

Before giving the application of the extension to f € M, we will introduce some concepts from
the pretentious approach to analytic number theory of Granville and Soundararajan [3]. Let M
denote the set of multiplicative functions f : N — C with |f(n)| < 1 for all n € N. Given x > 1,
the pretentious distance between f, g € M is

1 - Re(f )\
—he(J(p)g(p
5 )

p<x p

ID(f,g;x)=<

This satisfies the triangle inequality:
D(f1, h1; %) + D(f3, hy; x) 2 D(f1 f2, hihos x) for f1, f5,hy, hy € M. ()
Let f, g € M. We say that f is pretentious to g if
D(f,g;x) = 0O(1) as x - oo.

We say furthermore that f is a pretentious function if f is pretentious to a twisted character y(n)nit
where y(n) is a Dirichlet character and t € R, otherwise, it is a non-pretentious function. Addi-
tionally, if f € M isreal, f can only be pretentious to a real character (in the proof of Corollary
1.4).

Conjecture 1.3 (Elliott’s conjecture [10, Conjecture 1.5]). For any fixed a;,b;, N € N such that
aibj * ajbi foralli,j=1,2,..,Nandi# j,if f € M'is non-pretentious';', then

N
> [ f@n+b) = o). (3)

n<x i=1

Under the assumption of Conjecture 1.3, any f € M’ of finite length is pretentious to a real
primitive (not necessarily non-principal) character y, (the detailed proof will be given in the next
section). As a consequence, the extension of f of finite length can be reduced to the extension of
a corresponding modified character ¥,,.

The Elliott’s conjecture for f € M requires a stronger condition which is 11(1f) " D(f, x(n)nit;x)> - coas x — oo
q<Q;x (g)ltl<x
for each given Q. More discussions can be found in [10].
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4 | YOU

Corollary 1.4. Given k € N, let f be a length-k function.

(a) Assuming Conjecture 1.3, there is a real character x, mod q > 1 such that f is pretentious to x ,.
(b) Suppose f is pretentious to a real character x, mod q > 1. Let

Jk)={p€P: f(p)# x4(p)withp + qgand p > k}. 4
Then, |J (k)| < 3k.

By Lemma 2.1, we can see that the length increases with the number of modified primes, and
hence Corollary 1.4 follows from Theorem 1.2 immediately.

Remark 1.5. In our extension, we only consider modified primes p > k. It remains to investigate a
more general case where the modified primes involve primes p < k, that is, modified primes can
be any primes, which allows one to construct length-k functions in a more general way. Unlike
modified primes p > k, the number of flipped values of f(n) in an interval of length k by a mod-
ified prime p < k is more than one. Therefore, it would be fairly tricky to determine &(k). If we
include p < k in the count given by §(k) then we can currently only bound it crudely by @ using

the prime number theorem.

2 | PROOF OF THEOREM 1.2 AND COROLLARY 1.4

We will use auxiliary Lemmas 2.1 and 2.2 to prove Theorem 1.2. Let S C P be a subset of prime
numbers. We define 1g € M’ at each prime by

1 ifpeP-s,
A =
s(p) {—1 ifpes.

Lemma 2.1. Let k € N and I) be an interval of length k. Let %, be a modified character mod
q and r denote the number of integers n € Iy, where ¥ ,(n) = —1. Let P, ={p,..., p,} be a set of
r distinct primes with p; > k,p; t q fori = 1,...,r. We define f(n) = ¥,(n)Ap (n). Then, we have
f(D) = (+1, ..., +1) for some interval I of length k.

Proof. Without loss of generality, we assume that the length of ¥, isless than k. Let [k] = {1, ..., k}
and I} (n) = n+[k] ={n+1,...,n + k} be an interval of length k starting from n + 1 € N with
n+1=mmod g for some 0 < m < q. And let 7,(I;(n)) = (¥4(n + 1), ..., ¥,(n + k)) denote the
sign pattern of ¥, on I (n). Suppose that 7, only takesvalueof —latn +J ={n +a,,..,n + a,} C
I (n) where J = {a,, ..., a,}. Let py, ..., p, be r distinct primes greater than k and coprime to q. By
the Chinese remainder theorem, there exist solutions to the system below:

n'+1=mmodq, n’+ajEOmodpjforj:1,...,r.

Suppose that the solutions are in the form of ’ = N + aQ where N € Nis fixed, « € Z,and Q =
r

q [ p;- We can choose an « satisfying p;j | n’ + a; with v; odd for j = 1,...,r and ¢"*!|n' — n.
j=1
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ON COMPLETELY MULTIPLICATIVE +1 SEQUENCES THAT OMIT MANY CONSECUTIVE +1 VALUES | 5

Then, 7,(I;(n)) = 74 (N + aQ)) = 7,(I;(n")) by [8, Lemma 9.4]. Besides, p; + n’ + a; for all
i# j,andeach1 < j < rsincepj > k for 1 < j < r. Hence, we have

f' +a;) =g, +a) = j,(n+a)fora; k] -J,

n+a;
f' +a) = =2(p))" o — | = =g + 0 = =y + @) = 1fora; €.
P;
Hence, we have f(m) = +1forallm € n’ + [k]. O

Lemma 2.2. Let Q > 0 and x, be a non-principal character mod q. Then, we have

% I
1 2 Tq(n) - Va 0gq

logQ = n logQ
Proof. Let x > 0. We have
P AOEDIHC LI X)) )
n<x n<x n<x
(n,g)>1

.
Suppose g = [] p?" with r, o; € N. The second term in (5) is
i=1

,
PXZOIN DY PP ZOIEIEEDY @(_pr") Y %™
nsx By>---By<logx nsx Bys--By<log x =1 B
=t 1 o/ in=pilg n<x/ [
i=1

< X | X xm) 6)

,oB.<log x r )
ﬁl ﬁr g HSX/ H piﬁl
i=1

Applying Polya-Vinogradov inequality to (5) and (6), we obtain

z 74(n) < (logx)"/qloggq.

n<x

By partial summation, we have

1 3 Xq(m) - Valogg
logQ I logQ O
Proof of Theorem 1.2. From the proof of Lemma 2.1, we can see that the number of the modified
primes is independent of the choice of modified primes p > k and the location of —1s in a sign
pattern. It only depends on the number of —1s in an interval of length k. Let Z (k) denote an
interval of length k such that )Zq(Iq(k)) contains the least number of —1s. 5q(k) is equivalent to
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6 | YOU

the number of —1s in ¥,(Z,(k)), for which

8,(k) = %(k—sq(k)), where (k)= ) 7,(m) = max Z Tq(n+m).

met, ® neNU{O}

In the following, we always assume that the length of ¥, is less than k, otherwise, &,(k) =0
which is trivial. Next, we will estimate §(k) = max 8,(k) by investigating its upper and lower
qe

bounds. O
2.1 | The upper bound of (k)

We will show 8(k) < %

211 |y, isthe principal character mod q

Let y, be a principal character. In this case, it suffices to show

q* k-1
= hm A(q“) = 11m — Z Z Xq(n+m)>0,
n=1m=0
since S, (k) > A(q®) for all @ € N. Let & > k be an integer. After rearranging, we have
- k—1

q*
A@g) = —( 2 Hq(n) — 2 (k = m)7g(m) + Y (k — m)7,(q* + m)) ia Z Zq(n),
m=1 n=1

since ¥,(m) = ¥4(q* + m) forall 1 <m < (k — 1) by [8, Lemma 9.4]. By [14, Delange’s theorem,
I11. 4 on p. 326], X4 Possesses a positive mean value, so we obtain

qa
: | 5 -
A= lim A =k lim = 3 7y = k[ ] -p 1>2xq(p>” ’
n=1 p

212 | x,isnon-principal mod q

Let Q > 1. By the definition of éq(k), we have

1 1 Q 1 k-1 )
4(k) < 5( log Q HZ:; o mzo)(q(n + m)), )
Then, it suffices to prove that
1 Q 1 k-1
- logQ n;l n mzzoffq(” +m)=o0(1)asQ = co.
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ON COMPLETELY MULTIPLICATIVE +1 SEQUENCES THAT OMIT MANY CONSECUTIVE +1 VALUES 7

After rearranging, we obtain

k-1

Xq(n+m) Xq(n+m)
logQ<ZZ n+m +Z Z n(n + m)
1 Xq( ) k]
logQ( Z
Q ~
_ k Xq(n) k2
h loang1 n +O<logQ>'

If we choose Q to be sufficiently large in terms of k and g, we will obtain B = o(1) by Lemma 2.2.
As a result, taking Q — oo we obtain §(k) < %k by (7).

Z(k— —X"(Q )) O(k2)>

2.2 | Thelower bound of §(k)

We will bound 6(k) from below by Sq(k) where q is an odd prime with q < k, as 6(k) > 6q(k) for
allg e N.
4
For simplicity, we assume {,(q) = 1. Suppose k = Y a;,q' =kywith0< q; <qfori=0,..,,
i=0
and a, # 0 where v is the largest integer such that g” < k. Recall that T, (k) denotes an interval
of length k such that )”(q(Iq(k)) contains the least number of —1s. Let kj denote the num-

4
ber of elements in Z,(k,) that are divisible by ¢/, that is, k; = ¥ a;q'~/. Suppose Z,(ko) =

i=)
{Moq — 1, ..., Nog + (ag — o)} with 0 < < @y < ¢,0 < M, < N,,. We can decompose I,(k,) =

Cy(ko) L Ny (ko) L Qg (k) where
Cylko) = {n € IMyq, ..., Nog} : (n,q) = 1}
./\/q(ko) ={Myq —rgs...Myq — 1} U{Nyq + 1,...,Nyq + (ag — ro)}
Qq(ko) ={n e€{Myq,...,Nyq} : q|n}.
Given a set Y, let |Y|~ denote the number of —1s in Y. Then, we have
8,() = 1T,(ko)|™ = 1C k)|~ + [Ny (k)| ™ + 1Qy (ko)] -

AS 74(@) = 1, 74(Qq(ke)) = Zo(@Fq(Kq(ky)) where Ky(k;) = (M, ..., No} with [Kg(ky)| = k.
Following the above decomposition, we obtain

1Qy(ko)I™ = 1Ky (k)| = 1Cq (kI ™ + [N (eI~ +1Q (k)

By applying this procedure repetitively until k,,, we have

v—1

8,(k) = 1Lkl = Y (IC U™ + ING (eI ™) + 1Kq(h,)I

i=0
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Given a positive integer I < g, we define

5,(D) = (1 — S, (1)) where S (I) = max Z X(n+m).

g-l<n \q
Since
INGDI™ = D xq(m) = Z)(q( ro +m) > 8} (a;) for 0 < i < v, and |[Ky(k,)|™ > 8y(a,),
neN,(k;) m=0
we have
v v—1

8,002 Y, 2(a = Dk + Y, (@) +6,(@,)
j=0

i=1

v v v v—1
> %(q —DY Y ag T+ %(g:,) a; — g:,) Sy(@) — Sq(av)>

i=1 j=i
>1k—l<§s’(a-)+s (@) 8)
T2 2\grerv )

If we choose g = 3, then we have
0<Sy(a) <1fori=0,..,v—1and1< Ss(a,) <2 9)

Applying (9) to (8), we obtain

v—1
1, 1 1, 1/|logk 1
> k—= 142 )| =zk—=(|==|+2)== log k).
8:00) > Sk 2(; +> K 2<Log3j+> le+0(log )

This implies that (k) > %k + O(log k). Combining with the upper bound from the previous
section, we have 8(k) = %k + O(log k).

Remark 2.3. For the lower bound of §,(k) when g < k, one can bound (8) by using the Pélya-
Vinogradov inequality instead of choosing g = 3. Then, the error term will be O(logk 1/2+0(1)y =

o(k) instead of O(log k).

Proof of Corollary 1.4. Since f is of length k, we have

k

= ZH(1+f(n+j))=0f0ranchN. (10)

nek j=0

Suppose K = (0,x] nNwithx >0 and I ={0,1,...,k}. Then, expand (10) and take x — oo, we
have

0= lim S = hm (x + S5,(0) + S5(x) + -+ + S (X)),

X—>0
where S;(x) = Z Z Hf(n + j).
I;,CI n<x jel;
I |=i,1<i<k+1
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ON COMPLETELY MULTIPLICATIVE +1 SEQUENCES THAT OMIT MANY CONSECUTIVE +1 VALUES | 9

By Conjecture 1.3, if f is a non-pretentious function then S;(x) =o(x)asx — oo fori =1,...,k + 1.
Then, we have

lim S = lim x +o(x) #0
X—00

X—00
which contradicts (10). As a consequence, f must be pretentious to a twisted character y(n)n'.

In our case, we may assume y is real and ¢ = 0, in other words, f must be pretentious to a real
primitive character or principal character y. Indeed, since if y is not real, for |t| < x, we have

D(f, x(mn'; x) > }‘\/log logx +0,(1)

by [10, Lemma C.1] and D(f, y(n)n'’; x) = oo as x — oo that contradicts D(f, y(n)n'; x) < co.
Also, for 1/log x < [t| < x, by (2), we have

2D(f, x(m)n'; x) > DA, y*(n)n'*;x) = DA, yo(Mn'*;x) = log(1 + 2t|logx) + O(1)  (11)
and the right-hand side of (11) tends to co as x — 0. This contradicts D(f, y(n)n'; x) < co, unless

|t| < 1/logx as x — oo which implies ¢ = 0. Moreover, according to the extension process, the
size of (4) can be bounded by the upper bound of §(k), for which

T (k)| <

DN | =

k. [
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