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Abstract
We say that ±1-valued completely multiplicative func-
tions are length-𝑘 functions 𝑓 if they take the value
+1 at at most 𝑘 consecutive integers. We introduce a
method to extend the length of 𝑓 using the idea of the
“rotation trick” in [7]. Under the assumption of Elliott’s
conjecture, this method allows us to construct length-𝑘
functions systematically for 𝑘 ⩾ 4which generalizes the
work of Schur for 𝑘 = 2 and Hudson for 𝑘 = 3.
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1 INTRODUCTION

We say 𝑓 ∶ ℕ → ℂ is completely multiplicative if 𝑓(𝑎𝑏) = 𝑓(𝑎)𝑓(𝑏) for all 𝑎, 𝑏 ∈ ℕ. Let

′ = {𝑓 ∶ ℕ → {+1,−1} ∶ 𝑓 is completely multiplicative}.

Recent works in the theory of completely multiplicative functions have proved fruitful in under-
standing the extremal behavior of bounded sequences, as in the Erdős discrepancy problem. In
1957, Erdős [2] conjectured that for any sequence {𝑓(𝑛)}𝑛∈ℕ consisting of±1, there is 𝑥, 𝑑 ∈ ℕ such
that

sup
𝑥,𝑑

|||||
∑
𝑛⩽𝑥

𝑓(𝑛𝑑)
||||| = ∞.

In 2015, Tao [13] proved it by reducing {𝑓(𝑛)}𝑛∈ℕ to 𝑓 ∈ ′. Moreover, his result indicated that
every 𝑓 ∈ ′ satisfies

lim sup
𝑥→∞

|||||
∑
𝑛⩽𝑥

𝑓(𝑛)
||||| = ∞. (1)
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One can find more works on classifying functions related to (1) in [1, 5–7].
Our main focus is about the pattern of {𝑓(𝑛)}𝑛∈ℕ for 𝑓 ∈ ′. We say that 𝑓 ∈ ′ is a length-𝑘

function if 𝑘 is the largest positive integer such that there exists 𝑛 ∈ ℕ for which 𝑓(𝑛 + 1) = ⋯ =

𝑓(𝑛 + 𝑘) = +1. It is natural to try to classify all 𝑓 ∈ ′ of length 𝑘, for each 𝑘 ⩾ 2.† Motivated by
the results of Lehmer and Lehmer [9] on the first appearance of consecutive quadratic residues,
Mills conjectured [11] that there are only two length-2 functions 𝑓1, 𝑓2, for which

𝑓𝑖(𝑝) =

{(𝑝
3

)
if 𝑝 ∤ 3,

(−1)𝑖 if 𝑝 = 3

where 𝑖 = 1, 2 and
( ⋅
3

)
is the Legendre symbol mod 3, and Schur [12] confirmed this. For 𝑘 =

3, Hudson [4] conjectured that there are only 13 possibilities. This has recently been proved by
Klurman et al. [8].

Theorem 1.1 (Formerly Hudson’s conjecture [8, Theorem 2.4]). Let 𝑞 ∈ {5, 7, 11, 13, 53} and 𝑖 =
1, 2. Define

𝑓(𝑞,𝑖)(𝑝) =

{(𝑝
𝑞

)
if 𝑝 ∤ 𝑞,

(−1)𝑖 if 𝑝 = 𝑞,
𝑓(4,𝑖)(𝑝) =

{(𝑝
4

)
if 𝑝 ∤ 4,

(−1)𝑖 if 𝑝 = 2,
g(𝑝) =

{
1 if 𝑝 ∤ 2,

−1 if 𝑝 = 2.

If 𝑓 ∶ ℕ → {+1,−1} is a length-3 function, then 𝑓 must be one of the above.

In light of Hudson’s conjecture, we want to classify functions of higher length, say 𝑘 ⩾ 4. By the
above, we learn that there are finitelymany length-2 and length-3 functions. For 𝑘 ⩾ 4, conversely,
it is possible to construct infinitely many examples. For instance, we can construct a length-4
function 𝑓 by

𝑓(𝑝) =

⎧⎪⎨⎪⎩
(𝑝
5

)
if 𝑝 ∤ 5 and 𝑞,

−
(𝑝
5

)
if 𝑝 = 𝑞,

1 if 𝑝 = 5,

where 𝑞 can be any odd prime with 𝑞 ≡ 2 mod 5. As there are infinitely many choices of
𝑞, we can construct infinitely many length-4 functions 𝑓. Nevertheless, we believe that such
counterexamples can be constructed in a systematic way.
Let 𝜒𝑞 be a real character mod 𝑞. We define amodified character �̃�𝑞 ∈ ′ at each prime by

�̃�𝑞(𝑝) =

{
𝜒(𝑝) if 𝑝 ∤ 𝑞,

𝜂(𝑝) if 𝑝|𝑞, where 𝜂(𝑝) ∈ {+1,−1}.

Our main result shows that the length of �̃�𝑞 can be extended to at least 𝑘 by altering its values at
a set of finitely many prime numbers 𝑝 > 𝑘 and 𝑝 ∤ 𝑞, which we callmodified primes, whose size
is covered by Theorem 1.2. We will use 𝛿𝑞(𝑘) to denote the minimal number of modified primes
that are needed for the length of �̃�𝑞 to be extended to at least 𝑘.

† There is no length-1 function, as either 𝑓(1) = 𝑓(2) = +1, or 𝑓(4) = 𝑓(5) = +1, or 𝑓(9) = 𝑓(10) = +1.
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ON COMPLETELY MULTIPLICATIVE ±1 SEQUENCES THAT OMIT MANY CONSECUTIVE +1 VALUES 3

Theorem 1.2. Let 𝑘 be a positive integer and �̃�𝑞 be a modified character mod 𝑞 > 1. Then, we have
𝛿(𝑘) = max

𝑞∈ℕ
𝛿𝑞(𝑘) =

1

2
𝑘 + 𝑂(log 𝑘).

Here, we briefly explain how the modified primes can extend the length of �̃�𝑞. Let 𝐼 = {𝑎 +

1,… , 𝑎 + 𝑘} ⊂ ℕ be an interval of length 𝑘 and (�̃�𝑞(𝑎 + 1), … , �̃�𝑞(𝑎 + 𝑘)) be the sign pattern of �̃�𝑞

on 𝐼, denoted by �̃�𝑞(𝐼). We assume that the length of �̃�𝑞 is less than 𝑘, that is, �̃�𝑞(𝐼) ≠ (+1, … ,+1)

for all 𝐼. Since �̃�𝑞 inherits some amount of periodicity from 𝜒𝑞, by choosing an appropriate 𝑎
according to the choice of modified primes, we can find an interval 𝐼′ of length 𝑘 such that for
all 𝑛 ∈ 𝐼′ with �̃�𝑞(𝑛) = −1, there is a unique 𝑝 > 𝑘, 𝑝 ∤ 𝑞 such that 𝑝𝜈 ∥ 𝑛 for some odd integer
𝜈 > 0. By modifying �̃�𝑞(𝑝) to −�̃�𝑞(𝑝) for all modified primes 𝑝, all the values of −1 in �̃�𝑞(𝐼

′) will
turn to +1, and hence the length of �̃�𝑞 is extended to at least 𝑘. Lemma 2.1 is based on this idea.
Before giving the application of the extension to 𝑓 ∈ ′, wewill introduce some concepts from

the pretentious approach to analytic number theory of Granville and Soundararajan [3]. Let 
denote the set of multiplicative functions 𝑓 ∶ ℕ → ℂ with |𝑓(𝑛)| ⩽ 1 for all 𝑛 ∈ ℕ. Given 𝑥 ⩾ 1,
the pretentious distance between 𝑓, g ∈  is

𝔻(𝑓, g ; 𝑥) =

(∑
𝑝⩽𝑥

1 −ℜ𝔢(𝑓(𝑝)g(𝑝))

𝑝

)1∕2

.

This satisfies the triangle inequality:

𝔻(𝑓1, ℎ1; 𝑥) + 𝔻(𝑓2, ℎ2; 𝑥) ⩾ 𝔻(𝑓1𝑓2, ℎ1ℎ2; 𝑥) for 𝑓1, 𝑓2, ℎ1, ℎ2 ∈ . (2)

Let 𝑓, g ∈ . We say that 𝑓 is pretentious to g if

𝔻(𝑓, g ; 𝑥) = 𝑂(1) as 𝑥 → ∞.

We say furthermore that 𝑓 is a pretentious function if 𝑓 is pretentious to a twisted character𝜒(𝑛)𝑛it
where 𝜒(𝑛) is a Dirichlet character and 𝑡 ∈ ℝ, otherwise, it is a non-pretentious function. Addi-
tionally, if 𝑓 ∈  is real, 𝑓 can only be pretentious to a real character (in the proof of Corollary
1.4).

Conjecture 1.3 (Elliott’s conjecture [10, Conjecture 1.5]). For any fixed 𝑎𝑖, 𝑏𝑖, 𝑁 ∈ ℕ such that
𝑎𝑖𝑏𝑗 ≠ 𝑎𝑗𝑏𝑖 for all 𝑖, 𝑗 = 1, 2, … ,𝑁 and 𝑖 ≠ 𝑗, if 𝑓 ∈ ′ is non-pretentious†, then

∑
𝑛⩽𝑥

𝑁∏
𝑖=1

𝑓(𝑎𝑖𝑛 + 𝑏𝑖) = 𝑜(𝑥). (3)

Under the assumption of Conjecture 1.3, any 𝑓 ∈ ′ of finite length is pretentious to a real
primitive (not necessarily non-principal) character 𝜒𝑞 (the detailed proof will be given in the next
section). As a consequence, the extension of 𝑓 of finite length can be reduced to the extension of
a corresponding modified character �̃�𝑞.

† The Elliott’s conjecture for 𝑓 ∈  requires a stronger condition which is inf
𝑞⩽𝑄;𝜒 (𝑞);|𝑡|⩽𝑥 𝔻(𝑓, 𝜒(𝑛)𝑛𝑖𝑡 ; 𝑥)2 → ∞ as 𝑥 → ∞

for each given 𝑄. More discussions can be found in [10].
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4 YOU

Corollary 1.4. Given 𝑘 ∈ ℕ, let 𝑓 be a length-𝑘 function.

(a) Assuming Conjecture 1.3, there is a real character 𝜒𝑞 mod 𝑞 > 1 such that 𝑓 is pretentious to 𝜒𝑞 .
(b) Suppose 𝑓 is pretentious to a real character 𝜒𝑞 mod 𝑞 > 1. Let

 (𝑘) = {𝑝 ∈  ∶ 𝑓(𝑝) ≠ 𝜒𝑞(𝑝) with 𝑝 ∤ 𝑞 and 𝑝 > 𝑘}. (4)

Then, | (𝑘)| ⩽ 1

2
𝑘.

By Lemma 2.1, we can see that the length increases with the number of modified primes, and
hence Corollary 1.4 follows from Theorem 1.2 immediately.

Remark 1.5. In our extension, we only consider modified primes 𝑝 > 𝑘. It remains to investigate a
more general case where the modified primes involve primes 𝑝 ⩽ 𝑘, that is, modified primes can
be any primes, which allows one to construct length-𝑘 functions in a more general way. Unlike
modified primes 𝑝 > 𝑘, the number of flipped values of 𝑓(𝑛) in an interval of length 𝑘 by a mod-
ified prime 𝑝 ⩽ 𝑘 is more than one. Therefore, it would be fairly tricky to determine 𝛿(𝑘). If we
include 𝑝 ⩽ 𝑘 in the count given by 𝛿(𝑘) thenwe can currently only bound it crudely by 𝑘

log 𝑘
using

the prime number theorem.

2 PROOF OF THEOREM 1.2 AND COROLLARY 1.4

We will use auxiliary Lemmas 2.1 and 2.2 to prove Theorem 1.2. Let 𝑆 ⊂  be a subset of prime
numbers. We define 𝜆𝑆 ∈ ′ at each prime by

𝜆𝑆(𝑝) =

{
1 if 𝑝 ∈  − 𝑆,

−1 if 𝑝 ∈ 𝑆.

Lemma 2.1. Let 𝑘 ∈ ℕ and 𝐼𝑘 be an interval of length 𝑘. Let �̃�𝑞 be a modified character mod
𝑞 and 𝑟 denote the number of integers 𝑛 ∈ 𝐼𝑘 , where �̃�𝑞(𝑛) = −1. Let 𝑃𝑟 = {𝑝1, … , 𝑝𝑟} be a set of
𝑟 distinct primes with 𝑝𝑖 > 𝑘, 𝑝𝑖 ∤ 𝑞 for 𝑖 = 1, … , 𝑟. We define 𝑓(𝑛) = �̃�𝑞(𝑛)𝜆𝑃𝑟 (𝑛). Then, we have
𝑓(𝐼) = (+1,… ,+1) for some interval 𝐼 of length 𝑘.

Proof. Without loss of generality, we assume that the length of �̃�𝑞 is less than 𝑘. Let [𝑘] = {1, … , 𝑘}

and 𝐼𝑘(𝑛) = 𝑛 + [𝑘] = {𝑛 + 1,… , 𝑛 + 𝑘} be an interval of length 𝑘 starting from 𝑛 + 1 ∈ ℕ with
𝑛 + 1 ≡ 𝑚 mod 𝑞 for some 0 ⩽ 𝑚 < 𝑞. And let �̃�𝑞(𝐼𝑘(𝑛)) = (�̃�𝑞(𝑛 + 1), … , �̃�𝑞(𝑛 + 𝑘)) denote the
sign pattern of �̃�𝑞 on 𝐼𝑘(𝑛). Suppose that �̃�𝑞 only takes value of−1 at 𝑛 + 𝐽 = {𝑛 + 𝑎1, … , 𝑛 + 𝑎𝑟} ⊂

𝐼𝑘(𝑛) where 𝐽 = {𝑎1, … , 𝑎𝑟}. Let 𝑝1, … , 𝑝𝑟 be 𝑟 distinct primes greater than 𝑘 and coprime to 𝑞. By
the Chinese remainder theorem, there exist solutions to the system below:

𝑛′ + 1 ≡ 𝑚mod 𝑞, 𝑛′ + 𝑎𝑗 ≡ 0mod 𝑝𝑗 for 𝑗 = 1,… , 𝑟.

Suppose that the solutions are in the form of 𝑛′ = 𝑁 + 𝛼𝑄 where 𝑁 ∈ ℕ is fixed, 𝛼 ∈ ℤ, and 𝑄 =

𝑞
𝑟∏

𝑗=1

𝑝𝑗 . We can choose an 𝛼 satisfying 𝑝
𝜈𝑗
𝑗
∥ 𝑛′ + 𝑎𝑗 with 𝜈𝑗 odd for 𝑗 = 1,… , 𝑟 and 𝑞𝑛+1|𝑛′ − 𝑛.
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ON COMPLETELY MULTIPLICATIVE ±1 SEQUENCES THAT OMIT MANY CONSECUTIVE +1 VALUES 5

Then, �̃�𝑞(𝐼𝑘(𝑛)) = �̃�𝑞(𝐼𝑘(𝑁 + 𝛼𝑄)) = �̃�𝑞(𝐼𝑘(𝑛
′)) by [8, Lemma 9.4]. Besides, 𝑝𝑗 ∤ 𝑛′ + 𝑎𝑖 for all

𝑖 ≠ 𝑗, and each 1 ⩽ 𝑗 ⩽ 𝑟 since 𝑝𝑗 > 𝑘 for 1 ⩽ 𝑗 ⩽ 𝑟. Hence, we have

𝑓(𝑛′ + 𝑎𝑗) = �̃�𝑞(𝑛
′ + 𝑎𝑗) = �̃�𝑞(𝑛 + 𝑎𝑗) for 𝑎𝑗 ∈ [𝑘] − 𝐽,

𝑓(𝑛′ + 𝑎𝑗) = −�̃�𝑞(𝑝𝑗)
𝜈𝑗 �̃�𝑞

⎛⎜⎜⎝
𝑛′ + 𝑎𝑗

𝑝
𝜈𝑗
𝑗

⎞⎟⎟⎠ = −�̃�𝑞(𝑛
′ + 𝑎𝑗) = −�̃�𝑞(𝑛 + 𝑎𝑗) = 1 for 𝑎𝑗 ∈ 𝐽.

Hence, we have 𝑓(𝑚) = +1 for all𝑚 ∈ 𝑛′ + [𝑘]. □

Lemma 2.2. Let 𝑄 > 0 and 𝜒𝑞 be a non-principal character mod 𝑞. Then, we have

1

log𝑄

∑
𝑛⩽𝑄

�̃�𝑞(𝑛)

𝑛
≪

√
𝑞 log 𝑞

log𝑄
.

Proof. Let 𝑥 > 0. We have ∑
𝑛⩽𝑥

�̃�𝑞(𝑛) =
∑
𝑛⩽𝑥

𝜒𝑞(𝑛) +
∑
𝑛⩽𝑥

(𝑛,𝑞)>1

�̃�𝑞(𝑛). (5)

Suppose 𝑞 =
𝑟∏

𝑖=1

𝑝
𝛼𝑖
𝑖
with 𝑟, 𝛼𝑖 ∈ ℕ. The second term in (5) is

||| ∑
𝑛⩽𝑥

(𝑛,𝑞)>1

�̃�𝑞(𝑛)
||| ⩽ ||| ∑

𝛽1,…𝛽𝑟⩽log 𝑥

∑
𝑛⩽𝑥

𝑟∏
𝑖=1

𝑝
𝛽𝑖
𝑖
||𝑛⇒𝑝𝑖|𝑞

�̃�𝑞(𝑛)
||| = ||| ∑

𝛽1,…𝛽𝑟⩽log 𝑥

�̃�𝑞

(
𝑟∏

𝑖=1

𝑝
𝛽𝑖
𝑖

) ∑
𝑛⩽𝑥∕

𝑟∏
𝑖=1

𝑝
𝛽𝑖
𝑖

𝜒𝑞(𝑛)
|||

⩽
∑

𝛽1,…𝛽𝑟⩽log 𝑥

||| ∑
𝑛⩽𝑥∕

𝑟∏
𝑖=1

𝑝
𝛽𝑖
𝑖

𝜒𝑞(𝑛)
|||. (6)

Applying Pólya–Vinogradov inequality to (5) and (6), we obtain∑
𝑛⩽𝑥

�̃�𝑞(𝑛) ≪ (log 𝑥)𝑟
√
𝑞 log 𝑞.

By partial summation, we have

1

log𝑄

∑
𝑛⩽𝑄

�̃�𝑞(𝑛)

𝑛
≪

√
𝑞 log 𝑞

log𝑄
.

□

Proof of Theorem 1.2. From the proof of Lemma 2.1, we can see that the number of the modified
primes is independent of the choice of modified primes 𝑝 > 𝑘 and the location of −1s in a sign
pattern. It only depends on the number of −1s in an interval of length 𝑘. Let 𝑞(𝑘) denote an
interval of length 𝑘 such that �̃�𝑞(𝑞(𝑘)) contains the least number of −1s. 𝛿𝑞(𝑘) is equivalent to
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6 YOU

the number of −1s in �̃�𝑞(𝑞(𝑘)), for which

𝛿𝑞(𝑘) =
1

2
(𝑘 − 𝑆𝑞(𝑘)), where 𝑆𝑞(𝑘) =

∑
𝑚∈𝑞(𝑘)

�̃�𝑞(𝑚) = max
𝑛∈ℕ∪{0}

𝑘∑
𝑚=1

�̃�𝑞(𝑛 + 𝑚).

In the following, we always assume that the length of �̃�𝑞 is less than 𝑘, otherwise, 𝛿𝑞(𝑘) = 0

which is trivial. Next, we will estimate 𝛿(𝑘) = max
𝑞∈ℕ

𝛿𝑞(𝑘) by investigating its upper and lower

bounds. □

2.1 The upper bound of 𝜹(𝒌)

We will show 𝛿(𝑘) ⩽ 1

2
𝑘.

2.1.1 𝜒𝑞 is the principal character mod 𝑞

Let 𝜒𝑞 be a principal character. In this case, it suffices to show

𝐴 = lim
𝛼→∞

𝐴(𝑞𝛼) = lim
𝛼→∞

1

𝑞𝛼

𝑞𝛼∑
𝑛=1

𝑘−1∑
𝑚=0

�̃�𝑞(𝑛 + 𝑚) > 0,

since 𝑆𝑞(𝑘) ⩾ 𝐴(𝑞𝛼) for all 𝛼 ∈ ℕ. Let 𝛼 > 𝑘 be an integer. After rearranging, we have

𝐴(𝑞𝛼) =
1

𝑞𝛼

(
𝑘

𝑞𝛼∑
𝑛=1

�̃�𝑞(𝑛) −

𝑘−1∑
𝑚=1

(𝑘 − 𝑚)�̃�𝑞(𝑚) +

𝑘−1∑
𝑚=1

(𝑘 − 𝑚)�̃�𝑞(𝑞
𝛼 + 𝑚)

)
= 𝑘

1

𝑞𝛼

𝑞𝛼∑
𝑛=1

�̃�𝑞(𝑛),

since �̃�𝑞(𝑚) = �̃�𝑞(𝑞
𝛼 + 𝑚) for all 1 ⩽ 𝑚 ⩽ (𝑘 − 1) by [8, Lemma 9.4]. By [14, Delange’s theorem,

III. 4 on p. 326], �̃�𝑞 possesses a positive mean value, so we obtain

𝐴 = lim
𝛼→∞

𝐴(𝑞𝛼) = 𝑘 lim
𝛼→∞

1

𝑞𝛼

𝑞𝛼∑
𝑛=1

�̃�𝑞(𝑛) = 𝑘
∏
𝑝

(1 − 𝑝−1)

∞∑
𝜈=0

�̃�𝑞(𝑝)
𝜈𝑝−𝜈 > 0.

2.1.2 𝜒𝑞 is non-principal mod 𝑞

Let 𝑄 ⩾ 1. By the definition of 𝛿𝑞(𝑘), we have

𝛿𝑞(𝑘) ⩽
1

2

(
𝑘 −

1

log𝑄

𝑄∑
𝑛=1

1

𝑛

𝑘−1∑
𝑚=0

�̃�𝑞(𝑛 + 𝑚)

)
. (7)

Then, it suffices to prove that

𝐵 =
1

log𝑄

𝑄∑
𝑛=1

1

𝑛

𝑘−1∑
𝑚=0

�̃�𝑞(𝑛 + 𝑚) = 𝑜(1) as 𝑄 → ∞.
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ON COMPLETELY MULTIPLICATIVE ±1 SEQUENCES THAT OMIT MANY CONSECUTIVE +1 VALUES 7

After rearranging, we obtain

𝐵 =
1

log𝑄

(
𝑘−1∑
𝑚=0

𝑄∑
𝑛=1

�̃�𝑞(𝑛 + 𝑚)

𝑛 + 𝑚
+

𝑘−1∑
𝑚=0

𝑚

𝑄∑
𝑛=1

�̃�𝑞(𝑛 + 𝑚)

𝑛(𝑛 + 𝑚)

)

=
1

log𝑄

(
𝑘

𝑄∑
𝑛=1

�̃�𝑞(𝑛)

𝑛
−

𝑘−1∑
𝑛=1

(𝑘 − 𝑛)
�̃�𝑞(𝑛)

𝑛
+

𝑘−1∑
𝑛=1

(𝑘 − 𝑛)
�̃�𝑞(𝑄 + 𝑛)

(𝑄 + 𝑛)
+ 𝑂(𝑘2)

)

=
𝑘

log𝑄

𝑄∑
𝑛=1

�̃�𝑞(𝑛)

𝑛
+ 𝑂

(
𝑘2

log𝑄

)
.

If we choose 𝑄 to be sufficiently large in terms of 𝑘 and 𝑞, we will obtain 𝐵 = 𝑜(1) by Lemma 2.2.
As a result, taking 𝑄 → ∞ we obtain 𝛿(𝑘) ⩽ 1

2
𝑘 by (7).

2.2 The lower bound of 𝜹(𝒌)

We will bound 𝛿(𝑘) from below by 𝛿𝑞(𝑘) where 𝑞 is an odd prime with 𝑞 < 𝑘, as 𝛿(𝑘) ⩾ 𝛿𝑞(𝑘) for
all 𝑞 ∈ ℕ.

For simplicity, we assume �̃�𝑞(𝑞) = 1. Suppose 𝑘 =
𝜈∑
𝑖=0

𝑎𝑖𝑞
𝑖 = 𝑘0 with 0 ⩽ 𝑎𝑖 < 𝑞 for 𝑖 = 0, … , 𝜈,

and 𝑎𝜈 ≠ 0 where 𝜈 is the largest integer such that 𝑞𝜈 ⩽ 𝑘. Recall that 𝑞(𝑘) denotes an interval
of length 𝑘 such that �̃�𝑞(𝑞(𝑘)) contains the least number of −1s. Let 𝑘𝑗 denote the num-

ber of elements in 𝑞(𝑘0) that are divisible by 𝑞𝑗 , that is, 𝑘𝑗 =
𝜈∑
𝑖=𝑗

𝑎𝑖𝑞
𝑖−𝑗 . Suppose 𝑞(𝑘0) =

{𝑀0𝑞 − 𝑟0, … ,𝑁0𝑞 + (𝑎0 − 𝑟0)} with 0 ⩽ 𝑟0 ⩽ 𝑎0 < 𝑞, 0 < 𝑀0 < 𝑁0. We can decompose 𝑞(𝑘0) =
𝑞(𝑘0) ⊔𝑞(𝑘0) ⊔𝑞(𝑘0) where

𝑞(𝑘0) = {𝑛 ∈ {𝑀0𝑞,… ,𝑁0𝑞} ∶ (𝑛, 𝑞) = 1}

𝑞(𝑘0) = {𝑀0𝑞 − 𝑟0, … ,𝑀0𝑞 − 1} ∪ {𝑁0𝑞 + 1,… ,𝑁0𝑞 + (𝑎0 − 𝑟0)}

𝑞(𝑘0) = {𝑛 ∈ {𝑀0𝑞,… ,𝑁0𝑞} ∶ 𝑞|𝑛}.
Given a set 𝑌, let |𝑌|− denote the number of −1s in 𝑌. Then, we have

𝛿𝑞(𝑘) = |𝑞(𝑘0)|− = |𝑞(𝑘0)|− + |𝑞(𝑘0)|− + |𝑞(𝑘0)|−.
As �̃�𝑞(𝑞) = 1, �̃�𝑞(𝑞(𝑘0)) = �̃�𝑞(𝑞)�̃�𝑞(𝑞(𝑘1)) where 𝑞(𝑘1) = {𝑀0,… ,𝑁0} with |𝑞(𝑘1)| = 𝑘1.
Following the above decomposition, we obtain

|𝑞(𝑘0)|− = |𝑞(𝑘1)|− = |𝑞(𝑘1)|− + |𝑞(𝑘1)|− + |𝑞(𝑘1)|−.
By applying this procedure repetitively until 𝑘𝜈, we have

𝛿𝑞(𝑘) = |𝑞(𝑘0)|− =

𝜈−1∑
𝑖=0

(|𝑞(𝑘𝑖)|− + |𝑞(𝑘𝑖)|−) + |𝑞(𝑘𝜈)|−.
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8 YOU

Given a positive integer 𝑙 < 𝑞, we define

𝛿′𝑞(𝑙) =
1

2
(𝑙 − 𝑆′𝑞(𝑙)) where 𝑆

′
𝑞(𝑙) = max

𝑞−𝑙⩽𝑛⩽𝑞

𝑙∑
𝑚=0

𝜒𝑞(𝑛 + 𝑚).

Since

|𝑞(𝑘𝑖)|− =
∑

𝑛∈𝑞(𝑘𝑖)

𝜒𝑞(𝑛) =

𝑎𝑖∑
𝑚=0

𝜒𝑞(−𝑟0 + 𝑚) ⩾ 𝛿′𝑞(𝑎𝑖) for 0 ⩽ 𝑖 ⩽ 𝜈, and |𝑞(𝑘𝜈)|− ⩾ 𝛿𝑞(𝑎𝜈),

we have

𝛿𝑞(𝑘) ⩾

𝜈∑
𝑖=1

1

2
(𝑞 − 1)𝑘𝑖 +

𝜈−1∑
𝑗=0

𝛿′𝑞(𝑎𝑖) + 𝛿𝑞(𝑎𝜈)

⩾
1

2
(𝑞 − 1)

𝜈∑
𝑖=1

𝜈∑
𝑗=𝑖

𝑎𝑗𝑞
𝑗−𝑖 +

1

2

(
𝜈∑
𝑖=0

𝑎𝑖 −

𝜈−1∑
𝑖=0

𝑆′𝑞(𝑎𝑖) − 𝑆𝑞(𝑎𝜈)

)

⩾
1

2
𝑘 −

1

2

(𝜈−1∑
𝑖=0

𝑆′𝑞(𝑎𝑖) + 𝑆𝑞(𝑎𝜈)
)
. (8)

If we choose 𝑞 = 3, then we have

0 ⩽ 𝑆′3(𝑎𝑖) ⩽ 1 for 𝑖 = 0, … , 𝜈 − 1 and 1 ⩽ 𝑆3(𝑎𝜈) ⩽ 2. (9)

Applying (9) to (8), we obtain

𝛿3(𝑘) ⩾
1

2
𝑘 −

1

2

(
𝜈−1∑
𝑖=0

1 + 2

)
=

1

2
𝑘 −

1

2

(⌊ log 𝑘
log 3

⌋
+ 2

)
=

1

2
𝑘 + 𝑂(log 𝑘).

This implies that 𝛿(𝑘) ⩾ 1

2
𝑘 + 𝑂(log 𝑘). Combining with the upper bound from the previous

section, we have 𝛿(𝑘) = 1

2
𝑘 + 𝑂(log 𝑘).

Remark 2.3. For the lower bound of 𝛿𝑞(𝑘) when 𝑞 < 𝑘, one can bound (8) by using the Pólya–
Vinogradov inequality instead of choosing 𝑞 = 3. Then, the error term will be 𝑂( log 𝑘

log 𝑞
𝑞1∕2+𝑜(1)) =

𝑜(𝑘) instead of 𝑂(log 𝑘).

Proof of Corollary 1.4. Since 𝑓 is of length 𝑘, we have

𝑆 =
∑
𝑛∈𝐾

𝑘∏
𝑗=0

(1 + 𝑓(𝑛 + 𝑗)) = 0 for any 𝐾 ⊂ ℕ. (10)

Suppose 𝐾 = (0, 𝑥] ∩ ℕ with 𝑥 > 0 and 𝐼 = {0, 1, … , 𝑘}. Then, expand (10) and take 𝑥 → ∞, we
have

0 = lim
𝑥→∞

𝑆 = lim
𝑥→∞

(𝑥 + 𝑆1(𝑥) + 𝑆2(𝑥) +⋯ + 𝑆𝑘+1(𝑥)),

where 𝑆𝑖(𝑥) =
∑
𝐼𝑖⊆𝐼|𝐼𝑖|=𝑖,1⩽𝑖⩽𝑘+1

∑
𝑛⩽𝑥

∏
𝑗∈𝐼𝑖

𝑓(𝑛 + 𝑗).
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ON COMPLETELY MULTIPLICATIVE ±1 SEQUENCES THAT OMIT MANY CONSECUTIVE +1 VALUES 9

ByConjecture 1.3, if𝑓 is a non-pretentious function then 𝑆𝑖(𝑥) = 𝑜(𝑥) as 𝑥 → ∞ for 𝑖 = 1, … , 𝑘 + 1.
Then, we have

lim
𝑥→∞

𝑆 = lim
𝑥→∞

𝑥 + 𝑜(𝑥) ≠ 0

which contradicts (10). As a consequence, 𝑓 must be pretentious to a twisted character 𝜒(𝑛)𝑛𝑖𝑡.
In our case, we may assume 𝜒 is real and 𝑡 = 0, in other words, 𝑓 must be pretentious to a real
primitive character or principal character 𝜒. Indeed, since if 𝜒 is not real, for |𝑡| ⩽ 𝑥, we have

𝔻(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥) ⩾
1

4

√
log log 𝑥 + 𝑂𝜒(1)

by [10, Lemma C.1] and 𝔻(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥) → ∞ as 𝑥 → ∞ that contradicts 𝔻(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥) < ∞.
Also, for 1∕ log 𝑥 ≪ |𝑡| ⩽ 𝑥, by (2), we have

2𝔻(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥) ⩾ 𝔻(1, 𝜒2(𝑛)𝑛𝑖2𝑡; 𝑥) = 𝔻(1, 𝜒0(𝑛)𝑛
𝑖2𝑡; 𝑥) = log(1 + |2𝑡| log 𝑥) + 𝑂(1) (11)

and the right-hand side of (11) tends to∞ as 𝑥 → ∞. This contradicts𝔻(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥) < ∞, unless|𝑡| ≪ 1∕ log 𝑥 as 𝑥 → ∞ which implies 𝑡 = 0. Moreover, according to the extension process, the
size of (4) can be bounded by the upper bound of 𝛿(𝑘), for which

| (𝑘)| ⩽ 1

2
𝑘. □
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