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A theory of the absorption of a laser field by an

atomic or condensed matter medium is presented

for the case where the medium is also interacting

with a strong electromagnetic field. The rotating wave

approximation is not assumed for the latter. It is

shown that in the weak probe limit the Lindblad

master equation reduces to a smaller system of linear

equations for the relevant steady-state coherences. In

this limit, the complex susceptibility of the medium

can be expressed in terms of individual contributions

of decaying dressed states, the latter being eigenstates

of a non-Hermitian Floquet Hamiltonian.

1. Introduction
This article primarily concerns the theory of the absorp-

tion of a weak laser beam by an atomic or condensed

matter medium driven by one or several other electro-

magnetic fields. It specifically focuses on the case where

at least one of these fields is too strong to be con-

sidered within the rotating wave approximation. Typ-

ically, this strong field would be a microwave or ra-

dio frequency field, though the theory is not confined

to these scenarios. The relevance of the Floquet the-

ory of linear differential equations with periodic coef-

ficients has long been recognized in this context and

in other areas of quantum optics [1–3]. Its relevance is

easily appreciated from the fact that the Hamiltonian

describing the interaction of a quantum system with a

continuous-wave monochromatic electromagnetic field is

periodic in time, assuming no other time-dependent in-

teractions. However, the theory also applies to station-

ary multi-frequency fields [4–6] and helps in understand-

ing the dynamics of quantum systems interacting with
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non-stationary fields, e.g. the dynamics of atoms in intense laser pulses [7–9]. Inmore recent years,

Floquet theory has considerably expanded into the rapidly developing field of Floquet engineer-

ing, which aims at using period interactions for generating and controlling new states of complex

quantumsystems—e.g. [10–21] and references therein. The relationship between the quantumand

classical Floquet formalisms has been recently clarified in [21], which also offers a new general

formalism for the modelling of driven open quantum systems.

A full Floquet description is often unnecessary for the relativelyweak, near-resonant fields typ-

ically used in spectroscopicmeasurements. The rotatingwave approximation can usually bemade

for such fields, which simplifies the theory considerably [6,22]. However, this approximation is

not always justified. For example, going beyond the rotating wave approximation is normally

essential in applications of Floquet theory to the modelling of multiphoton ionization and other

multiphoton processes driven by a strong laser field [5–7,9,23,24], to the measurement of low-

frequency fields using atoms in Rydberg states [25–29], and of course for understanding how the

properties of atomic or other systems can be manipulated through Floquet engineering.

Floquet calculations involve replacing the time-dependent Hamiltonian of the system of inter-

est with a time-independent Hamiltonian acting in a larger Hilbert space, the ‘Floquet Hamilto-

nian’ [1,2]. This Floquet Hamiltonian is non-Hermitian in some cases, for example, in the cases

considered in [30] or in [31]. In particular, it is non-Hermitian in the complex dilation approach to

multiphoton ionization in a strong laser field [23,24]: the radial variable r is replaced by r exp(i�r)
for a well-chosen value of the angle �r, which transforms the Floquet Hamiltonian into a non-

Hermitian operator. Doing so yields complex quasienergies the imaginary parts of which within

a factor of (−2∕ħ), give the ionization rates of the states of interest [32]. This approach tomultipho-

ton ionization ismathematically rigorous [33–35]. The Floquet Hamiltonian is also non-Hermitian

for the systems we are studying in this work, but for a different reason.

The present theory concerns the absorption of a weak beam by a medium modelled as an

ensemble of individual systems with a finite number of bound energy eigenstates, for the case

where some of these bound states may decay radiatively or otherwise. For instance, the methods

outlined below have recently been applied to the calculation of the absorption of a weak probe

beam by a cuprous oxide (Cu2O) sample driven by a strong microwave field [36]. In this system,

the probe beam couples the valence band (treated as a single bound state) to broad Rydberg ex-

citons decaying through interaction with phonons. These methods could also be applied to the

spectroscopy of a strongly driven atomic vapour in which excited atoms decay radiatively. The

quantum state of suchmedia can usually be described by a density matrix satisfying the Lindblad

master equation. Floquet approaches to this problem have been discussed in the literature—see,

e.g. [37–40] and, in regard to the optical properties of the medium, [41–47]. However, and as we

show in this article, a full Lindblad-Floquet calculation is not necessary in the weak probe limit,

i.e. in the quite common case where the probe field is weak enough to be treated in first order of

perturbation theory. Indeed, the master equation reduces in this case to a set of simpler equations

where each decaying bound state is associated with a complex energy: i.e. the real energies ħ!(i),

i= 0, 1, 2,…, of the different states included in the model are replaced by the complex energies

ħ!(i) − iħΓ(i)∕2, i= 0, 1, 2,…, where Γ(i) is the decay rate of state i. The properties of the medium can

then be described in terms of the eigenstates of a non-Hermitian Floquet Hamiltonian, this Hamil-

tonian being non-Hermitian because of the non-zero imaginary parts of these complex energies.

In particular, the calculation yields the linear susceptibility of the medium as a sum of contribu-

tions from the decaying dressed states of the Floquet Hamiltonian. We stress that the imaginary

parts of these energies are rigorously derived from the master equation, here, and are not ad hoc

additional phenomenological decay widths.

For simplicity, this article only considers the case of a homogeneous single species medium

interacting with two monochromatic electromagnetic fields, namely, a weak probe field and a

strong coupling field, both polarized linearly in the same direction. The theory can be easily gen-

eralized to multi-species media and more complex excitation pathways as long as the rotating

wave approximation and the Beer-Lambert law apply for the probe field.
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The general theory is developed in §2. Its weak probe, long time limit is discussed in §3. A

numerical illustration of the theory is provided in §4.

2. The probe absorption spectrum

(a) The absorption coefficient
As already mentioned, this article primarily concerns experiments in which a strong microwave

or some other electromagnetic field (the ‘coupling field’) is applied to a homogeneous sample ad-

dressed by a laser beam (the ‘probe field’), in circumstances where the latter is sufficiently weak

that its attenuation is well described by the Beer-Lambert law. We thus assume that

I(x) = exp(−Kx) I(x= 0), (2.1)

where I(x) is the probe intensity at a distance x inside the medium and K, the absorption coeffi-

cient, is a constant. For simplicity, we assume that the probe and coupling fields are monochro-

matic and polarized in the z-direction, that the probe field can be modelled as a plane wave

propagating in the x-direction and that the coupling field is homogeneous. We also assume that

these fields are turned on at t= 0. The details of the turn on are not important in so far as the state

of the medium in the t→∞ limit is concerned, which is the focus of this work. Accordingly, we

write their electric field components as follows,

Ep(x, t) =
1

2
ẑ
[
ℰp(x) exp(−i!pt) + ℰ∗

p(x) exp(i!pt)
]
H(t), (2.2)

Ec(t) =
1

2
ẑ
[
ℰc exp(−i!ct) + ℰ∗

c exp(i!ct)
]
H(t), (2.3)

where ẑ is a unit vector in the z-direction and H(t) is the Heaviside step function. The probe and

coupling fields polarize themedium, resulting in a polarization field P(x, t). In terms of the density

operator �̂(x, t) describing the state of the medium at position x and time t,

P(x, t) =Nd Tr[ �̂(x, t) D̂z ] ẑ, (2.4)

where D̂z is the z-component of the dipole operator andNd is the number density of atoms or other

individual systems the state of which is described by �̂(x, t). Assuming that t is large enough for

the medium to have evolved into a stationary state,

P(x, t) = 1

2
ẑ
[
Pp(x) exp(−i!pt) + P∗

p(x) exp(i!pt) + …
]
, (2.5)

where … stands for contributions oscillating at angular frequencies other than !p. The complex

polarization amplitude Pp(x) is proportional to ℰp(x) for the weak probe fields considered here:

in terms of a frequency-dependent susceptibility �(!p, !c,ℰc),

Pp(x) = �0 �(!p, !c,ℰc)ℰp(x). (2.6)

If it follows from the above [48] that

K = 2(!p∕c) Im [1 + �(!p, !c,ℰc)]1∕2. (2.7)

The absorption coefficient K does not depend on x since the coupling field is taken to be

homogeneous. Accordingly, we no longer specify the spatial dependence of ℰp(x), Pp(x) and
�̂(x, t).
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(b) Microscopic description
We use a finite basis of N orthonormal eigenstates of the medium’s field-free Hamiltonian, Ĥ0,

that is, a basis {|i⟩, i= 0,… ,N − 1} such that ⟨i|j⟩= �ij and

Ĥ0|i⟩= ħ!(i)|i⟩, i= 0,… ,N − 1. (2.8)

We describe the interaction between the medium and the applied fields within the electric dipole

approximation. The Hamiltonian of the system can, therefore, be written in the following way in

terms of the Rabi frequencies Ωp;ij = ℰp ⟨i|D̂z|j⟩∕ħ and Ωc;ij = ℰc ⟨i|D̂z|j⟩∕ħ:

Ĥ(t) =
∑

i

ħ!(i)|i⟩⟨i| − ħ

2

∑

i,j

{[
Ωp;ij exp(−i!pt) + Ωc;ij exp(−i!ct)

]
|i⟩⟨j| + h.c.

}
. (2.9)

Typically, the relevant states form two groups differing considerably in energy, namely, a low-

energy group A and a higher-energy group B. We will assume that the coupling field strongly

couples the states of group B to each other, but does not directly couple the states of group A to

each other or to those of group B, while the probe field only couples states of group A to states of

group B. Neglecting the far-detuned transitions, we thus set

Ĥ(t) =
∑

i

ħ!(i)|i⟩⟨i| − ħ

2

∑

i∈A

∑

j∈B

[
Ωp;ij exp(−i!pt)|i⟩⟨j| + h.c.

]

− ħ

2

∑

i∈B

∑

j∈A

[
Ωp;ij exp(−i!pt)|i⟩⟨j| + h.c.

]

− ħ

2

∑

i∈B

∑

j∈B

[
Ωc;ij exp(−i!ct)|i⟩⟨j| + h.c.

]
. (2.10)

Given this Hamiltonian, the density operator �̂(t) is governed by the Lindblad master equation

d�̂
dt

=− i

ħ
[Ĥ, �̂ ] + 1

2

∑

n

(
2 Ĉn�̂ Ĉ

†
n − Ĉ†

nĈn�̂ − �̂ Ĉ†
nĈn

)
, (2.11)

where the Ĉn’s are the collapse (or jump) operators accounting for decoherence and relaxation. The

Ĉn’s should include the operator
√
Γij |i⟩⟨j| if state j relaxes to state i at a rate Γij, e.g. by spontaneous

decay.

(c) The rotating wave approximation
Wewill also assume that the energies are measured with respect to a given reference energy ħ!ref

chosen so that the differences |!(i) − !ref| are much smaller for the states of group A than for those

of group B. Conversely, the differences |!p − (!(i) − !ref)| are much smaller for the states of group

B than for those of group A. We can thus pass to slowly varying variables by transforming state

vectors and density operators by the unitary transformation1

Û(t) = exp
(
i!reft

)∑

i∈A

|i⟩⟨i| + exp
[
i
(
!ref + !p

)
t
]∑

j∈B

|j⟩⟨j|. (2.12)

In particular, the operator Û(t) transforms �̂(t) into the density operator

�̂tr(t) = Û(t)�̂(t)Û†(t), (2.13)

and

⟨i|�̂(t)|j⟩=

⎧
⎪
⎪

⎨
⎪
⎪
⎩

⟨i|�̂tr(t)|j⟩ if i and j∈A,

exp(i!pt)⟨i|�̂tr(t)|j⟩ if i∈A and j∈ B,

exp(−i!pt)⟨i|�̂tr(t)|j⟩ if i∈ B and j∈A,

⟨i|�̂tr(t)|j⟩ if i and j∈ B.

(2.14)
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A short calculation shows that �̂tr(t) evolves in time according to the equation

d�̂tr

dt
=− i

ħ
[Ĥtr, �̂tr ] + 1

2

∑

n

(
2 Ĉn�̂trĈ

†
n − Ĉ†

nĈn�̂tr − �̂trĈ†
nĈn

)
, (2.15)

where

Ĥtr(t) = ħ
∑

i∈A

�!(i)|i⟩⟨i| − ħ
∑

i∈B

∆(i)
p |i⟩⟨i| −

ħ

2

∑

i∈B

∑

j∈A

(
Ωp;ij|i⟩⟨j| + h.c.

)

− ħ

2

∑

i∈A

∑

j∈B

[
Ωp;ij exp(−2i!pt)|i⟩⟨j| + h.c.

]

− ħ

2

∑

i∈B

∑

j∈B

[
Ωc;ij exp(−i!ct)|i⟩⟨j| + h.c.

]
, (2.16)

with �!(i) =!(i) − !ref and ∆(i)
p =!p − (!(i) − !ref).

We now make the rotating wave approximation for the probe field, which is to neglect the

rapidly oscillating terms in exp(±2i!pt) appearing in equation (2.16). Accordingly, we set

�̂(t) = Û†(t)�̂rw(t)Û(t), (2.17)

where �̂rw(t) satisfies the equation

d�̂rw

dt
=− i

ħ
[Ĥrw, �̂rw ] + 1

2

∑

n

(
2 Ĉn�̂rwĈ

†
n − Ĉ†

nĈn�̂rw − �̂rwĈ†
nĈn

)
, (2.18)

with

Ĥrw(t) = ħ
∑

i∈A

�!(i)|i⟩⟨i| − ħ
∑

i∈B

∆(i)
p |i⟩⟨i| −

ħ

2

∑

i∈B

∑

j∈A

(
Ωp;ij|i⟩⟨j| + h.c.

)

− ħ

2

∑

i∈B

∑

j∈B

[
Ωc;ij exp(−i!ct)|i⟩⟨j| + h.c.

]
. (2.19)

The density operator �̂rw(t) is represented by the matrix [�rw
ij
(t)] in the basis {|0⟩,… , |N − 1⟩}, with

�rw
ij
(t) = ⟨i|�̂rw(t)|j⟩. (2.20)

Arranging the matrix elements �rw
ij
(t) into a column vector r(t)makes it possible to recast equation

(2.18) into a more standard form, that is,

dr
dt

= L(t)r(t), (2.21)

where L(t) is aN2 ×N2 matrix.

(d) Floquet formulation
In principle, calculating the absorption coefficient reduces to solving equation (2.18) or equation

(2.21), calculating the resulting polarization field P(x, t) and obtaining the polarization amplitude

Pp(x) by Fourier-transforming P(x, t).Aswill become clear later on, however, there are advantages

to first calculating the Fourier components of the density operator, and thereby seek solutions of

the Lindblad master equation in the Floquet form. We note, in this regard, that L(t) can be written

in terms of three constant matrices, L0, L+ and L−, in the following way:

L(t) = L0 + exp(i!ct)L− + exp(−i!ct)L+. (2.22)

The time-periodicity of L(t) suggests we seek a solution of equation (2.21) of the form

r(t) =
∑

N

exp(−iN!ct)rN(t), (2.23)
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the rN(t) being time-dependent column vectors such that

drN
dt

= ANrN(t) + L+rN−1(t) + L−rN+1(t), N = 0,±1,±2,… , (2.24)

where AN = L0 + iN!cI with I denoting the N2 ×N2 unit matrix. In practice, this infinite system

can be truncated to a finite number of equations and the index N restricted to a certain interval

[Nmin,Nmax]. Equation (2.24) can be expressed in matrix form as

d

dt

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋮

r−2(t)

r−1(t)

r0(t)

r1(t)

r2(t)

⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋮

L+ A−2 L−

L+ A−1 L−

L+ A0 L−

L+ A1 L−

L+ A2 L−

⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋮

r−2(t)

r−1(t)

r0(t)

r1(t)

r2(t)

⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.25)

or, in a more compact notation, as

dr
dt

= MR(t). (2.26)

Apart from the truncation of the Fourier expansion to a finite number of harmonic components,

calculating the density matrix through this last equation and equation (2.23) is equivalent to solv-

ing the Lindblad equation (2.18). These two approaches produce numerically different results for

finite values of Nmin and Nmax; however, and as illustrated by an example in §4, these differences

can be made arbitrarily small by taking the interval [Nmin,Nmax]wide enough.

The density matrix describing the state of the medium can therefore be obtained in terms of

the eigenvalues and eigenvectors of the non-Hermitian constant matrix M, unless this matrix is

defective. Let us denote the eigenvalues of M by w(k), its right-hand side eigenvectors by c(k) and its

left-hand side eigenvectors by d(k), so that Mc(k) =w(k)c(k) and d(k)†M=w(k)d(k)† (the c(k)’s and the d(k)’s are
column vectors). Assuming that these eigenvectors form a basis and are bi-orthogonal (i.e. that

d(k)†c(k′) = 0 if k≠ k′),

R(t) =
∑

k

�kc(k) exp
(
w(k)t

)
, (2.27)

with

�k =
d(k)†R(t= 0)

d(k)†c(k)
. (2.28)

Note that, the right-hand side eigenvectors of M define solutions of equation (2.21) in the Floquet

form, that is,

r(t) = exp
(
w(k)t

)∑

N

exp(−iN!ct)c
(k)
N
. (2.29)

The eigenvectors for which w(k) = 0may describe steady states of the system, i.e. states for which

drN∕dt= 0. However, the solutionswithw(k) ≠ 0do not correspond to density operators of constant

unit trace and therefore do not represent physically meaningful quantum states.

Since the column vector r(t) is formed by the matrix elements �rw
ij
(t), the elements of the vectors

rN(t) are the functions �rwij;N(t) such that

�rw
ij
(t) =

∑

N

exp(−iN!ct)�rwij;N(t). (2.30)

As will be illustrated by a numerical example in §4, the functions �rw
ij;N(t) normally converge to

constant values in the t→∞ limit. In the ensuing steady state, the density matrix contains terms
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oscillating at the angular frequencies!p,!p ± !c,!p ± 2!c, etc. Only the terms oscillating at the an-

gular frequency !p contribute to the complex polarization amplitude Pp(x). Combining equations

(2.4)–(2.6), (2.12), (2.17) and (2.30) yields

�(!p, !c,ℰc) =
Nd

�0ℰp

∑

i∈B

∑

j∈A

⟨j|D̂z|i⟩�rwij;N=0(t→∞). (2.31)

Having calculated �(!p, !c,ℰc), the probe absorption spectrum can then be deduced from

equation (2.7).

Note that, the advantage of the Floquet approach, in this context, is to yield theN = 0 harmonic

component of the relevant coherences directly. Merely calculating time-dependent populations

and coherences is likely to be more conveniently done by solving equation (2.18) than by solving

equation (2.26). The Floquet approach has marked advantages for calculations in the weak probe

limit, however, as we now discuss.

3. The weak probe limit

(a) General theory
It is often the case, in experiments, that the medium can be taken to be initially in its ground state

or in an incoherent superposition of low energy states, and that the probe laser is too weak for

producing significant optical pumping over the relevant time scales. This common situation can

be modelled by assuming: (i) that the probe field is weak enough that �̂rw(t) only needs to be cal-
culated to first order in ℰp, and (ii) that the states of group B are initially unpopulated. The latter

implies that �rw
ij
(t) = 0 at t= 0 if state i or state j belongs to group B and that

∑

i∈A

�rw
ii
(t= 0) = 1. (3.1)

We will further assume that �rw
ij
(t= 0) = 0 for j≠ i and Γij = 0 if states i and j both belong to group

A, which is normally the case in applications. The density operator �̂rw(t) reduces to a density

operator �̂wp(t) in this weak probe approximation:

�rw
ij
(t) ≈ �wp

ij
(t), (3.2)

with �wp

ij
(t= 0) = �rw

ij
(t= 0). One finds, after a straightforward calculation, that

d�wp

ij

dt
= 0 (3.3)

if state i and state j both belong to group A or both belong to group B, and that

d�wp

ij

dt
= i[!(j) + !p − !(i) + iΓ(i)∕2]�wp

ij
(t) + i

2
Ωp;ij�

wp

jj
(t)

+ i

2

∑

l∈B

[Ωc;il exp(−i!ct) + Ω∗
c;li exp(i!ct)]�

wp

lj
(t) (3.4)

if i∈ B and j∈A. In this last equation, Γ(i) denotes the total decay rate of state i:

Γ(i) =
∑

n

Γni. (3.5)

In view of equation (2.31), ourmain aim is to solve equation (3.4) in the long time limit. Proceeding

as above, we seek a solution of equation (3.4) of the form

�wp

ij
(t) =

∑

N

exp(−iN!ct)�
wp

ij;N(t), (3.6)
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with

d�wp

ij;N

dt
= i[!(j) + !p − !(i) + iΓ(i)∕2 +N!c]�

wp

ij;N(t) +
i

2
Ωp;ij�

wp

jj;N(t)

+ i

2

∑

l∈B

[Ωc;il�
wp

lj;N−1(t) + Ω∗
c;li�

wp

lj;N+1(t)]. (3.7)

Since the populations of the different states remain constant in this weak probe approximation,

�wp

jj;N(t)≡ �
wp

jj;0 �N,0 = �
wp

jj
(t= 0). (3.8)

The steady state solution of equation (3.7) can be obtained by setting the time derivatives to zero

and solving the resultant system of linear equations, that is,

[!(j) + !p − !(i) + iΓ(i)∕2 +N!c]�
wp

ij;N

+ 1

2

∑

l∈B

[Ωc;il�
wp

lj;N−1 +Ω∗
c;li�

wp

lj;N+1] = −1

2
Ωp;ij�

wp

jj;0�N,0, (3.9)

where i∈ B, j∈A, Nmin ≤N ≤Nmax and �
wp

ij;N ≡ �
wp

ij;N(t→∞). Calculating the absorption spectrum in

the weak probe limit thus reduces to solving this system of equations for each state of group A

and obtaining the absorption coefficient from equation (2.31) with �rw
ij;0(t→∞) replaced by �wp

ij;0 —

i.e. from the equation

�(!p, !c,ℰc) =
Nd

�0ℰp

∑

i∈B

∑

j∈A

⟨j|D̂z|i⟩�
wp

ij;N=0. (3.10)

The fact that Ωp;ij ∝ ℰp implies that �wp

ij;N=0 ∝ ℰp and therefore the susceptibility does not depend on

ℰp in this approximation.

We note that only the total dephasing rates Γ(i)∕2 appear in this formulation of the optical

Bloch equations, rather than the individual relaxation rates Γij. Contrary to equation (2.15), equa-

tion (3.9) therefore applies even to cases where the states of group B decay to other states than

those of group A, which makes it well suited for describing systems with complex de-excitation

pathways.

We also note that the equations forming this system decouple from each other in the absence

of the coupling field (i.e. for ℰc = 0); equation (3.9) then yields

�wp

ij;0 =−
Ωp;ij∕2

!(j) + !p − !(i) + iΓ(i)∕2
�wp

jj;0 , (3.11)

in agreement with well known theory—see, e.g. [49].

(b) Complex energies
Equation (3.9) was derived from the Lindbladmaster equation in the above, starting from theHer-

mitian Hamiltonian Ĥ(t) of equation (2.9). However, it is easy to see that the same result would

also be obtained, in the weak probe approximation, if the density operator was instead calculated

by solving the equation

d�̂
dt

=− i

ħ
[Ĥ′, �̂ ], (3.12)

with Ĥ′(t) taken to be the non-Hermitian Hamiltonian

Ĥ′(t) =
∑

i∈A

ħ!(i)|i⟩⟨i| +
∑

i∈B

ħ
(
!(i) − iΓ(i)∕2

)
|i⟩⟨i|

− ħ

2

∑

i,j

{[
Ωp;ij exp(−i!pt) + Ωc;ij exp(−i!ct)

]
|i⟩⟨j| + h.c.

}
. (3.13)
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In this alternative approach, the states of group B are given a phenomenological width ħΓ(i) and
the steady state of the system is derived solely from the effective Hamiltonian Ĥ′(t) by integrating
the von Neumann equation. The two approaches are equivalent in the weak probe approxima-

tion in so far as they predict the same results. However, they would generally lead to different

results beyond that approximation, inwhich case energy relaxation needs to be taken into account

through the Lindblad master equation rather than through complex energies.

(c) Dressed states
Equation (3.9) has a close similarity with the equation defining the dressed states of the sys-

tem in the absence of the probe field, as we now discuss. By dressed states, we mean, here, the

quasistationary solutions of the equation

[iħ
d

dt
−
∑

i∈B

ħ
(
!(i) − iΓ(i)∕2

)
|i⟩⟨i| + Ec(t) ⋅ D̂] |Ψ(t)⟩= 0, (3.14)

where D̂ is the dipole operator. The dressed states in question are solutions of the Floquet form,

|Ψ(q)(t)⟩= exp(−i�(q)t∕ħ)|Φ(q)(t)⟩, (3.15)

where �(q) is a constant and the ket vector |Φ(q)(t)⟩ is time-periodic with period 2�∕!c. We expand

the latter in a Fourier series with time-independent harmonic components | (q)
N
⟩ and write

|Ψ(q)(t)⟩= exp(−i�(q)t∕ħ)
∑

N

exp(−iN!ct)| 
(q)
N
⟩. (3.16)

Since the field Ec(t) only couples states belonging to group B to other states of that group, we set

| (q)
N
⟩=

∑

i∈B

a
(q)
i;N|i⟩. (3.17)

It is not difficult to show that the coefficients a
(q)
i;N satisfy a system of equations similar (but not

identical) to equation (3.9), i.e.

[
�(q) − ħ

(
!(i) − iΓ(i)∕2

)
+Nħ!c

]
a
(q)
i;N +

ħ

2

∑

l∈B

[
Ωc;ila

(q)
l;N−1 +Ω∗

c;lia
(q)
l;N+1

]
= 0. (3.18)

In matrix form,

[
�(q) IFl − F

]
v(q) = 0, (3.19)

where v(q) is the column vector formed by the coefficients a
(q)
i;N, IFl is theNFl ×NFl unit matrix with

NFl = (Nmax −Nmin + 1)NB, where NB is the number of states belonging to group B, and F is a
NFl ×NFl non-Hermitian matrix. This matrix represents the Floquet Hamiltonian and describes

how the states of group B are coupled to each other by the coupling field beyond the rotating

wave approximation.

How these dressed states relate to the solutions of equation (3.9) may be best brought out by

recasting the latter in terms of the matrix F. For each state j∈A, we write equation (3.9) as

[
(!(j) + !p) IFl − F∕ħ

]
x(j) = b(j), (3.20)

where IFl and F are the matrices defined above (the same for all states j), x(j) is the column vec-

tor formed by the coherences �wp

ij;N and b(j) is the column vector formed by the right-hand sides of

equation (3.9). We will assume that F is not defective in view of the fact that this matrix would be

Hermitian if the decay rates Γi were zero. The results outlined below do not apply if F is defec-
tive. The coherences derived from equation (3.26) would be incorrect andwould differ from those

obtained by solving equation (3.9) in this case.
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Clearly, the eigenvalues of F are the complex quasienergies �(q) defined above and the right-

hand side eigenvectors are the column vectors v(q):

F v(q) = �(q) v(q). (3.21)

We denote the corresponding left-hand side eigenvectors by u(q) and define them as being the

column vectors such that

u(q)† F= �(q) u(q)†. (3.22)

Let U and V be the matrices formed by the column vectors u(q) and v(q), respectively, with u(q) and v(q)

normalised in such a way that u(q)†v(q) = 1. Then u(q)†v(q′) = �qq′ and U† V= V U† = IFl [50]. Therefore

U†
[
(!(j) + !p) IFl − F∕ħ

]
V=Λ(j) (3.23)

where Λ(j) is the diagonal matrix of elements (!(j) + !p − �(q)∕ħ) �qq′ . It follows from equation (3.20)

that

U†
[
(!(j) + !p) IFl − F∕ħ

]
V U† x(j) = U† b(j), (3.24)

and therefore2

x(j) = V [Λ(j)]−1 U† b(j) =
∑

q

u(q)†b(j)

!(j) + !p − �(q)∕ħ
v(q). (3.25)

More explicitly,

�wp

ij;N =
∑

q

u(q)†b(j)

!(j) + !p − �(q)∕ħ
�(q)
ij;N, (3.26)

where �(q)
ij;N is the component of the vector v(q) corresponding to the coherence �wp

ij;N. Calculating the

coherences in this way is completely equivalent to solving equation (3.9). However, this alterna-

tive formulationmakes it possible to identify the contribution of the different dressed states to the

susceptibility �(!p, !c,ℰc). It is also advantageous in calculations of �(!p, !c,ℰc) over a range of
probe frequencies since the eigenvalues �(q), the eigenvectors v(q) and the inner products u(q)†b(j) do
not depend on !p and can be calculated once and for all. In particular, this result makes it easier

to average the susceptibility over a statistical distribution of values of !p, as may be required, e.g.

for taking inhomogeneous broadening into account [55].

Finally, we note that these results must be corrected if the coherences �ij also decay not only

through energy relaxation but also through some pure dephasing mechanisms such as collisional

broadening or phase fluctuation of the probe field. Denoting the corresponding additional de-

phasing rates by ij, Γ(i)∕2 should then be replaced by Γ(i)∕2 + ij in equations (3.4), (3.7), (3.9) and
(3.11) and!(j) + !p − �(q)∕ħ should be replaced by!(j) + !p − �(q)∕ħ + iij equations (3.25) and (3.26).

4. Numerical illustration
We now illustrate the theory developed in the previous section by numerical calculations for a

simple toy model. An application to a much more complicated case is reported elsewhere [36].

The system we are considering here comprises only five states, namely, a single lower energy

state (state 0, here the only element of group A) and four higher energy states (states 1, 2, 3 and

4, forming group B). As shown in figure 1a, state 0 is coupled to states 1 and 2 by the probe field

while states 1 and 2 are coupled to states 3 and 4 by the coupling field. States 1 and 2 decay to

state 0 only, whereas states 3 and 4 are assumed to have zero decay rates. The parameters of the

model are largely arbitrary and do not correspond to any actual system. We assume a frequency

of 1 GHz for the coupling field and, in most of the calculations, a frequency of 100 THz for the

probe field (this frequency is varied around 100 THz in figure 2b). State 0 being the only member
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Figure 1. (a) The five-state system considered in §4: states 1 and 2 are addressed from state 0 by the probe field and cou-
pled to states 3 and 4 by the coupling field. (b) and (c) Dotted blue curves: time evolution of �rw00 (t) in the absence of the
coupling field. Solid curves, from top to bottom: time evolution of�rw00 (t) (solid blue curves), Im �

rw
10 (t) (solid orange curves)

and Im �rw20 (t) (solid green curves) in the presence of the coupling field. (d) Time evolution of |Re �
rw
00;N(t)| for N = 0 (solid

curve), N = 2 (long-dashed curve) and N = 4 (short-dashed curve). (e) The same as (d) for |Im �rw10;N(t)|. (f ) The same as (d)
for |Im �rw20;N(t)|.

Figure 2. (a) From top to bottom, variationwith the scaling parameter� of�rw00;0(t) (solid blue curve), of |Im �
rw
10;0(t)| (solid

orange curve), of |Im �rw20;0(t)| (solid green curve), and of |Re �
rw
00;2(t)| (dashed blue curve), at t = 200 ns. The dash-dotted

black lines show how the weak probe |Im �wp10;0(t)| and |Im �
wp
20;0(t)| vary for the same parameters. (b) The variation of the

absorption coefficient with probe frequency in the presence of the coupling field (solid red curve and black markers) and in the
absence of the coupling field (dotted red curve and grey markers). The markers refer to the energy and width of the dressed
states contributing most to the absorption spectrum in the range of frequencies spanned by the figure: the real part of the
quasienergy of each of these dressed states is identified by a vertical tick mark located at the corresponding value of∆!(q)p
and its decay width is indicated by a horizontal bar (see text).

of group A, we choose !ref to coincide with !(0) so that �!(0) = 0. We set the detunings ∆(i)
p and

the Rabi frequencies Ωc;ij to the values listed in table 1. We also assume that ⟨0|D̂z|1⟩= 2 ⟨0|D̂z|2⟩.
For consistency, we thus set Ωp;10 = 2Ωp;20 and Γ(1) = 4Γ(2). Specifically, we take Γ1 = 2� × 3.6 GHz,

Γ2 = 2� × 0.9 GHz and, when obtaining the results shown in figure 1, Ωp;10 = 2� × 10 GHz and

Ωp;20 = 2� × 5 GHz (other values of Ωp;10 and Ωp;20 are used in figure 2).
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Table 1. Detunings and Rabi frequencies used in the examples, in units of 2� GHz.

examples �(1)
p �(2)

p �(3)
p �(4)

p 
c;13 
c;14 
c;23 
c;24

figures 1 and 2a 0.4 1.0 −0.2 0.8 9 11 6 9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

figure 2b variable 0.9 1.1 0.6 0.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Convergence of the solutions of equation (2.26) to the solutions of equation (2.18) for increasingly wide ranges of the
values of N included in the calculation, for the system considered in figure 1. The relevant detunings and Rabi frequencies are
listed in table 1 .

[Nmin,Nmax] �rw
00
(t = 20µs) Im �rw

10
(t = 20µs) Im �rw

20
(t = 20µs)

[−10, 10] 0.2774771 0.0761685 −0.0615402
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[−20, 20] 0.2759140 0.0797740 −0.0564471
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[−30, 30] 0.2760659 0.0794110 −0.0568168
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[−40, 40] 0.2753107 0.0794474 −0.0564466
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[−50, 50] 0.2753153 0.0793790 −0.0565258
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eq. ( 18 ) 0.2753153 0.0793790 −0.0565258
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

How some of the populations and coherences vary in time for this set of parameters is shown

in figure 1b–f . The time-dependent harmonic components �rw
ij;N(t) were calculated by numerically

integrating equation (2.26) and the density matrix by summing these harmonic components as

per equation (2.30). The range of values of N used in the computation was wide enough that

the results were not significantly affected by the truncation of the system (24) to a finite number

of equations: we set Nmin =−50 and Nmax = 50. As listed in table 2, this choice ensured that the

populations and coherences calculated from equations (2.26) and (2.30) matched those calculated

from equation (2.18) to seven decimal places (a smaller range of values of N would be sufficient

for weaker fields). Results calculated are also presented for the case of a zero coupling field (the

dotted curves in figure 1b,c).

How the ground state population �rw00 (t) and the imaginary parts of the coherences �rw
10
(t) and

�rw20 (t) vary immediately after the probe laser is turned on is shown in figure 1b and, over a longer

time period, in figure 1c. In the absence of the coupling field (i.e. for Ωc;ij ≡ 0), the populations

and coherences rapidly settle to constant values. However, they continue to oscillate markedly

past the initial transients when the coupling field is strong. As shown by the solid curves, they

settle into a state of periodic oscillation of period 4�∕! when t→∞. By contrast, the harmonic

components converge to constant values, reached asymptotically after a short phase of damped

oscillations (figure 1d–f , no results are shown for N = 1 and 3 because �rw
00;N(t), �

rw
10;N(t) and �

rw
20;N(t)

are identically zero for odd values of N). One can also note the importance of the N ≠ 0 harmonic

components of the ground state population although this state does not directly interact with the

coupling field in the present model. These harmonic components are responsible for the oscilla-

tion of �rw00 (t). They arise from the indirect interaction of the ground state with the coupling field

originating from its coupling to states 1 and 2 by the probe field.

The results shown in figure 1b–f refer to a relatively strong probe field. Convergence to the

predictions of the weak probe approximation for decreasing values of ℰp is illustrated by figure

2a, which shows results obtained by integrating equation (2.26) for values ofΩp;10 andΩp;20 scaled

by a factor 1∕�: the probe field has the same strength as in figure 1b–f when � = 1 but is weaker

by a factor 1∕� when � > 1. The calculation is done for a sufficiently large value of t (200 ns) that

the harmonic components �rw
ij;N(t) have become constant in time. As expected, and as can be seen

from the figure, �rw
00;N=0(t) tends to 1 and �rw

00;N≠0(t) tends to 0 when � increases. Moreover, �rw
10;0(t)
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and �rw20;0(t) tend to the values predicted by equation (3.9), namely, �wp

10;0 and �
wp

20;0. These values are

proportional to ℰp, thus proportional to 1∕� here. (As can be deduced from a perturbative analysis

and is apparent from the figure, �rw00;2(t) ∝ 1∕�2.)

Finally, figure 2b illustrates the use of this formalism in the calculation and analysis of an ab-

sorption spectrum. The weak probe approximation is assumed to hold. As in part (a) of the same

figure, the system is also taken be in the stationary state it relaxes into after the probe field has

been turned on, past the initial transients. Here, however, !p is varied: we set

!p =!p0 + ∆!p, (4.1)

with !p0∕(2�) = 100 THz. The detunings ∆(i)
p thus vary with ∆!p and have the same values as

in figures 1 and 2a when ∆!p = 0. The susceptibility and the absorption coefficient are calcu-

lated as functions of ∆!p, by way of equations (3.10) and (2.7), respectively, with the products

Nd⟨0|D̂z|1⟩∕(�0ℰp) and Nd⟨0|D̂z|2⟩∕(�0ℰp) set to values sufficiently low that |�(!p, !c,ℰc|≪ 1.

The resulting absorption spectrum is plotted in figure 2b, both for the values of Ωc;ij listed in

table 1 (the solid curve) and for the case of a zero coupling field (Ωc;ij ≡ 0, the dotted curve). The

relevant quasienergies are also indicated in the figure. As shown by equation (3.25), a dressed

state of quasienergy �(q) contributes to the coherences �wp

i0
mostly for values of ∆!p in the range

∆!(q)
p − |Im �(q)∕ħ|≤∆!p ≤∆!

(q)
p + |Im �(q)∕ħ|, (4.2)

where ∆!(q)
p is the value of ∆!p such that Re �(q)∕ħ + !(0) + !p = 0. Accordingly, we identify the

dressed states contributing most to the spectrum by tick marks positioned at the corresponding

values of ∆!(q)
p and we represent their widths by bars of length 2 |Im �(q)∕ħ|. (The vertical position

of these markers is arbitrary and has no physical meaning.)

The ground state interacts only with the bare states 1 and 2 when ℰc = 0. Diagonalizing the

matrix F, in that case, yields quasienergies either of the form Nħ!c − ħ(!(1) − iΓ(1)∕2) or of the
form Nħ!c − ħ(!(2) − iΓ(2)∕2), N = 0,±1,±2,…. Only the two solutions for which �(q) is either ex-
actly −ħ(!(1) − iΓ(1)∕2) or −ħ(!(2) − iΓ(2)∕2) are relevant here, because, in the notation of equation

(3.25), u(q)b(0) = 0 for the other solutions in the absence of the coupling field. The corresponding

states overlap in energy within their respective decay width, as shown by the grey horizontal

bars in the figure. The overlap results in a single non-Lorentzian peak in the absorption spectrum.

This peak splits into multiple structures when the coupling field is on, for the relatively large val-

ues of Ωc;ij assumed in the calculation. The structures originate from the interfering contributions

of many dressed states. For clarity, only the 15 states contributing most to the spectrum in the

range of frequencies considered are identified in the figure.

5. Conclusions
In conclusion, we have demonstrated how the well-known theory of absorption of a weak laser

beam by a linear medium extends to cases where the medium is also addressed by a strong os-

cillating field, which couples states with significant decay widths. The Floquet formalism is the

natural framework for modelling such systems. Calculating the absorption spectrum is partic-

ularly simple for weak probe beams. In the weak field limit, indeed, the relevant steady-state

coherences can be obtained by solving a system of linear equations of reduced dimensionality,

equation (3.9). Taking decay mechanisms into account in this context simply involves adding an

imaginary part to the state energies, eliminating the need to solve the Lindblad master equation

in its full complexity; however, these two formulations are mathematically equivalent. Moreover,

the Floquet approach makes it possible to analyse the absorption spectrum in terms of individual

contributions from dressed excited states induced by the coupling field, in the same way as it can

be analyzed in terms of contributions of barely excited states in the absence of the coupling field.

This Floquet analysis can greatly help elucidate the origin of resonance features modulating the

probe absorption spectrum, as illustrated by figure 2b.
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The methods described in this article have already been applied to the study of broad excitons

coupled to each other by a strong microwave field [36]. More generally, they are applicable to

any system driven by a strong oscillating field while being probed by a weak field, provided the

rotating wave approximation and the Beer–Lambert law are valid for the latter.
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Endnotes
1This transformation is unitary in the Hilbert space spanned by the basis of eigenvectors of the field-free
Hamiltonian used throughout these calculations: Û(t)Û†(t) = Û†(t)Û(t) =

∑
i∈A |i⟩⟨i| +

∑
j∈B |j⟩⟨j|, which is

the identity operator in that Hilbert space.
2This result can also be derived directly from the closure relation [50]

∑
q
v(q)u(q)† = IFl and from the spectral

decomposition of the operator (!(j) + !p) IFl − F∕ħ, i.e. (!(j) + !p) IFl − F∕ħ=
∑

q
(!(j) + !p − �(q)∕ħ)v(q)u(q)†. It

has a similar mathematical structure as expressions of the ionization rates derived from the spectral decom-
position of the resolvent operator for atoms interacting with a weak probe beam in the presence of a strong
static electric field [51,52] or a strong laser field [53,54].
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