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Abstract

This paper proposes the fatigue crack growth modelling of three-dimensional
geometries with the eXtended Isogeometric Boundary Element Method (XI-
GABEM). The formulation combines the advantages of the dual Bound-
ary Element Method (BEM), the isogeometric approach, and an enrichment
strategy for surfaces containing the crack front. The dual BEM approach
relies on a boundary-only mesh, eliminating a re-meshing task for internal
cracks. The isogeometric approach applies NURBS basis functions to de-
scribe both geometry and mechanical fields, allowing accurate representation
of curved shapes and improving convergence over classical polynomial func-
tions. The enrichment strategy stems from the Williams expansion of dis-
placements at the crack front, with parameters directly interpolating Stress
Intensity Factors (SIFs), removing costly post-processing tasks. The hoop
stress criterion and Schollmann criterion are used as crack growth criteria
and are combined with a novel least squares strategy to define the updated
crack front. Since this study addresses multi-patch discretisation of crack
surfaces, additional strategies ensure continuity between patches as required
by the enrichment field. Three numerical applications demonstrate the abil-
ity of the formulation to model fatigue in curved 3D geometries under various
loading conditions, allowing a novel comparison between crack growth crite-
ria.
Keywords: Extended isogeometric boundary element method, Enriched
formulations, Three-dimensional fracture mechanics, Fatigue crack growth,
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Stress intensity factors

1. Introduction

The fatigue crack propagation phenomenon requires attention in the struc-
tural design phase of many mechanical components that are subjected to
cyclical loading. In the high-cycle regime, engineers consider load ampli-
tudes small enough not to cause an imminent collapse, but able to trigger
a damage accumulation at regions containing intrinsic material flaws. As a
result, these cracks propagate under operational loads, and engineers seek to
ensure that cracks do not grow to a length that will result in material failure.
In this context, the correct assessment of the required number of load cycles
prior to failure is of major interest in ensuring structural safety.

The experimental observation of the high-cycle fatigue phenomenon re-
veals a relationship between the crack growth rate and the associated num-
ber of cycles. Specifically, the Paris-Erdogan Law uses concepts from Linear
Elastic Fracture Mechanics (LEFM) to relate this rate to Stress Intensity
Factors (SIFs). However, analysing complex three-dimensional components
using classic analytical solutions is often impractical, as these solutions are
only available for a limited set of cases. In this context, numerical methods
have emerged as a suitable and powerful choice for fatigue modelling, given
their robustness in the mechanical analysis of solids and structures.

Among the existing numerical methods, the Finite Element Method (FEM)
is the standard option for both industrial and research applications and is
also widely used for the fatigue analysis of three-dimensional components
[1, 2, 3, 4]. However, the stress singularity at the crack front demands a fine
mesh for accurate analysis. In addition, the crack growth process requires
a re-meshing procedure for each propagation step. These two issues are re-
sponsible for increasing the FEM computational cost, which can cause large,
industrially relevant problems to become intractable. Recently, alternative
strategies have emerged for the fatigue assessment of solids, e.g. peridynamics
[5, 6, 7, 8] and phase-field modelling [9, 10, 11, 12, 13]. While peridynamics
presents an attractive approach in terms of capturing dynamic effects such as
crack branching, it fails to capture some of the important physics, for exam-
ple the propagation speed of an elastic wave. For the phase-field modelling,
the bottleneck is the need for a fine mesh to accurately compute the phase
variables, which can result in computationally demanding analyses.
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Another successful numerical technique for the fatigue life assessment is
the eXtended/Generalised FEM (X/GFEM). In this approach, the approx-
imation of the mechanical fields incorporates additional functions based on
the known solution space for the specific problem under study. These new
functions are introduced as enrichment terms, and their selection improves
convergence order and eliminates the need for re-meshing in crack growth
analyses. The seminal work of Sukumar et al. [14] applies the X/GFEM
to three-dimensional fatigue crack propagation, and it has been followed by
several other studies [15, 16, 17, 18, 19, 20, 21]. These works demonstrate
the accuracy and robustness that the proper choice of enrichment functions
brings to the FEM, but they also introduce concerns as they may lead to an
ill-conditioned algebraic system.

In three-dimensional analysis of engineering components, CAD represen-
tations are the standard tool for their geometrical modelling, particularly
when complex geometries are involved. In this sense, the Isogeometric ap-
proach (IgA), first proposed by Hughes et al. [22], is an attractive strategy to
simplify the numerical modelling task. In IgA, both the geometry and me-
chanical field approximations use the same Non-uniform Rational B-spline
(NURBS) basis functions, and the spline geometry can greatly reduce a costly
mesh generation task. In addition, these functions represent exactly various
complex curves and surfaces, such as toroids, spheres, and circles. The nu-
merical solution becomes more accurate by a combination of (i) the reduction
of the geometrical error, and (ii) the improved approximation properties of
the NURBS basis functions in comparison with traditional piecewise poly-
nomials. The application of the IgA for two-dimensional fatigue analysis is
present in several studies coupled with X/GFEM [23, 24, 25, 26] and phase-
field modelling [27]. For three-dimensional applications, Shoheib [28] applies
the eXtended IgA (XIGA) to predict fatigue life of semi-elliptical cracks in
welded pipelines.

In contrast to domain-based numerical methods, the Boundary Element
Method (BEM) requires only a boundary discretisation for determining the
mechanical fields. Besides simplifying the meshing procedure, the dimen-
sional reduction greatly reduces issues associated with FEM and other meth-
ods due to the singular stress behaviour at the crack front. In addition,
re-meshing of the boundary only occurs when the crack crosses the external
boundary during crack growth procedures. The absence of a domain mesh
facilitates the creation of new elements without affecting all the algebraic
system. The application of BEM to two-dimensional fatigue analysis began
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with Portela et al. [29], who used the Dual BEM formulation [30], which
models each crack face using linearly independent boundary integral equa-
tions. Further, Mi and Aliabadi [31] pioneered the use of the BEM for three-
dimensional fatigue crack growth, while subsequent studies [32, 33, 34, 35, 36]
have demonstrated the robustness of this strategy for numerous fatigue anal-
yses of complex three-dimensional components.

The boundary-only nature of the BEM makes it ideally suited for cou-
pling with CAD in the IgA philosophy. Standard CAD models provide only
a boundary representation for solids. This can be used directly for the con-
struction of a BEM model, unlike isogeometric FEM approaches in which a
(non-trivial) process of creating a NURBS volumetric model is required. In
this context, in the Isogeometric BEM (IGABEM), this integration becomes
straightforward, as the geometric CAD entity directly serves as the IGABEM
mesh. Simpson et al. [37] were pioneers in proposing the IGABEM for two-
dimensional elasticity, while following studies developed three-dimensional
applications [38, 39]. Peng et al. [40] proposed three-dimensional IGABEM
for fatigue crack propagation using the Paris-Erdogan Law, while Sun et
al. [41] studied the influence of inclusions in the crack growth analysis with
IGABEM. However, these IGABEM studies on fatigue propagation have not
assessed the number of allowable cycles in their numerical analyses. In ad-
dition, the crack marching algorithm used does not allow a change in the
NURBS weights, which limits the capabilities of the numerical representa-
tion of the crack front. Furthermore, they use a crack growth criterion that
does not consider mode III in the crack propagation angle. Part of the nov-
elties in the present study is the addressing of these shortcomings.

The enrichment strategy in BEM and IGABEM represents a significant
advancement in numerical fracture mechanics. Simpson and Trevelyan [42,
43] expanded the partition of unity concept for fracture mechanics in the
BEM, enabling accurate determination of SIFs and the mechanical behaviour
of two-dimensional LEFM problems. In addition, the eXtended BEM (XBEM)
strategy allows for the direct determination of the SIFs, eliminating complex
post-processing tasks [44, 45]. Andrade et al. [46] performed the coupling
between the IGABEM and the XBEM for two-dimensional fatigue analy-
sis, demonstrating the formulation ability to predict the mechanical failure
of several complex geometries in mixed-mode propagation response. Rocha
et al. [47] proposed the three-dimensional XIGABEM for LEFM problems,
where the SIFs coefficients become part of the algebraic system solution,
along with improvements in the convergence rate for the studied problems.
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In the present work, fatigue crack growth analysis with a three-dimensional
XIGABEM formulation is presented for the first time.

In this paper, we propose a fatigue crack growth analysis algorithm for
three-dimensional geometries with the XIGABEM, in which the SIFs come
directly as system unknowns, eliminating the requirement for a J-integral or
other approximate techniques for their extraction. This study also compares
the application of the standard crack growth criterion for IGABEM (Hoop
stress criterion) with a suitable criterion for mixed-mode three-dimensional
behaviour (Schollmann criterion). In addition, a new crack front update
algorithm is proposed, using a least-squares technique to define the corre-
sponding NURBS curve for the updated crack front. It is worth noting that
the analyses in this study assume fully linear elasticity in both the material
model and the LEFM fracture framework. This is consistent with the as-
sumptions of the Paris-Erdogan Law and accurately represents linear fatigue
behavior in solids. However, in its current form, the XIGABEM formulation
cannot account for nonlinear fatigue effects, such as overload phenomena.

The original aspects mentioned in the last paragraph have been presented
in the following. Section 2 presents the XIGABEM formulation for three-
dimensional linear elasticity and the enrichment strategy for LEFM. Section 3
discusses aspects associated with the fatigue crack growth phenomenon, such
as life cycle assessment and crack growth angle. In section 4, we present the
alterations required in the XIGABEM framework to account for the crack
growth procedure, including the new crack front updating strategy. Next,
section 5 provides three numerical applications that demonstrate the success
of the proposed XIGABEM scheme in the fatigue life-cycle analysis for three-
dimensional cracks.

2. Three-dimensional eXtended Isogeometric Boundary Element
Method

2.1. Dual Isogeometric Boundary Element Method
The numerical solution of a three-dimensional elastostatics problem us-

ing the Boundary Element Method relies on boundary integral equations
(BIEs) to represent the mechanical behaviour of the solid component solely
in terms of geometry and mechanical quantities at the boundary. In prob-
lems containing cracks, when two surfaces coincide geometrically, using the
general BIE for elasticity on both crack sides leads to an ill-posed problem.
To address this issue, the Dual BEM [30, 48] utilises two different BIEs, one
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for each crack surface, to accurately determine the mechanical quantities at
these surfaces. Consider a three-dimensional cracked solid with domain Ω
and boundary Γ = Γeb ∪ Γc+ ∪ Γc−, where Γeb is the external boundary, and
Γc+ and Γc− are the opposite crack faces. For linear elasticity, the Displace-
ment BIE (DBIE) and the Traction BIE (TBIE) relate the displacements uk
and the traction tk when applied on a collocation point x̂ on the boundary
as:

cℓk(x̂)uk(x̂) +

∫
Γ

T ∗
ℓk(x,x̂)uk(x) dΓ =

∫
Γ

U∗
ℓk(x,x̂)tk(x) dΓ (1)

1

2
tj(x̂) + nℓ(x̂)

∫
Γ

S∗
kℓj(x,x̂)uk(x) dΓ = nℓ(x̂)

∫
Γ

D∗
kℓjtk(x,x̂) dΓ (2)

in which cℓk is a jump term that depends on the position of the collocation
point, with cℓk = 0.5δℓk for points on a smooth boundary, δℓk stands for the
Kronecker delta, x is a point on the integration boundary Γ and nℓ is the
outward normal vector at x̂. The TBIE results from the differentiation of the
DBIE with respect to x̂. In addition, T ∗

ℓk, U∗
ℓk, S∗

kℓj and D∗
kℓj are fundamental

solutions for the 3D elasticity problem, which are:

U∗
ℓk(x,x̂) =

1

16πµ (1− ν) r
[(3− 4ν) δℓk + r,ℓr,k] (3)

T ∗
ℓk(x,x̂) =

−1

8π (1− ν) r2

{
∂r

∂n
[(1− 2ν) δℓk + 3r,ℓr,k]

− (1− 2ν) (r,ℓnk + r,knℓ)}
(4)

D∗
kℓj(x,x̂) =

1

8π(1− ν)r2
[(1− 2ν)(δkℓr,j + δjkr,ℓ − δℓjr,k) + 3(r,ℓr,jr,k)] (5)

S∗
kℓj(x,x̂) =

µ

4π(1− ν)r3
{3 ∂r
∂n

[(1− 2ν)δℓjr,k + ν(δℓkr,j + δjkr,ℓ)−

5r,ℓr,jr,k] + 3ν(nℓr,jr,k + njr,ℓr,k)

+ (1− 2ν)(3nkr,ℓr,j + njδℓk + nℓδjk)− (1− 4ν)nkδℓj}

(6)

in which E and ν are the Young’s Modulus and the Poisson’s ratio, re-
spectively, µ = E

2(1+ν)
is the shear modulus, r = x− x̂ is the distance vector

between the collocation point and x, r = |r|, and n represents the outward
normal vector at x.
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The Dual BEM considers the application of the DBIE for collocation
points on both Γeb and Γc+, while the TBIE is used for collocation points on
Γc−, written as:

δℓk
2
uk(x̂

eb) +−
∫
Γ

T ∗
ℓk(x,x̂

eb)uk(x) dΓ =

∫
Γ

U∗
ℓk(x,x̂

eb)tk(x) dΓ (7)

δℓk
2
uk(x̂

c+) +
δℓk
2
uk(x̂

c−)+∫
Γ

T ∗
ℓk(x,x̂

c+)uk(x) dΓ =

∫
Γ

U∗
ℓk(x,x̂

c+)tk(x) dΓ
(8)

1

2
tj(x̂

c−)− 1

2
tj(x̂

c+) + nℓ(x̂
c−)=

∫
Γ

S∗
kℓj(x,x̂

c−)uk(x) dΓ

= nℓ(x̂
c−)−

∫
Γ

D∗
kℓjtk(x,x̂

c−) dΓ

(9)

in which x̂eb, x̂c+ and x̂c− are the collocation points on the external
boundary, upper crack face and lower crack face, respectively. In addition,
the strongly-singular nature of T ∗

ℓk and D∗
kℓjtk requires an integration in the

Cauchy Principal Value (CPV) sense, while the hyper-singular nature of the
S∗
kℓj kernel demands the Hadamard Finite Part (HPF) for its assessment.

In eq. (7), eq. (8) and eq. (9), −
∫

and =
∫

represent the CPV and the HFP,
respectively. The existence of coincident boundaries for representing the
opposing crack faces causes additional jump terms to arise in each BIE, so the
singularity in the relevant fundamental solution at both mirrored collocation
points is properly considered.

The isogeometric approach is introduced to the BEM by the application
of isogeometric functions for the geometrical and mechanical description, as
presented in Beer et al. [49]. The NURBS surface comes from the tensor
product of two univariate NURBS curves. The NURBS curve construction
requires a degree p, a set of n control points P i

k, corresponding weights wi for
each control point, and a non-decreasing knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}.
Then, there are several forms to define the NURBS basis functions ϕi(ξ) at
the parametric coordinate ξ, and the well-established Cox-de-Boor formula
[50, 51, 52] becomes suitable for the computational implementation, being:

ϕi(ξ) =
Ni(ξ)wi

n∑
k=1

Nk(ξ)wk

(10)
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Ni,0 (ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise
(11)

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) (12)

in which the index after the comma refers to the degree of the B-Spline and
NURBS basis function, following the standard notation of Piegl et al. [53].

The tensor product of a NURBS curve of degree p, with n control points,
and knot vector Ξ1 = {ξ11 , ξ21 , ..., ξn+p+1

1 } with a NURBS curve having degree
q, m control points and knot vector Ξ2 = {ξ12 , ξ22 , ..., ξn+p+1

2 } results in a
NURBS surface whose basis function is:

ϕα(ξ1,ξ2) =
Ni(ξ1)Mj(ξ2)wα

n∑
k=1

m∑
l=1

Nk(ξ1)Ml(ξ2)wα

(13)

in which N and M stand for each parametric direction, α is a connectiv-
ity index referring to the uni-variate basis function indices i and j of each
NURBS curve and wα is the corresponding weight. Then, the geometrical
description and the mechanical fields interpolations in a patch γ are:

xγk(ξ1,ξ2) =
nγ∑
α=1

ϕγ
α(ξ1,ξ2)P

β
k (14)

uγk(ξ1,ξ2) =
nγ∑
α=1

ϕγ
α(ξ1,ξ2)d

β
k (15)

tγk(ξ1,ξ2) =
nγ∑
α=1

ϕγ
α(ξ1,ξ2)p

β
k (16)

in which β is a global connectivity index associated with α and γ, P β
k are

the control points coordinates responsible for defining the NURBS surfaces,
dβk and pβk are the displacement and traction coefficients for the interpolation
of theses mechanical fields. Both dβk and pβk no longer possess physical mean-
ing, while they still have appropriate units, since the control points are not
necessarily on the boundary. However, boundary values of displacement and
traction components may be simply recovered from these coefficients (once

8



they become known) through application of eq. (15) and eq. (16). In addi-
tion, this lack of physical meaning requires care to be taken in the application
of non-constant boundary conditions.

The numerical integration required by the BIEs can be performed using
the standard Gauss-Legendre quadrature in the non-singular regions, which
demands a mapping between the physical space and the integration space
{ξ̂1,ξ̂2 ∈ Λ |Λ = [−1; 1]× [−1; 1]}. This occurs in two steps, in which the first
is the correspondence between the physical space and the parametric space
(eq. (14)) and the second is a coordinate transformation between the NURBS
parametric space of a knot span [ξi1, ξ

i+1
1 ]×[ξj2, ξ

j+1
2 ] and the integration space

as:

ξ1 =
(ξi+1

1 − ξi1) ξ̂1 + (ξi+1
1 + ξi1)

2
(17)

ξ2 =
(ξj+1

2 − ξj2) ξ̂2 + (ξj+1
2 + ξj2)

2
(18)

Then, in the isogeometric approach two Jacobians, J1 and J2, arise in the
boundary integration, as:

dΓ = J1J2dΛ = JdΛ (19)

J1 =

∥∥∥∥ ∂r∂ξ1 × ∂r

∂ξ2

∥∥∥∥ (20)

J2 =
(ξi+1

1 − ξi1)

2

(ξj+1
2 − ξj2)

2
(21)

in which J is the total Jacobian of the transformation. Knot spans con-
taining the collocation point require a different approach since the kernels ex-
hibit a singular behaviour in them. In this study, the numerical assessment of
these strongly-singular and hyper-singular integrals uses the Singularity Sub-
traction Technique (SST) [54, 55], based on a polar transformation around
the singularity, the expansion in Taylor series of the singular integrand and
a semi-analytical integration in the circumferential direction. Additionally,
the HFP requires a C1 continuity for the integrand in the vicinity of the
collocation point. Cordeiro and Leonel [56] present the expanded terms in a
detailed form of the SST for the three-dimensional IGABEM.

The introduction of the geometry, displacement and traction interpolation
shown in eq. (14), eq. (15) and eq. (16) into the BIEs, leads to a set of
equations written in a discretised form as:
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δℓk
2

nγ∑
α=1

ϕγ̂
α(x̂

eb)dβk +
NS∑
γ=1

T∗αγ
ℓk dβk =

NS∑
γ=1

U∗αγ
ℓk pβk (22)

δℓk
2

nγ∑
α=1

ϕγ̂+
α (x̂c+)dβk +

δℓk
2

nγ∑
α=1

ϕγ̂−
α (x̂c−)dβk +

NS∑
γ=1

T∗αγ
ℓk dβk =

NS∑
γ=1

U∗αγ
ℓk pβk (23)

1

2

nγ∑
α=1

ϕγ̂−
α (x̂c−)pβj −

1

2

nγ∑
α=1

ϕγ̂+
α (x̂c+)pβj

+nℓ(x̂
c−)

NS∑
γ=1

S∗αγ
kℓj d

β
k = nℓ(x̂)

NS∑
γ=1

D∗αγ
kℓj p

β
k

(24)

in which x̂ represents a point on the NURBS surface containing the col-
location point. The arguments of the fundamental kernels are now omitted
for brevity. In addition, T∗αγ

ℓk , U∗αγ
ℓk , S∗αγ

kℓj and D∗αγ
kℓj are:

T∗αγ
ℓk =

nγ
ks∑

ks=1

∫
Λ

T ∗
ℓkϕ

γ
α J

ks
γ dΛ (25)

U∗αγ
ℓk =

nγ
ks∑

ks=1

∫
Λ

U∗
ℓkϕ

γ
α J

ks
γ dΛ (26)

S∗αγ
kℓj =

nγ
ks∑

ks=1

∫
Λ

S∗
kℓjϕ

γ
α J

ks
γ dΛ (27)

D∗αγ
kℓj =

nγ
ks∑

ks=1

∫
Λ

D∗
kℓjϕ

γ
α J

ks
γ dΛ (28)

in which ks denotes the knot span and nγ
ks is the number of knot spans

in the patch γ.
The discretised form of the elastostatic boundary value problem has a

total of 3Nd and 3Np displacement and traction coefficients, respectively,
with Nd = Np = Ncoeff when both fields use the same discretisation. Half
of these coefficients come directly from the boundary conditions applied,
while the another half is unknown due to Γu ∩ Γp = ∅. In this sense, the
problem has Ncoeff unknowns mixed between d and p. The algebraic system
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containingNcoeff equations come from the application of eq. (22), eq. (23), and
eq. (24) on the same number of unknowns. Then, the standard procedure for
the IGABEM is to determine the position of Ncoeff collocation points in the
entire boundary based on the Greville Abscissae strategy [57]. Considering
each control point α in a NURBS surface γ, its equivalent collocation pair in
the parametric space (ξi1, ξ

j
2)

αγ is:

(ξ̂i1)
αγ =

∑i+p
s=i+1 ξ

s
1

p
(29)

(ξ̂j2)
αγ =

∑j+q
s=j+1 ξ

s
2

q
(30)

in which i and j are the indices of the uni-variate NURBS curve that
generates the NURBS surface and ξs1 and ξs2 come from their knot vectors.
To ensure that all collocation points are on smooth boundaries, as well as C1

continuity for all points lying on the crack surfaces, a repositioning strategy
alters their position. For a knot span [ξi1,ξ

i+1
1 ] × [ξj2,ξ

j+1
2 ], this replacement

occurs when (ξi1, ξ
j
2)

αγ are at the end of the NURBS surface knot span or if
there is a knot multiplicity in that knot span so that C1 continuity cannot
be guaranteed, as:

(ξi alt
1 )αγ = (ξi1)

αγ ± 0.1(ξi+1
1 − ξi1) (31)

(ξj alt
2 )αγ = (ξj2)

αγ ± 0.1(ξj+1
2 − ξj2) (32)

in which the ± sign corresponds to forward or backward movement, de-
pending on whether the collocation point lies on the beginning or on the end
of the knot span.

After applying eq. (22), eq. (23) and eq. (24), to all of the collocation
points generated by the Greville Abscissae strategy, the algebraic system
may be written: Heb

Hc+

Hc−

 deb

dc+

dc−

 =

 Geb

Gc+

Gc−

 peb

pc+

pc−

 ⇒ Hd = Gt (33)

where Heb and Geb are the influence factors of displacements and tractions
of the external boundary, Hc+ and Gc+ correspond to the upper crack face
while Hc− and pc− are the equivalent for the lower crack face.
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Boundary conditions are applied by introducing suitable values for the
displacement and traction coefficients in eq. (33). For constant boundary
conditions, the single application of its value as the coefficient is enough to
describe the boundary condition fully. However, non-constant distributions
pose an issue for isogeometric approaches, in which alternative strategies,
such as direct integration of the entire kernel substituting the correspondent
analytical expression or a least square approximation overcome the problem.
In this study, for simplicity, solely constant boundary conditions are present.
After applying the boundary condition coefficients in eq. (33), the IGABEM
algebraic system becomes similar to its BEM counterpart, as:

Ax = b (34)

in which the A matrix contains all influence factors, x contains the unknowns
displacement and traction coefficients and b is a right-hand side vector which
results from applying the boundary conditions on the general form of the
IGABEM.

2.2. Crack front enrichment strategy for direct assessment of the SIFs
The use of NURBS basis functions in IGABEM improves the geometrical

representation of the solid, which reduces the influence of errors that arise
from the standard Lagrangian basis functions to describe the geometry. How-
ever, like the piecewise polynomials in the conventional BEM, the NURBS
functions used in the IGABEM cannot adequately capture the

√
r behaviour

in the displacement in the vicinity of the crack front. As a consequence,
when both dual BEM and IGABEM formulations are used to solve fracture
mechanics problem, a non-physical gap in the crack front emerges, and this
displacement discontinuity accounts for the majority of the overall error in
the solution. To circumvent this problem, the proper introduction of the

√
r

in the solution field as an enriching function results in the tying between the
crack surfaces at the crack front. This strategy may be labelled the eXtended
IGABEM (XIGABEM) approach, as firstly proposed Rocha et al. [47] for
three-dimensional linear elastic fracture mechanics. The introduction of the√
r behaviour at the crack surfaces and the absence of the non-physical dis-

placement discontinuity give rise to improvements in the convergence rate in
comparison to the conventional IGABEM. Mathematically, the displacement
field in eq. (15) includes an enriching term as:
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uγ
c+/−

k (ξ1,ξ2) =
nγ∑
α=1

ϕγc+/−

α (ξ1,ξ2)d
β
k +

nγ
K∑

s=1

Rcf
kqψ

γ̄cf

qM ϕ̃
cf
s (v)K̃

s cf
M (35)

in which γc+/− is the upper or lower crack face containing the crack front,
while ϕ̃cf

s (v) is a set of NURBS basis functions at the crack front, which are
the same as the uni-variate basis functions of the NURBS surface in the
corresponding direction and with parametric coordinate v. The term ψγ̄cf

qM is
the enrichment function inspired in the first term of the Williams expansion
as:

ψqM =

ψnI ψnII ψnIII

ψbI ψbII ψbIII

ψtI ψtII ψtIII

 (36)

ψnI =
1

2µ

√
rt

2π
cos

(
θt

2

)[
κ− 1 + 2 sin2

(
θt

2

)]
(37)

ψnII =
1

2µ

√
rt

2π
sin

(
θt

2

)[
κ+ 1 + 2 cos2

(
θt

2

)]
(38)

ψbI =
1

2µ

√
rt

2π
sin

(
θt

2

)[
κ+ 1− 2 cos2

(
θt

2

)]
(39)

ψbII = − 1

2µ

√
rt

2π
cos

(
θt

2

)[
κ− 1− 2 sin2

(
θt

2

)]
(40)

ψtIII =
1

2µ

√
rt

2π
4 sin

(
θt

2

)
(41)

ψtI = ψtII = ψnIII = ψbIII = 0 (42)

in which rt are geometrical properties related to the point P (ξ1,ξ2) at the
enriched surface depicted in fig. 1. κ is the Kolosov constant associated to
the crack front stress state, being κ = 3 − 4ν for plane-strain and κ = 3−ν

1+ν

for plane-stress. This set of enrichment functions resembles those in Oden-
Duarte [58, 59]. However, in the XIGABEM approach, they are combined
with the rotation matrix Rcf

kq so that the additional unknowns K̃s cf
M become

stress intensity factors parameters. The rotation matrix Rcf
kq contains the

local coordinate system [N⃗ B⃗ T⃗ ] in fig. 1 and transforms the terms of the
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Figure 1: Local coordinate system and enrichment terms definition for crack front enrich-
ment scheme.

enrichment function from the local coordinate system at the crack front to
the global coordinate system of the problem. For the isogeometric approach,
this study uses the Frenet-Serret frame [60, 61] to determine Rcf

kq, which is a
suitable framework since in IgA it may be directly derived as function of the
NURBS curve properties and its derivatives.

The augmented displacement field of the eq. (35) replaces the standard
isogeometric approximation for this field to obtain the XIGABEM algebraic
system. As a result, new terms arise in the discretised set of equations
while the other terms of the standard IGABEM are not affected. Then, by
proceeding in a similar fashion as for the IGABEM, but with the enriched
field, the discretised set of equations becomes:

δℓk
2

nγ∑
α=1

ϕγ̂
α(x̂

eb)dβk +
NS∑
γ=1

T∗αγ
ℓk dβk +

NS∑
γ=1

Ts
s cf
ℓMK̃

s cf
M =

NS∑
γ=1

U∗αγ
ℓk pβk (43)
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δℓk
2

nγ∑
α=1

ϕγ̂+
α (x̂c+)dβk +

δℓk
2

nγ∑
α=1

ϕγ̂−
α (x̂c−)dβk

+
δℓk
2

nγ
K∑

s=1

ϕ̃cf
s (v(x̂

c+))Rcf
kq(x̂

c+)ψγ̂cf

qM(x̂c+)K̃s cf
M

+
δℓk
2

nγ
K∑

s=1

ϕ̃cf
s (v(x̂

c−))Rcf
kq(x̂

c−)ψγ̂cf

qM(x̂c−)K̃s cf
M

+
NS∑
γ=1

T∗αγ
ℓk dβk +

NS∑
γ=1

Ts
s cf
ℓMK̃

s cf
M =

NS∑
γ=1

U∗αγ
ℓk pβk

(44)

1

2

nγ∑
α=1

ϕγ̂−
α (x̂c−)pβj −

1

2

nγ∑
α=1

ϕγ̂+
α (x̂c+)pβj

+nℓ(x̂
c−)

NS∑
γ=1

S∗αγ
kℓj d

β
k + nℓ(x̂

c−)
NS∑
γ=1

Ss
s cf
ℓjMK̃

s cf
M = nℓ(x̂

c−)
NS∑
γ=1

D∗αγ
kℓj p

β
k

(45)

in which new jump terms only arise on the DBIE applied at the upper
crack faces. In addition, the terms Ts

s cf
ℓM and Ss

s cf
ℓjM correspond to the influence

of the enrichment terms on the fundamental kernels as:

Ts
s cf
ℓM =

n
γ(cf)
ks∑

ks=1

∫
Λ

T ∗
ℓkϕ̃

cf
s R

cf
kqψ

γ(cf)
qM Jks

γ(cf) dΛ (46)

Ss
s cf
ℓjM =

n
γ(cf)
ks∑

ks=1

∫
Λ

S∗
kℓjϕ̃

cf
s R

cf
kqψ

γ(cf)
qM Jks

γ(cf) dΛ (47)

The evaluation of boundary integrals requires us to locate the point at
the crack front with minimum distance to the integration point, and a point
projection algorithm [53] is used to find the corresponding parametric coor-
dinate of this point. The kernels contained in the integrals inherit the order
of singularity of their counterparts in the standard IGABEM, i.e. the enrich-
ment causes no increase in order of singularity. Therefore, the CPV and the
HFP are responsible for their regularisation in a similar procedure to that in
the IGABEM. The expansion of each term in the regularisation is present in
the appendix B of the work of Rocha et al. [47].
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New unknown parameters have emerged in the above development of the
enriched approximation so, since we adopt a collocation-based implemen-
tation rather than Galerkin, some auxiliary equations are required to be
generated to recover a square system. A suitable approach is a crack tying
constraint, constraining the upper and lower crack faces at the crack front to
have equal displacements (i.e. enforcing continuity of displacement), which
may be applied weakly as:∫

Γcf
s

[
nγ∑
α=1

ϕγ̄+

α (ξ1,ξ2)d
β+

k −
nγ∑
α=1

ϕγ̄−

α (ξ1,ξ2)d
β−

k

]
ϕ̃cf
s (v)dv = 0k (48)

in which Γcf
s is the crack front and ϕ̃cf

s are the weighting functions that,
for this approach, are the NURBS basis functions of the uni-variate NURBS
curve representing the crack front.

The final algebraic system considering the enriched IGABEM system be-
comes: [

H Hs

Φs 0

]{
d

K̃

}
=

[
G
0

] {
p

}
(49)

in which the sub-matrix Hs contains the contributions from the new XI-
GABEM integrals, Φs corresponds to the coefficients from the compatibility
equations eq. (48) and K̃ contains the new enrichment parameters. The ap-
plication of boundary conditions on eq. (49) results in a final system Ax = b,
and a standard solver computes all the unknowns of the vector x. A remark-
able advantage of this formulation is its ease in the coupling with existing
IGABEM codes. As noticed by the expansion of the algebraic form of the
XIGABEM system in comparison to the IGABEM, the enrichment strategy
does not affect the standard IGABEM terms, so the computational routines
remain the same.

Another advantage of the XIGABEM enrichment is the direct extraction
of the SIFs. The construction of the enrichment space results in the terms K̃,
arising in the solution vector x, from which the SIFs can be readily computed
as:

Kcf
M(v) =

nγ
K∑

s=1

ϕ̃cf
s (v)K̃

s cf
M (50)
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thus dismissing a post-processing task that can be computationally de-
manding, such as the J-integral, or approximated techniques such as the
Displacement Extrapolation Technique.

3. Fatigue crack propagation

Fatigue crack growth analysis with the LEFM is suitable for high-cycle
loading scenarios. In this situation, the load amplitude is small enough not
to cause material failure for a small amount of loading cycles, but it causes
degradation through crack growth throughout the component life cycle. For
LEFM to be admissible, it is assumed that the inelastic process zone ahead
of the crack is negligible in size in comparison to the crack length and to
the solid dimensions. Therefore, the formulation proposed herein does not
take account of the nonlinear processes at the fracture process zone and
the energy dissipated during fatigue has been totally utilised for creating
additional crack surfaces. The life prediction analysis then relies on empirical
laws that relate the crack growth rate to the variation of the stress intensity
factors over the load cycle. Because of its simplicity, the Paris-Erdogan Law
is commonly applied for this type of problem, and is adopted in the current
work. It is noted that other crack growth laws may be applied if desired
within the XIGABEM framework.

3.1. The Paris-Erdogan Law and fatigue life prediction
The Paris-Erdogan Law relates empirically the rate between the crack

growth rate da/dN and the SIF range ∆K as:

da

dN
= C(∆K)m (51)

in which C and m are material parameters for fatigue crack growth, whose
determination relies on experimental studies. In a fully three-dimensional
case, ∆K accounts for the equivalent SIF during a load cycle, which is a
combination of the SIF of each mode. Then, the crack growth criterion
choice defines the equivalent SIF ∆Keq . This study compares the use of
two criteria: the hoop stress criterion [62] and the Schollmann criterion [63].
The expressions for both the ∆Keq and the propagation angle are present in
section 3.2.

The classical approach of determining the required amount of cycles for
the crack to grow from a length a to a length a+∆a uses a constant approxi-
mation for the equivalent SIF variation so that ∆Keq = Keq(a+∆a)−Keq(a),
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which may be used directly in eq. (51). Alternatively, this study uses the
linear SIF approximation for the development of the eq. (51), firstly pro-
posed by Andrade and Leonel [64]. The study of Cordeiro and Leonel [36]
applied this strategy for the three-dimensional BEM in a mixed-mode crack
growth analysis, in which results have shown its advantages over the classical
approach. In this context, the approximation of the equivalent SIF between
the crack lengths a and a+∆a is:

∆Keq = βa+ γ (52)

in which β and γ are constants of the linear form as:

β =
∆Keq(a+∆a)−∆Keq(a)

∆a
(53)

γ = ∆Keq(a)− βa (54)

The substitution of the eq. (52) in the Paris-Erdogan Law, eq. (51) and
its integration result in:

dN =
da

C(∆K̄eq)m
⇒

N(a+∆a)−N(a) = ∆N =

∫ a+∆a

a

1

C[∆Keq(a)]m
da⇒

∆N =
1

C

∫ a+∆a

a

(βa+ γ)−mda⇒

∆N =
1

C

[
(βa+ γ)1−m

(1−m)β

]a+∆a

a

⇒

∆N =
∆a{[∆Keq(a+∆a)]1−m − [∆Keq(a)]

1−m}
C(1−m)[∆Keq(a+∆a)−∆Keq(a)]

(55)

in which ∆N stands for the increment in the number of cycles in the crack
advancement from a to a + ∆a. Cordeiro and Leonel [36] have shown that
this alternative formulation allows for the use of higher crack growth steps
∆a in comparison to the classical approach. This enables a reduction in the
computational cost by reducing the mesh density.

Finally, the total number of cycles of loading and unloading becomes the
sum of each ∆N of all propagation steps of the analysis. In a computational
assessment of the life cycle, the maximum increment ∆amax occurs at the
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crack front location with maximum ∆Kmax
eq . The advancement for each point

xi at the crack front considers a weighting factor based on the Paris-Erdogan
Law in a discrete manner as:

∆a(xi) = ∆amax

(
∆Keq(xi)

∆Kmax
eq

)m

(56)

in which ∆Kmax
eq is the maximum ∆Keq(xi) at the crack front for the current

propagation step.

3.2. Crack growth criteria
The crack growth criterion is responsible for defining the crack propa-

gation angle θp associated to the local coordinate system at the crack front
to define the new crack front location. Several studies have proposed tech-
niques to define the proper crack path considering the mechanical response,
the type of loading and the thermodynamics of the fracture process. For the
LEFM in particular, either a global or local energy balance may be capable of
describing this phenomenon. Both techniques rely on the SIFs to represent
the stress state at the crack front, which in this work are directly defined
with the solution of the boundary value problem for each crack increment.
In this study, the choice of the maximum hoop stress criterion [62] stems
from its use in previous studies of three-dimensional IGABEM crack propa-
gation [40, 41, 65]. However, since the maximum hoop stress criterion does
not consider the Mode III in the crack propagation angle, in this study we
also test the Schollmann criterion [63]. We present a fully three-dimensional
criterion allows for the correct computing of the crack front angle, which may
be seen as a novelty in comparison to previous works in the IGABEM field.
The brittle failure of the material occurs when Keq ≥ KIc, in which KIc is
the material toughness for both criteria.

3.2.1. Maximum hoop stress criterion
The maximum hoop stress criterion seeks the direction in which the hoop

stress is maximised for a given loading scenario. This occurs for an angle θp
so that:

θp = 2arctan

[
−2(KII/KI)

1 +
√

1 + 8(KII/KI)2

]
(57)
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and the equivalent SIF Keq that incorporates the mode III effects according
to Gestle [66] is:

Keq =
√
K2

I +K2
II + (1 + ν)K2

III (58)

While the Keq contains the influence of mode III through KIII , the crack
propagation angle does not take this mode into account. Thus, mixed-mode
fracture problems having a non-zero mode III component may not be properly
represented by this criterion.

3.2.2. Schollmann criterion
The Schollmann criterion [63] defines the propagation angle such that it

maximises the principal stress σ′
1 in the local coordinate system defined on

the crack front. The principal stress value is:

σ
′

1 =
σθ + σx̄3

2
+

√
(σθ + σx̄3)2 + 4(τθx̄3)2

2
(59)

in which all stress variables are written according to a local coordinate sys-
tem at the crack front, as shown in fig. 2 and are related to the SIFs. By
assuming that the component σx̄3 does not affect the propagation angle, the
Schollmann criterion takes σx̄3 = 0. Then, for three-dimensional approaches
the equivalent SIF is:

Keq =
1

2
cos

(
θp
2

){
KI cos

2

(
θp
2

)
− 3

2
KII (sin θp)

+

√[
KI cos2

(
θp
2

)
− 3

2
KII (sin θp)

]2
+ 4K2

III


(60)

and the propagation angle θp may be found from:

Θ =
1

8
√
2πr

{−KI S̄

2
−KIIC̄1 +

1

2

[
2
[(
KIC̄2 −KII S̄

)
−KIIC̄1

]
[−KI S̄

2
−KIIC̄1

]
−16K2

III sin (θp)
]

[[
KIC̄2 −KII S̄

]2
+ 64K2

III cos
2

(
θp
2

)]−1
2

 = 0

(61)

C̄1 =
3

2
cos

(
θp
2

)
+

9

2
cos

(
3θp
2

)
(62)
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Figure 2: Local coordinate system for the crack front stresses.

C̄2 = 3 cos

(
θp
2

)
+ cos

(
3θp
2

)
(63)

S̄ = 3 sin

(
θp
2

)
+ 3 sin

(
3θp
2

)
(64)

There is no analytical solution for the eq. (61), but θp may be determined
numerically. This study applies the Golden Section algorithm to determine the
propagation angle. In addition, the Schollmann criterion defines the twist angle ψp

as:
ψp =

1

2
arctan

[
2τθx̄3(θp)

σθ(θp)− σx̄3(θp)

]
(65)

The twist angle influence on the XFEM [17] and in the BEM [36] relies on a a
crack front equivalent element. Both studies considered a linear approximation for
this element, while in this study NURBS curves represent the crack front. There is
therefore no natural equivalence for these strategies. In this study a zero twisting
angle is assumed for simplicity; its influence on the crack front propagation within
XIGABEM is suggested as a possible avenue for future work.

4. Crack propagation framework in XIGABEM

4.1. Crack front update algorithm
In a crack growth framework within the XIGABEM, the definition of the prop-

agation angle and the increment for the crack front takes place considering the
solution of the boundary value problem for the previous geometry. Then, in a
numerical framework, a new set of points defining the crack front are the starting
point to determine a parametric curve that best represent them. Previous studies
[40, 41] for the crack growth in IGABEM applied a crack front updating algorithm
proposed by LaGreca et al. [67] based on the movement of the existing control
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Figure 3: Definition of new crack position based on points and the corresponding new
crack front.

points that defined the previous crack front so that they best fit the new crack
front points. However, this strategy does not allow the NURBS weights to be
adjusted during the crack growth procedure, which leads to a sub-optimal repre-
sentation of the crack front during its advance. In the current work, we develop a
least-squares fitting, as in [68], for the definition of the new crack front based on
an isogeometric representation with NURBS curves.

The new procedure for the crack front updating using the IGABEM considers
initially that the previous knot-span and degree of the NURBS crack front remains
the same for the new crack front. The sample points C̃ij

k define the coordinate in the
k direction of the updated front, and these come from a point-wise propagation
of a uniformly spaced set of points from a parametric knot uij on the NURBS
curve i that defines the growing crack front. The algorithm considers a crack
propagation for multiple crack surfaces simultaneously. Figure 3 illustrates this
sampling procedure and the definition of the new point based on ∆a and θp.

In this strategy, the new crack front interpolation uses NURBS basis functions
in its parametrisation Ck(u

i
j ,P

i,wi) as:

Ck(u
i
j ,P

i,wi) =

nP∑
j=1

ϕjP
ij
k (66)

in which the basis functions ϕj come from eq. (13) of a total of nP basis functions,
and contain the control points’ weights, and P ij

k is the j-th control point of the
NURBS curve i in the k direction.
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The least-squares fitting algorithm proceeds by writing a minimisation problem
for the squared distance of the sampled point C̃ij

k :

minF = fT f (67)

fℓ = Ck(u
i
j ,P

i,wi)− C̃ij
k (68)

in which Pi and wi are the control points and weights of the optimised NURBS
curve, and the presentation is made more compact by using ℓ ≡ ijk as notation
for a global connectivity index related to the indices i, j, and k. These two sets of
variables are the output of this analysis. By applying the Gauss-Newton method
and its truncation in the first term, the eq. (67) becomes:

JTJ∆x = −JT f (69)

in which the vector ∆x = {∆P ∆w}T contains the increments in each of the
optimising variables (control points and weights), and the Jacobian vector J is:

J = [JP Jw] (70)

corresponding to the first derivative of the vector f with respect to Pi and wi, for JP

and Jw, respectively. Their expressions are present in [68]. It is worth mentioning
that the first and the last control points of each NURBS curve are fixed based
on the propagation angle and crack increment of the end points. When a NURBS
curve endpoint shares its position with an endpoint of another NURBS curve, their
corresponding control point is taken as the average of the points resulting from the
propagation of each patch separately, as shown in fig. 4. This guarantees a C0

continuity when multiple NURBS surfaces, and therefore multiple NURBS curves,
describe a single crack.

After finding the set of control points and weights that best approximates
the new crack front, the enrichment nature requires also tangential and normal
alignments between the junctions of each NURBS curve. For problems with multi-
patch NURBS surfaces representing the crack surface, the optimisation for the
crack growth update does not guarantee continuity for the local coordinate system
at these points, which is a requirement for the set of the enrichment functions
herein applied. To overcome this issue, a gradient descent algorithm promotes the
alignment between the tangents and the normal outward vectors at each endpoint.
The tangent vector at the end points is aligned with the vector between the first
and second control points, for the initial point, or between the penultimate and
last control points, for the final point, as illustrated in fig. 5.

Following the definition of fig. 5, let A⃗ = PA − Pe be the vector between the
endpoint Pe and the point PA from the NURBS curve cm, while B⃗ = PB −Pe is
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Figure 4: Averaging endpoints to guarantee C0 continuity between NURBS surfaces.

Figure 5: Control points position for each updated crack front for tangent alignment.
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the vector from Pe to the PB on the neighbouring NURBS curve cn. The tangent
alignment comes from a collinearity condition as:

g1 = 1−
∣∣∣∣∣ A⃗.B⃗

||A⃗||.||B⃗||

∣∣∣∣∣ = 0 (71)

in which both A⃗ and B⃗ are functions only of the second/penultimate control points
of the curves cm and cn. The gradient descent strategy updates the control points
PA and PB as:

{
PA

PB

}k+1

=

{
PA

PB

}k

− αGD


∂g1
∂PA

∂g1
∂PB


k

(72)

in which the partial derivatives are:

∂g1

∂PA
ℓ

= −
sign(A⃗.B⃗)Bℓ||A⃗||||B⃗|| − (A⃗.B⃗)(PA

ℓ − P e
ℓ )||B⃗||

||A⃗||
(||A⃗|| ||B⃗||)2

(73)

∂g1

∂PB
ℓ

= −
sign(A⃗.B⃗)Aℓ||A⃗||||B⃗|| − (A⃗.B⃗)(PB

ℓ − P e
ℓ )||A⃗||

||B⃗||
(||A⃗|| ||B⃗||)2

(74)

In the incremental procedure, the stopping criterion is based on the scalar g1
associated to the tangent alignment condition. αGD is a parameter set in the begin-
ning of the analysis that considers the influence of the gradient during the iterative
process. The alignment conditions are applied sequentially, in which firstly the tan-
gent alignment occurs, and its result is the input data for the normal alignment.
The normal outward alignment condition stems from using the inner product of
the normal outward vector from each neighbouring NURBS curve as:

g2 = 1− |N⃗m.N⃗n| = 0 (75)

in which N⃗m and N⃗n are the normal vectors at the shared point of the curves cm
and cn. The gradient descent method for the outward normal vectors occurs in a
similar fashion as eq. (72), but updating all control points of each NURBS curve

{
Pm

Pn

}k+1

=

{
Pm

Pn

}k

− αGD


∂g2
∂Pm

∂g2
∂Pn


k

(76)
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Figure 6: New crack surface generation based on new crack front.

and the partial derivatives associated to the normal outward alignment are:

∂g2
∂Pm

ℓ

= sign(g2)
3∑

k=1

(
∂Nm

k

∂Pm
ℓ

Nn
k

)
(77)

∂g2
∂Pn

ℓ

= sign(g2)
3∑

k=1

(
∂Nn

k

∂Pn
ℓ

Nn
k

)
(78)

in which a finite difference strategy computes the partial derivatives of the
normal outward vector due to their complex analytical determination.

4.2. Modifications in the XIGABEM algebraic system
The fatigue crack propagation analysis with XIGABEM requires an incremental

simulation, in which for each propagation step a new set of isogeometric surfaces
represents the updated crack front. The generation of these new crack surfaces
relies on the connection between the previous and the updated crack front as illus-
trated in fig. 6. The perpendicular direction receives the same knot vector as the
previous surface. The new control points of this surface are found from a direct
interpolation between the control points of the previous and new fronts.

The Greville Abscissae strategy generates the collocation points on the new
surfaces, and application of the relevant boundary integral equations at these points
requires integration over all the existing domain. In addition, the integration over
the new portion of the boundary, formed by the latest crack surface increment(s), is
also required for the pre-existing collocation points. In this stage, additional rows
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and columns arise in the algebraic system, the rows referring to the new collocation
points and the columns to the displacement and traction coefficients for the new
surfaces. It is important to recall that the remainder of the algebraic system is
unaffected by the introduction of new crack surface elements.

After the definition of the new crack front, the determination of the enrichment
terms occurs simultaneously to the integration of the corresponding new surfaces.
With the definition of the new crack front, all enrichment terms from the previous
step are removed from the system, and previously enriched elements return to the
standard (unenriched) IGABEM description.

5. Numerical applications

5.1. Elliptical crack growth
The first application of this study involves the fatigue analysis of an elliptical

shaped crack immersed in a prismatic solid. The geometry and boundary conditions
are presented in fig. 7, in which the crack centre is at the coordinates (0,0,0). A
uniformly distributed traction varying from σmin

2 = 0MPa to σmax
2 = 200MPa is

applied on the upper face, while the lower face is clamped. The material is a Ti-6Al-
4V alloy, whose properties are given in section 5.1. The Paris constants provided
assume units of ∆K and da/dN to be MPa mm0.5 and mm/cycle. The numerical
modelling of the elliptical crack considers 5 bi-quadratic (p = q = 2) NURBS
surfaces modelling each crack surface, as in fig. 13, i.e. 10 NURBS surfaces are
used for both crack sides. The inner elliptical surface has dimensions equivalent
to 80% of the elliptical crack. The complex KI variation along the crack front
affects the crack propagation increment by triggering eq. (56). This application
has been studied by Ilie and Ince [69], in which a finite element analysis obtained
results that approximate well their proposed reference solution for the crack front
advancement. The fatigue analysis stops after 10 increments.

Young Modulus E = 115GPa
Poisson’s ratio ν = 0.3
Paris constant C = 1.77.10−14

Paris exponent m = 3.667
Maximum increment ∆amax = 0.6mm

Table 1: Material and fatigue properties of Ti-6Al-4V alloy.

Three isogeometric meshes are used to test the performance of the proposed
XIGABEM algorithm for the propagation of the elliptical crack under the given
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Figure 7: Geometry and boundary conditions of elliptical crack immersed in prismatic
solid.
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Figure 8: Isogeometric mesh and control points for elliptical crack.

cyclical load. The coarse mesh, namely mesh 1 and shown in fig. 8, has its con-
trol points, weights and knot-vectors given in the Appendix A. The uniform knot
insertion refinement in both directions of mesh 1 generates the finer meshes 2 and
3. Meshes 1, 2 and 3 have 114, 184 and 274 collocation points, respectively, for
the initial crack. The Schollmann criterion is adopted for the determination of
the crack propagation angle; however, since the in-plane elliptical crack has a pure
mode I response, there is no significant difference between the two criteria used in
this study. In addition, table 2 presents the number of degrees of freedom in each
propagation step, which highlights the XIGABEM ability of representing a curved
problem with a small number of degrees of freedom.

The crack configuration for Mesh 2, in the first step, the fifth step and the last
step, are shown in fig. 9. In addition, fig. 10 presents the deformed shape amplified
by a factor of 1000 for each mesh in their last propagation step. As expected for
this geometry during crack growth, the crack geometry transforms from its initial
elliptical shape into a circular shape. Additionally, the XIGABEM formulation
promotes the tying between the upper and lower crack faces for the last increment,
and this reduces the error in this region. Also, all three meshes give rise to a similar
displacement field, which demonstrates the ability of the XIGABEM formulation to
capture the response well even using coarse meshes. Moreover, the fatigue life cycle
assessment for the elliptical crack in fig. 11 demonstrates a convergence pattern for
the required amount of cycles, and this response agrees with the reference solution
of Ilie and Ince [69].
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Figure 9: Elliptical crack growth: steps 1, 5 and 10.
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Number of degrees of freedom
step Mesh 1 Mesh 2 Mesh 3
0 378 600 882
1 594 888 1362
2 810 1176 1842
3 1026 1464 2322
4 1242 1752 2802
5 1458 2040 3282
6 1674 2328 3762
7 1890 2616 4242
8 2106 2904 4722
9 2322 3192 5202
10 2538 3480 5682

Table 2: Number of degrees of freedom at each propagation step

Figure 10: Deformed shape for each mesh in tenth propagation step.
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Figure 11: Fatigue life assessment of elliptical crack in in prismatic solid.

5.2. Inclined penny-shaped crack growth
The second numerical application of this study consists of an inclined penny-

shaped crack as shown in fig. 12. The crack has radius R = 0.1m, is located
centrally in a cube of side a = 2.0m, and is inclined by an angle π/4 rad. The
isogeometric mesh for the crack geometry contains 5 NURBS surfaces of degree
p = q = 2 for each crack surface, i.e. a total of 10 NURBS surfaces is used for
the crack. The central portion of the crack is circular with a radius Rint = 0.08m
while the annular outer portion of the crack is modelled using 4 NURBS surfaces,
as shown in fig. 13. For the numerical analysis, this geometrical mesh undergoes
two knot insertions in each parametric direction, which results in a total of 274
collocation points. In the face in which x1 = −1.0, the prescribed displacement is
u1 = 0.0, while lower face x2 = −1.0 has u2 = 0.0 and the face with x3 = −1.0
contains u3 = 0.0 as an enforced displacement. The upper face x2 = 1.0 is subjected
to a load varying cyclically between σmin

2 = 0MPa and σmax
2 = 1MPa. Continuity

is not enforced between each crack surface, which justifies the local adjustment for
tangent and normal outward vectors. The loading condition results in a fully mixed
mode I/II/III response due to the crack inclination. Pereira et al. [17] analysed
this geometry with the hp-generalised FEM approach, in which the Schollmann
criterion defined the crack growth direction for the crack. The material and fatigue
properties are presented in section 5.2, in which the Paris constants assumed the
units used for ∆K and da/dN to be MPa mm0.5 and mm/cycle. The fatigue
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analysis terminates after 20 propagation steps. The proportion between the initial
crack and the final crack configuration from the results obtained by Pereira et al.
[17] indicates that those authors applied a ∆amax of 0.1m rather than the value
of 0.002m stated in their description. Our parameters adopted in this study are
tuned to allow a direct comparison of the end state of the crack against the Pereira
et al. [17] results. The hoop stress criterion and the Schollmann criterion are
both tested for defining the crack evolution. In addition, these two criteria are
compared using KIII in their equations (as expected) and taking KIII = 0 for the
crack propagation angle and equivalent SIF, in an attempt to compare with Pereira
et al. [17]. This application has a reference solution [70] for the LEFM case of the
inclined penny-shaped crack in its initial configuration that considers an infinite
block subjected to an uniform tensile loading, being:

KI =
2σ0
π

√
πR cos2 θc (79)

KII =
4σ0

π(2− ν)

√
πR cos θi sin θi cos θf (80)

KIII =
4σ0(1− ν)

π(2− ν)

√
πR cos θi sin θi sin θf (81)

in which θf corresponds to the angle along the crack front and θi is the incli-
nation angle in the x2x3 plane between the x3 axis and the radius.

Young Modulus E = 1000MPa
Poisson’s ratio ν = 0.3
Paris constant C = 1.5463.10−11

Paris exponent m = 2.1
Maximum increment ∆amax = 0.0185m

Table 3: Material and fatigue properties of inclined penny-shaped crack.

The crack configurations for the initial geometry, and for the seventh, four-
teenth and twentieth steps are presented in fig. 14, considering both hoop stress
and Schollmann criteria and the presence or absence of KIII in the propagation
analysis. Figure 15 shows the final crack configuration reproduced from Pereira et
al. [17]. Both geometries are similar when comparing all four scenarios obtained
by XIGABEM with the reference response with the Schollmann criterion. As ex-
pected, the crack grows in a manner leading towards a pure mode I configuration
with the Schollmann criterion, as also found in the reference solution. However, the
hoop stress criterion with and without KIII influence and the Schollmann crite-
rion without KIII also lead to a similar crack configuration to that predicted using
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Figure 12: Geometry and boundary conditions of inclined penny-shaped crack.

Figure 13: Isogeometric mesh and control points position for inclined penny-shaped crack.
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Figure 14: Inclined penny-shaped crack configuration during fatigue growth by XIGABEM
considering (a) Hoop stress criterion, (b) Schollmann criterion, (c) Hoop stress criterion
with KIII = 0, and (d) Schollmann criterion with KIII = 0.

the Schollmann criterion considering KIII effects. This suggests that the choice
between these two criteria for this application does not significantly alter the final
response. This contrasts with Pereira et al. [17], who found their crack configu-
ration when KIII = 0 not to reach a fully in-plane, circular geometry at the end
of the analysis; the XIGABEM response is similar for all four different scenarios
in the present study. In addition, the number of degrees of freedom at the last
propagation step for the XIGABEM response is 8082, demonstrating the ability of
XIGABEM to obtain accurate solutions for cracked problems with a small number
of degrees of freedom.

The SIF comparison between the results obtained by the XIGABEM and the
solution from Pereira et al. [17] for the final propagation step and using the Scholl-
mann criterion is shown in fig. 16. In addition, the average value for KI and the
coefficient of variation (standard deviation divided by the mean value) for each
case and the Pereira et al. [17] solution in its last propagation step are presented
in table 4. The discrepancy between the results and the reference solution may be
associated to the absence of the crack front torsion angle in the definition of the
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Figure 15: Inclined penny-shaped crack configuration from the hp-GFEM approach [17],
considering (a) Schollmann criterion and (b) Schollmann criterion with KIII = 0.
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Figure 16: SIF distribution along crack front at the last propagation step: Schollmann
criterion and comparison against hp-GFEM results from Pereira et al. [17].

new crack front in comparison to the hp-GFEM approach. Still, both strategies
result in approximately constant KI along the crack front, which is further evi-
dence that the crack has evolved to a circular shape in a plane perpendicular to
the applied load. In addition, the KII and KIII values have reduced to negligible
values by the last propagation step.

Figure 17 compares the SIFs between the XIGABEM approach and the hp-
GFEM approach [17] with the Schollmann criterion using KIII = 0 during prop-
agation, and for the last propagation step. The most important result for this
problem, i.e. KI , is largely unaffected by taking KIII = 0. The XIGABEM results
for KII and KIII are also very similar to the case in which KIII is not taken to
be zero for the calculation of the propagation angle. Accordingly, the XIGABEM
formulation was capable of achieving a pure mode I response, while the oscillation
in the hp-GFEM results of Pereira et al. [17] is consistent with the final geometry
of the crack not having reached a plane perpendicular to the applied load. Also,
fig. 18 presents the SIFs for the last step using the hoop stress criterion, with KIII

and without KIII effects on the equivalent SIF, respectively. Similarly, in these
two cases, the SIF distribution matches that found with the Schollmann criterion
(both with and without KIII effects on the propagation angle), which indicates
that for the XIGABEM formulation the adoption of either of these two criteria will
lead to similar responses.
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avg. KI

(MPa
√

m)
Coefficient of

Variation
Pereira et al. [17] 0.7316 0.40%
Hoop stress criterion 0.7511 0.84%
Schollmann criterion 0.7541 0.66%
Hoop stress criterion
KIII = 0 in Keq

0.7505 0.41%

Schollmann criterion
KIII = 0 in θc

0.7491 0.38%

Table 4: Average values for KI in the last propagation step for Hoop stress criterion and
for Schollmann criterion.
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Figure 17: SIF distribution along crack front at the last propagation step: Schollmann
criterion considering KIII = 0 for propagation angle and comparison against hp-GFEM
results from Pereira et al. [17].
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Figure 18: SIF distribution along crack front at the last propagation step with the hoop
stress criterion and the influence of KIII in the equivalent SIF.

Figure 19, fig. 20 and fig. 21 present the evolution of each SIF during propa-
gation using the hoop stress criterion, while fig. 22, fig. 23 and fig. 24 correspond
to the SIF evolution using the Schollmann criterion. Additionally, these graphs
present the SIF variation of the initial configuration (step 0) along the crack front
and its comparison with the reference solution given by eq. (79), eq. (80), and
eq. (81). Based on the comparison for the initial geometry, the XIGABEM re-
sponse agrees with the reference response, as also previously found by Rocha et al.
[47] for a crack with different dimensions. In addition, the SIF evolution is of great
interest for the scientific community as as it provides benchmark responses. Based
on their evolution, it is evident that the pure mode I behaviour, in which the crack
has evolved to lie in a plane perpendicular to the applied load, has developed by
step 14, since KII and KIII have reduced to values close to zero in this step; they
do not reduce further from step 14 to step 20. The crack configuration in fig. 14
justifies this claim, due to the planar circular shape the crack assumes in the step
14.

Furthermore, fig. 25 presents the required number of cycles for the crack growth
for all four analysed cases. For the initial steps, there is a noticeable difference in
the required number of cycles for a given increment for each criterion. This effect
tends to reduce throughout the analysis, in the same pace as the crack pursues a
pure mode I response. At the final stages, all four analysis strategies predict similar
numbers of cycles, which is consistent with the similarity in the SIF distribution
during crack propagation. This is a key result for the engineering community in
that users of this numerical method do not need to be overly concerned about
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Figure 19: KI distribution along crack front at steps 0, 7 and 14 for hoop stress criterion.

choice between the hoop stress and Schollmann criteria, nor the choice of how to
deal with KIII in propagating the crack, since the discrepancies in the main result
they seek (the fatigue life) are smaller than the margin for error engineers would
apply in these circumstances.
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Figure 20: KII distribution along crack front at steps 0, 7 and 14 for hoop stress criterion.
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Figure 21: KIII distribution along crack front at steps 0, 7 and 14 for hoop stress criterion.
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Figure 22: KI distribution along crack front at steps 0, 7 and 14 for Schollmann criterion.
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Figure 23: KII distribution along crack front at steps 0, 7 and 14 for Schollmann criterion.
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Figure 24: KIII distribution along crack front at steps 0, 7 and 14 for Schollmann criterion.
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Figure 25: Fatigue life assessment of inclined penny-shaped crack.
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5.3. Hook under cyclic loading
The third application of this study involves the fatigue analysis of a hook under

loading service with an initial crack near its threaded notch. The geometry pre-
sented in fig. 26 contains various curved surfaces, which suggests an isogeometric
three-dimensional formulation would be appropriate to analyse this problem effi-
ciently. The notched region is common in crane hooks, and it normally induces
stress concentration regions that become fatigue crack initiation sites. This be-
haviour aligns with the experimental results of fatigue propagation in a crane hook
as studied by Kishore et al. [71] and shown in fig. 27. A uniformly distributed trac-
tion of tmin

1 = 0.0 and tmax
1 = −8.0 kN/cm² is applied to the grey region in fig. 26,

which simulates the service loading of this hook, while the surface at x1 = 5.0cm
has all displacements clamped. The material properties are E = 20,000.00kN/cm²
and ν = 0.27 for the Young’s modulus and Poisson ratio, and the fatigue properties
are C = 4.10−12 and m = 2.7. The units of the Paris constants consider ∆K and
da/dN in kPa cm0.5 and cm/cycle. The fatigue analysis comprises 9 propagation
steps and a ∆amax = 0.2cm. The crack propagation follows the maximum hoop
stress criterion. This application serves as a benchmark for the capability of the
proposed formulation to represent real, complex-shaped geometries.

The isogeometric model shown in fig. 28(a) has 38 NURBS surfaces of degree
p = q = 2 defining the external boundary, while fig. 28(b) illustrates the crack
description with four NURBS surfaces of p = q = 2, each modelling one side
of the crack. The control points, weights, connectivity, and knot vectors are are
provided in the supplementary material. The resulting IGABEM model undergoes
two uniform knot insertions in both parametric directions on the notch and crack
surfaces, resulting in a model with 738 collocation points, as shown in fig. 29.

Figure 30 presents the deformed shape of the hook under its maximum loading,
considering different propagation steps and magnified 20 times. Step 0 represents
the initial crack configuration. The displaced shape aligns with the expected be-
haviour for this geometry, which exhibits combined bending and tension. Addi-
tionally, the detailed view of the cracked region, with displacement magnified 100
times, demonstrates a smooth field along the crack surfaces. A gap in the exter-
nal boundary mesh is evident at the intersection of this boundary with the crack
front. This is expected, as this region is modelled using two independent, unen-
riched NURBS surfaces, with C−1 continuity between them. This gap is expected
to have only a mild effect on the accuracy at the crack front since the enriched
crack surfaces are responsible for SIF computation. In fig. 31, the crack front is
seen to propagate faster at the edges than at its center, resulting in curvature loss
during crack growth. The SIF distribution shown in fig. 32 for steps 0, 3, 6, and 9
indicates a dominant Mode I behaviour in this application. In addition, the higher
values of KI near the edges explain the faster crack growth in these regions com-
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Figure 26: Geometry of hook with initial crack, dimensions in cm.
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Figure 27: Fatigue crack location in crane hook experiment [71].

pared to the middle of the crack front. At later propagation steps, KI becomes
more uniform along the front, however with higher values close to the edges. Fi-
nally, fig. 34 presents the fatigue life assessment of the hook under cyclic loading
as a benchmark result for the literature. In summary, the XIGABEM formulation
directly captures the SIFs, even for a complex geometry involving both the external
boundary and the crack, and successfully analyses an industrial configuration.
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Figure 28: Isogeometric model of hook with crack.
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Figure 29: Collocation points position for the XIGABEM model of hook with crack.
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Figure 30: Deformed shape of a crane hook under cyclic loading when the load reaches its
maximum value for different crack steps.
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Figure 31: Crack front evolution at the plane x1 = 2.5 due to the cyclic loading on the
hook.

50



0.0 10.0 20.0 30.0 40.0
−5.0
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

θ (degrees)

S
IF

(k
P
a
√
cm

)

KI

KII

KIII

(a) Step 0

0.0 10.0 20.0 30.0 40.0
−5.0
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

θ (degrees)
S
IF

(k
P
a
√
cm

)

KI

KII

KIII

(b) Step 3

0.0 10.0 20.0 30.0 40.0
−5.0
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

θ (degrees)

S
IF

(k
P
a
√
cm

)

KI

KII

KIII

(c) Step 6

0.0 10.0 20.0 30.0 40.0
−5.0
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

θ (degrees)

S
IF

(k
P
a
√
cm

)

KI

KII

KIII

(d) Step 9

Figure 32: Stress Intensity Factors’ distribution along crack front during fatigue propaga-
tion on hook.
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Figure 34: Fatigue life assessment of hook under cyclic loading.
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6. Concluding remarks

This study presents the high-cycle fatigue modelling of three-dimensional crack
configurations with the eXtended Isogeometric Boundary Element Method (XI-
GABEM). This formulation allows for the fatigue assessment of complex crack
geometries, in which use of isogeometric basis functions is made for their accurate
representation during propagation. In addition, the enrichment strategy gives rise
to several advantages for the efficient determination of the mechanical mechanical
solution throughout the incremental analysis with a small number of degrees of
freedom.

The three-dimensional XIGABEM formulation of this study relies on the Williams-
based enrichment strategy. The enrichment functions introduce interpolation pa-
rameters that allow for the direct and accurate determination of the Stress Intensity
Factors, which precludes the need for computationally demanding post-processing
tasks such as the J-integral or M-integral. Two crack growth criteria define the
direction in which the crack advances: the hoop stress criterion and the Scholl-
mann criterion. While the former has been applied in several research works using
IGABEM for crack propagation analysis, this is the first application of the latter.
In addition, the Schollmann criterion includes the influence of mode III behaviour
on the propagation angle. As such, this study proposes a novel strategy for the
determination of the updated crack front, allowing for the NURBS curve weights
to adjust during the crack growth. Also, this study deals with a multi-patch mod-
elling of the crack surfaces, which involves a fine-tuning algorithm for guaranteeing
the required continuity between independent surfaces. Furthermore, the fatigue life
assessment considers a linear interpolation of the SIFs in the Paris-Erdogan Law,
permitting the use of larger crack increment lengths. By comparison with a refer-
ence solution from the literature, it is shown that the use of this linear interpolation
does not introduce significant errors in the solution.

The numerical applications have demonstrated that the formulation obtains
accurate values for the SIFs during the whole crack growth process. This is par-
ticularly advantageous because the exponential behaviour contained in the Paris-
Erdogan Law results in the accumulation of errors if a high level of accuracy in
SIFs is not maintained. The SIF accuracy is evidenced by agreement between the
numerical results obtained and reference solutions for a variety of relevant prob-
lems. The crack growth criteria comparison shows that the Scholmann criterion
and the hoop stress criterion yield similar results for the key engineering parame-
ters describing the crack growth. This demonstrates that the incorporation of the
Mode III behaviour in the equivalent SIF is sufficient to capture its effects during
mixed-mode crack growth. In addition, the third application presents the capacity
of the XIGABEM in addressing the fatigue crack growth phenomenon in a real-life
complex engineering application.
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The strategies proposed by this study can be extended to various other problems
in three-dimensional fracture mechanics. Within fatigue analysis, the XIGABEM
can be further adjusted for cases in which the cyclic load has an overload effect,
which impacts the overall response by extending the required number of cycles
until failure. In addition, the modelling of quasi-brittle fracture propagation using
the IGABEM and the new scheme for the crack front update is also a possibility.
Another future work is the combination of the proposed strategies in this study
with the other enrichment strategies within XIGABEM for general cases in which
the crack crosses the external boundary.
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Appendix A. Geometrical data of elliptical crack

This appendix provides the geometrical data associated to the modelling of
the coarse mesh of the section 5.1. APPENDIX A provides the control points
coordinates and weights. Patches 1 to 6 have p = q = 1, with their corresponding
knot vector being Ξ1 = Ξ2 = {0,0,1,1}. All other patches have p = q = 2 and
their knot vector are Ξ1 = Ξ2 = {0,0,0,1,1,1}. Table A.2 refers to the control
point connectivity in each patch. The first 8 control points and the first 6 patches
represent the prism.

Control point x1 x2 x3 w

1 -24.0000 -48.0000 16.0000 1.00000000
2 24.0000 -48.0000 16.0000 1.00000000
3 -24.0000 48.0000 16.0000 1.00000000
4 24.0000 48.0000 16.0000 1.00000000
5 24.0000 48.0000 -16.0000 1.00000000
6 24.0000 -48.0000 -16.0000 1.00000000
7 -24.0000 -48.0000 -16.0000 1.00000000
8 -24.0000 48.0000 -16.0000 1.00000000
9 0.0000 0.0000 1.6000 1.00000000
10 2.4000 0.0000 1.6000 0.70710678
11 2.4000 0.0000 0.0000 1.00000000
12 -2.4000 0.0000 1.6000 0.70710678
13 0.0000 0.0000 0.0000 0.41421356
14 2.4000 0.0000 -1.6000 0.70710678
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Control point x1 x2 x3 w

15 -2.4000 0.0000 0.0000 1.00000000
16 -2.4000 0.0000 -1.6000 0.70710678
17 0.0000 0.0000 -1.6000 1.00000000
18 0.0000 0.0000 -1.8000 1.00000000
19 0.0000 0.0000 -2.0000 1.00000000
20 -2.7000 0.0000 -1.8000 0.70710678
21 -3.0000 0.0000 -2.0000 0.70710678
22 -2.7000 0.0000 0.0000 1.00000000
23 -3.0000 0.0000 0.0000 1.00000000
24 2.7000 0.0000 -1.8000 0.70710678
25 2.7000 0.0000 0.0000 1.00000000
26 3.0000 0.0000 -2.0000 0.70710678
27 3.0000 0.0000 0.0000 1.00000000
28 0.0000 0.0000 1.8000 1.00000000
29 -2.7000 0.0000 1.8000 0.70710678
30 0.0000 0.0000 2.0000 1.00000000
31 -3.0000 0.0000 2.0000 0.70710678
32 2.7000 0.0000 1.8000 0.70710678
33 3.0000 0.0000 2.0000 0.70710678
34 0.0000 0.0000 1.6000 1.00000000
35 -2.4000 0.0000 1.6000 0.70710678
36 -2.4000 0.0000 0.0000 1.00000000
37 2.4000 0.0000 1.6000 0.70710678
38 0.0000 0.0000 0.0000 0.41421356
39 -2.4000 0.0000 -1.6000 0.70710678
40 2.4000 0.0000 0.0000 1.00000000
41 2.4000 0.0000 -1.6000 0.70710678
42 0.0000 0.0000 -1.6000 1.00000000
43 0.0000 0.0000 1.8000 1.00000000
44 2.7000 0.0000 1.8000 0.70710678
45 2.7000 0.0000 0.0000 1.00000000
46 0.0000 0.0000 2.0000 1.00000000
47 3.0000 0.0000 2.0000 0.70710678
48 3.0000 0.0000 0.0000 1.00000000
49 -2.7000 0.0000 1.8000 0.70710678
50 -3.0000 0.0000 2.0000 0.70710678
51 -2.7000 0.0000 0.0000 1.00000000
52 -3.0000 0.0000 0.0000 1.00000000
53 0.0000 0.0000 -1.8000 1.00000000
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Control point x1 x2 x3 w

54 0.0000 0.0000 -2.0000 1.00000000
55 2.7000 0.0000 -1.8000 0.70710678
56 3.0000 0.0000 -2.0000 0.70710678
57 -2.7000 0.0000 -1.8000 0.70710678
58 -3.0000 0.0000 -2.0000 0.70710678

Table A.1: Control points and weights for the coarse mesh of the elliptical crack modelling.

Patch Control points
1 1 2 3 4
2 4 2 5 6
3 1 3 7 8
4 4 5 3 8
5 1 7 2 6
6 7 8 6 5
7 9 10 11 12 13 14 15 16 17
8 17 18 19 16 20 21 15 22 23
9 17 14 11 18 24 25 19 26 27
10 9 12 15 28 29 22 30 31 23
11 9 28 30 10 32 33 11 25 27
12 34 35 36 37 38 39 40 41 42
13 34 37 40 43 44 45 46 47 48
14 34 43 46 35 49 50 36 51 52
15 42 53 54 41 55 56 40 45 48
16 42 39 36 53 57 51 54 58 52

Table A.2: Connectivity of the elliptical crack model.
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