
Academic Editor: Sergei Odintsov

Received: 31 January 2025

Revised: 16 February 2025

Accepted: 18 February 2025

Published: 20 February 2025

Citation: Ismail–Sutton, S.; Scholle,

M.; Gaskell, P.H. Non-Relativistic and

Relativistic Lagrangian Pairing in

Fluid Mechanics Inspired by Quantum

Theory. Symmetry 2025, 17, 315.

https://doi.org/10.3390/

sym17030315

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Non-Relativistic and Relativistic Lagrangian Pairing in Fluid
Mechanics Inspired by Quantum Theory
Sara Ismail–Sutton 1,†, Markus Scholle 2,*,† and Philip H. Gaskell 1,*,†

1 Department of Engineering, Durham University, Durham DH1 3LE, UK; sara.r.ismail-sutton@durham.ac.uk
2 Institute for Flow in Additively Manufactured Porous Media (ISAPS), Heilbronn University,

Max–Planck–Straße 39, D–74081 Heilbronn, Germany
* Correspondence: markus.scholle@hs-heilbronn.de (M.S.); p.h.gaskell@durham.ac.uk (P.H.G.)
† These authors contributed equally to this work.

Abstract: The pairing of non-relativistic and relativistic Lagrangians within the context of
fluid mechanics, advancing methodologies for constructing Poincare-invariant Lagrangians,
is explored. Through leveraging symmetries and Noether’s theorem in an inverse frame-
work, three primary cases are investigated: potential flow, barotropic flow expressed in
terms of Clebsch variables, and an extended Clebsch Lagrangian incorporating thermo-
dynamic effects. To ensure physical correctness, the eigenvalue relation of the energy–
momentum tensor, together with velocity normalisation, are applied as key criteria. The
findings confirm that the relativistic Lagrangians successfully reduce to their non-relativistic
counterparts in the limit c → ∞. These results demonstrate a systematic approach that
enhances the relationship between symmetries and variational formulations, providing the
advantage of deriving Lagrangians that unify non-relativistic and relativistic theories.

Keywords: Lagrange formalism; Galilean invariance; Poincaré invariance; inverse
variational problems; Hamilton’s principle; fluid mechanics

1. Introduction
Lagrange formalism (LF) is one of the most sophisticated ways of describing the

dynamics of physical systems, encapsulating their behaviour within a single scalar function.
The Lagrangian gives rise to Hamilton’s action principle: real processes are distinguished
from virtual processes by variation of the action integral. For discrete systems, particularly
in the realm of conservative Newtonian mechanics, this framework has been rigorously
formalised, providing a systematic and universal approach [1]. However, extending this
methodology to continuum systems and field theories, for example, Schrödinger’s the-
ory [2], the thermodynamics of irreversible processes [3] or fluid mechanics [4], presents
significant challenges. A general prescription for constructing Lagrangians is not well
known in such cases, for either non-relativistic or relativistic scenarios.

An early contribution to this area is the work of Lin [5], who showed that a variational
principle for ideal compressible flow could be formulated with a Lagrangian density
defined as the kinetic energy minus the potential energy. However, it was found that
the resulting velocity field cannot be rotational in the case of isentropic flow, implying
it to be irrotational. To eliminate this problem, Bateman [6] introduced additional scalar
fields, often referred to as Clebsch potentials [7–9]. First, proposed by Clebsch in the 1850s,
the Clebsch variables prove to be a useful mathematical tool for formulating fluid mechanics
within the framework of LF. In fact, Scholle [10], Scholle et al. [11] found a mathematical
proof that the Clebsch representation of the velocity field in a Clebsch form is nothing
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but a compelling consequence of Galilean symmetry and the application of Noether’s
theorem to the same: by which densities and current densities of the respective physical
observables—namely energy, momentum and mass—are well defined and thus ultimately
so too is the flow field, which can be understood as the quotient of momentum density
and mass density. The Clebsch formulation therefore results naturally from a canonical
framework for describing fluid mechanics in LF. Later, Lin [12] incorporated more scalar
fields than those introduced in the work of Bateman [6], which Seliger and Whitham [4]—
who applied the Clebsch transformation to many applications within continuum mechanics,
but still with the restriction that the flow is inviscid—and Schutz Jr [13] deemed to be
redundant, while initially applied to inviscid flows, a generalised Clebsch transformation
for viscous fluid mechanics was explored by Scholle and Marner [14] and Cartes and
Descalzi [15]. Over time, the Clebsch transformation has found applications in a variety of
fields, including electrodynamics [16], magnetohydrodynamics [17], and even quantum
theory, particularly in the quantisation of vortex tubes [18].

The question arises as to how the above approaches, in general, and the construction
scheme of [10] for Lagrangians with Galilean invariance, can be modified and applied also
to relativistic systems that are subject to Lorentz invariance? A first step toward this aim
was achieved recently [19] in the field of quantum theory, involving an extension of the
scheme developed in [10] to assign a Lorentz-invariant Lagrangian to each Lagrangian with
Galilean invariance, and vice versa via simple substitution rules, applicable to a common
’blueprint Lagrangian’. This was exemplified for Schrödinger’s and Klein–Gordon’s (KG)
Lagrangians, showing that both form an associated pair, i.e., they can be considered as just
two different manifestations—one with Galilean, the other with Lorentz, invariance—of
the same blueprint Lagrangian. This remarkable result from quantum theory serves as
inspiration with respect to fluid mechanics, forming the main framework of the work
reported here. The specific aim was to obtain a Lorentz-invariant Lagrangian density from
a known Lagrangian density with Galilean invariance, exemplified through the problem
of simple potential flow, Clebsch’s Lagrangian for barotropic flow and finally Seliger and
Whitham [4]’s Lagrangian, incorporating thermodynamic effects. While the motivation for
this study is the completion of the physical picture, large-scale fluid flows under relativistic
conditions do indeed occur, for example, in astrophysical flows such as accretion disks
around black holes [20–23].

This paper is structured as follows: Section 2 provides a brief review of how the
concept of associated pairs has been applied previously to quantum theory. In Section 3, this
platform concept is modified and advanced for application in the fields of non-relativistic
and relativistic fluid mechanics, highlighting the challenges of constructing universal
variational formulations. The focus is on formulating velocity normalisation and the
eigenvalue relation of the energy–momentum tensor to obtain differential equations for
the Lagrangian by leveraging symmetries through Noether’s theorem. In Section 4, the
three non-relativistic Lagrangians mentioned above are derived via the respective blueprint
form of their associated relativistic counterparts, ensuring consistency between the two.
Section 5 consists of a detailed discussion of the findings’ implications, a comparison with
the existing literature, potential limitations, and a summary of the key contributions to the
field. Conclusions and future perspectives of this work are provided in Section 6.
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2. A Short Review of Associated Pairs in Quantum Theory
2.1. General Scheme for Lagrangians Based on Galilean Invariance

In the paper [10] a general scheme for Lagrangians was established via an inverse
treatment of Noether’s theorem, starting purely from the requirement of Galilean invariance
and the constitutive relation:

p⃗ = ϱu⃗ , (1)

between momentum density p⃗ and mass flux density j⃗ = ϱu⃗, both Noether observables.
Any Lagrangian satisfying Galilean invariance and the equivalence via (1) of momentum
density and mass flux density, without loss of generality written in terms of N independent
fields, ψi = (ϕ, ϑ1, . . . , ϑN−1), is specified according to

ℓ(ψi, ∂tψ,∇ψ) = L
(

ω, ϑj,
⊙
ϑj, ∂ϑj

)
, (2)

as a function L, subsequently termed a blueprint Lagrangian [19], of the following expres-
sions:

ω → ∂ϕ

∂t
+

1
2
(∇ϕ)2, (3)

⊙
ϑj → ∂ϑj

∂t
+∇ψ · ∇ϑj , (4)

∂ϑj → ∇ϑj , (5)

and invariant with respect to the Galilean group, as well as the fields ϑj themselves.
Moreover, although not initially required, the gauge transformation

ϕ → ϕ′ = ϕ − ε , (6)

with an arbitrary constant ε is a further symmetry, since it has no effect on the expressions
(3)–(5) and therefore on the Lagrangian. Since this symmetry is not part of the Galilean
group, it is nevertheless a consequence of the same; because the above scheme follows from
it, (6) is called the induced gauge transformation. This symmetry is crucial, since it gives
rise for the definition of the mass density ϱ and flux density ϱu⃗ via Noether’s theorem as

ϱ = − ∂L
∂ω

, (7)

ϱu⃗ = p⃗ = ϱ∇ϕ − ϱ∇ϕ − ∂L

∂
⊙
ϑj

∇ϑi . (8)

According to (8), the velocity field takes a Clebsch-like form, u⃗ = ∇ϕ + (· · · )∇ϑi, automat-
ically.

2.2. Modified Scheme for Relativistic Lagrangians

More recently, the above framework was modified toward encompassing relativistic
systems [19] where Lorentz boosts the fundamental symmetry of spacetime in relativistic
theories and replaces the Galilei boosts. This is achieved by modifying the substitution

rules (3)–(5) for the expressions ω,
⊙
ϑj and ∂ϑj, streamlining the construction process as

follows:
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ω → c2

2
− 1

2
∂αϕ∂αϕ , (9)

⊙
ϑj → −∂αϕ∂αϑj , (10)

∂ϑj →

∂νϑj , covariant use

−∂νϑj , contravariant use
, (11)

where (+,−,−,−) is used as a metric signature. Note that the Lagrangian resulting from
the above substitutions is a Lorentz-scalar. Since it also has no explicit dependence on the
coordinates xα it is, more generally, Poincaré-invariant.

As a result of the above adjustments, (9)–(11), the analytical calculation formulae for
the Noether observables also change compared to the Galilean case: with respect to the
induced gauge transformation (6), which remains a symmetry of the Lagrangian in the
relativistic case also, the particle current density is obtained as

jµ =
∂L
∂ω

∂µϕ +
∂L

∂
⊙
ϑj

∂µϑj , (12)

while with respect to space–time translations xµ → x′µ = xµ + εµ the energy–momentum
tensor becomes

Tµν =
∂L

∂(∂µϑj)
∂νϑj − ∂µϕjν − ∂L

∂
⊙
ϑj

∂µϑj∂νϕ − ηµνL . (13)

In contrast to the Galilean case, where the identity p⃗ = ϱu⃗ is an automatic outcome
of the Lagrangian’s analytic form, there is no obvious relationship between the particle
current density (12) and the energy–momentum tensor (13) in the relativistic case.

Thus, starting from a blueprint Lagrangian L
(

ω, ϑj,
⊙
ϑj, ∂ϑj

)
, a pairing of two La-

grangians can be generated, one with Galilean invariance from utilising the substitution
rules (3)–(5), the other one with Poincaré invariance from utilising the substitution rules
(9)–(11), as illustrated schematically in Figure 1.

2.3. Application to Schrödinger and KG Theory

To exemplify the use of the above methodical approach, the following result from [19]
is reviewed. Consider Schrödinger’s Lagrangian for a free particle [24]:

ℓ(ψ, ψ̄, ∂ψ, ∂ψ̄) =
h̄
2i
(ψ∂tψ̄ − ψ̄∂tψ)−

h̄2

2m
∇ψ · ∇ψ̄ , (14)

in terms of the state function ψ and its complex conjugate, ψ̄. By applying polar decompo-
sition to the complex state function,

ψ =

√
ϱ

m
exp

(
i
m
h̄

ϕ
)

, ψ̄ =

√
ϱ

m
exp

(
−i

m
h̄

ϕ
)

, (15)

the so-called Madelung picture [25] is established as an alternative form, also known as the
hydrodynamic picture of quantum theory:

ℓ = −ϱ

[
∂ϕ

∂t
+

1
2
(∇ϕ)2

]
− h̄2

8m2
(∇ϱ)2

ϱ
. (16)
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jµ = ∂L
∂ω ∂µϕ + ∂L

∂
⊙
ϑj

∂µϑj

Tµν = ∂L
∂(∂µϑj)

∂νϑj − jµ∂νϕ

− ∂L

∂
⊙
ϑj

∂µϕ∂νϑj − Lηµν

no certain relationship between
current jµ and EM–tensor Tµν

ϱ = − ∂L
∂ω

p⃗ = ϱ∇ϕ − ∂L

∂
⊙
ϑj
∇ϑi

p⃗ = ϱu⃗ (automatically fulfilled!)

non-relativistic
ω → ϕ̇ + 1

2 (∇ϕ)2

⊙
ϑ→ ϑ̇ +∇ϕ · ∇ϑ

relativistic
ω → c2

2 − 1
2 ∂µϕ∂µϕ

⊙
ϑ→ −∂µϕ∂µϑ

L
(
ω, ϑ,

⊙
ϑ, ∂ϑ

)

Noether’s theoremNoether’s theorem

Figure 1. Schematic of the generation of a Lagrangian pair from a blueprint Lagrangian inspired by
and based on quantum theory. This scheme applies in both directions, i.e., it allows the construction of
a relativistic counterpart straight forwardly from a given non-relativistic Lagrangian, and vice versa.

By identifying the equivalent three expressions, (3)–(5), in the above Lagrangian, its
blueprint form is determined straight-forwardly as

L(ω, ϱ, ∂ϱ) = −ϱω − h̄2

8m2
(∂ϱ)2

ϱ
. (17)

Conversely, by applying the replacement rules, (9)–(11), to the blueprint Lagrangian
(17), the Poincaré invariant Lagrangian

ℓ =
1
2

ϱ∂αϕ∂αϕ +
h̄2

8m2
∂αϱ∂αϱ

ϱ
− ϱc2

2
(18)

is obtained. By inversion of transformation (15), a corresponding form in terms of a complex
state function ψ and its complex conjugate results:

ℓ =
h̄2

2m
∂αψ̄∂αψ − mc2

2
ψ̄ψ , (19)

which is obviously the Klein–Gordon Lagrangian [26], apart from a factor of 2.
The above framework, successfully applied to quantum mechanics, identifies the

Schrödinger and the Klein–Gordon (KG) Lagrangians as an associated pair of non-
relativistic and relativistic Lagrangians, respectively [19].

3. Methodical Approach for Fluid Mechanics
3.1. Motivation

One obvious potential use of the above methodology is to identify an as yet unknown
conjugate counterpart to a known Lagrangian with either Galilean or Lorentz invariance.
In this sense, the focus of this paper is on the Lagrangian proposed by Seliger and Whitham
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[4] for inviscid, compressible fluid flow, without heat conduction, which in the general
scheme (2) is, according to [10], given by the following blueprint form:

L = −mn
[

ω + α
⊙
β −s

⊙
ϑ +

1
2
(α∇β − s∇ϑ)2 − e(n, s)

]
, (20)

in terms of the Clebsch variables α, β, the specific entropy s and another potential field ϑ,
termed the thermasy [27] the material time derivative of which is the temperature. The aim
is to build on the foundational contributions of [10,19] and identify a relativistic counterpart
to this well-known classical, non-relativistic, Lagrangian. However, a direct application of
the methodology from [19] can be used by applying the transformation rules to (20), would
not achieve the intended outcome. Unlike in quantum mechanical systems such as the Klein–
Gordon theory, where charge flux rather than matter flux is considered, fluid mechanics
imposes additional constraints: in the case of Galilean invariance, the momentum density
resulting from Noether’s theorem must coincide with Noether’s mass flux density according
to (1), which is automatically fulfilled by the scheme (2).

In relativistic fluid mechanics, the conventional approach, which primarily relies
on the energy-momentum tensor [28,29], is not entirely rigorous, as the definition of an
energy-momentum tensor assumes the existence of an explicit Lagrangian density. Also,
current relativistic fluid approaches typically use Lagrange multipliers to incorporate the
mass conservation, velocity normalisation and form of the perfect fluid energy–momentum
tensor. Alternatively, these constraints are incorporated when taking variations of the
Lagrangian to obtain the Euler–Lagrange equations, or a combination of both methods is
used [30–34]. In contrast, the approach here is to integrate these vital physical constraints
directly into the Lagrangian formulation, by deriving the Lagrangian using an inverse
Noether approach, constructed based on the required conservation laws and symmetries.
By formulating the eigenvalue relation for the energy–momentum tensor and its associated
eigenvector velocity, a more consistent and fundamental connection between the energy–
momentum tensor and the Lagrangian density is established. The constitutive relation (1)
is replaced by the eigenvalue relationship:

TµνUν = n(mc2 + e)Uµ , (21)

associated with the energy–momentum tensor Tµν, with the velocity Uν as its associated
eigenvector and the eigenvalue n(mc2 + e), which corresponds to the energy density as
measured in the rest frame of the fluid [35–37].

Physically, this ensures that the flow of energy–momentum along the direction of
the fluid’s 4-velocity is consistent with the system’s dynamics and that thermodynamic
principles are respected. Thermodynamic properties, such as pressure and density, are
encoded in the energy–momentum tensor. Without condition (21), the energy–momentum
tensor could describe arbitrary distributions that are physically inconsistent with the flow
of matter, or violate causality. Additionally, a normalisation condition on the velocity,
UµUµ = 1, is introduced to preserve the invariant spacetime interval, maintain proper time
parametrisation, and enforce causality.

The outcome is a novel method for constructing Lagrangians that preserve both non-
relativistic and relativistic correspondences. In order to address the above-mentioned
shortcomings, the framework is generalised by introducing c as an additional parameter in
the blueprint Lagrangian, which replaces the following:

L = L

(
ω, ϑj,

⊙
ϑj, ∂ϑj

)
,
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by the more general form:

L = L

(
ω, ϑj,

⊙
ϑj, ∂ϑj; c

)
,

such that the limit c → ∞ exists and delivers the Galilean blueprint form. The gener-
alised approach derives the analytical structure of the Lagrangian from first principles by
leveraging symmetries and the inverse Noether theorem. The translation invariance is
employed to obtain the canonical energy–momentum tensor, while the “induced gauge”
symmetry (6) is used to define the particle density and the canonical velocity. Noether’s
theorem [38] assigns to each parameter of a symmetry of the Lagrangian represented by a
Lie group, a homogeneous balance equation. Moreover, the conservation equation related
to the induced gauge takes the following form for Lagrangians represented by the general
scheme (2):

∂ϱ

∂t
+∇ · j⃗ = 0 , (22)

where jα = − ∂L
∂(∂αϕ)

, mass flux density j⃗ = (j1, j2, j3), with the mass density given by ϱ = j0
c .

Following the established relativity theory, the mass density is expressed as ϱ = mn, where
n and m are the particle density and rest mass, respectively.

3.2. The Canonical Velocity and Normalisation

Considering that the square of the norm of the canonical particle current density (12)
gives

jµ jµ = (mn)2uµuµ = (mn)2 ,

where the second equality uses the following normalisation: uµuµ = 1. By defining the
canonical velocity as

Uµ :=
jµ

c
√

jµ jµ
, (23)

it is automatically normalised. Alternatively, in terms of the variables given by Equations
(9) and (10), we have

Uµ = − 1
cnm

−∂L
∂ω

∂µϕ − ∂L

∂
⊙
ϑj

∂µϑj

 . (24)

For the analysis of compressible flow, the Lagrangian is simplified by assuming it
does not depend on density gradients: ∂ℓ

∂(∂µn) = 0. This approach is consistent with non-
relativistic, fluid mechanics formulations, such as [4,39–41]. An overview of the extended
framework is illustrated schematically in Figure 2.

Compared to the framework for quantum theories in Figure 1, the differences are
outlined as follows: (i) the normalisation condition for the velocity, (ii) the eigenvalue
relationship, (iii) the explicit dependence of the blueprint Lagrangian on c, and (iv) the
consideration of the gauge symmetry of the Clebsch variables. The latter is explained in
detail in Section 4.2.2.
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mncUµ = ∂L
∂ω ∂µϕ + ∂L

∂
⊙
ϑj

∂µϑj

Tµν = ∂L
∂(∂µϑj)

∂νϑj − mncUµ∂νϕ

− ∂L

∂
⊙
ϑj

∂µϕ∂νϑj − Lηµν

UµUµ = 1
TµνUν = n

(
mc2 + e

)
Uµ

ϱ = − ∂L
∂ω

p⃗ = ϱ∇ϕ − ∂L

∂
⊙
ϑj
∇ϑi

p⃗ = ϱu⃗ (automatically fulfilled!)

non-relativistic
ω → ϕ̇ + 1

2 (∇ϕ)2

⊙
ϑ→ ϑ̇ +∇ϕ · ∇ϑ

relativistic
ω → c2

2 − 1
2 ∂µϕ∂µϕ

⊙
ϑ→ −∂µϕ∂µϑ

L
(
ω, ϑ,

⊙
ϑ, ∂ϑ; c

)

gauge symmetry
ϕ → ϕ + f (α, β)
α → g(α, β)
β → h(α, β)

lim
c→∞

Noether’s theoremNoether’s theorem

Figure 2. Schematic of the generalised framework for problems in continuum and fluid mechanics.
Additional relationships for the mass current and energy–momentum tensor apply.

4. Results
To demonstrate the utility and ease of use of the analysis established in Section 3, three

fluid mechanics examples of increasing complexity are considered below.

4.1. A Potential Flow Lagrangian

The aim is to construct a Lagrangian for potential flow that is uα = ∂αϕ, which
satisfies (24), (21) and is Poincaré-invariant. In the case of potential flow, L = L(∂µϕ, mn).
The standardised normalised velocity Uµ is initially assumed to be

Uµ =
−∂µϕ

| ∂ϕ | =
−∂µϕ√
∂αϕ∂αϕ

=
−∂µϕ√
c2 − 2ω

. (25)

Equating the above to (24), since it is common in relativistic formulations to assume the
canonical velocity equals the physical velocity (and the same with the energy–momentum
tensor), gives

Uµ = − ∂µϕ√
c2 − 2ω

= −
(
− 1

nmc
∂L
∂ω

∂µϕ

)
,

which, when integrating with respect to ω, leads to

L = nmc
√

c2 − 2ω + L1(mn) ,

with an integration function L1(mn) to be determined. The latter is achieved via the
eigenvalue relationship (21). The canonical energy–momentum tensor (13) results in

Tµν = mnc
√

∂γϕ∂γϕ[UµUν − ηµν]− L1(mn)ηµν , (26)

and the associated eigenvalue relationship (21) yields, considering the normalisation of
velocity, the following:

−L1(mn)Uµ = n
(

mc2 + e(n)
)

Uµ , (27)
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thus implying

f (mn) = −n
(

mc2 + e(n)
)

. (28)

Therefore, the blueprint Lagrangian for a potential flow results in

L = mnc
√

c2 − 2ω − n
(

mc2 + e(n)
)

. (29)

The individual form of the inner energy per particle, e(n), is subject to thermodynamic
considerations and not discussed here. The non-relativistic limit and its interpretation,
along with the physical significance of the terms, are discussed as part of the third example
investigated subsequently, since the limit can be obtained as a simplified case of the latter.

4.2. Barotropic Inviscid Flow in Clebsch Variables

The Clebsch formulation for baratropic flow, in its simplest form, excludes thermody-
namic effects, such as variations in entropy, and provides a useful stepping stone to the
ultimate example considered.

4.2.1. Initial Assumptions and Integration

The Lagrangian presented here is constructed to respect the symmetries (24), (21),
to be Poincaré-invariant. Additionally, it is required of the Lagrangian that it satisfies the
Clebsch gauge conditions, specified below in Section 4.2.2. Extending the variables which
describe the velocity from ϕ to incorporate the Clebsch variables, α and β, the Lagrangian
can be expressed as a function of the following variables:

ℓ(ϕ, ∂ϕ, α, β, ∂β, mn) = L(ω, α, β,
⊙
β, ∂β, mn) , (30)

since in the Clebsch parametrisation it is often assumed that the gradient of one of the
conjugate variables vanishes, it has been taken here that ℓ has no dependence on ∂α. The
velocity expression, (24) becomes

Uµ = − 1
cmn

− ∂L
∂ω

∂µϕ − ∂L

∂
⊙
β

∂µϕ

 . (31)

The starting assumed form of Uµ for the standardised, normal velocity is

Uµ =
−(∂µϕ + α∂µβ)√

(∂αϕ + α∂αβ)(∂αϕ + α∂αβ)
. (32)

Using (9) and (10), the term in the denominator of the above can be expressed as:

(∂λϕ + α∂λβ)
(

∂λϕ + α∂λβ
)
= c2 − 2ω − 2α

⊙
β +α2∂λβ∂λβ , (33)

and Equation (32) becomes

Uµ = − ∂µϕ + α∂µβ√
c2 − 2ω − 2α

⊙
β +α2∂λβ∂λβ

. (34)
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Equating (34) and (31) gives

− ∂µϕ + α∂µβ√
c2 − 2ω − 2α

⊙
β +α2∂λβ∂λβ

=
1

cnm

 ∂L
∂ω

∂µϕ +
∂L

∂
⊙
β

∂µβ

 . (35)

Since ∂µϕ and ∂µβ are 4-gradients of independent fields, the above equation implies
the following two identities via a comparison of coefficients:

∂L
∂ω

= − mnc√
c2 − 2ω − 2α

⊙
β +α2∂λβ∂λβ

, (36)

∂L

∂
⊙
β

= − mncα√
c2 − 2ω − 2α

⊙
β +α2∂λβ∂λβ

, (37)

and the solution of which is obviously

L = mnc

√
c2 − 2ω − 2α

⊙
β +α2∂λβ∂λβ + L2(α, β, ∂β, mn) , (38)

with an integration function L2(α, β, ∂β, mn). In order to determine the latter, additional
considerations regarding the gauge symmetry of the Clebsch variables are required (see
the grey box in Figure 2), which are set out below.

4.2.2. Gauge Condition

In addition to the Poincaré group and the induced gauge symmetry, the Lagrangian has
to be invariant with respect to the symmetry group of Clebsch variables’ gauge conditions.
The analysis is based on Schönberg [42]’s finding for the Clebsch transformation u⃗ =

∇ϕ + α∇β of the classical velocity field, namely that this potential representation is not
unique because one can redefine ϕ, α and β using the following transformations:

ϕ → ϕ + f (α, β) ,

α → g(α, β) , (39)

β → h(α, β) ,

leading to an identical velocity field if and only if the following differential equations are
satisfied [42]:

∂ f
∂β

+ g
∂h
∂β

= α , (40)

∂ f
∂α

+ g
∂h
∂α

= 0 . (41)

Note that as long as the velocity field of classical physics is considered, the three
functions f , g, h should also depend explicitly on time. However, since this would obviously
lead to problems with the relativistic formulation, this is ruled out from the outset.
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The analysis is directed at how the above transformation acts on the Lagrangian (38),
particularly focusing on the key term, as follows:

∂λϕ + α∂λβ →∂λ[ϕ + f (α, β)] + g(α, β)∂λh(α, β)

= ∂λϕ +
∂ f
∂α

∂λα +
∂ f
∂β

∂λβ + g
[

∂h
∂α

∂λα +
∂h
∂β

∂λβ

]
,

= ∂λϕ +

[
∂ f
∂β

+ g
∂h
∂β

]
︸ ︷︷ ︸

α

∂λβ +

[
∂ f
∂α

+ g
∂h
∂α

]
︸ ︷︷ ︸

0

∂λα ,

recognising that the latter is invariant. As a consequence of this and Equation (33), the ex-

pression c2 − 2ω − 2α
⊙
β +α2∂λβ∂λβ under the root sign of the Lagrangian (38) is also

invariant and therefore the entire first term in (38). Thus, the same gauge transformation
applies in the relativistic case as in the non-relativistic one.

For the overall invariance of the Lagrangian (38), the second term L2(α, β, ∂β, mn)
must also be invariant in its own right, as follows:

L2

(
h(α, β), g(α, β),

∂h
∂α

∂α +
∂h
∂α

∂β, mn
)
= L2(α, β, ∂β, mn) . (42)

By taking the derivative of above gauge condition with respect to ∂α, ∂L2/∂(∂β) = 0
eventually follows. Therefore, L2 = L2(α, β, mn). Since, obviously, no pure algebraic com-
bination of α and β can be invariant with respect to the above gauge group, the conclusion
is

L2 = L2(mn) . (43)

Note that the fulfilment of the gauge symmetry guarantees the equations of motion
and the physical observables, such as the velocity and energy–momentum tensor, which
are also invariant with respect to the gauge transformation of Clebsch variables.

4.2.3. Eigenvalue Relationship and Solution

According to (13), the energy–momentum tensor for the Lagrangian (38), with refer-
ence to (43), reads

Tµν = nmc

√
c2 − 2ω − 2α

⊙
β +α2∂λβ∂λβ [UµUν − ηµν]− ηµνL2(mn) , (44)

and the eigenvalue relationship (21) takes the same form (27) as in case of potential flow
analysed above, implying the following:

L2(mn) = −n
(

mc2 + e(n)
)

,

and, therefore, the final form of the Lagrangian is

L = nmc

√
c2 − 2ω − 2α

⊙
β +α2∂λβ∂λβ − n

(
mc2 + e(n)

)
. (45)

The non-relativistic limit of the above, its interpretations, and the physical significance
of terms, are discussed together with analysis of the more general example explored below.

4.3. A Lagrangian for Thermo-Fluid Dynamics

Here, thermal degrees of freedom are included by the introduction of an additional
pair of variables, entropy, s, and thermasy ϑ. In [43], thermasy was considered as enter-
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ing the Lagrangian via a Lagrange multiplier corresponding to the entropy–conservation
constraint. The term thermasy was coined by [27], as the material time integral of the
temperature T: D

t ϑ = T. With these additional two variables, the Lagrangian is a function

of L(ω, α, β,
⊙
β, ∂β,

⊙
ϑ, ∂ϑ, s, mn). Even without modelling heat conduction or dissipation,

the inclusion of entropy and thermasy in the Lagrangian enables the description of isen-
tropic but thermodynamically influenced flows. These are flows where the entropy of
each fluid element remains constant along its trajectory, while different fluid elements can
have varying entropy values. Therefore, thermal effects can still impact the flow through
baroclinic pressure–density relationships that depend on entropy, and internal energy
changes are accounted for. As was the case with α, s is treated in a similar way in that it is
assumed that ∂L

∂(∂µs) = 0. The assumed form of Uµ for the standardised, normalised velocity
is

Uµ =
−(∂µϕ + α∂µβ − s∂µϑ)√

(∂αϕ + α∂αβ − s∂αϑ)(∂αϕ + α∂αβ − s∂αϑ)
. (46)

Note that using Equations (9) and (10) leads to

(∂αϕ + α∂αβ − s∂αϑ)(∂αϕ + α∂αβ − s∂αϑ)

= −(2ω − c2 + 2α
⊙
β −α2∂νβ∂νβ − s2∂νϑ∂νϑ − 2s

⊙
ϑ) + 2αs∂νβ∂νϑ

= c2 − 2ω − 2α
⊙
β +2s

⊙
ϑ +(α∂µβ − s∂µϑ)

(
α∂µβ − s∂µϑ

)
,

Equation (46) can be expressed as

Uµ =
−(∂µϕ + α∂µβ − s∂µϑ)√

c2 − 2ω − 2α
⊙
β +2s

⊙
ϑ +(α∂µβ − s∂µϑ)

(
α∂µβ − s∂µϑ

) . (47)

Since the mathematical problem to be solved here corresponds largely to that of
the previous Section 4.2, except for an additional pair of fields, the following steps are
essentially the same as before. For details, see Appendix A.1. The resulting Lagrangian is
shown as follows:

L = nmc

√
c2 − 2ω − 2α

⊙
β +2s

⊙
ϑ +(α∂µβ − s∂µϑ)

(
α∂µβ − s∂µϑ

)
− n

(
mc2 + e(n, s)

)
, (48)

has a similar structure to the examples discussed above, fulfilling all requirements, par-
ticularly the eigenvalue relationship and gauge invariance. In contrast to the barotropic
example outlined before, the inner energy per particle is a function of both n and s (baro-
clinic flow). Its individual form is subject to thermodynamics.

4.4. Non-Relativistic Limit

The non-relativistic limit, c → ∞, is now taken to ensure that the Lagrangian behaves
consistently. By factoring out c2 and using a Taylor expansion in the form of

√
1 + x ≈ 1+ x

2 ,
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since all terms divided by c2 are small, the first term in the Lagrangian can be approximated
as

L = nmc2

√
1 − 2

ω

c2 − 2
α

c2

⊙
β +2

s
c2

⊙
ϑ +

1
c2 (α∂νβ − s∂νϑ)(α∂νβ − s∂νϑ)− n

(
mc2 + e(n, s)

)

≈ nmc2

1 − ω

c2 − α
⊙
β

c2 +
s
⊙
ϑ

c2 +
1

2c2 (α∂νβ − s∂νϑ)(α∂νβ − s∂νϑ)

− n
(

mc2 + e(n, s)
)

.

Now, writing out the four-derivative ∂νϕ∂νϕ = 1
c2 (∂tϕ)2 − (∇ϕ)2 in the non-relativistic

limit leads to ∂νϕ∂νϕ → −(∇ϕ)2. Substituting this into the above expression gives

L ≈ nmc2

1 − ω

c2 − α
⊙
β

c2 +
s
⊙
ϑ

c2 +
αs∇β∇ϑ

c2 − α2(∇β)2

2c2 − s2∂νϑ∂νϑ

2c2


− n

(
mc2 + e(n, s)

)
= −mn

[
ω + α

⊙
β −s

⊙
ϑ +

1
2
(α∇β − s∇ϑ)2 − e(n, s)

]
, (49)

and, therefore, we obtain the reproduction of the Galilean blueprint form (20) of Seliger and
Whitham [4]’s Lagrangian. This confirms that in the non-relativistic limit, the Lagrangian
reduces appropriately to a kinetic term and an internal energy term, with the rest energy
naturally being cancelled out. This is in agreement with [4], confirming that the two
Lagrangians form an associated pair, supporting the validity of the methodology. Naturally,
the same holds for the Clebsch parametrisation case, obtained by setting ϑ, s = 0, as well
as for the potential velocity case, where α, β = 0, with both recovering their expected
non-relativistic counterparts.

5. Discussion
The results obtained demonstrate the efficacy of the approach adopted across three

important cases: (1) potential flow, (2) barotropic flow with Clebsch variable parametri-
sations, and (3) thermodynamically influenced flows. This highlights the adaptability of
the methodology. Notably, the inclusion of entropy and thermal variables enriches the de-
scription to allow thermodynamic effects to be catered for. In Lagrangian formulations for
phenomenological or thermodynamic systems, extremising an entropy functional [44–48] is
a common method, with quantities like entropy being typically treated as external variables
or introduced in an ad hoc manner. The approach worked out here, however, provides a
more unified and dynamic description, incorporating these quantities intrinsically into the
system’s dynamics.

Comparisons to earlier work confirm that the Lagrangians derived here recover their
non-relativistic counterparts in the appropriate limits c → ∞. For a more thorough inves-
tigation, the stability of the dynamics associated with the Lagrangians can be analysed,
including the impact of the energy term e(n, s), the analytical form of which is subject to
thermodynamics and not discussed here. The variational approach facilitates a stability
analysis, as a second-order expansion of the Lagrangian for potential flow (as shown in [49]
for a non-relativistic potential flow), where the compression modulus,

K := n2
[

2
∂e
∂n

+ n
∂2e
∂n2

]
,
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as a decisive quantity, has to be positive to guarantee the stability of fluid flow. This analysis
can easily be extended from non-relativistic to the relativistic Lagrangians considered here,
both for barotropic Clebsch and thermodynamic Lagrangian cases.

The preservation of Poincaré invariance, induced gauge invariance, and, in Section 4.2,
Clebsch gauge invariance emphasises the robustness of the models, while the conserva-
tion of induced gauge and Poincaré invariance might initially appear trivial—given that
the energy–momentum tensor is derived under Poincaré symmetry constraints and the
canonical velocity comes from the induced gauge framework—the non-trivial aspect lies in
how these invariances are maintained when the coupled differential equations are solved.
In a similar manner, the Clebsch gauge symmetry—although not being a Lie symmetry
and therefore not being subject of Noether’s theorem—is associated with Helmholtz’s
conservation equation for vorticity [50], which is the local form of Kelvin’s circulation
theorem [51,52] and implies that in an ideal fluid, the circulation around a closed loop
moving with the fluid remains constant. By demonstrating that the final Lagrangians fulfil
these symmetries, the reliability of the methodology is firmly established.

Furthermore, it is noted that, in the literature, different signs in front of the Clebsch
differential form are used for representing velocity. The motivation for choosing the
negative sign in the representations (25), (32) and (46) of the velocity was to recover
their non-relativistic counterparts, u⃗ = ∇ϕ, u⃗ = ∇ϕ + α∇β and u⃗ = ∇ϕ + α∇β − s∇ϑ,
respectively. These findings align with prior work, particularly the results of [53], lending
further credence to the presented framework.

6. Conclusions
A systematic approach for constructing relativistic Lagrangians that are associated

counterparts to their non-relativistic equivalents was derived. By addressing key challenges
in extending non-relativistic formulations—such as the requirement of velocity normalisa-
tion and the eigenvalue relation of the energy-momentum tensor, which constrain the form
Lagrangians can take—this work introduced a novel and systematic framework, extending
the methodology proposed by [10,19]. These two conditions, by modifying the eigenvalue
appropriate to the system in (21), provide generalised, universal criteria for constructing
relativistic Lagrangians concerned with a system describing matter flux. It is also highly
advantageous in that, in contrast to traditional methods where canonical quantities are
used as mathematical tools, all canonical quantities (mass flux/velocity and the energy–
momentum tensor) in the paper were inherently tied to Noether’s theorem, giving them
a clear physical significance. They were built into the methodology of constructing the
Lagrangian via an inverse Noether procedure. Therefore, velocity normalisation, the form
of the energy–momentum tensor, mass conservation, and symmetry of the induced gauge
do not need to be treated separately, as is often the case in much of the literature. This
makes the approach more systematic and universal. It not only improves the construction
of Lagrangians in relativistic contexts but also provides a deeper insight into the interplay
between symmetries, momentum densities, and the structure of relativistic theories.

The present framework assumes inviscid and non-dissipative conditions, simplify-
ing the analysis in a first approach but limiting direct applicability to systems where
viscosity is significant. Viscous forces become important where the gathering of mass
due to gravity occurs, for example, in accretion discs [54,55]. Similarly, a combination of
both viscous and relativistic effects arises in such discs around neutron stars and black
holes [20,21,23,56]. Nevertheless, the methodology remains structurally unchanged even
in such cases, as shown in Appendix A.2, for the eigenvalue relation associated with dis-
sipative effects. Gravitational effects naturally enter through the metric, which is already
incorporated in the canonical energy–momentum tensor and velocity normalisation con-
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dition. Thus, the methodology does not require modification for curved backgrounds,
specifying the appropriate metric suffices. Coupling to additional fields (for example,
electromagnetic or scalar) may alter the energy–momentum tensor eigenvalue relationship
but does not affect the underlying formulation of obtaining differential equations for the
Lagrangian by the canonical velocity and using the energy–momentum tensor relation by
an inverse application of Noether’s theorem. One conceivable problem could be shock
waves in hypersonic flows, as these call the continuity of the fields into question. To ad-
dress this problem, however, an approach is shown in [19,57] as to how discontinuous
phenomena can also be treated in LF, which is an advantageous feature compared to the
usual formulation of fluid mechanics in terms of PDEs.

The broader approach outlined in the present work can, in principle, be extended
to other systems that satisfy the necessary symmetries. The Clebsch transformation has
been applied in magnetohydrodynamics (MHD) [58,59]. Extending the relativistic Clebsch–
Lagrangian approach to MHD would involve incorporating electromagnetic corrections,
modifying the energy–momentum eigenvalue relationship, but the structural formulation
of using this and the canonical velocity to obtain differential equations for the Lagrangian
by an inverse Noether method would remain the same.

Clebsch potentials have been used in a Madelung framework; for example, they were
used in [60] to describe quantum–fluid correspondence in relativistic fluids with spin and
in [18] to describe vortex dynamics in superfluids. Given this, the Lagrangian structure
developed here could provide a foundation for extending relativistic quantum fluid for-
mulations, particularly in fluid mechanic analogues of quantum mechanics. Indeed, since
Clebsch variables describe velocity fields in all relativistic, non-relativistic and quantum
fluids, and have already been employed in Madelung–based approaches, an extension
to quantum fluid mechanics using a relativistic Clebsch representation appears plausible.
This could establish a variational principle for quantum fluid mechanics with applications
in relativistic superfluid theories in, for example, Bose–Einsein condensates or relativistic
fluid mechanics in high–energy quantum chromodynamics (QCD). However, although
this remains speculative at this stage, it represents an interesting future research direction.
Quantisation also remains an interesting perspective future research avenue. A number of
authors, for example, [61,62], have quantised the motion of an inviscid fluid.

If the methodology was applied to a fundamental quantum field theory (QFT), op-
erator correspondence would need to be established—how classical quantities translate
into quantum operators obeying commutation relations. Another interesting QFT appli-
cation would be an extension to a Proca-type action, which could be a useful example
for testing classical correspondence for a massive vector field theory. This requires, as it
were, a generalisation of the scalar fields to a spinor form. However, considerations in this
direction exist not only in the field of quantum theory but also in continuum theory, where
a spinor-form of the Clebsch representation suggests itself for representing the distortion
tensor of a crystalline material with dislocations.
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Appendix A. Mathematical Elaborations
Appendix A.1. To the Construction of the Lagrangian for Thermo-Fluid Dynamics

Equating (24) and (47) gives:

−(∂µϕ + α∂µβ − s∂µϑ)√
c2 − 2ω − 2α

⊙
β +2s

⊙
ϑ +(α∂µβ − s∂µϑ)

(
α∂µβ − s∂µϑ

)
=

1
cnm

 ∂L
∂ω

∂µϕ +
∂L

∂
⊙
β

∂µβ +
∂L

∂
⊙
ϑ

∂µϑ

 , (A1)

By considering independence three PDEs are obtained:

−nmc√
c2 − 2ω − 2α

⊙
β +2s

⊙
ϑ +(α∂µβ − s∂µϑ)

(
α∂µβ − s∂µϑ

) =
∂L
∂ω

,

−nmcα√
c2 − 2ω − 2α

⊙
β +2s

⊙
ϑ +(α∂µβ − s∂µϑ)

(
α∂µβ − s∂µϑ

) =
∂L

∂
⊙
β

,

nmcs√
c2 − 2ω − 2α

⊙
β +2s

⊙
ϑ +(α∂µβ − s∂µϑ)

(
α∂µβ − s∂µϑ

) =
∂L

∂
⊙
ϑ

.

the solution of which is obviously the following:

L =nmc

√
c2 − 2ω − 2α

⊙
β +2s

⊙
ϑ +(α∂µβ − s∂µϑ)

(
α∂µβ − s∂µϑ

)
+ L3(α, β, ∂β, ∂ϑ, s, mn) . (A2)

The integration function L3(α, β, ∂β, ∂ϑ, s, mn) and
⊙
ϑ can be reduced again by consider-

ing the gauge symmetry as in Section 4.2.2, leaving only the dependencies L3 = L3(s, mn).
Finally, via the eigenvalue relation (21), L3 turns out to be

L3(s, mn) = −n
(

mc2 + e(n, s)
)

, (A3)

implying the Lagrangian (48).

Appendix A.2. Eigenvalue in Dissipative Case

In Section 3, it was concluded that for a perfect fluid, the energy-momentum eigen-
value relationship reads:

TµνUµ = n(mc2 + e)Uν . (A4)

For viscous, dissipative flows, the energy-momentum tensor is considered to be split
into two components:

Tµν = Tµν
ideal + Tµν

dissipative ,

where Tµν
ideal describes a perfect fluid, and Tµν

dissipative accounts for irreversible, dissipative
processes such as friction, heat conduction, and viscosity, capturing the non-equilibrium
effects in the fluid. The assumed form of Tµν

dissipative is taken from [56] to be a tensor
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denoted by Rαβ, such that Tµν
dissipative = Rαβ (Note that this tensor is not the same as the one

considered by [56], who employed a (−+++) signature. This tensor reflects the necessary
adjustment for the (+−−−) signature):

Rαβ = 2c
[

∂(αUβ) − Uν∂νU(αUβ) +
1
3

∂νUν
(

UαUβ − ηαβ
)]

(A5)

= c
[

∂αUβ + ∂βUα − Uν∂νUαUβ − Uν∂νUβUα +
2
3

∂νUν
(

UαUβ − ηαβ
)]

,

where ηαβ is the Minkowsi metric and the viscosity coefficients were set to 1 for simplicity.
Considering that it is a contraction with the velocity Uβ, we have the following:

1
c

RαβUβ =

0︷ ︸︸ ︷
Uβ∂αUβ +

0︷ ︸︸ ︷
Uβ∂βUα − Uν∂νUαUβUβ −Uν

0︷ ︸︸ ︷
Uβ∂νUβ Uα +

2
3

∂νUν(Uα − Uα) = 0 .

Thus, it is concluded that
RµνUν = 0 ,

with the contributions to the eigenvalue relation coming from Tµν
ideal alone. As such, the

relevant eigenvalue relation remains as (A4).

Abbreviations
The following abbreviations are used in this manuscript:
EM Energy–momentum
KG Klein–Gordon
LF Lagrange formalism
PDE Partial differential equation
MHD Magnetohydrodynamics
QCD Quantum chromodynamics
QFT Quantum field theory
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