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Radiative heat transfer in phase-change media is of great interest in many thermal applications 
in sciences and engineering involving internal melting or solidification. In these problems at high 
temperature, a mathematical model used to describe the heat transfer and phase change should 
also include equations accounting for thermal radiation. Using the integro-differential equation 
for the radiative intensity in these models results in a system of coupled equations for which its 
numerical solution is computationally very demanding. In the present study, we develop a class 
of efficient reduced models for phase-change problems accounting for grey thermal radiation. The 
novelty in these models lies in the fact that effects of thermal radiation are well captured in phase-
change materials without solving the computationally demanding radiative transfer equation. 
The model is derived from the enthalpy formulation and the simplified PN approximations of 
spherical harmonics. The integro-differential equation for the full radiative transfer is replaced 
by a set of differential equations which are independent of the angle variable and easy to solve 
using conventional computational methods. To solve the coupled equations, we implement a 
second-order implicit scheme for the time integration and a mixed finite element method for the 
space discretization. A Newton-based algorithm is also adopted for solving the nonlinear systems 
resulting from the considered monolithic approach. The performance of the proposed reduced 
models is analyzed on several test examples for coupled radiative heat transfer and phase-change 
problems in two and three space dimensions. The results presented in this study demonstrate 
that the proposed models can accurately predict the temperature distributions and capture the 
phase-change interfaces in melting and solidification examples, all while maintaining a very low 
computational cost.

1. Introduction

Phase change in materials is very important in a wide variety of engineering applications such as metal processing, crystal growth 
and additive manufacturing, among others. Under different thermal conditions, these materials undergo phase change such as melting, 
freezing, casting, ablation, cryosurgery, and soldering. Phase change problems are also crucial for thermal management in various 
practical applications. Examples include molten salt reactors [1], thermal energy storage [2,3], continuous casting [4,5] and the 
cooling of semiconductor chips [6] among others. For high-temperature manufacturing processes, the radiation is expected to greatly 
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influence the thermal features and cannot be neglected, especially in semi-transparent materials where the medium does not only 
reflect and absorb but it also transmits thermal electromagnetic radiation [7,8]. For most of these applications, the heat exchange 
at the phase-change interface often plays a crucial role and with the thermal radiation affects the shape and structure of the desired 
materials. Predicting the impact of radiation in materials during the phase-change process through experiments can be very demanding 
and laborious. Therefore, mathematical modelling and numerical simulations play a crucial role and they can provide accurate 
and effective thermal predictions in this class of applications. However, modelling coupled radiation-conduction and phase-change 
problems presents significant challenges due to the complex interactions of radiation and heat exchange between liquid and solid 
phases.

From a mathematical point of view, the radiative transfer equations are known to be the most accurate model for precisely repre-
senting the transfer of photons in a participating medium [8–10]. These governing equations are of the integro-differential type and 
are solved for the radiative intensity, which depends on time, angle, and spatial coordinates. However, coupling radiation-conduction 
with phase change is expected to introduce significant numerical complexity and it requires sophisticated computational techniques. 
Many numerical solvers, including the discontinuous finite element method [11–13] and the adaptive finite element method [14] 
have been successfully used for combined radiation-conduction heat transfer in participating media. In addition, while these methods 
have the advantage of accurately determining effects of radiation on the heat transfer, combining radiation with phase change adds 
considerable numerical complexity. Using the full radiative model coupled with the phase change model demands advanced computa-
tional techniques, especially in there-dimensional simulations. In existing literature, the radiative transfer model has been integrated 
into both the Stefan problem and enthalpy formulation modelling phase-change energy heat transfer. For instance, it has been ap-
plied extensively to investigate effects of internal radiative heat transfer in various engineering and industrial applications [15–18]. 
Various numerical methods have been employed in the literature to address these challenges including standard methods such as the 
lattice Boltzmann method [19,20], finite volume method [21,22], finite element method [23], and finite difference method [24] for 
phase change in semi-transparent materials. It should be stressed that, while using these methods to solve the energy formulation, the 
radiative transfer equation has been solved using the well-established discrete transfer method [20], the discrete ordinates method 
[25,22], the spherical harmonics method [26], and the simplified spherical harmonics method [27] among others.

While this literature review is not exhaustive, and despite advancements in scientific computing, implementing the full radiative 
transfer equation to model thermal radiation in participating media remains complex and computationally demanding, especially 
for three-dimensional simulations. For cases without phase change, numerous studies have concentrated on developing approximate 
models, instead of incorporating the full radiative transfer model, that accurately describe important physical phenomena while main-
taining reasonable computational costs. Numerous approximate equations are available in the literature including the diffusion-type 
simplified PN (SPN) approximations [28,29]. The main advantage of the SPN approximations is the use of a set of elliptic equations 
to model radiation transfer that are independent of the angular direction which can be solved using well-established numerical meth-
ods for partial differential equations. For optically thick media, the SPN approximations have been proven to accurately resolve the 
radiative heat transfer without relying on the integro-differential equations for modelling thermal radiation in glass manufacturing 
[30], stationary crystal growth [31] and gas turbines [32] among others. We also refer to [33] for a review on approximate models for 
radiative transfer. Despite being derived in the asymptotic regime for a large optical thickness of the material, these approximations 
yield encouraging results even in the optically thin regime without phase change in [32,34,29]. However, approximate models for the 
full radiative heat transfer equations in the presence of phase change are still in their early stages in the literature. Currently, the full 
model remains the most commonly employed approach for incorporating radiation in both Stefan and enthalpy formulations of phase 
change models. Recently, a new discontinuous Galerkin method has been developed in [35] for coupling radiation and phase change 
problems. The enthalpy formulation was coupled with full radiative heat transfer and this method was employed to analyze solidifica-
tion problems in a two-dimensional case. In [36], a mathematical model coupling phase change and radiation in a non-grey medium 
was proposed. Similarly, the enthalpy formulation was coupled with the full radiative transfer model but in a non-grey medium, 
where the full model is transformed into a series of coupled nonlinear equations to be solved for the averaged radiative intensity. In 
both of these recent contributions, only two-dimensional numerical simulations were performed, and the discrete-ordinates method 
was used for the full radiative model, which is computationally expensive, especially in the three-dimensional case. Developing a 
reduced mathematical model for coupling phase change and radiation is therefore needed.

The aim of the current work is to present a class of novel reduced mathematical models for radiative heat transfer in materials 
undergoing phase change. The central goal is to replace the integro-differential equations commonly used for modelling radiative 
transfer with a set of simplified partial differential equations that are angle-independent and easy to solve using the conventional 
numerical techniques for both two- and three-dimensional simulations. For this purpose, we formulate the coupled model of radiative 
heat transfer and phase change in a dimensionless form using the integro-differential equation coupled to the enthalpy formulation, 
and introduce a diffusion scale measuring the optical thickness of the medium. Hence, we perform an asymptotic analysis with respect 
to this optical scale and derive the proposed reduced models using the simplified PN approximations with a special emphasis on the SP1
and SP3 models. It should be stressed that although the simplified PN approximations are reported in [37] for heat conduction without 
phase change, the derivation of the SPN approximations in conjunction with phase change formulation is novel and investigated here 
for the first time. The proposed reduced radiation-phase-change models offer an equivalent representation to the full radiative transfer 
while significantly reducing the computational complexity. To solve the developed radiative phase-change models, we employ a 
mixed finite element method recently introduced by the authors in [38] for the space discretization of conductive SPN equations. 
Particularly, high-order elements are employed for the temperature and phase change solutions, while low-order elements are utilized 
for the radiative solutions. A second-order implicit scheme is used for the time integration and we implement a Newton algorithm 
to solve the resulting nonlinear system. To examine the proposed methodology, several test examples are considered in two- and 
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three-dimensional enclosures. We first compare the numerical results obtained using the proposed reduced models to those obtained 
using the full radiative transfer model for different optical scales. Then, problems of melting sodium chloride and solidification of 
aluminium are presented illustrating the effects of radiation on the temperature profile and the position of the liquid-solid interface. 
The presented results demonstrate that the developed reduced models can significantly decrease the computational costs required to 
achieve a given level of accuracy when solving radiative heat transfer in phase-change media. This offers a significant advantage for 
modelling radiative transfer in industrial applications where phase change can pose a significant challenge in terms of the required 
levels of efficiency and accuracy.

The rest of this paper is organized as follows: In section 2, we formulate the equations used to model radiative heat transfer in 
absorbing and emitting media under phase change. This section begins with the presentation of the dimensional form of the governing 
equations for coupled full radiative heat transfer and phase change. Then, by introducing a set of reference variables, the equations are 
reformulated in a dimensionless form. The proposed reduced models for radiative heat transfer in phase change media are presented 
in section 3 where we conduct an asymptotic analysis of the radiative transfer equation and consider a semi-phase-field approach for 
the energy equation. In section 4, we discuss the computational techniques used for the numerical solution of the proposed radiation-
phase-change models. This section includes the formulation of a fully implicit method for the time integration, a mixed finite element 
method for the space discretization, and the implementation of the solver for the fully coupled problem. Section 5 is devoted to 
examine the numerical performance of the developed reduced models through melting and solidification examples. Our approach is 
demonstrated to enjoy the expected efficiency as well as accuracy. Concluding remarks are summarized in section 6.

2. Equations for radiative heat transfer in phase-change media

In this section we present the governing equations for phase-change problems with radiation using the well-established Stefan and 
enthalpy formulations. We also reformulate the equations in a dimensionless form and introduce the semi-phase field formulation 
used in the present study to derive the reduced models.

2.1. Stefan and enthalpy formulations

Assume a geometrical domain Ω ⊂ ℝ𝑑 (𝑑 = 2 or 3) with the boundary 𝜕Ω. We consider the medium inside the domain as grey, 
emitting, absorbing, and scattering the thermal radiation. In the presence of phase change, the radiation model should be combined 
with the classical Stefan problem that describes the evolution of the interface of a material undergoing a phase change, see [16]. 
Hence, the heat conduction in the medium Ω, consisting of solid phase Ω𝑠(𝑡), liquid phase Ω𝑙(𝑡), and the interface Γ(𝑡) between them, 
is described by the following Stefan equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜌𝑠𝑐𝑠
𝜕𝑇

𝜕𝑡 
−∇ ⋅ (𝑲𝑠∇𝑇 ) = −𝜅𝑠

⎛⎜⎜⎝4𝜋𝐵(𝑇 , 𝑛𝑠) − ∫
𝕊2

𝜓(𝒙,𝒔)𝑑𝒔
⎞⎟⎟⎠, (𝒙, 𝑡) ∈ Ω𝑠(𝑡) × [0, 𝑡𝑓 ],

𝜌𝑙𝑐𝑙
𝜕𝑇

𝜕𝑡 
−∇ ⋅ (𝑲 𝑙∇𝑇 ) = −𝜅𝑙

⎛⎜⎜⎝4𝜋𝐵(𝑇 , 𝑛𝑙) − ∫
𝕊2

𝜓(𝒙,𝒔)𝑑𝒔
⎞⎟⎟⎠, (𝒙, 𝑡) ∈ Ω𝑙(𝑡) × [0, 𝑡𝑓 ],

𝑇 (𝒙, 𝑡) = 𝑇𝑓 (𝒙, 𝑡), (𝒙, 𝑡) ∈ Γ(𝑡) × [0, 𝑡𝑓 ],

𝜓(𝒙, 𝑡) = 𝐵(𝑇𝑓 , 𝑛), (𝒙, 𝑡) ∈ Γ(𝑡) × [0, 𝑡𝑓 ],(
𝑲𝑠𝛁𝑇

)
⋅ 𝒏𝑠 − (𝑲 𝑙𝛁𝑇 ) ⋅ 𝒏𝑙 = 𝜌𝑙 𝐿 𝑉Γ, (𝒙, 𝑡) ∈ Γ(𝑡) × [0, 𝑡𝑓 ],

(1)

where 𝜌𝑘 is the density, 𝑐𝑘 the specific heat capacity, 𝑲𝑘 the thermal conductivity, and 𝜅𝑘 the absorption coefficient, with the 
subscript 𝑘 = 𝑙 or 𝑠 referring to the liquid or solid phase, respectively. Here, 𝐿 is the latent heat of fusion, 𝕊2 denotes the unit sphere, 
𝑇𝑓 (𝒙, 𝑡) is the fusion temperature, 𝑉Γ in the interface velocity, 𝒏𝑠 and 𝒏𝑙 are the exterior unit normal vector to the solid and liquid 
interface, respectively. In (1), 𝜓(𝒙,𝒔) is the radiative intensity at the space point 𝒙 along the direction 𝒔 and is obtained by solving 
the radiative transfer equations

⎧⎪⎪⎨⎪⎪⎩

𝒔 ⋅∇𝜓 +
(
𝜅𝑠 + 𝜎𝑠

)
𝜓 =

𝜎𝑠

4𝜋 ∫
𝕊2

𝜓(𝒙,𝒔)𝑑𝒔+ 𝜅𝑠𝐵
(
𝑇 , 𝑛𝑠

)
, (𝒙,𝒔) ∈ Ω𝑠(𝑡) × 𝕊2,

𝒔 ⋅∇𝜓 +
(
𝜅𝑙 + 𝜎𝑙

)
𝜓 =

𝜎𝑙

4𝜋 ∫
𝕊2

𝜓(𝒙,𝒔)𝑑𝒔+ 𝜅𝑙𝐵
(
𝑇 , 𝑛𝑙

)
, (𝒙,𝒔) ∈ Ω𝑙(𝑡) × 𝕊2,

(2)

where 𝜎𝑘 is the scattering coefficient of the phase 𝑘, with 𝑘 = 𝑙 or 𝑠. The material is subject to a given initial temperature distribution

𝑇 (𝒙,0) = 𝑇0(𝒙), 𝒙 ∈Ω, (3)

and on the boundary 𝜕Ω, the heat flux 𝑲𝒏(�̂�) ⋅∇𝑇 is defined by a heat convection and diffuse surface radiation as
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𝑲𝑠𝒏(�̂�) ⋅∇𝑇 + ℏ𝑠(𝑇 − 𝑇𝑏) = 𝛼𝑠𝜋

(
𝐵(𝑇𝑏, 𝑛𝑏) −𝐵(𝑇 , 𝑛𝑠)

)
, (�̂�, 𝑡) ∈ 𝜕Ω𝑠 ∩ 𝜕Ω× [0, 𝑡𝑓 ],

𝑲 𝑙𝒏(�̂�) ⋅∇𝑇 + ℏ𝑙(𝑇 − 𝑇𝑏) = 𝛼𝑙𝜋

(
𝐵(𝑇𝑏, 𝑛𝑏) −𝐵(𝑇 , 𝑛𝑙)

)
, (�̂�, 𝑡) ∈ 𝜕Ω𝑙 ∩ 𝜕Ω× [0, 𝑡𝑓 ],

(4)

where ℏ𝑘 is the convective heat transfer coefficient of the phase 𝑘, 𝛼𝑘 the emissivity coefficient, 𝑇𝑏(�̂�, 𝑡) is a given temperature of 
the surrounding, 𝒏(�̂�) denotes the outward normal at �̂� with respect to 𝜕Ω and 𝐵(𝑇 , 𝑛𝑛) is the radiative intensity of the black-body 
radiation given by the Planck function

𝐵(𝑇 , 𝑛𝑘) = 𝑛2
𝑘
𝑎𝑅𝑇

4, (5)

where 𝑛𝑘 is the refractive index of the material 𝑘 and 𝑎𝑅 is the Boltzmann constant [9]. In practice, the radiative transfer equation 
is equipped with reflective boundary conditions and for completeness, the boundary conditions for the radiative intensity 𝜓 are 
described in Appendix A.

One of the main difficulties in solving the coupled equations (1)-(2) lies on the fact that the interface Γ(𝑡) between the two phases 
and its velocity 𝑉Γ are not known a priori and they also evolve within the time. To overcome this drawback, an alternative approach 
is considered for the entire computational domain Ω =Ω𝑠 ∪Ω𝑙 ∪ Γ(𝑡), known as the enthalpy formulation, see [36]:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝐻

𝜕𝑡 
−∇ ⋅

(
𝑲(𝑇 )∇𝑇

)
= −𝜅

⎛⎜⎜⎝4𝜋𝐵(𝑇 , 𝑛) − ∫
𝕊2

𝜓(𝒙,𝒔)𝑑𝒔
⎞⎟⎟⎠, (𝒙, 𝑡) ∈ Ω × [0, 𝑡𝑓 ],

𝒔 ⋅∇𝜓 +
(
𝜅 + 𝜎

)
𝜓 = 𝜎

4𝜋 ∫
𝕊2

𝜓(𝒙,𝒔)𝑑𝒔+ 𝜅𝐵(𝑇 , 𝑛), (𝒙,𝒔) ∈ Ω × 𝕊2,

(6)

where the enthalpy 𝐻 is defined by

𝐻 =

{
𝜌𝑠𝑐𝑠𝑇 , if 𝑇 < 𝑇𝑓 ,

𝜌𝑙𝐿+ 𝜌𝑠𝑐𝑠𝑇𝑓 + 𝜌𝑙𝑐𝑙(𝑇 − 𝑇𝑓 ), if 𝑇 > 𝑇𝑓 ,

the absorption coefficient 𝜅, the scattering coefficient 𝜎, and the refractive index 𝑛 are defined by

𝜅 =

{
𝜅𝑠, if 𝑇 < 𝑇𝑓 ,

𝜅𝑙, if 𝑇 > 𝑇𝑓 ,
𝜎 =

{
𝜎𝑠, if 𝑇 < 𝑇𝑓 ,

𝜎𝑙, if 𝑇 > 𝑇𝑓 ,
𝑛 =

{
𝑛𝑠, if 𝑇 < 𝑇𝑓 ,

𝑛𝑙, if 𝑇 > 𝑇𝑓 .

It should be stressed that based on the analysis reported in [39], the system (6) is equivalent to the problem (1) and it preserves 
the key properties such that the conditions at the interface are straightforwardly satisfied. Furthermore, system (6) for the enthalpy 
formulation coupled with the full radiative heat transfer model has been widely used in the literature as the main model for studying 
effects of thermal radiation in solidification and melting phase change problems, see for instance [17,20,21,35]. In the following 
sections, we will derive a class of reduced models by simplifying the system (6) into a system that captures effects of internal 
radiation in grey media during the phase change, while reducing the computational complexity to enhance efficiency for practical 
applications.

2.2. Semi-phase field formulation

The phase-field approach is widely employed for solving interface problems as an alternative approach to the enthalpy formulation, 
particularly in solidification and melting applications [40]. In this method, a phase change variable is introduced as a solution to a 
parabolic-type partial differential equation to determine the evolution of the liquid-solid interface. In the present work, we consider a 
semi-phase-field approach as an intermediate formulation between the enthalpy and phase-field formulations, we refer to [41,42] for 
more details. In this approach, the phase change variable is determined by an algebraic equation instead of the parabolic equation. 
This technique is used for solidification and melting problems where the temperature at the interface is determined by the fusion 
temperature rather than a term proportional to the sum of interface temperature, curvature, and surface tension. Thus in this study, 
we introduce the following decomposition

𝐻 =𝐻1 + 𝜌𝑙𝐿𝜙, (7)

where 𝐻1 is now a continuous function defined by

𝐻1 =

{
𝜌𝑠𝑐𝑠𝑇 , in Ω𝑠,

𝜌𝑠𝑐𝑠𝑇𝑓 + 𝜌𝑙𝑐𝑙(𝑇 − 𝑇𝑓 ), in Ω𝑙 ,
and 𝜙 =

{
0, in Ω𝑠,

1, in Ω𝑙 .

Hence, replacing the equation (7) in the system (6), a new formulation is obtained which is also equivalent to the classical Stefan 
problem as
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𝛿(𝜙)𝜕𝑇
𝜕𝑡 

+ 𝜌𝐿
𝜕𝜙

𝜕𝑡 
−∇ ⋅ (𝑲(𝜙)∇𝑇 ) = −𝜅(𝜙)

⎛⎜⎜⎝4𝜋𝐵(𝑇 , 𝑛) − ∫
𝕊2

𝜓(𝒙,𝒔)𝑑𝒔
⎞⎟⎟⎠ , (𝒙, 𝑡) ∈ Ω × [0, 𝑡𝑓 ],

𝒔 ⋅∇𝜓 +
(
𝜅(𝜙) + 𝜎(𝜙)

)
𝜓 = 𝜎(𝜙)

4𝜋 ∫
𝕊2

𝜓(𝒙,𝒔)𝑑𝒔+ 𝜅(𝜙)𝐵(𝑇 , 𝑛), (𝒙,𝒔) ∈ Ω × 𝕊2,

where

𝛿(𝜙) = 𝜌𝑠𝑐𝑠 +𝜙
(
𝜌𝑙𝑐𝑙 − 𝜌𝑠𝑐𝑠

)
, 𝑲𝑐(𝜙) =𝑲𝑠 +𝜙

(
𝑲 𝑙 −𝑲𝑠

)
,

𝜅(𝜙) = 𝜅𝑠 + 𝜙
(
𝜅𝑙 − 𝜅𝑠

)
, 𝜎(𝜙) = 𝜎𝑠 + 𝜙

(
𝜎𝑙 − 𝜎𝑠

)
, 𝑛(𝜙) = 𝑛𝑠 +𝜙

(
𝑛𝑙 − 𝑛𝑠

)
.

Notice that in practical thermal applications, the phase change occurs in a small temperature range [𝑇𝑓 − 𝜏, 𝑇𝑓 + 𝜏], with 𝜏 is a fixed 
small parameter. Therefore, the phase-change variable 𝜙 can be regularized using a function 𝐹𝜏 (𝑇 ) defined by

𝜙 ∶= 𝐹𝜏 (𝑇 ) =
1
2
− 1

2
tanh

(
𝑇𝑓 − 𝑇

𝜏

)
.

Thus, the coupled full radiative and phase-change model considered in this study is formulated as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛿(𝑇 )𝜕𝑇
𝜕𝑡 

+ 𝜌𝐿
𝜕𝐹𝜏 (𝑇 )

𝜕𝑡 
−∇ ⋅ (𝑲(𝑇 )∇𝑇 ) = −𝜅(𝑇 )

⎛⎜⎜⎝4𝜋𝐵(𝑇 , 𝑛) − ∫
𝕊2

𝜓(𝒙,𝒔)𝑑𝒔
⎞⎟⎟⎠ , (𝒙, 𝑡) ∈ Ω × [0, 𝑡𝑓 ],

𝒔 ⋅∇𝜓 +
(
𝜅(𝑇 ) + 𝜎(𝑇 )

)
𝜓 =

𝜎𝜙

4𝜋 ∫
𝕊2

𝜓(𝒙,𝒔)𝑑𝒔+ 𝜅(𝑇 )𝐵(𝑇 , 𝑛), (𝒙,𝒔) ∈ Ω × 𝕊2,

(8)

equipped with the initial condition (3) and the following boundary conditions

⎧⎪⎨⎪⎩
𝑲(𝑇 )𝒏(�̂�) ⋅∇𝑇 + ℏ(𝑇 − 𝑇𝑏) = 𝛼𝜋

(
𝐵(𝑇𝑏, 𝑛𝑏) −𝐵(𝑇 , 𝑛)

)
, (�̂�, 𝑡) ∈ 𝜕Ω× [0, 𝑡𝑓 ],

𝜓(�̂�,𝒔) = 𝜚(𝒏 ⋅ 𝒔)𝜓(�̂�,𝒔′) +
(
1 − 𝜚(𝒏 ⋅ 𝒔)

)
𝐵(𝑇𝑏, 𝑛𝑏), (�̂�,𝒔) ∈ 𝜕Ω− × 𝕊2.

(9)

𝜚𝑘 is the reflectivity coefficient as defined in Appendix A. Since it is convenient to solve the problem using non-dimensional quantities, 
a dimensionless form of the proposed model (8)-(9) can also be obtained by defining the following dimensionless quantities

𝒙
∗ = 𝒙

𝑥ref
, 𝑡∗ = 𝑡 

𝑡ref
, 𝜅∗ =

𝜅𝜙

𝜅ref + 𝜎ref
, 𝜎∗ =

𝜎𝜙

𝜅ref + 𝜎ref
, ℏ∗ = ℏ 

ℎref
,

𝑇 ∗ = 𝑇

𝑇ref
, 𝜓∗ = 𝜓

𝐼ref
,

where the subscript 𝑟𝑒𝑓 corresponds to reference quantities. We also impose the relations

𝑡ref =
𝜌ref 𝑐ref 𝑥

2
ref

𝐾ref
, 𝐾ref =

𝐼ref(
𝜅ref + 𝜎ref

)
𝑇ref

, ℏref =
𝐼ref

𝑇ref
.

Hence, the dimensionless form of the system (8), referred to throughout the paper as the PC-RT model, is given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛿∗(𝑇 ∗)𝜕𝑇
∗

𝜕𝑡 
+ 1 

Ste

𝜕𝐹𝜏 (𝑇 ∗)
𝜕𝑡 

−∇ ⋅
(
𝑲

∗(𝑇 ∗)∇𝑇 ∗) = − 1 
𝜀2

𝜅∗(𝑇 ∗)
⎛⎜⎜⎝4𝜋𝐵∗(𝑇 ∗, 𝑛) − ∫

𝕊2

𝜓∗(𝒙∗,𝒔)𝑑𝒔
⎞⎟⎟⎠ , (𝒙∗,𝒔) ∈ Ω × 𝕊2,

𝜀 𝒔 ⋅∇𝜓∗ +
(
𝜅∗(𝑇 ∗) + 𝜎∗(𝑇 ∗)

)
𝜓∗ = 𝜎∗(𝑇 ∗)

4𝜋 ∫
𝕊2

𝜓∗(𝒙∗,𝒔)𝑑𝒔+ 𝜅∗𝐵∗(𝑇 ∗, 𝑛), (𝒙∗,𝒔) ∈ Ω × 𝕊2,

(10)

subjected to the following boundary and initial conditions

⎧⎪⎪⎨⎪⎪⎩
𝜀 𝑲∗(𝑇 ∗)𝒏(�̂�) ⋅∇𝑇 ∗ + ℏ∗(𝑇 ∗ − 𝑇 ∗

𝑏
) = 𝛼𝜋

(
𝐵∗(𝑇 ∗

𝑏
, 𝑛𝑏) −𝐵∗(𝑇 ∗, 𝑛)

)
, (�̂�∗, 𝑡∗) ∈ 𝜕Ω,

𝜓∗(�̂�∗,𝒔) = 𝜚(𝒏 ⋅ 𝒔)𝜓∗(�̂�∗,𝒔′) +
(
1 − 𝜚(𝒏 ⋅ 𝒔)

)
𝐵∗(𝑇 ∗

𝑏
, 𝑛𝑏), (�̂�∗,𝒔) ∈ 𝜕Ω− × 𝕊2,

𝑇 ∗(𝒙∗,0) = 𝑇 ∗
0 (𝒙

∗), 𝒙
∗ ∈ Ω,

(11)

where the dimensionless Planck function 𝐵∗(𝑇 ∗, 𝑛) is given by
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𝐵∗(𝑇 ∗, 𝑛) =
𝑛2𝑎𝑅𝑇

4
ref
𝑇 ∗4

𝐼ref
.

In (10), Ste is the Stefan number and 𝜀 is the optical thickness defined as

Ste =
𝑐𝑙 𝑇ref

𝐿 
, 𝜀 = 1 

𝑥ref

(
𝜅ref + 𝜎ref

) , (12)

and the transition function and conduction coefficient turn to

𝛿∗(𝜙) =
𝜌𝑠𝑐𝑠

𝜌𝑙𝑐𝑙
+ 𝜙

(
1 −

𝜌𝑠𝑐𝑠

𝜌𝑙𝑐𝑙

)
, 𝑲

∗(𝜙) =
𝑲𝑠

𝐾ref
+ 𝜙

(
𝑲 𝑙

𝐾ref
−

𝑲𝑠

𝐾ref

)
.

In what follows, we omit the superscript ∗ from the above equations for ease in the notation. Note that when the absorption coefficient 
𝜅∗ = 0, the heat phase-change and the radiative transfer equations in (10)-(11) become decoupled and physically no radiation is 
accounted for in the temperature distribution leading to the following phase-change model with no radiation, referred to throughout 
the paper as the PC-NoR model.

⎧⎪⎪⎨⎪⎪⎩
𝛿(𝑇 )𝜕𝑇

𝜕𝑡 
+ 1 

Ste

𝜕𝐹𝜏 (𝑇 )
𝜕𝑡 

−∇ ⋅ (𝑲(𝑇 )∇𝑇 ) = 0, (𝒙, 𝑡) ∈ Ω × [0, 𝑡𝑓 ]

𝑲(𝑇 )𝒏(�̂�) ⋅∇𝑇 + ℏ(𝑇 − 𝑇𝑏) = 0, (𝒙, 𝑡) ∈ 𝜕Ω× [0, 𝑡𝑓 ]

𝑇 (𝒙,0) = 𝑇0(𝒙), 𝒙 ∈Ω

(13)

The model (13) has been studied in several contributions in the literature and it has been verified against exact solutions in two- and 
three-dimensional enclosures [41,42] and validated against experimental data in [43].

3. New reduced radiative phase-change models

The full-radiative-phase change PC-RT model (10)-(11) is computationally complex due to its reliance on integro-differential 
equations that depend on time, space, and angle coordinates. To reduce this complexity, the approach aims to replace these integro-
differential equations with a set of simplified partial differential equations that are angle-independent. This is achieved by extending 
the simplified PN approximations for radiative heat transfer to phase-change problems in participating media as follows: First Let us 
define the mean radiative intensity 𝜑 and the total scattering 𝜎Tot as

𝜑 = 1 
4𝜋 ∫

𝕊2

𝜓(𝒙,𝒔)𝑑𝒔, 𝜎Tot = 𝜅(𝑇 ) + 𝜎(𝑇 ),

then, the full radiative phase change model given by (10) can be reformulated as

⎧⎪⎨⎪⎩
𝛿(𝑇 )𝜕𝑇

𝜕𝑡 
+ 1 

Ste

𝜕𝐹𝜏 (𝑇 )
𝜕𝑡 

−∇ ⋅ (𝑲(𝑇 )∇𝑇 ) = − 1 
𝜀2

𝜅(𝑇 )
(
4𝜋𝐵(𝑇 , 𝑛) −𝜑

)
, (𝒙, 𝑡) ∈ Ω × [0, 𝑡𝑓 ],

𝑆 = 𝜎

𝜎Tot
𝜑+ 𝜅(𝑇 )

𝜎Tot
𝐵(𝑇 , 𝑛), 𝒙 ∈Ω,

(14)

where

𝑆 =
(
1 + 𝜀 

𝜎Tot
𝒔 ⋅∇

)
𝜓. (15)

Then, we formally invert the transport operator in (15) using the Neumann series as follows

𝜓 =
(
1 + 𝜀 

𝜎Tot
𝒔 ⋅∇

)−1
𝑆,

≈

(
1 − 𝜀 

𝜎Tot
𝒔 ⋅∇+ 𝜀2

𝜎2Tot
(𝒔 ⋅∇)2 − 𝜀3

𝜎3Tot
(𝒔 ⋅∇)3 + 𝜀4

𝜎4Tot
(𝒔 ⋅∇)4 +… 

)
𝑆. (16)

Integrating the expansion (16) with respect to 𝒔 over all directions in the unit sphere 𝕊2 and using the well-established relation [37]

∫
𝕊2

(
𝒔 ⋅∇

)𝑚
𝑑𝒔 =

(
1 + (−1)𝑚

) 2𝜋 
𝑚+ 1

∇𝑚, 𝑚 = 1,2,… ,

we obtain the formal asymptotic equation for 𝜑 as

𝜑 = 1 
4𝜋 ∫

𝕊2

𝜓(𝒙,𝒔)𝑑𝒔 =

(
1 + 𝜀2

3𝜎Tot
∇2 + 𝜀4

5𝜎4Tot
∇4 + 𝜀6

7𝜎6Tot
∇6 +… 

)
𝑆 +(

𝜀8
)
, (17)
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where the notation  refers to the order of approximations. Hence,

𝑆 =

(
1 + 𝜀2

3𝜎Tot
∇2 + 𝜀4

5𝜎4Tot
∇4 + 𝜀6

7𝜎6Tot
∇6 +… 

)−1

𝜑+(𝜀8)

=

(
1 −

(
𝜀2

3𝜎Tot
∇2 + 𝜀4

5𝜎4Tot
∇4 + 𝜀6

7𝜎6Tot
∇6

)
+

(
𝜀2

3𝜎Tot
∇2 + 𝜀4

5𝜎4Tot
∇4 + 𝜀6

7𝜎6Tot
∇6

)2

−

(
𝜀2

3𝜎Tot
∇2 + 𝜀4

5𝜎4Tot
∇4 + 𝜀6

7𝜎6Tot
∇6

)3

⋯

)−1

𝜑+(𝜀8).
This yields to the formal asymptotic equation for the mean intensity 𝜑 as

𝑆 =

(
1 − 𝜀2

3𝜎2Tot
∇2 − 4𝜀4

45𝜎4Tot
∇4 − 44𝜀6

94𝜎6Tot
∇6

)
𝜑+(𝜀8). (18)

Thus, the full radiative phase-change PC-RT model can be rewritten in an angle-independent form as

⎧⎪⎪⎨⎪⎪⎩
𝛿(𝑇 )𝜕𝑇

𝜕𝑡 
+ 1 

Ste

𝜕𝐹𝜏 (𝑇 )
𝜕𝑡 

−∇ ⋅ (𝑲(𝑇 )∇𝑇 ) = − 1 
𝜀2

𝜅(𝑇 ) (4𝜋𝐵(𝑇 , 𝑛) −𝜑) , (𝒙, 𝑡) ∈ Ω × [0, 𝑡𝑓 ],(
1 − 𝜀2

3𝜎2Tot
∇2 − 4𝜀4

45𝜎4Tot
∇4 − 44𝜀6

94𝜎6Tot
∇6

)
𝜑+(𝜀8) = 𝜎

𝜎Tot
𝜑+ 𝜅(𝑇 )

𝜎Tot
𝐵(𝑇 , 𝑛), 𝒙 ∈Ω.

(19)

By neglecting terms of the leading order (𝜀2), (𝜀4), (𝜀6) or (𝜀8) one obtains the PC-SP0, PC-SP1, PC-SP2 or PC-SP3 models, 
respectively. Note that higher order approximations can also be derived following the same formalism. In this study, we consider 
only the PC-SP1 and PC-SP3 models, and our computational techniques can be straightforwardly extended to other approximations. 
To derive the boundary conditions for the SPN approximations, variational principles similar to those used in the well-established 
Marshak conditions for PN approximations in [44,37] are used. In this section, we present the proposed reduced PC-SP1 and PC-SP3
models as follows:

By neglecting terms of the leading order (𝜀4) in (18), the source 𝑆 can be approximated as

𝑆 = 𝜑− 𝜀2

3𝜎2Tot
∇2𝜑+(𝜀4),

and therefore the system (19) yields the following reduced system

⎧⎪⎪⎨⎪⎪⎩
𝛿(𝑇 )𝜕𝑇

𝜕𝑡 
+ 1 

Ste

𝜕𝐹𝜏 (𝑇 )
𝜕𝑡 

−∇ ⋅ (𝑲(𝑇 )∇𝑇 ) = − 1 
𝜀2

4𝜋𝜅(𝑇 )
(
𝐵(𝑇 , 𝑛) −𝜑

)
, (𝒙, 𝑡) ∈ Ω × [0, 𝑡𝑓 ],

− 𝜀2

3 (𝜅 + 𝜎)
∇2𝜑+ 𝜅𝜑 = 4𝜋𝜅𝐵(𝑇 , 𝑛), 𝒙 ∈Ω,

(20)

equipped with the initial condition (3) and the following boundary conditions

⎧⎪⎨⎪⎩
𝜀𝑲(𝑇 )𝒏(�̂�) ⋅∇𝑇 + ℏ(𝑇 − 𝑇𝑏) = 𝛼𝜋

(
𝐵(𝑇𝑏, 𝑛𝑏) −𝐵(𝑇 , 𝑛)

)
, (�̂�, 𝑡) ∈ 𝜕Ω× [0, 𝑡𝑓 ],(

2𝜀𝜁 
3 (𝜅 + 𝜎)

)
𝒏(�̂�) ⋅∇𝜑 = 4𝜋𝐵(𝑇𝑏, 𝑛𝑏), �̂� ∈ 𝜕Ω

(21)

For the second reduced model for coupling radiation-phase-change problems, we neglect terms of the leading order (𝜀8) in (18) to 
obtain an approximation of 𝑆 as

𝑆 =
(
1 − 𝜀2

3 (𝜅 + 𝜎)2
∇2 − 4𝜀4

45 (𝜅 + 𝜎)4
∇4 − 44𝜀6

94 (𝜅 + 𝜎)6
∇6

)
𝜑+(𝜀8),

and thus the system (19) yields the following reduced system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝛿(𝑇 )𝜕𝑇
𝜕𝑡 

+ 1 
Ste

𝜕𝐹𝜏 (𝑇 )
𝜕𝑡 

−∇ ⋅ (𝑲(𝑇 )∇𝑇 ) = − 1 
𝜀2

4𝜋𝜅(𝑇 )
(
𝐵(𝑇 , 𝑛) −

𝛾2𝜑1 − 𝛾1𝜑2
𝛾2 − 𝛾1

)
, (𝒙, 𝑡) ∈ Ω × [0, 𝑡𝑓 ],

−
𝜀2𝜇2

1
3 (𝜅 + 𝜎)

∇2𝜑1 + 𝜅𝜑1 = 4𝜋𝜅𝐵(𝑇 , 𝑛), 𝒙 ∈Ω,

−
𝜀2𝜇2

2
3 (𝜅 + 𝜎)

∇2𝜑2 + 𝜅𝜑2 = 4𝜋𝜅𝐵(𝑇 , 𝑛), 𝒙 ∈Ω,

(22)
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equipped with the initial condition (3) and the following boundary conditions

⎧⎪⎪⎨⎪⎪⎩

𝜀𝑲(𝑇 )𝒏(�̂�) ⋅∇𝑇 + ℏ(𝑇 − 𝑇𝑏) = 𝛼𝜋

(
𝐵(𝑇𝑏, 𝑛𝑏) −𝐵(𝑇 , 𝑛)

)
, (�̂�, 𝑡) ∈ 𝜕Ω× [0, 𝑡𝑓 ],

𝜛1𝜑1 +
𝜀 

𝜅 + 𝜎
𝒏(�̂�) ⋅∇𝜑1 = −𝛽2𝜑2 + 𝜂1𝐵(𝑇𝑏, 𝑛𝑏), �̂� ∈ 𝜕Ω,

𝜛2𝜑2 +
𝜀 

𝜅 + 𝜎
𝒏(�̂�) ⋅∇𝜑2 = −𝛽1𝜑1 + 𝜂2𝐵(𝑇𝑏, 𝑛𝑏), �̂� ∈ 𝜕Ω.

(23)

In the sequel, the new reduced systems (20)-(21) and (22)-(23) are referred to as PC-SP1 and PC-SP3 models, respectively. It should 
be noted that the parameters 𝜁 , 𝜇𝑖, 𝜛𝑖, 𝛽𝑖, 𝜂𝑖, and 𝛾𝑖 (with 𝑖 = 1,2) appearing in (21), (22) and (23) are derived using asymptotic and 
variational analyses, see [37] for detailed derivation of these parameters. For completeness, the required formulae for calculating 
these parameters are summarized in Appendix B. From the mathematical asymptotic used to derive the simplified PN approximations, 
it is clear that the smaller the diffusion scale 𝜀 is, the better approximation is achieved in these models and at the leading order when 
the diffusion scale goes to zero, one exactly recovers the full radiative transfer model. However, from a physical perspective and in the 
computational radiative transfer, the diffusion scale is defined as the inverse of the product of domain thickness and total scattering 
coefficient as given by equation (12). In practical applications with known material and thermal properties, the diffusion scale is 
calculated using (12) and it is not necessarily close to zero.

4. Numerical methods and solution procedure

Numerical solutions of the coupled PC-SP1 model (20)-(21) and the coupled PC-SP3 model (22)-(23) can be achieved using any 
computational method designed for solving partial differential equations of elliptic-parabolic types. For example, finite elements 
methods are well established for its flexibility in dealing with complex geometries and have been proven to be suitable for solving 
the SPN approximations of radiative heat transfer using unified variational formulations, see for example [30,45,46,14]. In these 
unified finite element methods, the same finite element space is used for the spatial discretization of the temperature solution and 
the radiative mean intensity. Recently, a mixed finite element method has been proposed in [38] to solve the SPN approximations 
of radiative heat transfer for which different finite element spaces are employed for discretization of the temperature solution and 
radiative mean intensity. In the present study, this mixed finite element method is adopted to solve the coupled PC-SPN models 
using the quadratic ℙ2 elements for the temperature solution and the linear ℙ1 elements for the radiative solutions. For the time 
integration, we use the second-order implicit backward differentiation formula (BDF2) also known as the Gear scheme [47]. In this 
section we only formulate the method for the coupled PC-SP3 model (22)-(23) and its formulation for the coupled PC-SP1 model 
(20)-(21) can be carried out in a similar manner. Hence, the time interval [0, 𝑡𝑓 ] is divided into 𝑁 subintervals [𝑡𝑘, 𝑡𝑘+1] with uniform 
length Δ𝑡 = 𝑡𝑘+1 − 𝑡𝑛 for 𝑘 = 0,1,… ,𝑁 and we use the notation 𝑤𝑘 =𝑤(𝒙, 𝑡𝑘) to denote the value of a generic function 𝑤 at time 𝑡𝑘. 
For the spatial discretization, we discretize the domain Ω into a finite set of conforming elements 𝑗 (𝑗 = 1,2,…𝑁𝑒) with 𝑁𝑒 is the 
total number of elements and the computational domain Ωℎ ⊆Ω is the combination of all these finite elements. We also define the 
conforming finite element spaces 𝑉ℎ and 𝑊ℎ as

𝑉ℎ =
{
𝑇ℎ ∈ 𝐶0(Ω) ∶ 𝑇ℎ

||| ∈ ℙ2(), ∀  ∈Ωℎ

}
,

𝑊ℎ =
{
𝜓ℎ ∈ 𝐶0(Ω) ∶ 𝜓ℎ

||| ∈ ℙ1(), ∀  ∈Ωℎ

}
,

where ℙ2() and ℙ1() are polynomial spaces defined in the finite element  of degree 2 and 1, respectively. Therefore, using 
(𝜓1, 𝜓2, 𝜓3) as test functions, the weak formulation of the coupled PC-SP3 model (22)-(23) reads as: Find 

(
𝑇 𝑘+1, 𝜑𝑘+1

1 , 𝜑𝑘+1
2

)
∈

𝑉ℎ ×𝑊ℎ ×𝑊ℎ, such that

∫
Ω 

𝛿(𝑇 𝑘+1) 3𝑇
𝑘+1 − 4𝑇 𝑘 + 𝑇 𝑘−1

2Δ𝑡 
𝜓1𝑑𝒙+ 1 

Ste ∫
Ω 

3𝐹𝜏 (𝑇 𝑘+1) − 4𝐹𝜏 (𝑇 𝑘) + 𝐹𝜏 (𝑇 𝑘−1)
2Δ𝑡 

𝜓1𝑑𝒙+ 

∫
Ω 

⋅
(
𝑲(𝑇 𝑘+1)∇𝑇 𝑘+1) ⋅∇𝜓1𝑑𝒙 = 𝜅

𝜀2 ∫
Ω 

(
𝛾2𝜑

𝑘+1
1 − 𝛾1𝜑

𝑘+1
2

𝛾2 − 𝛾1
− 4𝜋𝐵

(
𝑇 𝑘+1, 𝑛

))
𝜓1 𝑑𝒙+ 

ℏ

𝜀 ∮
𝜕Ω 

(
𝑇𝑏 − 𝑇 𝑘+1)𝜓1 𝑑𝒙+ 𝛼𝜋

𝜀 ∮
𝜕Ω 

(
𝐵(𝑇𝑏, 𝑛𝑏) −𝐵

(
𝑇 𝑘+1, 𝑛

))
𝜓1 𝑑𝒙, 

(24)

𝜀2𝜇2
1

3 (𝜅 + 𝜎) ∫
Ω 

∇𝜑𝑘+1
1 ⋅∇𝜓2 𝑑𝒙+ 𝜅 ∫

Ω 
𝜑𝑘+1
1 𝜓2 𝑑𝒙 = 4𝜋𝜅 ∫

Ω 
𝐵
(
𝑇 𝑘+1, 𝑛

)
𝜓2 𝑑𝒙+ 

𝜀𝜇2
1

3 ∮
𝜕Ω 

(
𝜂1𝐵(𝑇𝑏, 𝑛𝑏) − 𝛽2𝜑

𝑘+1
2 −𝜛1𝜑

𝑘+1
1

)
𝜓2 𝑑𝒙, 
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𝜀2𝜇2
2

3 (𝜅 + 𝜎) ∫
Ω 

∇𝜑𝑘+1
2 ⋅∇𝜓3 𝑑𝒙+ 𝜅 ∫

Ω 
𝜑𝑘+1
2 𝜓3 𝑑𝒙 = 4𝜋𝜅 ∫

Ω 
𝐵
(
𝑇 𝑘+1, 𝑛

)
𝜓3 𝑑𝒙+ 

𝜀𝜇2
2

3 ∮
𝜕Ω 

(
𝜂2𝐵(𝑇𝑏, 𝑛𝑛) − 𝛽1𝜑

𝑘+1
1 −𝜛2𝜑

𝑘+1
2

)
𝜓3 𝑑𝒙. 

Next, a finite element discretization of the weak form (24) is carried out for assembling the associated mass and stiffness matrices. 
This step is straightforward and for brevity in the presentation it is omitted here. Note that the equations (24) are nonlinear and 
fully coupled to be solved monolithically for the triplet solution 

(
𝑇 𝑘+1, 𝜑𝑘+1

1 , 𝜑𝑘+1
2

)
. For all numerical results reported in this study, 

a Newton-based method is employed to solve these nonlinear systems at each timestep and the resulting linear systems are solved 
using a GMRES-SOR algorithm from the PETSc1 library, see for example [48,49]. Here, the convergence of the Newton iterations is 
achieved when the residual norm is less than 10−6. In our simulations, it has been found that three to five iterations were sufficient 
to achieve this required convergence.

5. Numerical results and examples

We present numerical results for three examples of phase-change problems with radiation to demonstrate the accuracy and ef-
ficiency of the proposed simplified models. The main advantage of the proposed models in this study is their ability to provide 
numerical solutions for the coupled radiative heat transfer and phase-change problems in a simplified manner without relying on the 
highly demanding solutions of the integro-differential equations for the radiative transfer. To illustrate the reliability and accuracy 
of the proposed models, numerical results are presented for two- and three-dimensional problems. First, we conduct a verification 
study of the asymptotic analysis to compare numerical results obtained using the proposed coupled PC-SP1 model and the coupled 
PC-SP3 model to those obtained using the coupled full radiative transfer phase-change (PC-RT) model at different optical regimes. 
In the second example, we examine the performance of the proposed PC-SP3 model for a melting problem of sodium chloride in 
two- and three-dimensional enclosures. Our final example considers a problem of solidification of aluminium in a three-dimensional 
domain to assess the capability of the proposed models for solving phase-change problems with radiation in complex geometries. 
All the computations reported in this section were performed on a Dell Precision 7920 Tower with 20C Dual Intel Xeon Gold 6148 
2.4 GHz processor and 64 GB 2666 MHz DDR4 Memory. Notice that all the considered methods are tested for problems with known 
analytical solutions and the expected convergence orders are obtained, ensuring the correctness and robustness of our computational 
techniques.

5.1. Verification results for the asymptotic analysis

We first verify the asymptotic analysis performed to derive the PC-SP1 and PC-SP3 models for phase-change problems with 
radiation. To this end, we compare the temperature distributions of the proposed PC-SP1 and PC-SP3 models to those obtained using 
the full PC-RT model for a benchmark problem widely used in the literature for validating the SPN approximations for radiative heat 
transfer with no phase change, see for example [37,30,29,14]. In this example, we use the same problem but we extend it to include 
phase change in the medium. In particular, we consider a two-dimensional enclosure Ω = [0,1] × [0,1] filled with a hot liquid at 
an initial temperature of 𝑇0 = 1500 K. The hot liquid is cooled down from its boundaries using the Robin-type boundary conditions, 
with a convective heat transfer coefficient of ℏ = 1 and a boundary temperature of 𝑇𝑏 = 300 K. During the cooling process, the hot 
material undergoes transformation into a solid state at the fusion temperature 𝑇𝑓 = 1400 K. We assume a non-scattering medium 
with the scattering coefficient 𝜎 = 0, the absorption coefficient 𝜅 = 1, the conduction 𝑲 = 𝐈, with 𝐈 is the unity matrix, 𝜏 = 1 K, and 
the Stefan number set to Ste = 1. Here, we solve the equations (20)-(21), (22)-(23), and (10)-(11) for respectively, PC-SP1, PC-SP3
and PC-RT models, and we compare the obtained results for the temperature and phase-change solutions for two different values of 
the optical scale 𝜀. A structured mesh with 200 × 200 elements with a fixed timestep Δ𝑡 = 10−7 is used in simulations of the PC-SP1
and PC-SP3 models. To solve the radiative transfer equation in PC-RT model, we employ the Diffusion Synthetic Acceleration (DSA) 
method which uses the diffusion approach to accelerate the source iterations from the computational radiative transfer, see [32,50] 
for a detailed implementation of the DSA method. The 𝑆8 discrete-ordinate set is used for the angle discretization in (10)-(11) along 
with a structured uniform mesh of 400× 400 gridpoints are used in our computations. Note that these mesh and angle discretizations 
yield linear systems with 128 × 105 unknowns to be solved at each time step. In Fig. 1, we present snapshots of the temperature 𝑇
and phase-change variable 𝜙 obtained using 𝜀 = 1 at the time 𝑡 = 5 × 10−5, and those results obtained using 𝜀 = 0.1 at the final time 
𝑡 = 10−5 are displayed in Fig. 2. It is clear that for the considered diffusion scales, the results obtained using the proposed PC-SP1 and 
PC-SP3 models exhibit different patterns for 𝜀 = 1 especially for the phase change solutions, compare the phase-change interfaces 
in Fig. 1. Decreasing the diffusion scale to 𝜀 = 0.1 results in a similar pattern for both temperature and phase-change solutions 
in Fig. 2. This confirms the asymptotic analysis performed to derive the PC-SP1 and PC-SP3 models. To further demonstrate this 
asymptotic analysis, we present in Fig. 3 cross-sections of the temperature and phase-change variable solutions at the main diagonal 
corresponding to 𝑦 = 𝑥 for both considered optical scales 𝜀 = 1 and 𝜀 = 0.1. It is evident that the proposed simplified models preserve 
the thermal radiative structures of the phase change at the optical regimes considered. The boundary features of the temperature 

1 http://www.mcs.anl.gov/petsc/.
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Fig. 1. Results for the temperature (first row) and the phase-change variable 𝜙 (second row) obtained for the two-dimensional verification problem using the PC-SP1
model (first column), the PC-SP3 model (second column), and the PC-RT model (third column) with 𝜀 = 1 at time 𝑡 = 5 × 10−5 .

Table 1
Errors in the temperature 𝑇 and the phase-change variable 
𝜙 obtained using PC-SP1 and PC-SP3 models for the two-
dimensional verification problem with 𝜀 = 0.1 at time 𝑡 =
10−5 .

𝜀 = 0.1

Temperature 𝑇 Phase 𝜙
PC-SP1 PC-SP3 PC-SP1 PC-SP3

𝐿1-error 0.0105 0.0054 0.0791 0.0573 
𝐿2-error 0.0125 0.0055 0.2670 0.2214 

are also captured by our finite element method and they compare well with those obtained using the DSA solver for the radiative 
transfer equation. These results clearly emphasize that solutions obtained using the full PC-RT and PC-SP3 models closely coincide. 
At the asymptotic limit 𝜀 = 0.1, the PC-SP1 and PC-SP3 models deliver temperature and phase-change variable solutions similar to 
those obtained using the full PC-RT model. Therefore, one may conclude that the proposed PC-SP3 model performs very well for 
this coupled radiative heat transfer and phase-change problem. It is important to note that the results of the PC-SP3 model align well 
with the full radiative model results even with a large 𝜀, whereas the PC-SP1 model is preferable when 𝜀 is small. To further quantify 
the errors between the results obtained using the full radiative transfer model and those obtained using the proposed PC-SP1 and 
PC-SP3 models for this example, we present in Table 1 the computed relative 𝐿1-error and 𝐿2-error for the case with 𝜀 = 0.1 at time 
𝑡 = 10−5. These results clearly show that the solutions obtained with the proposed PC-SP3 model and the full PC-RT model nearly 
coincide. Furthermore, the calculated errors are smaller using PC-SP3 model compared to PC-SP1 model, which also confirms the 
asymptotic analysis performed to derive the PC-SP1 and PC-SP3 models. 

In terms of the computational cost, both PC-SP1 and PC-SP3 models demonstrate rapid convergence compared to the full PC-RT
model at the considered optical scales. It is evident that, for this test example, the PC-SP1 and PC-SP3 models asymptotically resolve 

Applied Mathematical Modelling 145 (2025) 116108 

10 



Y. Belhamadia and M. Seaid 

Fig. 2. Results for the temperature (first row) and the phase-change variable 𝜙 (second row) obtained for the two-dimensional verification problem using the PC-SP1
model (first column), the PC-SP3 model (second column), and the PC-RT model (third column) with 𝜀 = 0.1 at time 𝑡 = 10−5 .

the coupled radiative heat transfer and phase-change equations as the DSA method does, but with very less computational effort 
referring to the CPU times. Particularly, solving the PC-SP3 model exhibits fast convergence with a CPU time approximately 11 times 
lower compared to the full PC-RT model for a similar accuracy. Similarly, solving the PC-SP1 model demonstrates fast convergence 
with a CPU time approximately 15 times lower compared to the full PC-RT model for a similar level of accuracy. These findings 
underscore the effectiveness of the proposed PC-SPN models in accurately capturing radiation effects in optically thick media. This 
is achieved without the need for solving the integro-differential equations typically employed in the literature for radiative transfer 
but instead, the models solve one or two additional elliptic equations for the PC-SP1 model or the PC-SP3 model, respectively. It is 
worth mentioning that for the optical scale 𝜀 = 1, the numerical solution is found to be sensitive to the choice of the mesh size. This 
is well-known in the literature when there is no phase change, see for example [30]. We have also experienced this behaviour in our 
case, where the material undergoes a phase change. This can be seen in Fig. 4, where we present cross-sections of the temperature 
using the PC-SP3 model along the main diagonal corresponding to 𝑦 = 𝑥 using four different structured meshes with 25×25, 50×50, 
100 × 100 and 200 × 200 elements at two different times. We can clearly see that while the oscillations can be present when coarse 
meshes are used, the boundary features of the temperature are well captured on finer meshes. This mesh refinement study also 
demonstrates the numerical convergence of the methodology adopted in the current work. Notice that we have also performed this 
study for the PC-SP1 model, where we observed similar numerical behaviour and to avoid repetition, we present only the results for 
the PC-SP3 model. 

Next, we consider a three-dimensional version of this coupled radiative heat transfer and phase-change problem to show the 
asymptotic analysis in the proposed PC-SP1 and PC-SP3 models. Hence, we solve the equations (20)-(21) and (22)-(23) in the unit 
cube Ω = [0,1] × [0,1] × [0,1] using the same parameters as in the previous two-dimensional case. A structured mesh with 3072000
tetrahedral elements is used in our simulation and the time-step is fixed to Δ𝑡 = 10−7. Fig. 5 depicts the obtained results for the 
temperature and phase-change variable using the PC-SP3 model with 𝜀 = 0.1 at three different times namely 𝑡 = 10−6, 𝑡 = 5 × 10−6
and 𝑡 = 10−5. For a better visualization, only parts of the computational domain are illustrated in this figure. It is clear that as the 
time progresses, the medium becomes cooler due to the heat release through the domain boundaries. The proposed simplified models 
resolve these expected thermal and phase-change features at low computational cost compared to the full PC-RT model. Notice that 
for the selected optical scale, results obtained using the PC-SP1 model are very similar to those obtained using the PC-SP3 model 
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Fig. 3. Cross-sections of the results presented in Fig. 1 and Fig. 2 along the main diagonal 𝑦 = 𝑥. 

Fig. 4. Cross-sections of the results obtained with the PC-SP3 model for the two-dimensional verification problem along the main diagonal using different meshes at 
time 𝑡 = 5 × 10−6 (left plot) and at time 𝑡 = 4.5 × 10−5 (right plot).
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Fig. 5. Results for the temperature (first row) and the phase-change variable 𝜙 (second row) obtained for the three-dimensional verification problem using the PC-SP3
model with 𝜀 = 0.1 at three different times 𝑡= 10−6 (first column), 𝑡 = 5 × 10−6 (second column), and t = 10−5 (third column).

Fig. 6. Cross-sections of the results obtained for the three-dimensional verification problem using the PC-SP1 and PC-SP3 models along the main diagonal at time 
𝑡 = 5 × 10−5 for 𝜀= 1 (left plot) and at time 𝑡 = 10−5 for 𝜀= 0.1 (right plot).

and therefore and are not included here. It should also be noted that we do not include results obtained using the full radiative 
transfer phase-change model since implementing the DSA method in three dimensions is computationally very demanding and it is 
not within the scope of this study. To evidence the asymptotic limits for this test example we also present in Fig. 6 cross-sections of 
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Table 2
Reference parameters used in our simulations for melting problem of sodium chloride.

𝑲𝑠 =𝑲 𝑙 = (−0.269 + 9.07910−4𝑇 )I
(
W ⋅m−1⋅K−1) 𝑘ref = 0.86

(
W ⋅m−1⋅K−1)

𝑐𝑠 = 1662.3 − 0.4218𝑇
(
J ⋅ kg−1⋅K

)
𝑐ref = 1180

(
J ⋅ kg−1⋅K

)
𝑐𝑙 = 3289.3 − 3.4589𝑇 + 0.0014173𝑇 2 (J ⋅ kg−1⋅K)

𝑥ref = 0.05 (m)
𝜌𝑙 = 2168.1 − 0.5663𝑇

(
kg ⋅m−3) 𝜌ref = 1460

(
kg ⋅m−3)

𝜅 = 10,40,80
(
m−1) 𝜅ref = 𝜅

𝐿 = 479289
(
J ⋅ kg−1

)
𝑇𝑏 = 1150,1200,1250 (K)

𝑎𝑅 = 5.67 × 10−8
(
W ⋅m−2⋅K4) 𝜎ref = 𝑎𝑅

𝑡ref = 5000 (s) Ste = 0.0025

the temperature solutions obtained using the PC-SP1 and PC-SP3 models with two different diffusion scales 𝜀 = 1 and 𝜀 = 0.1. As 
can be clearly seen in this figure, a large discrepancy between the results is detected for 𝜀 = 1 but decreasing this scale to 𝜀 = 0.1, 
this discrepancy becomes negligible. Again as in the two-dimensional case, the PC-SP1 and PC-SP3 models give similar results at 
the asymptotic limit when 𝜀 is small. Needless to mention that solving the three-dimensional full PC-RT model is very demanding 
from a computational point of view. However, adopting the proposed PC-SPN models in optically thick media offers a simplified 
and cost-effective approach for capturing radiation effects in phase-change problems. This is mainly because the radiative equation 
in the full PC-RT model requires solving the integro-differential equations, whereas the simplified PC-SPN models incorporate the 
radiation effect by only solving a set of additional elliptic equations. Note that based on the results obtained for this example in two 
and three space dimensions, results obtained using the PC-SP3 model are more accurate than those obtained using the PC-SP1 model 
when compared to the full PC-RT model. Therefore, only results obtained using the PC-SP3 model are presented for the remaining 
examples. 

5.2. Melting problem of sodium chloride

Phase change materials are considered as effective tools for improving the thermal performance of the solar heating systems and, at 
high temperatures, thermal radiation can significantly impact this process. Recently, investigations reported in [2] have demonstrated 
that the thermal radiation accelerates the phase transition and it reduces the melting time in these problems. In [2], a discrete-ordinate 
method was employed for the radiative heat transfer coupled with the momentum equation and enthalpy porosity formulation in a 
two-dimensional axisymmetric finned cylinder. Although we do not employ the same set of equations in the present study, we aim 
to replicate similar melting behaviour using our proposed PC-SP3 model. In our simulations for this problem, we consider both two-
and three-dimensional cases using similar thermal and radiation parameters as in [2]. However, unlike in [2] where the physical 
properties were considered as independent of temperature except for the density in the momentum equations, in the current work, 
the physical properties for sodium chloride are considered temperature-dependent as provided in [2] and summarized in Table 2. 

In our first run in this problem, we consider a two-dimensional case where the computational domain is a circle with four fins. The 
circle has a radius of 5 mm, and the fins are 30 mm long with a thickness of 1 mm. The sodium chloride with a high melting temperature 
of 𝑇𝑓 = 1074 K, is chosen as the phase change material and initially, the material is in the solid state with a temperature of 970 K
which is below the melting temperature. The material is then heated from the boundaries by setting the surrounding temperature at 
𝑇𝑏 = 1150 K. In our computations, the domain is discretized in an unstructured triangular mesh with around 79000 elements leading 
to 521624 degrees of freedom (dof) for 𝑇 , 40211 dof for 𝜙1, and 40211 dof for 𝜙2 and the timestep is set to Δ𝑡 = 10 s. The obtained 
results for the temperature and phase-change variable using the PC-NoR model are shown in Fig. 7 at four different times 𝑡 = 100 s, 
𝑡 = 200 s, 𝑡= 250 s, and 𝑡= 300 s. The melting process can clearly be seen in these results as the temperature distributions exhibit high 
thermal fronts propagating from the domain boundary towards the center as the time evolves. The time evolution of the phase-change 
interfaces in this figure also follows the temperature distributions as the material is melted. At the time 𝑡 = 300 s, only a small area 
remains solid within the domain center whereas the other parts become liquid. The proposed numerical techniques perform well for 
this phase-change problem as no spurious oscillations are detected in the obtained results and a full symmetry is captured for both 
temperature and phase-change solutions.

To examine effects of radiation on the melting process for this problem, we compare numerical simulations obtained with radiation 
using the PC-SP3 model at three different optical regimes corresponding to 𝜀 = 2, 𝜀 = 0.5, and 𝜀 = 0.25 to those obtained without 
radiation by eliminating all source terms in the PC-SP3 equations leading to the PC-NoR model in (13). For this comparison, we 
monitor the temperature solution at center of the domain over the first 90 min of the simulation and the computed results are presented 
in Fig. 8. Under the considered phase-change conditions, it is evident that the inclusion of radiation in the model enhances the melting 
rates. The melting process is initiated when the variable 𝜙 is slightly above 0 which occurs at approximately 1 min in the presence 
of radiation compared to around 22 min when the radiation is not accounted for. A similar conclusion was drawn in [2], where it 
was noted that the melting occurred around 4 min when considering radiation compared to around 30 min for simulations with no 
radiation. In addition, it was reported in [2] that the total transition time (i.e. the time to reach a liquid fraction corresponding to 
an interface 𝜙 of 0.999) depends on the presence of radiation effects in the model under study. For instance, the total transition 
time in [2] decreased from 92 min with no radiation to 32 min with radiation. In our simulations using the PC-SP3 model, this total 
transition time is decreased from 61 min with no radiation to 5.5 min with radiation. It is worth noting that as shown in Fig. 8, the 
melting process initiates earlier when 𝜀 = 0.25 compared to the melting time observed when 𝜀 = 0.5. This behaviour has also been 
observed in the results published in [2]. It should be stressed that, while we have not anticipated replicating the exact melting process 
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Fig. 7. Results for the temperature (first row) and the phase-change variable 𝜙 (second row) obtained for the melting problem of sodium chloride in the two-dimensional 
domain at four different times 𝑡= 100 s, 𝑡= 200 s, 𝑡= 250 s and 𝑡 = 300 s.

Fig. 8. Time evolution of the temperature (left plot) and the phase-change variable 𝜙 (right plot) obtained at the domain center for the melting problem of sodium 
chloride in the two-dimensional domain with and without radiation.

observed in [2] due to the utilization of different sets of equations, our findings revealed similar melting behaviour with and without 
radiation for this problem. It worth mentioning that there may not be noticeable differences in results obtained using PC-SP1 model 
or PC-SP3 model for small values of the optical thickness, but we have presented our results using the PC-SP3 model to demonstrate 
its flexibility, not only in the small optical thickness regime but also in the large ones.

Our next concern with this example is to investigate the impact of radiation on the temperature when the material is subjected 
to different boundary temperatures. Therefore, we perform simulations for this test example using the PC-SP3 model with three 
different ambient temperatures namely, 𝑇𝑏 = 1150 K, 1200 K, and 1250 K. The obtained results for the time evolution of the phase-
change variable 𝜙 for 𝜀 = 2 and 𝜀 = 0.25 at the center of the domain are illustrated in Fig. 9. These results confirm our expectations 
and show a faster melting process for simulations with higher boundary temperatures 𝑇𝑏 . Again, this underscores the effectiveness 
of our methodology in modelling the impact of radiative effects on the phase change materials, and all this is achieved without the 
need for solving the integro-differential equations for radiative heat transfer. 
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Fig. 9. Time evolution of the phase-change variable 𝜙 for 𝜀 = 2 (left plot) and 𝜀 = 0.25 (right plot) obtained at the domain center for the melting problem of sodium 
chloride in the two-dimensional domain using three different ambient temperatures.

Fig. 10. Results for the temperature (first row) and the phase-change variable 𝜙 (second row) obtained for the melting problem of sodium chloride in the three-
dimensional domain at three different times 𝑡= 100 s, 𝑡= 150 s, and 200 s.

Encouraged by these two-dimensional results, we have extended our investigation to the three-dimensional situation of this coupled 
radiative heat transfer and phase-change problem. Thus, we reconstruct a three-dimensional domain by elongating the previous two-
dimensional geometry into a cylinder with a length of 250 mm. We maintained the same physical parameters as in the two-dimensional 
case and solve both the PC-NoR and PC-SP3 models using an unstructured mesh with around 202800 tetrahedral elements leading to 
2838950 dof for 𝑇 , 373057 dof for 𝜙1, and 373057 dof for 𝜙2. Fig. 10 illustrates the obtained results for the temperature and phase 
change solutions at three different times 𝑡 = 100 s, 𝑡= 150 s, and 200 s using the PC-NoR model. As in the two-dimensional simulations, 
the melting process is clearly observed in these results as the temperature distributions show high thermal fronts propagating from 
the domain boundaries towards the center as the time progresses. These effects can also be clearly seen in the time evolution of the 
phase-change interfaces as the melting occurs within the computational domain. The numerical performance of the methodology 
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Fig. 11. Time evolution of the temperature obtained at the selected points 𝐺1 and 𝐺2 with no radiation (left plot) and with radiation (right plot) for the melting 
problem of sodium chloride in the three-dimensional domain.

Table 3
Reference parameters used in our simulations for the solidification 
problem of aluminium.

𝑲𝑠 =𝑲 𝑙 = 231I
(
W ⋅m−1⋅K−1) 𝑐𝑠 = 𝑐𝑙 = 900

(
J ⋅ kg−1⋅K

)
𝜌𝑙 = 2700

(
kg ⋅m−3) 𝐿 = 396400

(
J ⋅ kg−1

)
𝜅 = 10

(
m−1) 𝜎 = 0

(
m−1)

𝑎𝑅 = 5.67 × 10−8
(
W ⋅m−2⋅K4) 𝜀 = 0.1

proposed in this study is also confirmed by this three-dimensional problem. To further assess the impact of radiation on the melting 
process, we compare numerical results obtained for this problem without radiation using the PC-NoR model to those with radiation 
using the PC-SP3 model at 𝜀 = 2. For comparison, we monitor the computed temperatures at two different points 𝐺1 and 𝐺2 located 
in the computational domain at 𝐺1 = (0,0,0.25) and 𝐺2 = (0,0,1.25), respectively. The time evolutions of the temperature at these 
selected points are depicted in Fig. 11 and the obtained results demonstrate similar melting behaviours to that observed in the two-
dimensional case. Hence, we conclude that the radiation significantly accelerates the melting process, and our proposed simplified 
models effectively incorporate radiation in the phase change materials using only sets of elliptic equations without accounting for 
the integro-differential equations for radiative heat transfer. It should be pointed out that the presence of radiation yields a sharper 
liquid-solid interface, which may also affect the numerical method by requiring a smaller time step and a larger value of 𝜏 ; otherwise, 
the Newton method may not converge. In particular, the PC-SP3 model may require a smaller time step and a larger value of 𝜏
compared to the PC-NoR model. For instance, in our three-dimensional computations, while we used Δ𝑡 = 10 s and 𝜏 = 2 K when 
solving the PC-NoR model, Δ𝑡 = 1 s and 𝜏 = 4 K were needed for the PC-SP3 model.

5.3. Solidification problem of aluminium

Our final example consists of assessing the performance of the proposed PC-SP3 model for a three-dimensional phase-change 
problem involving solidification of the aluminium. It has been shown in many studies that the radiation affects the temperature 
profiles in the solidification process of materials, see for instance [23,16,20]. More precisely, it has been reported in this reference 
that the thermal radiation accelerates the phase transition and thus, affects the liquid-solid interface. This class of problems is also 
widely used in manufacturing engineering of continuous cast aluminium for which the primary zone in the continuous casting process 
experiences the highest temperature difference. Furthermore, at this zone the liquid aluminium is continuously poured to the mould 
and it starts to solidify from the wall boundaries yielding the initial shape of the required aluminium product. As a consequence, 
the radiation in this zone is expected to significantly impact both the solid-liquid interface and the thermal features in the mould 
due to the high temperature involved in this process. To demonstrate these effects, we consider a solidification problem in a three-
dimensional Ω = [0,1] × [−0.25,0.25] × [0,1] that includes two hollow cylinders of radius 0.1. The enclosure is initially filled with 
aluminium in its liquid state at a temperature of 𝑇0 = 1300 K and the material undergoes solidification starting from the two cylinders 
kept at fixed boundary temperature of 𝑇𝑏 = 300 K which is below the freezing temperature of Θ𝑓 = 925 K. The other boundaries of 
the computational domain are also set to the ambient temperature of 𝑇𝑏 = 300 K. Here, the physical properties of aluminium reported 
in [51] and summarized in Table 3 are used in our simulations. An unstructured mesh with around 2020000 tetrahedral elements 
leading to 2813149 dof for 𝑇 , 367699 dof for 𝜙1, and 367699 dof for 𝜙2 is used for the spatial discretization and the timestep is 
fixed to Δ𝑡 = 4 s and based on Table 3, the value of 𝜏 is set to 5 K. 
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Fig. 12. Results for the temperature (first row) and the phase-change variable 𝜙 (second row) obtained for the solidification problem of aluminium in the three-
dimensional domain at three different times 𝑡= 40 s, 𝑡 = 200 s and 𝑡 = 400 s.

Fig. 13. Time evolution of the temperature (left plot) and the phase-change variable 𝜙 (right plot) obtained at the selected points 𝐺1 and 𝐺2 with and without radiation 
for solidification problem of aluminium in the three-dimensional domain.

In Fig. 12 we present the obtained results for the temperature and phase change solutions at three different times 𝑡 = 40 s, 𝑡= 200 s
and 𝑡 = 400 s using the PC-NoR model. The solidification process can be clearly observed in these results as the temperature exhibits 
low thermal fronts propagating within the time from the walls of the two hollow cylinders outwards the surrounding medium. The 
results obtained for the phase-change interfaces clearly illustrate these thermal patterns as the solidification takes place around the 
cylinders in the computational domain. To demonstrate the effect of radiation on the thermal behaviour of this phase-change example, 
we illustrate in Fig. 13 the time evolution of the computed temperature and phase-change interface using both PC-NoR and PC-SP3
models at two different points 𝐺1 and 𝐺2 located in the computational domain at 𝐺1 = (0.5,0,0) and 𝐺2 = (0.5,0,1), respectively. 
It is clear from all these profiles that the inclusion of thermal radiation affects the temperature distribution and it also accelerates 
the solidification process as previously reported in the literature for this class of solidification problems. This can be clearly detected 
from the interface positions shown in Fig. 13 since the interface position in the presence of radiation (plotted in blue colour) is more 
advanced compared to the interface without radiation (plotted in red colour). In summary, for the considered radiation condition, 
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the radiation noticeably accelerates the solidification procedure, and our proposed simplified PC-SP3 model successfully includes 
these radiative effects in the phase change materials by replacing the computationally demanding solver of the integro-differential 
radiative transfer equations by a robust finite element solution of two additional elliptic equations which asymptotically recover the 
full radiative solutions for optically thick media. It should also be mentioned that the efficiency of the proposed mixed finite element 
method is reflected in the reduction in the total number of degrees of freedom and the reduction in the size of associated systems 
of algebraic equations required to be solved at each time step to update the solution. Finally, we also note that the proposed mixed 
finite element method is highly attractive for computational heat transfer.

6. Conclusions

A class of highly efficient mathematical models has been proposed in the present study for solving radiative heat transfer in 
phase-change media. The governing equations for the phase change employ the enthalpy formulation resulting in a single nonlinear 
equation to be solved for the temperature. Using a diffusion scale to measure the optical thickness of the medium under study, an 
asymptotic analysis is carried out on the integro-differential equation of radiative transfer to derive the simplified PN approximations. 
Coupled to equations of the phase-change, this results into a set of partial differential equations of parabolic type for the temperature 
distribution and of elliptic type for the radiative field. The main advantage of these simplified mathematical models lies in the 
fact that the governing equations are independent of the directional coordinates and easy to numerically solve using well established 
computational tools. In addition, under the assumption that the medium is optically thick, the derived approximations asymptotically 
recover the full radiative heat transfer in phase-change for the leading order. To solve the coupled nonlinear equations for radiative 
heat transfer in phase-change media, we have implemented a mixed finite element method for the space discretization along with a 
second-order implicit scheme for the time integration. The resulting nonlinear systems of algebraic equations have been dealt with 
using a Newton-based algorithm.

To examine the performance of the proposed simplified models we have solved several test problems for coupled radiative heat 
transfer and phase change in two- and three-dimensional enclosures including internal melting or solidification processes. Verification 
of the asymptotic analysis has also been carried out by comparing the results obtained using the simplified PN approximations to those 
obtained using the full radiative transfer model for different optical scales. For the considered problems under the selected radiation 
conditions, it has been observed that radiative effects alter both the temperature distributions and the phase-change interfaces during 
the solidification and melting processes. It has been found that using these simplified models, it is possible to account for radiation in 
phase-change problems with a computational cost very significantly lower than solving the intro-differential equations for radiative 
heat transfer. It should be stressed that although we have restricted our study to coupled radiative heat transfer and phase-change 
problems in grey media, the proposed techniques can also be extended to model radiative heat transfer in non-grey absorbing and 
emitting media under phase change. For non-grey media and enclosures with high spatial dimensions, the full radiative transfer 
equations become even more complicated, requiring consideration of not only spatial and time variables but also frequency and 
directional variables. In this case, a multiband approach can be used to derive the simplified PN approximations for the radiative 
transfer equation. However, the additional difficulties that arise when coupled with phase-change problems would be on developing 
a consistent approach to account for the variation of the optical spectrum when the material changes from one phase to another. This 
will be the addressed in a future work. Moreover, in many practical applications of radiative heat transfer in phase-change media, 
the medium is heterogeneous and not isotropic for which the involved parameters are required to depend on the space and direction 
coordinates. These and further issues are also subject of future investigations. Future work will also focus on extending these models 
to solve radiation-convection in phase-change media.
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Appendix A. Boundary conditions for the radiative intensity

On the boundary, the radiative intensity satisfies the following conditions⎧⎪⎨⎪⎩
𝜓(�̂�,𝒔) = 𝜚𝑠(𝒏 ⋅ 𝒔)𝜓(�̂�,𝒔′) +

(
1 − 𝜚𝑠(𝒏 ⋅ 𝒔)

)
𝐵(𝑇𝑏, 𝑛𝑏), (�̂�,𝒔) ∈ 𝜕Ω−

𝑠
∩ 𝜕Ω× 𝕊2,

𝜓(�̂�,𝒔) = 𝜚𝑙(𝒏 ⋅ 𝒔)𝜓(�̂�,𝒔′) +
(
1 − 𝜚𝑙(𝒏 ⋅ 𝒔)

)
𝐵(𝑇𝑏, 𝑛𝑏), (�̂�,𝒔) ∈ 𝜕Ω−

𝑙
∩ 𝜕Ω× 𝕊2,

(A.1)

where 𝒔′ = 𝒔− 2(𝒏 ⋅ 𝒔)𝒏 is the specular reflection of 𝒔 on 𝜕Ω, and 𝜚𝑘 is the reflectivity coefficient of the phase 𝑘 defined according to 
the Fresnel and Snell laws [52]. Therefore, for an incident angle 𝜃𝑘 given by cos𝜃𝑘 = |𝐧 ⋅ 𝒔| and the Snell law

𝑛𝑏 sin𝜃𝑏 = 𝑛𝑘 sin𝜃𝑘,

the reflectivity 𝜚𝑘(𝜇) with 𝜇 = |𝒏 ⋅ 𝒔| is defined as follows

𝜚𝑘(𝜇) =

⎧⎪⎪⎨⎪⎪⎩
1
2

(
tan2

(
𝜃𝑘 − 𝜃𝑏

)
tan2

(
𝜃𝑘 + 𝜃𝑏

) +
sin2

(
𝜃𝑘 − 𝜃b

)
sin2

(
𝜃𝑘 + 𝜃𝑏

)) , if |||sin𝜃𝑘||| ≤ 𝑛𝑏

𝑛𝑘
,

1, otherwise,

(A.2)

where 𝑛𝑏 < 𝑛𝑘 is the refractive index of the surrounding medium and the hemispheric emissivity 𝛼𝑘 is related to the reflectivity 𝜚𝑘 by

𝛼𝑘 = 2𝑛𝑘

1 

∫
0 

(
1 − 𝜚𝑘 (𝜇)

)
𝑑𝜇.

In (A.1), the boundary region 𝜕Ω−
𝑘

is defined as

𝜕Ω−
𝑘
=
{
�̂� ∈ 𝜕Ω𝑘 ∶ 𝒏(�̂�) ⋅ 𝒔 < 0

}
, 𝑘 = 𝑠, 𝑙.

Appendix B. Parameters for boundary conditions in 𝐒𝐏𝐍 equations

In this appendix, we briefly summarize the variables required in the boundary conditions for the coupled SP1-phase change 
equations (20)-(21) and coupled SP3-phase change equations (22)-(23) and for a detailed derivation of these conditions we refer the 
reader to [37]. Hence, define the integrals 𝑅𝑖, 𝑖 = 1,2,… ,7 by

𝑅1 =

1 

∫
0 

𝜇𝜚(−𝜇)𝑑𝜇, 𝑅2 =

1 

∫
0 

𝜇2𝜚(−𝜇)𝑑𝜇, 𝑅3 =

1 

∫
0 

𝜇3𝜚(−𝜇)𝑑𝜇, 𝑅4 =

1 

∫
0 

𝜇3(𝜇)𝜚(−𝜇)𝑑𝜇,

𝑅5 =

1 

∫
0 

3(𝜇)𝜚(−𝜇)𝑑𝜇, 𝑅6 =

1 

∫
0 

𝑃1(𝜇)3(𝜇)𝜚(−𝜇)𝑑𝜇, 𝑅7 =

1 

∫
0 

𝑃3(𝜇)3(𝜇)𝜚(−𝜇)𝑑𝜇,

where 𝜚 is the reflectivity function given by (A.2), 1 and 3 are Legendre polynomials of order 1 and 3 defined as

1(𝜇) = 𝜇, 3(𝜇) =
5
2
𝜇3 − 3

2
𝜇.

Hence, the parameter 𝜁 required in (21) for boundary conditions of the coupled SP1-phase change equations is given by

𝜁 =
2 + 3𝑅2
1 − 2𝑅1

.

The constants appeared in (23) for boundary conditions of the coupled SP3-phase change equations (22)-(23) are summarized as

𝜇2
1 =

1
7

(
3 − 2

√
6
5

)
, 𝛾1 =

5
7

(
1 − 3

√
6
5

)
,

𝜇2
2 =

1
7

(
3 + 2

√
6
5

)
, 𝛾2 =

5
7

(
1 + 3

√
6
5

)
,

𝜛1 =
𝐶1𝐷4 −𝐶4𝐷1
𝐶3𝐷4 −𝐷3𝐶4

, 𝛽1 =
𝐶3𝐷1 −𝐶1𝐷3
𝐶3𝐷4 −𝐷3𝐶4

, 𝜂1 =
𝐷4𝜌1 −𝐶4𝜌3
𝐶3𝐷4 −𝐷3𝐶4

,

𝜛2 =
𝐶3𝐷2 −𝐶2𝐷3
𝐶3𝐷4 −𝐷3𝐶4

, 𝛽2 =
𝐶2𝐷4 −𝐶4𝐷2
𝐶3𝐷4 −𝐷3𝐶4

, 𝜂2 =
𝐶3𝜌3 −𝐷3𝜌1
𝐶3𝐷4 −𝐷3𝐶4

,
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where

𝐴1 =
1 − 2𝑅1

4 
, 𝐵1 = −

1 + 8𝑅5
16 

, 𝐶1 =𝑤0(𝛾2𝐴1 −𝐴2), 𝐷1 =𝑤0(𝛾2𝐵1 −𝐵2),

𝐴2 =
5(1 − 8𝑅3)

16 
, 𝐵2 =

5(1 − 8𝑅6)
16 

, 𝐶2 =𝑤0(−𝛾1𝐴1 +𝐴2), 𝐷2 =𝑤0(−𝛾1𝐵1 +𝐵2),

𝐴3 =
1 + 3𝑅2

6 
, 𝐵3 =

3𝑅4
6 

, 𝐶3 =𝑤0(𝛾2𝐴3 −𝐴4), 𝐷3 =𝑤0(𝛾2𝐵3 −𝐵4),

𝐴4 =𝑅4 +
2
9
(1 + 3𝑅2), 𝐵4 =𝑅4 +

3 
14

(1 + 7𝑅7), 𝐶4 =𝑤0(−𝛾1𝐴3 −𝐴4), 𝐷4 =𝑤0(−𝛾1𝐵3 +𝐵4),

with 𝑤0 =
7 
36

√
6
5

, 𝜌1 and 𝜌3 are given by

𝜌1 =
(
1 − 2𝑅1

)
𝜋 and 𝜌3 = −

(1
4
+ 2𝑅5

)
𝜋.

To approximate the one-dimensional integrals 𝑅𝑖 , 𝑖 = 1,2,… ,7, we use the Gauss-Legendre quadrature. It should be noted that the 
above parameters depend only on the optical reflectivity of the material where the radiation needs to be estimated and therefore, they 
can be calculated in advance and stored to be used during the simulation process. It is also evident that for non-reflective materials 
(𝜚 = 0) these variables reduce to simple constants obtained by setting 𝑅𝑖 = 0, for 𝑖= 1,2,… ,7 in the above equations.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.
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