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 A B S T R A C T

Some statistical methods for extreme value analysis assume that the maximum observed value represents the 
endpoint of the support. However, in cases involving right-censored observations, it is often unclear whether 
the true value of a censored observation exceeds the largest observed value. This paper is inspired by the 
Supercentenarian dataset, which contains the ages at death of individuals who lived beyond 110 years, with 
right-censored data for those still alive at the time of data collection. This study employs Nonparametric 
Predictive Inference (NPI), a method that provides probability statements for a range of events of interest. NPI 
is a frequentist method that relies on minimal assumptions, focusing explicitly on future observations. It uses 
imprecise probabilities based on Hill’s assumption 𝐴(𝑛) to quantify uncertainty. In this paper, we derive the 
probability that the true lifetime of at least one right-censored observation – or one of the future observations – 
exceeds the largest observed value. Furthermore, we extend this analysis to the exceedance of multiple largest 
observations, provided that they exceed the largest censored observation. We also investigate the time between 
any two of these largest observations, deriving the lower and upper probabilities for the exceedance of this 
time. We then demonstrate the proposed method using the Supercentenarian dataset, where the analysis is 
performed separately for men and women. We show how this approach can help to assess the likelihood of 
future extreme observations and provide insights into the validity of assuming the largest observed value as 
the endpoint of support. This work highlights the strengths of NPI in handling right-censored data and its 
application to real-world datasets.
1. Introduction

Statistical methods for analysing extreme values typically assume 
that the largest value in a data set represents the upper bound of its 
support. However, this assumption may be problematic when the data 
set includes right-censored observations. In such cases, the true value 
of a censored observation could exceed the largest observed value. 
This paper is motivated by the literature on extreme value theory, 
where several studies assume that the maximum value of the random 
quantities under consideration corresponds to the largest observed 
value in the data set [1,2]. Specifically, the paper draws inspiration 
from the Supercentenarian data set [2], which contains the ages at 
death of individuals who lived beyond 110 years. This data set includes 
right-censored observations for those who were still alive at the time of 
data collection. The focus of this paper is to investigate the likelihood 
that one or more of the right-censored observations correspond to a 
value greater than the largest observed value.

To address this, we propose using Nonparametric Predictive Infer-
ence (NPI), a predictive method that provides probability statements 
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for various events of interest. In particular, we compute the probability 
that the actual lifetime of one or more right-censored observations 
exceeds the largest observed value, either for the censored data or for 
future observations. NPI is a frequentist method that makes minimal 
assumptions and focuses on quantifying uncertainty about future out-
comes. It uses imprecise probabilities based on Hill’s assumption 𝐴(𝑛)
to account for this uncertainty.

We extend this analysis to the exceedance of the second, third, 
fourth, and up to the 𝑗th largest observations, as long as they exceed 
the largest censored observation. Additionally, we consider the time 
between any two of these largest observations and calculate the lower 
and upper probabilities for the exceedance of this time interval.

The paper is structured as follows: Section 2 introduces Hill’s as-
sumption 𝐴(𝑛) and its generalization for handling right-censored data. 
In Section 3, we analyse the exceedance of the largest observed value 
from the NPI perspective and extend this analysis to include future 
observations. Section 4 explores the exceedance of the 𝑗th largest 
observations, considering the time between two of the largest values 
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and calculating the lower and upper probabilities for the exceedance 
of a given time interval. The proposed methods are demonstrated using 
the Supercentenarian dataset in Section 5. Finally, Section 6 provides 
concluding remarks.

2. Nonparametric Predictive Inference (NPI)

Over the past few decades, Nonparametric Predictive Inference 
(NPI) has been developed for various data types and applied to a 
range of problems in statistics, as well as in fields like risk, reliability, 
operations research, and finance [3]. NPI is a statistical method that 
relies on minimal assumptions, particularly Hill’s assumption 𝐴(𝑛) [4], 
and uses imprecise probabilities to quantify uncertainty [5,6].

Let 𝑋1, 𝑋2,… , 𝑋𝑛, 𝑋𝑛+1 be real-valued, absolutely continuous, and 
exchangeable random quantities. The ordered observed values are de-
noted by 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛, with 𝑥0 = −∞ and 𝑥𝑛+1 = ∞ (or 𝑥0 = 0
for non-negative random quantities) [7]. It is assumed that there are 
no ties among the data; if ties exist, they are handled by assuming 
small differences between tied observations, a common approach in 
statistics [8]. The observations divide the real line into 𝑛 + 1 intervals 
𝐼𝑗 = (𝑥𝑗 , 𝑥𝑗+1) for 𝑗 = 0, 1,… , 𝑛. Hill’s assumption 𝐴(𝑛) [9] states that 
the probability of the next observation 𝑋𝑛+1 falling into any of these 
intervals is equally likely, i.e., 

𝑃𝑋𝑛+1
(𝑥𝑗 , 𝑥𝑗+1) =

1
𝑛 + 1

, for 𝑗 = 0, 1,… , 𝑛. (1)

NPI, based on Hill’s assumption 𝐴(𝑛), provides direct probabilities 
for future random quantities based on observed values. In NPI, uncer-
tainty is quantified using lower and upper probabilities, which are the 
sharpest bounds for events of interest when 𝐴(𝑛) is assumed to hold [5].

However, 𝐴(𝑛) is not suitable for handling right-censored data. 
Coolen and Yan [10] introduced rc-𝐴(𝑛), a generalization of 𝐴(𝑛), for 
right-censored observations. This generalization assumes that at the 
time of censoring, the residual lifetime of a censored observation is 
exchangeable with the residual lifetimes of other observations that have 
not failed or been censored. For handling censored data, two additional 
assumptions, the 𝐴̃(𝑛) assumption and the shifted-𝐴̃(𝑛) assumption, are 
introduced. These assumptions differ in how probability mass is as-
signed to intervals or subintervals formed by failure and censoring 
times. In this work, we focus on the shifted-𝐴̃(𝑛) assumption, which 
allows for the application of 𝐴(𝑛) but with the starting point shifted 
from 0 to the right-censoring time 𝑐𝑖𝑖∗ .

Let 𝑋1, 𝑋2,… , 𝑋𝑛, 𝑋𝑛+1 be non-negative, exchangeable, and contin-
uous random quantities representing lifetimes. Suppose there are 𝑛 total 
observations, including 𝑢 failure time observations, 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑢, 
and 𝜈 = 𝑛− 𝑢 right-censoring times, 𝑐1 < 𝑐2 < ⋯ < 𝑐𝜈 . For simplicity, let 
𝑥0 = 0 and 𝑥𝑢+1 = ∞. Additionally, suppose there are 𝑠𝑖 right-censored 
observations in the interval 𝐼 𝑖 = (𝑥𝑖, 𝑥𝑖+1), denoted by 𝑐𝑖1 < 𝑐𝑖2 < ⋯ < 𝑐𝑖𝑠𝑖 , 
with ∑𝑢

𝑖=1 𝑠𝑖 = 𝜈, such that 𝑐𝑖𝑖∗ ∈ (𝑥𝑖, 𝑥𝑖+1) for 𝑖 = 0, 1,… , 𝑢 and 𝑖∗ =
1, 2,… , 𝑠𝑖. Let 𝑋𝑐𝑖𝑖∗

 represent the random quantity corresponding to the 
right-censoring time 𝑐𝑖𝑖∗ . The shifted-𝐴̃(𝑛) assumption [10,11] specifies 
the probability distribution for 𝑋𝑐𝑖𝑖∗

, conditioned on 𝑋𝑐𝑖𝑖∗
> 𝑐𝑖𝑖∗ , via the 

following 𝑀-function values:

𝑀𝑋𝑐𝑖𝑖∗
(𝑥𝑘, 𝑥𝑘+1) =

1
𝑛̃𝑐𝑖𝑖∗

+ 1
, for 𝑘 = 𝑖 + 1,… , 𝑢, (2)

𝑀𝑋𝑐𝑖𝑖∗
(𝑐𝑖𝑖∗ , 𝑥𝑘+1) =

1
𝑛̃𝑐𝑖𝑖∗

+ 1
, (3)

𝑀𝑋𝑐𝑖𝑖∗
(𝑐𝑖𝑙 ,∞) = 1

𝑛̃𝑐𝑖𝑖∗
+ 1

, for 𝑙 = 𝑖∗ + 1,… , 𝜈, (4)

where 𝑛̃𝑐𝑖𝑖∗  is the number of observations in the risk set at time 𝑐
𝑖
𝑖∗ , 

for 𝑐𝑖𝑖∗ ∈ (𝑥𝑖, 𝑥𝑖+1), and 𝑖∗ = 1, 2,… , 𝑠𝑖. This assumption is consistent 
with the idea that exchangeability of random quantities in the risk 
set prior to censoring implies exchangeability for those that exceed a 
2

given censoring time, aligning with the assumption of non-informative 
censoring [10,11].

In practice, when dealing with tied observations in NPI, it is com-
mon to assume that the tied observations differ by small amounts [8,
12]. If there is a tie between an event time and a right-censoring time, 
the standard approach is to assume that the right-censoring time occurs 
just after the event time [13]. In this paper, we assume there are no 
ties in the data, but the same approach is used if ties are present (as 
discussed in [8,10,12,13]).

3. Exceedance of the largest observed value

Building on the 𝐴(𝑛) assumption and the concept of non-informative 
right censoring described in Section 2, this section introduces a new 
method to determine the probability that the largest observed value in a 
dataset with right-censored observations will be exceeded. Specifically, 
the method addresses the question: What is the probability that one or 
more lifetimes among the censored observations exceed the largest observed 
value?

Let 𝑋1, 𝑋2,… , 𝑋𝑛 be non-negative, exchangeable, and continuous 
random quantities. We have 𝑢 observed event times, denoted by 𝑥1 <
𝑥2 < ⋯ < 𝑥𝑢, and 𝑣 = 𝑛− 𝑢 right-censored observations, with censoring 
times denoted by 𝑐1 < 𝑐2 < ⋯ < 𝑐𝑣. For simplicity, we define 𝑥0 = 0
and 𝑥𝑢+1 = ∞. The random variable corresponding to a censored 
observation at time 𝑐𝑟 is denoted by 𝑋𝑐𝑟 , where 𝑟 = 1, 2,… , 𝑣. The 
largest observed event time in the dataset is represented by  = 𝑥𝑢.

In addition to assuming exchangeability of 𝑋1, 𝑋2,… , 𝑋𝑛, we adopt 
the assumption that, at any right-censoring time 𝑐𝑟, the remaining time 
until the event for a censored observation is exchangeable with the 
remaining times for all other observations in the risk set at 𝑐𝑟 [10,11]. 
Under non-informative right censoring [10,11], we use the shifted-𝐴̃(𝑛)
assumption. This assumption generalizes 𝐴(𝑛) by shifting the reference 
point from 0 to the observed censoring time 𝑐𝑟, which partially specifies 
the distribution of 𝑋𝑐𝑟  via the following 𝑀-function values: 

𝑀𝑋𝑐𝑟
(𝑥𝑖, 𝑥𝑖+1) =

1
𝑛̃𝑐𝑟 + 1

, 𝑖 = 0,… , 𝑢 (5)

where 𝑐𝑟 ∈ (𝑥𝑖, 𝑥𝑖+1), and 𝑛̃𝑐𝑟  is the number of observations in the risk 
set just before 𝑐𝑟 (𝑟 = 1, 2,… , 𝑣).

Using this framework, we can calculate the probability that at 
least one censored lifetime exceeds the largest observed event time , 
considering only the current dataset of 𝑛 observations. For convenience, 
let 𝐺(0) denote this event of interest. This notation is used because we 
are focusing solely on the current dataset, with no future observations 
(i.e., 𝑚 = 0) included. The probability for this event is expressed as: 

𝑃 (𝐺(0)) = 1 −
𝑣
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

(6)

where 𝑛̃𝑐𝑟  represents the number of observations in the risk set (those 
still functioning or uncensored) just before 𝑐𝑟. The proof of this result 
and an illustrative example are provided in Appendix  A.

Extending this analysis, we now consider predictions for future 
observations. Let 𝑋𝑛+1, 𝑋𝑛+2,… , 𝑋𝑛+𝑚 represent future non-negative, 
exchangeable, continuous random quantities. Define 𝑛̃𝑥0 = 𝑛, the initial 
size of the risk set at 𝑥0 = 0, and recall that  denotes the largest 
observed event time. The event of interest is now extended to include 
whether at least one lifetime, either among the censored observations 
or among the 𝑚 ≥ 1 future individuals, exceeds . The probability for 
this extended event is given by: 

𝑃 (𝐺(𝑚)) = 1−

[ 𝑚
∏

𝑖=1

𝑛 + 𝑖 − 1
𝑛 + 𝑖

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

]

= 1−

[

𝑛
𝑛 + 𝑚

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

]

(7)

where 𝑛̃𝑐𝑟  represents the number of observations in the risk set just 
before 𝑐𝑟.

This expression shows that 𝑃 (𝐺(𝑚)) increases as 𝑚 grows. Notably, 
as 𝑚 → ∞, the second term tends to zero, leading to 𝑃 (𝐺(𝑚)) → 1. 
This implies that as more individuals are included, the probability of 
exceeding  becomes increasingly likely. The proof of this result and 
an illustrative example are provided in Appendix  B.
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4. Exceedance of multiple largest observations and time intervals

In the previous section, we examined the exceedance of the largest 
observed value, , in the context of right-censored data. In this section, 
we extend this analysis to the exceedance of the second, third, fourth, 
. . . , up to the 𝑗th largest observations, as long as they exceed the largest 
censored observation, 𝑋𝑐𝑣 . We then consider the time 𝑡 between any 
two of these largest observations and calculate the lower and upper 
probabilities for the exceedance of time 𝑡.

We maintain the notation introduced in the previous section, with a 
few additions. To simplify notation, we redefine  (previously  = 𝑥𝑢) 
as 1 = 𝑥𝑢, representing the first largest event time in the dataset. 
Similarly, let 2 = 𝑥𝑢−1 denote the second largest event time, 3 = 𝑥𝑢−2
the third largest, and so on, up to the largest observed event time 
greater than the censored observation 𝑐𝑣. Thus, we have the ordering 
1 > 2 > 3 > ⋯ > 𝑗 , corresponding to 𝑥𝑢 > 𝑥𝑢−1 > 𝑥𝑢−2 >
⋯ > 𝑥𝑢−𝑖, where 𝑥𝑢−𝑖 > 𝑐𝑣 for 𝑖 = 0, 1,… , 𝑢 and 𝑗 = 1, 2,… , 𝑢. 
Recall that 𝑛̃𝑐𝑟 , for 𝑟 = 1, 2,… , 𝑣, represents the number of observations 
in the risk set just before time 𝑐𝑟. We assume no ties occur among 
the observations, and the method is based on the shifted 𝐴̃(𝑛) in Eq. 
(5), under the exchangeability and non-informative right censoring 
assumptions [10,11].

As in the previous section, we can directly compute the probability 
for the event that at least one of the right-censored individuals has a 
lifetime greater than any of the largest observed values, provided that it 
exceeds the largest censored observation at 𝑐𝑣. That is, for 𝑗 = 𝑥𝑢−𝑗+1, 
where 𝑥𝑢−𝑗+1 > 𝑐𝑣 for 𝑗 = 1,… , 𝑢, the probability is given by 

𝑃 (𝐺𝑗
(0)) = 1 −

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟 − 𝑗 + 1
𝑛̃𝑐𝑟 + 1

. (8)

Next, we extend the analysis by considering the addition of future 
individuals to the study, as we did in Section 3. We focus on the event 
that at least one of the right-censored individuals, or one of the 𝑚 ≥ 1
future individuals, has a lifetime greater than the 𝑗th largest observed 
value, 𝑗 = 𝑥𝑢−𝑗+1, where 𝑥𝑢−𝑗+1 > 𝑐𝑣. Let 𝐺𝑗

(𝑚) denote this event.
The probability that a lifetime exceeds any of the largest observed 

values, when calculated backwards from the largest value to the 𝑗th 
largest (as long as it exceeds the largest censored observation), is given 
by 

𝑃 (𝐺𝑗
(𝑚)) = 1 −

[ 𝑚
∏

𝑖=1

𝑛 + 𝑖 − 𝑗
𝑛 + 𝑖

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟 − 𝑗 + 1
𝑛̃𝑐𝑟 + 1

]

, (9)

or equivalently, 

𝑃 (𝐺𝑗
(𝑚)) = 1 −

[

𝑛(𝑛 − 1)… (𝑛 − 𝑗 + 1)
(𝑛 + 𝑚)(𝑛 + 𝑚 − 1)… (𝑛 + 𝑚 − 𝑗 + 1)

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟 − 𝑗 + 1
𝑛̃𝑐𝑟 + 1

]

.

(10)

The proofs of these results are provided in Appendix  C.
We now consider the event that at least one of the right-censored 

individuals, or one of the 𝑚 ≥ 1 future individuals, has a lifetime greater 
than a specific time 𝑡, where 𝑡 lies between two consecutive largest 
observed values, say 𝑥𝑖 and 𝑥𝑖+1, for 𝑖 = 0, 1,… , 𝑢, as long as 𝑥𝑖 > 𝑐𝑣. 
For simplicity, let 𝐺𝑡∈(𝑥𝑖 ,𝑥𝑖+1)(𝑚) denote this event.

The lower probability for the event 𝐺𝑡∈(𝑥𝑖 ,𝑥𝑖+1)(𝑚) is the probability 
of the event 𝐺𝑥𝑖+1 (𝑚), i.e.,
𝑃 (𝐺𝑡∈(𝑥𝑖 ,𝑥𝑖+1)(𝑚)) = 𝑃 (𝐺𝑥𝑖+1 (𝑚)),

while the upper probability is the probability of the event 𝐺𝑥𝑖 (𝑚), i.e.,

𝑃 (𝐺𝑡∈(𝑥𝑖 ,𝑥𝑖+1)(𝑚)) = 𝑃 (𝐺𝑥𝑖 (𝑚)).

For example, if 𝑡 ∈ (𝑥𝑢−1, 𝑥𝑢), where 1 = 𝑥𝑢 and 2 = 𝑥𝑢−1
represent the first and second largest event times in the dataset, with 
𝑥𝑢−1 > 𝑐𝑣, then the lower and upper survival of 𝑡, respectively, are
𝑃 (𝐺 (𝑚)) = 𝑃 (𝐺 (𝑚)),
3

𝑡∈(2 ,1) 1
𝑃 (𝐺𝑡∈(2 ,1)(𝑚)) = 𝑃 (𝐺2
(𝑚)),

which is given by Eq.  (9). which can be computed using Eq. (9)
In the next section, we apply the methods introduced in this paper 

to the full supercentenarian dataset, separately for women and men.

5. Application to the supercentenarian data

This paper analyses a dataset used by Alves et al. [2], which includes 
the ages at death of 1,740 individuals who lived past 110 years old, 
along with the ages of those who were still alive when the data 
were collected. The dataset was compiled by the Gerontology Research 
Group (GRG) and collected on April 22, 2018, from Tables B and C of 
their records.1 For analysis, ages are presented in days, though here we 
will also use years. It is assumed that there are no ties in age between 
individuals, and for simplicity, we treat each year as 365 days, ignoring 
leap years.

Notably, the dataset highlights the extreme lifespans of supercente-
narians, with Jeanne Calment from France holding the record for the 
oldest verified age at 122.5 years, and Jiroemon Kimura from Japan 
holding the record for men at 116.2 years. The dataset includes 1,580 
lifetimes of supercentenarian women and 160 of supercentenarian men, 
with women generally living longer. Of the 1,580 supercentenarian 
women, 72 were still alive on April 22, 2018, and are thus considered 
right-censored. In contrast, only two supercentenarian men out of 160 
were alive at the time of data collection.

This study aims to estimate the probability that at least one of 
the right-censored supercentenarian women will live beyond Jeanne 
Calment’s age, and similarly, the probability that at least one of the 
right-censored supercentenarian men will exceed Jiroemon Kimura’s 
age. The methods outlined in Sections 3 and 4 will be applied separately 
to the supercentenarian men and women. The first two examples 
will illustrate the methods from Section 3, while the latter two will 
demonstrate the methods from Section 4.

Example 1 (Supercentenarian Women Data). 
In this example, we analyse the supercentenarian data for women, 

which includes 𝑛 = 1580 supercentenarian women, of whom 72 were 
still alive at the time of the study and their lifetimes are thus right-
censored. Jeanne Calment’s age of 122.5 years was the largest age 
recorded in the dataset, so we set  = 122.5. The objective is to 
determine the probability, 𝑃 (𝐺(0)), that at least one of the 72 right-
censored supercentenarian women will have a lifetime exceeding  =
122.5 years. This probability is given by the following formula:

𝑃 (𝐺122.5(0)) = 1 −
72
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

= 1 − 0.6567 = 0.3433

Thus, based on our model with non-informative right censoring, there 
is a 34.33% chance that at least one of the 72 right-censored super-
centenarian women will live longer than Jeanne Calment’s age.

Next, consider adding 𝑚 = 1 future supercentenarian woman, 
denoted 𝑋𝑛+1, to the study. Conditional on the assumption that all 
72 right-censored supercentenarian women have failed before reaching 
 = 122.5, the probability, 𝑃 (𝐺122.5(1)), that at least one of the 72 right-
censored women or the new supercentenarian woman 𝑋𝑛+1 will exceed 
 is given by:

𝑃 (𝐺122.5(1)) = 1 −

[

1580
1580 + 1

72
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

]

= 1 − 0.6563 = 0.3437

Now, suppose 𝑚 = 2 future supercentenarian women, 𝑋𝑛+1 and 
𝑋𝑛+2, are added to the study. Conditional on the assumption that 
all 72 right-censored women and the first future supercentenarian 

1 The dataset is available at http://www.grg.org/Adams/Tables.htm, and 
further details can be found in [2].

http://www.grg.org/Adams/Tables.htm
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Fig. 1. The probability 𝑃 (𝐺122.5(𝑚)) for the supercentenarian women dataset, as in 
Example  1. This figure illustrates the likelihood that at least one of the 72 right-
censored women or any of the 𝑚 future supercentenarian women will exceed the 
age of 122.5 years. In particular, for 𝑚 = 2, the probability is 0.3441, and as 𝑚
increases, the probability approaches 1, indicating that with a larger number of future 
supercentenarians, the event becomes almost certain.

woman 𝑋𝑛+1 have failed before reaching  = 122.5, the probability, 
𝑃 (𝐺122.5(2)), that at least one of the 72 right-censored women or any of 
the two new supercentenarian women will exceed  is:

𝑃 (𝐺122.5(2)) = 1 −

[

1580
1580 + 2

72
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

]

= 1 − 0.6559 = 0.3441

For larger values of 𝑚 ≥ 2, the probability 𝑃 (𝐺122.5(𝑚)) that at least 
one of the 72 right-censored supercentenarian women or any of the 𝑚
future supercentenarian women will live longer than  = 122.5 can be 
calculated as:

𝑃 (𝐺122.5(𝑚)) = 1 −

[

1580
1580 + 𝑚

72
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

]

= 1 −
[ 1580
1580 + 𝑚

× 0.6567
]

As 𝑚 → ∞, the probability 𝑃 (𝐺122.5(𝑚)) approaches 1, indicating 
that with enough future supercentenarians, the event becomes almost 
certain, as illustrated in Fig.  1.

One interesting aspect to consider is determining the smallest 𝑚
such that the value of the probability 𝑃 (𝐺(𝑚)) exceeds a specified 
probability 𝑃 , where 𝑃 ∈ [0, 1]. For example, from Fig.  1, we find that:

𝑃 (𝐺122.5(𝑚)) = 1 −
[ 1580
1580 + 𝑚

× 0.6567
]

> 𝑃

where 𝑃 (𝐺122.5(𝑚)) exceeds 𝑃 = 0.95 when 𝑚 ≥ 19200 future supercente-
narian women are considered.

Example 2 (Supercentenarian Men Data). 
In this example, we examine the supercentenarian data for men. 

The dataset consists of 160 supercentenarian men, two of whom were 
still alive at the time of the study, and therefore, their lifetimes are 
right-censored. Since Jiroemon Kimura’s age of 116.2 years was the 
largest recorded age in the dataset, we set  = 116.2. The focus is 
on determining the probability of the event 𝐺116.2(0), which is the 
probability that at least one of the two right-censored supercentenarian 
men has a lifetime exceeding the largest observed age,  = 116.2. This 
probability is given by Eq.  (6) as follows:

𝑃 (𝐺116.2(0)) = 1 −
2
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

= 1 − 0.9444 = 0.0556

Thus, there is a 5.56% chance that at least one of the two right-censored 
supercentenarian men would live beyond Jiroemon Kimura’s age of 
116.2 years.

Next, consider 𝑚 = 1 future supercentenarian man, 𝑋𝑛+1, added to 
the study, in addition to the 𝑛 = 160 supercentenarian men. The lifetime 
4

Fig. 2. The probability 𝑃 (𝐺116.2(𝑚)) for the supercentenarian men dataset, as in 
Example  2. This figure shows the likelihood that at least one of the two right-censored 
supercentenarian men or any of the 𝑚 future supercentenarian men will exceed the age 
of  = 116.2 years. For 𝑚 = 0, the probability is 0.0556, indicating a 5.56% chance that 
one of the right-censored men would exceed this age. As more future supercentenarians 
are added to the study, the probability increases, with the probability approaching 1 
as 𝑚 becomes larger. Notably, the probability exceeds 0.95 when at least 2900 future 
supercentenarian men are included in the study.

of 𝑋𝑛+1 is considered, conditional on the assumption that both right-
censored supercentenarian men have already failed before the age  =
116.2. The probability of the event 𝐺116.2(1), which is the probability 
that at least one of the two right-censored men or the lifetime of 𝑋𝑛+1
exceeds  = 116.2, is calculated using Eq. (7) as:

𝑃 (𝐺116.2(1)) = 1 −

[

160
160 + 1

2
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

]

= 1 − 0.9385 = 0.0615

Now, consider 𝑚 = 2 future supercentenarian men, 𝑋𝑛+2, added to 
the study, in addition to the 𝑛 = 160 supercentenarian men and the 
first future supercentenarian, 𝑋𝑛+1. The lifetime of 𝑋𝑛+2 is considered, 
conditional on the assumption that both right-censored supercentenar-
ian men and 𝑋𝑛+1 have already failed before the age  = 116.2. The 
probability of the event 𝐺116.2(2), that at least one of the two right-
censored men or one of the lifetimes of 𝑋𝑛+1 and 𝑋𝑛+2 exceeds  =
116.2, is given by:

𝑃 (𝐺116.2(2)) = 1 −

[

160
160 + 2

2
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

]

= 1 − 0.9327 = 0.0673

Considering 𝑚 ≥ 2 future supercentenarian men added to the study, 
the probability of the event 𝐺116.2(𝑚), that at least one of the two right-
censored supercentenarian men or one of the lifetimes of the 𝑚 ≥ 2
future supercentenarian men exceeds  = 116.2, is calculated using 
Eq. (7). The results are displayed in Fig.  2 as:

𝑃 (𝐺116.2(𝑚)) = 1 −

[

160
160 + 𝑚

2
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

]

= 1 −
[ 160
160 + 𝑚

× 0.9444
]

An interesting point to consider is identifying the smallest value of 𝑚
for which the probability 𝑃 (𝐺(𝑚)) exceeds a given threshold 𝑃 , where 
𝑃 ∈ [0, 1]. For instance, as shown in Fig.  2, we observe that:

𝑃 (𝐺116.2(𝑚)) = 1 −
[ 160
160 + 𝑚

× 0.9444
]

> 𝑃

where 𝑃 (𝐺116.2(𝑚)) exceeds 𝑃 = 0.95 when 𝑚 ≥ 2900 future supercente-
narian men are added to the study.

Example 3 (Supercentenarian Women Data). 
In this example, we use data from 𝑛 = 1580 supercentenarian women 

(as in Example  1). Among them, 72 women were still alive at the 
time of the study, and their lifetimes are right-censored. Additionally, 
there are eight supercentenarian women whose ages exceed the largest 
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censored value, with the oldest recorded age being 117.1. In this case, 
we consider the second-largest age, 2 = 119.3, and the third-largest 
age, 3 = 117.8, in contrast to the first largest age of 1 = 122.5, as 
considered in Example  1.

We are interested in determining the probability of the event 
𝐺2

(0), which refers to the probability that at least one of the 72 
right-censored supercentenarian women has a lifetime exceeding the 
second-largest observed age, 2 = 119.3. This probability is computed 
as follows:

𝑃 (𝐺119.3(0)) = 1 −
72
∏

𝑟=1

𝑛̃𝑐𝑟 − 1
𝑛̃𝑐𝑟 + 1

= 1 − 0.4228 = 0.5772.

Next, we compute the probability for the event 𝐺3
(0), which is the 

probability that at least one of the 72 right-censored supercentenarian 
women has a lifetime exceeding the third-largest observed age, 3 =
117.8. This probability is:

𝑃 (𝐺117.8(0)) = 1 −
72
∏

𝑟=1

𝑛̃𝑐𝑟 − 2
𝑛̃𝑐𝑟 + 1

= 1 − 0.2655 = 0.7345.

Thus, based on our model assumptions, which involve the 𝐴(𝑛) assump-
tion and non-informative right censoring, we find that the probability 
of at least one of the 72 supercentenarian women surviving beyond 
2 = 119.3 is 0.5772. This probability increases to 0.7345 for surviving 
beyond 3 = 117.8. Additionally, it is more likely that someone 
will survive any of the eight supercentenarian women, as the analysis 
proceeds from the first largest age to the eighth largest age, all of which 
exceed the largest censored age of 117.1.

Now, let us consider the scenario where 𝑚 = 2 future supercente-
narian women, 𝑋𝑛+1 and 𝑋𝑛+2, are added to the study, alongside the 
existing 𝑛 = 1580 supercentenarian women. The lifetime of 𝑋𝑛+2 is 
considered, conditional on the assumption that all 72 right-censored 
supercentenarian women and 𝑋𝑛+1 have failed before reaching 2 =
119.3. The probability of the event 𝐺2

(2), which is the probability that 
at least one of the 72 right-censored women or one of the future women 
(𝑋𝑛+1 or 𝑋𝑛+2) survives beyond 2 = 119.3, is computed as:

𝑃 (𝐺119.3(2)) = 1 −

[

1580 ⋅ 1579
(1580 + 2)(1580 + 1)

72
∏

𝑟=1

𝑛̃𝑐𝑟 − 1
𝑛̃𝑐𝑟 + 1

]

= 1 − 0.4217 = 0.5783.

Similarly, for the survival beyond the third largest observed age 
3 = 117.8, we compute the probability for the event 𝐺3

(2), which 
is the probability that at least one of the 72 right-censored supercente-
narian women or 𝑋𝑛+1 and 𝑋𝑛+2 survives beyond 3 = 117.8:

𝑃 (𝐺117.8(2)) = 1 −

[

1580 ⋅ 1579 ⋅ 1578
(1580 + 2)(1580 + 1)(1580)

72
∏

𝑟=1

𝑛̃𝑐𝑟 − 2
𝑛̃𝑐𝑟 + 1

]

= 1 − 0.2645 = 0.7355.

Thus, for survival times between 2 = 119.3 and 3 = 117.8, the upper 
survival probability is 0.7355 (corresponding to 3 = 117.8) and the 
lower survival probability is 0.5783 (corresponding to 2 = 119.3).

Considering 𝑚 ≥ 2 future supercentenarian women added to the 
study, the probabilities for the events 𝐺1

(𝑚), 𝐺2
(𝑚), and 𝐺3

(𝑚)—that
at least one of the 72 right-censored supercentenarian women or one 
of the 𝑚 ≥ 2 future women survives beyond 1 = 122.5, 2 = 119.3, or 
3 = 117.8—are shown in Fig.  3.

From Fig.  3, if we consider a specific probability value, say 𝑃 =
0.95, we can determine the smallest 𝑚 for which the probabilities 
𝑃 (𝐺122.5(𝑚)), 𝑃 (𝐺119.3(𝑚)), and 𝑃 (𝐺117.8(𝑚)) exceed 𝑃 = 0.95. It is evi-
dent from the figure that as the largest recorded age decreases (moving 
backward through the ordered ages), the smallest 𝑚 that results in 
a probability greater than 𝑃 = 0.95 also decreases. Specifically, for 
the event 𝐺122.5(𝑚), the smallest 𝑚 such that 𝑃 (𝐺122.5(𝑚)) > 0.95 is 
𝑚 ≥ 19200 future supercentenarian women. For the event 𝐺119.3(𝑚), 
the smallest 𝑚 for which 𝑃 (𝐺 (𝑚)) > 0.95 is 𝑚 ≥ 3050 future 
5

119.3
Fig. 3. The probabilities 𝑃 (𝐺1
(𝑚)), 𝑃 (𝐺2

(𝑚)), and 𝑃 (𝐺3
(𝑚)) for the supercentenarian 

women dataset, as in Example  3. These probabilities represent the likelihood that at 
least one of the 72 right-censored supercentenarian women, or any of the 𝑚 future 
supercentenarian women, will survive beyond the specified age thresholds: 1 = 122.5, 
2 = 119.3, and 3 = 117.8. For each case, the probability increases with the addition of 
future supercentenarians. As illustrated, the smallest number of future supercentenarian 
women required for the probability to exceed 0.95 is 𝑚 ≥ 19200 for 1, 𝑚 ≥ 3050 for 
2, and 𝑚 ≥ 1180 for 3. This demonstrates that as the reference age decreases, the 
number of future supercentenarians needed to achieve a high probability decreases as 
well.

supercentenarian women. Finally, for the event 𝐺117.8(𝑚), the smallest 
𝑚 that makes 𝑃 (𝐺117.8(𝑚)) > 0.95 is 𝑚 ≥ 1180 future supercentenarian 
women.

Example 4 (Supercentenarian Men Data). 
In this example, we again use the data on 𝑛 = 160 supercentenarian 

men, as in Example  2. Two of these men are still alive at the time 
of the study, so their lifetimes are right-censored. Additionally, there 
are 33 supercentenarian men whose ages exceed the largest censored 
supercentenarian age, which is 111.9. In Example  2, we considered the 
first largest recorded age, 1 = 116.2. In this case, we focus on the 
second and third largest ages recorded, 2 = 115.7 and 3 = 115.5, 
respectively.

The interest is in calculating the probability for the event 𝐺2
(0), 

which represents the probability that at least one of the two right-
censored supercentenarian men has a lifetime greater than the second 
largest observed value, 2 = 115.7. This probability is obtained as 
follows:

𝑃 (𝐺115.7(0)) = 1 −
2
∏

𝑟=1

𝑛̃𝑐𝑟 − 1
𝑛̃𝑐𝑟 + 1

= 1 − 0.8903 = 0.1097.

Similarly, the probability for the event 𝐺3
(0), where at least one of the 

two right-censored supercentenarian men has a lifetime greater than 
the third largest recorded age, 3 = 115.5, is

𝑃 (𝐺115.5(0)) = 1 −
2
∏

𝑟=1

𝑛̃𝑐𝑟 − 2
𝑛̃𝑐𝑟 + 1

= 1 − 0.8378 = 0.1622.

Under the assumptions of the model, which is based on the 𝐴(𝑛) as-
sumption and non-informative right censoring, the probability that at 
least one of the right-censored supercentenarian men will live longer 
than the second largest observed age, 2 = 115.7, is 0.1097. This 
probability increases to 0.1622 if considering survival beyond the third 
largest age, 3 = 115.5. Additionally, it is more likely that one of the 
33 supercentenarian men, whose ages exceed 111.9, will survive any 
of the ages from 1 to 3.

Next, consider the addition of 𝑚 = 2 future supercentenarian men, 
denoted 𝑋𝑛+1 and 𝑋𝑛+2, to the study. The lifetime of 𝑋𝑛+2 is considered, 
conditional on the fact that the two right-censored supercentenar-
ian men and 𝑋  have all failed before reaching the second largest 
𝑛+1
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Fig. 4. The probabilities 𝑃 (𝐺1
(𝑚)), 𝑃 (𝐺2

(𝑚)), and 𝑃 (𝐺3
(𝑚)) for the supercentenarian 

men dataset, as in Example  4. These probabilities represent the likelihood that at 
least one of the two right-censored supercentenarian men, or any of the 𝑚 future 
supercentenarian men, will survive beyond the specified age thresholds: 1 = 116.2, 
2 = 115.7, and 3 = 115.5. The probability increases with the addition of future 
supercentenarians. From the figure, it is evident that as the largest recorded age 
decreases, the smallest number of future supercentenarians required to exceed a 
probability of 0.95 decreases. Specifically, for the event 𝐺116.2(𝑚), the smallest 𝑚 such 
that 𝑃 (𝐺116.2(𝑚)) > 0.95 is 𝑚 ≥ 2900; for 𝐺115.7(𝑚), it is 𝑚 ≥ 515; and for 𝐺115.5(𝑚), it is 
𝑚 ≥ 250.

recorded age, 2 = 115.7. The probability for the event 𝐺2
(2), that 

at least one of the right-censored supercentenarian men or the future 
supercentenarian men 𝑋𝑛+1 and 𝑋𝑛+2 will live longer than 2, is

𝑃 (𝐺115.7(2)) = 1−

[

160 ⋅ 159
(160 + 2)(160 + 1)

2
∏

𝑟=1

𝑛̃𝑐𝑟 − 1
𝑛̃𝑐𝑟 + 1

]

= 1−0.8684 = 0.1316.

Similarly, considering the survival of the third largest age, 3 =
115.5, and the addition of 𝑚 = 2 future supercentenarian men, the 
probability for the event 𝐺3

(2) is

𝑃 (𝐺115.5(2)) = 1 −

[

160 ⋅ 159 ⋅ 158
(160 + 2)(160 + 1)(160)

2
∏

𝑟=1

𝑛̃𝑐𝑟 − 2
𝑛̃𝑐𝑟 + 1

]

= 1 − 0.8070 = 0.1930.

Now, consider the event 𝐺𝑡∈(3 ,2)(2), where 𝑡 lies between 3 =
115.5 and 2 = 115.7, in the case of adding 𝑚 = 2 future supercentenar-
ian men. The lower probability for the event 𝐺𝑡∈(115.5,115.7)(2) is derived 
from the probability for the event 𝐺115.7(2), as shown in Example  4, 
yielding:

𝑃 (𝐺𝑡∈(115.5,115.7)(2)) = 𝑃 (𝐺115.7(2)) = 0.1316.

The corresponding upper probability for the event 𝐺𝑡∈(115.5,115.7)(2) is de-
rived from the probability for the event 𝐺115.5(2), as shown in Example 
4, yielding:
𝑃 (𝐺𝑡∈(115.5,115.7)(2)) = 𝑃 (𝐺115.5(2)) = 0.1930.

Finally, consider the case where 𝑚 ≥ 2 future supercentenarian men 
are added to the study. The probabilities for the events 𝐺1

(𝑚), 𝐺2
(𝑚), 

and 𝐺3
(𝑚), which represent the probabilities that at least one of the 

two right-censored supercentenarian men or one of the 𝑚 ≥ 2 future 
supercentenarian men will live longer than 1 = 116.2, 2 = 115.7, 
and 3 = 115.5, respectively, are shown in Fig.  4.

From Fig.  4, if we consider a specific probability value, say 𝑃 =
0.95, we can determine the smallest 𝑚 for which the probabilities 
𝑃 (𝐺116.2(𝑚)), 𝑃 (𝐺115.7(𝑚)), and 𝑃 (𝐺115.5(𝑚)) exceed 𝑃 = 0.95. It is 
evident from the figure that as the largest recorded age decreases 
(moving backward through the ordered ages), the smallest 𝑚 that 
results in a probability greater than 𝑃 = 0.95 also decreases. Specif-
ically, we see that 𝑃 (𝐺 (𝑚)) exceeds 0.95 when 𝑚 ≥ 2900 future 
6

116.2
supercentenarian men, 𝑃 (𝐺115.7(𝑚)) exceeds 0.95 when 𝑚 ≥ 515 future 
supercentenarian men, and 𝑃 (𝐺115.5(𝑚)) exceeds 0.95 when 𝑚 ≥ 250
future supercentenarian men.

6. Concluding remarks

In this paper, we introduced a method to estimate the probability 
that the true lifetime corresponding to a right-censored observation ex-
ceeds the largest observed value in a dataset. This method also extends 
to consider future observations, calculating the probability that at least 
one future or right-censored observation has a lifetime exceeding the 
largest observed value. Furthermore, we extended the analysis to the 
exceedance of the second, third, and up to the 𝑗th largest observations, 
provided they exceed the largest censored observation. Additionally, 
we examined the time between any two of these largest observations, 
calculating the lower and upper probabilities for the exceedance of the 
time between them.

The method is built upon the Nonparametric Predictive Inference 
(NPI) framework, particularly utilizing the shifted 𝐴(𝑛) assumption. This 
assumption, combined with the exchangeability assumption and non-
informative right censoring, offers a flexible and assumption-minimal 
approach for deriving predictive probabilities. These assumptions focus 
on the remaining times to the event of interest for individuals reaching 
a certain age and allow for the quantification of uncertainty in future 
observations. The use of NPI is especially suited for extreme value 
analysis because it does not rely on parametric assumptions, making it 
well-suited for data with extreme values, such as the Supercentenarian 
dataset, where the true tail behaviour of the distribution is of particular 
interest.

We applied these methods to the Supercentenarian dataset, with 
separate analyses for women and men. The results show that assuming 
the largest observed value as the endpoint of support is not appropriate 
in the context of extreme value analysis. For instance, the probabilities 
of surviving beyond the largest observed age were notably high, demon-
strating the importance of considering exceedance probabilities rather 
than treating the largest observed value as a definitive endpoint.

While the NPI method, with its minimal assumptions, provides 
valuable insights, it does have limitations. It is not sufficient to make 
detailed predictions beyond the largest observed value without incor-
porating additional distributional assumptions or accounting for other 
complexities in the data. Future research could consider extending this 
methodology by integrating additional assumptions about the under-
lying distribution or by using alternative approaches that allow for 
covariates and random effects to refine survival probability estimates. 
Such extensions could enhance the predictive power of the analysis, 
especially when applied to larger and more diverse datasets that con-
sider other factors, such as health status, socio-economic factors, and 
geography.

This work provides a foundation for understanding the uncertainty 
associated with extreme survival outcomes and has practical applica-
tions in fields such as healthcare, demography, and insurance. The 
exceedance probabilities we have derived could inform resource alloca-
tion for long-term care, inform population models of extreme longevity, 
and guide insurance risk assessments for longevity-related products. 
Further exploration of these implications will help shape policies that 
consider the growing number of individuals living to extreme ages.

It is also of interest to develop the NPI approach to include fur-
ther information through modelling the dependence of lifetimes on 
covariates. This will provide an alternative to inferences such as the 
Proportional Hazards model and will be enabled by the development 
of NPI for regression problems, which is currently ongoing.

In conclusion, while NPI offers a robust framework for extreme 
value analysis in the context of right-censored data, integrating ad-
ditional assumptions and expanding the data set will be key to re-
fining survival predictions and enhancing the practical relevance of 
this approach. NPI for right-censored data is closely related to the 
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Kaplan–Meier (KM) estimate for the population survival function for 
such data [14]. The NPI-based lower and upper survival functions 
bound the KM estimate, but they have strong consistency properties for 
prediction, which do not hold for the KM estimate. Furthermore, NPI 
provides predictive inference which is exactly calibrated [15], a strong 
consistency property in frequentist statistics.
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Appendix A. Proof of Eq.  (6) with an illustrative example

Proof of Eq.  (6).  We first consider the individual 𝑋𝑐𝑣 , who is the last 
individual to be censored at censoring time 𝑐𝑣, such that there are no 
further censorings beyond it. For 𝑋𝑐𝑣 , we can apply the shifted-𝐴̃(𝑛), as 
given in Eq.  (5), which allows us to apply 𝐴(𝑛) with the starting point 
shifted from 0 to the highest right-censoring time 𝑐𝑣. The lifetime of 
this individual 𝑋𝑐𝑣  will either exceed  or not. If the lifetime of 𝑋𝑐𝑣
exceeds , then based on the shifted-𝐴̃(𝑛), the probability that 𝑋𝑐𝑣 > 
is

𝑃 (𝑋𝑐𝑣 > ) = 1
𝑛̃𝑐𝑣 + 1

If the lifetime of 𝑋𝑐𝑣  does not exceed , then the probability for the 
event 𝑋𝑐𝑣 < , knowing the value of 𝑛̃𝑐𝑣 , is

𝑃 (𝑋𝑐𝑣 < ) = 1 − 1
𝑛̃𝑐𝑣 + 1

=
𝑛̃𝑐𝑣

𝑛̃𝑐𝑣 + 1

where 𝑛̃𝑐𝑣  is the number of observations in the risk set just prior to time 
𝑐𝑣.

Next, we consider the previous individual with the second censoring 
time 𝑐𝑣−1, namely 𝑋𝑐𝑣−1 , conditional on 𝑋𝑐𝑣 < . It is important 
to note that for 𝑋𝑐𝑣−1 , it does not matter where exactly the final 
individual’s failure time or lifetime, 𝑋𝑐𝑣 , is, as long as it occurs before 
. Specifically, we do not need to take censoring into account for 𝑋𝑐𝑣
because we are conditioning on what happens before . Thus, it does 
not matter what the exact value of 𝑋𝑐𝑣  is within the interval (𝑋𝑐𝑣−1 ,). 
Therefore, the probability that 𝑋𝑐𝑣−1  exceeds , given that 𝑋𝑐𝑣 < , 
based on the shifted-𝐴̃(𝑛), is

𝑃 (𝑋𝑐𝑣−1 >  ∣ 𝑋𝑐𝑣 < ) = 1
𝑛̃𝑐𝑣−1 + 1

and the probability for the event of interest, 𝑋𝑐𝑣−1 < , given 𝑋𝑐𝑣 < , 
knowing the value of 𝑛̃𝑐𝑣−1 , is

𝑃 (𝑋𝑐𝑣−1 <  ∣ 𝑋𝑐𝑣 < ) = 1 − 1 =
𝑛̃𝑐𝑣−1
7

𝑛̃𝑐𝑣−1 + 1 𝑛̃𝑐𝑣−1 + 1
where 𝑛̃𝑐𝑣−1  is the number of observations in the risk set just prior to 
time 𝑐𝑣−1.

The same procedures are repeated for all other individuals whose 
lifetimes have been right-censored at censoring times 𝑐𝑟, where 𝑟 =
1, 2,… , 𝑣 − 3, 𝑣 − 2. If the lifetime of an individual 𝑋𝑐𝑟  does not exceed 
, we check the previous individuals at those censoring times 𝑐𝑟. The 
important thing to note is that for these individuals, it does not matter 
exactly where their failure times occur as long as they have already 
failed before . Generally, for the lifetime of these later individuals, 
censoring does not need to be taken into account, since it is based on 
what happens before . Therefore, for an individual 𝑋𝑐𝑟  at time 𝑐𝑟, we 
only know the number of individuals between 𝑋𝑐𝑟  and , and we also 
know that all of them failed before . The probability that 𝑋𝑐𝑟 > , 
given that 𝑋𝑐𝑟+1 < ,… , 𝑋𝑐𝑣−1 < , 𝑋𝑐𝑣 < , based on the shifted-𝐴̃(𝑛), 
as in Eq.  (5), is

𝑃 (𝑋𝑐𝑟 >  ∣ 𝑋𝑐𝑟+1 < ,… , 𝑋𝑐𝑣−1 < , 𝑋𝑐𝑣 < ) = 1
𝑛̃𝑐𝑟 + 1

and the probabilities for the event of interest, that no one survives 
beyond , knowing the values of 𝑛̃𝑐𝑟  for 𝑟 = 1, 2,… , 𝑣 − 3, 𝑣 − 2, are 

𝑃 (𝑋𝑐𝑟 <  ∣ 𝑋𝑐𝑟+1 < ,… , 𝑋𝑐𝑣−1 < , 𝑋𝑐𝑣 < ) = 1 − 1
𝑛̃𝑐𝑟 + 1

=
𝑛̃𝑐𝑟

𝑛̃𝑐𝑟 + 1

(A.1)

It is crucial to emphasize that for the event of interest above, we do 
not need to apply 𝐴(𝑛) with censoring, since it is written as a conditional 
event that all individuals have lifetimes less than . If an individual’s 
lifetime exceeds , then we know that the event of all individuals being 
less than  is not true.

Consequently, the probability for the event of interest 𝐺(0), de-
noted by 𝑃 (𝐺(0)), is

𝑃 (𝐺(0)) = 1 −
𝑣
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

Thus, the proof is complete.
The following example illustrates the probabilities presented in this 

section. 

Example 5.  Suppose we have a dataset consisting of 𝑛 = 10 observa-
tions. Of these ten individuals, seven died at ages 111, 113, 115, 116, 
119, 120, and 122, while three observations were still alive at the time 
the data were collected. Their lifetimes were right-censored at ages 112, 
114, and 117. Note that the largest recorded observation is 122, so  =
122. Let 𝑋𝑐1 , 𝑋𝑐2 , and 𝑋𝑐3  denote the random quantities corresponding 
to the right-censoring times at 112, 114, and 117, respectively.

We first consider the individual 𝑋𝑐3 , who was censored last at age 
117, such that there are no further censorings beyond this point. The 
lifetime of 𝑋𝑐3  will either survive beyond  or not. If 𝑋𝑐3 > 122, then 
based on the shifted-𝐴̃(3) with 3 observations in the risk set just prior 
to time 𝑐3, the probability that 𝑋𝑐3 > 122 is:

𝑃 (𝑋𝑐3 > 122) = 1
4

If 𝑋𝑐3 < 122, then the probability that 𝑋𝑐3 < 122 is 1 − 1
4 = 3

4 .
Next, we consider 𝑋𝑐2 , who was censored at age 114, conditional 

on 𝑋𝑐3 < 122. For 𝑋𝑐2 , we do not need to account for censoring of 
𝑋𝑐3 , since 𝑋𝑐3 < 122 and thus does not influence the probability. We 
only know that there were 3 deaths between 116 and 122. Thus, the 
probability that 𝑋𝑐2 > 122, given 𝑋𝑐3 < 122, based on the shifted-𝐴̃(6)
with 𝑛̃𝑐2 = 6, is:

𝑃 (𝑋𝑐2 > 122 ∣ 𝑋𝑐3 < 122) = 1
7

Therefore, the probability for 𝑋 < 122, given 𝑋 < 122, is 1 − 1 = 6 .
𝑐2 𝑐3 7 7
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Next, we consider 𝑋𝑐1 , who was censored at age 112, conditional 
on both 𝑋𝑐2 < 122 and 𝑋𝑐3 < 122. For 𝑋𝑐1 , we again do not need to 
account for censoring for 𝑋𝑐2  and 𝑋𝑐3 , since both died before 122. It 
does not matter what the exact values of 𝑋𝑐2  and 𝑋𝑐3  are within the 
interval (114, 122), and we only know that there were 6 deaths between 
113 and 122. Thus, the probability that 𝑋𝑐1 > 122, given that 𝑋𝑐2 < 122
and 𝑋𝑐3 < 122, based on the shifted-𝐴̃(8) with 𝑛̃𝑐1 = 8, is:

𝑃 (𝑋𝑐1 > 122 ∣ 𝑋𝑐2 < 122, 𝑋𝑐3 < 122) = 1
9

Therefore, the probability that 𝑋𝑐1 < 122, given 𝑋𝑐2 < 122 and 𝑋𝑐3 <
122, is 1 − 1

9 = 8
9 .

Consequently, the probability that at least one of the three individ-
uals 𝑋𝑐1 , 𝑋𝑐2 , and 𝑋𝑐3 , whose lifetimes are right-censored at ages 112, 
114, and 117, respectively, would have a lifetime greater than  = 122, 
is:

𝑃 (𝐺122(0)) = 1 −
3
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

= 1 −
[ 3
4
× 6

7
× 8

9

]

= 1 − 4
7
= 0.4286

This example illustrates how to derive the probability for the event 
of interest 𝐺122(0). We do not need to account for censoring in the 𝐴(𝑛)
setting because we are conditioning on the fact that all individuals are 
less than  = 122.

Appendix B. Proof of Eq.  (7) with an illustrative example

Proof of Eq.  (7).  For 𝑚 = 1, we consider the lifetime of the first 
future individual, 𝑋𝑛+1, conditional on the fact that all individuals 
whose lifetimes have been right-censored at censoring times 𝑐𝑟 (where 
𝑟 = 1, 2,… , 𝑣) have failed before the value . It is crucial to note 
that, for all right-censored individuals, it does not matter exactly where 
their lifetimes are, as long as they occur before . Therefore, the only 
information we need is the number of individuals in the risk set at time 
𝑥0, denoted 𝑛̃𝑥0 = 𝑛. The probability of the event that 𝑋𝑛+1 > , given 
that all 𝑋𝑐𝑟 < , 𝑟 = 1, 2,… , 𝑣, based on the shifted-𝐴̃(𝑛) as in Eq.  (5), 
with 𝑛̃𝑥0 = 𝑛, is

𝑃 (𝑋𝑛+1 >  ∣ 𝑋𝑐1 < , 𝑋𝑐2 < ,… , 𝑋𝑐𝑣 < ) = 1
𝑛̃𝑥0 + 1

= 1
𝑛 + 1

.

The probability of the complementary event, that 𝑋𝑛+1 < , given the 
same conditions, is

𝑃 (𝑋𝑛+1 <  ∣ 𝑋𝑐1 < , 𝑋𝑐2 < ,… , 𝑋𝑐𝑣 < ) = 1 − 1
𝑛 + 1

= 𝑛
𝑛 + 1

.

For 𝑚 = 2, we consider the lifetime of the second future individual, 
𝑋𝑛+2, conditional on the lifetime of the first future individual, 𝑋𝑛+1, 
and all individuals whose lifetimes have been right-censored at times 
𝑐𝑟 (where 𝑟 = 1, 2,… , 𝑣) having failed before . Again, the probability 
that 𝑋𝑛+2 > , given that 𝑋𝑛+1 <  and all 𝑋𝑐𝑟 < , is derived based 
on the shifted-𝐴̃(𝑛), now with 𝑛̃𝑥0 + 1 = 𝑛 + 1, as 𝑋𝑛+1 has been added. 
Thus, the probability is

𝑃 (𝑋𝑛+2 >  ∣ 𝑋𝑛+1 < , 𝑋𝑐1 < ,… , 𝑋𝑐𝑣 < ) = 1
(𝑛̃𝑥0 + 1) + 1

= 1
𝑛 + 2

.

The probability for the complementary event, 𝑋𝑛+2 < , is

𝑃 (𝑋𝑛+2 <  ∣ 𝑋𝑛+1 < , 𝑋𝑐1 < ,… , 𝑋𝑐𝑣 < ) = 1 − 1
𝑛 + 2

= 𝑛 + 1
𝑛 + 2

.

In general, for an event 𝑋𝑛+𝑖 >  where 𝑖 = 2, 3,… , 𝑚, conditional 
on the previous future individuals and all right-censored individuals, 
the probability based on the shifted-𝐴̃(𝑛) is
𝑃 (𝑋𝑛+𝑖 >  ∣ 𝑋𝑛+1 < ,… , 𝑋𝑛+𝑖−1 < , 𝑋𝑐1 < ,… , 𝑋𝑐𝑣 < )

= 1
(𝑛̃𝑥0 + 𝑖 − 1) + 1

= 1
𝑛 + 𝑖

.

For the complementary event 𝑋𝑛+𝑖 < , the probability is 
𝑃 (𝑋 <  ∣ 𝑋 < ,… , 𝑋 < , 𝑋 < ,… , 𝑋 < )
8

𝑛+𝑖 𝑛+1 𝑛+𝑖−1 𝑐1 𝑐𝑣
= 1 − 1
𝑛 + 𝑖

= 𝑛 + 𝑖 − 1
𝑛 + 𝑖

. (B.2)

Since the event of interest, 𝐺(𝑚), accounts for both future ob-
servations and the data set containing the 𝑛 observations, Eq. (A.1), 
which is related to the data set with only the 𝑛 observations, and Eq. 
(B.2), which is related to future observations, are required to compute 
the probability that all right-censored times exceed . Therefore, the 
probability for the event 𝐺(𝑚), denoted 𝑃(𝐺(𝑚)), is

𝑃 (𝐺(𝑚)) = 1 −

[ 𝑚
∏

𝑖=1

𝑛 + 𝑖 − 1
𝑛 + 𝑖

×
𝑣
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

]

= 1 −

[

𝑛
𝑛 + 𝑚

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟
𝑛̃𝑐𝑟 + 1

]

.

Thus, the proof is complete.

The following example illustrates the probabilities presented in this 
section.

Example 6.  We again use the same data on 𝑛 = 10 observations (as 
in Example  5). We consider that 𝑋𝑛+1 and 𝑋𝑛+2 are the lifetimes of 
the first and second future individuals to be included in the study. We 
now ask for the probability that at least one of the three individuals, 
𝑋𝑐1 , 𝑋𝑐2 , 𝑋𝑐3 , with lifetimes right-censored at ages 112, 114, and 117, 
or one of the future individuals, 𝑋𝑛+1 and 𝑋𝑛+2, has a lifetime greater 
than the largest observed value  = 122.

We first consider the lifetime of 𝑋𝑛+1, conditional on that
𝑋𝑐1 , 𝑋𝑐2 , 𝑋𝑐3 , with right-censored lifetimes at ages 112, 114, and 117, 
have failed before  = 122. The probability that 𝑋𝑛+1 > 122, given that 
𝑋𝑐1 < 122, 𝑋𝑐2 < 122, 𝑋𝑐3 < 122, is

𝑃 (𝑋𝑛+1 > 122 ∣ 𝑋𝑐1 < 122, 𝑋𝑐2 < 122, 𝑋𝑐3 < 122) = 1
11

.

The probability that 𝑋𝑛+1 < 122, given the same conditions, is

𝑃 (𝑋𝑛+1 < 122 ∣ 𝑋𝑐1 < 122, 𝑋𝑐2 < 122, 𝑋𝑐3 < 122) = 1 − 1
11

= 10
11

.

Next, we consider the lifetime of the second future individual 𝑋𝑛+2, 
conditional on that 𝑋𝑛+1 < 122 and the right-censored individuals have 
also failed before 122. The probability that 𝑋𝑛+2 > 122, given that 
𝑋𝑛+1 < 122, 𝑋𝑐1 < 122, 𝑋𝑐2 < 122, 𝑋𝑐3 < 122, is

𝑃 (𝑋𝑛+2 > 122 ∣ 𝑋𝑛+1 < 122, 𝑋𝑐1 < 122, 𝑋𝑐2 < 122, 𝑋𝑐3 < 122) = 1
12

.

The probability that 𝑋𝑛+2 < 122, given the same conditions, is

𝑃 (𝑋𝑛+2 < 122 ∣ 𝑋𝑛+1 < 122, 𝑋𝑐1 < 122, 𝑋𝑐2 < 122, 𝑋𝑐3 < 122) = 1− 1
12

= 11
12

.

Consequently, the probability for the event 𝐺122(2), denoted by 
𝑃 (𝐺122(2)), is derived as

𝑃 (𝐺122(2)) = 1 −

[ 2
∏

𝑖=1

𝑛 + 𝑖 − 1
𝑛 + 𝑖

3
∏

𝑟=1

𝑛̃𝑐𝑟 − 1
𝑛̃𝑐𝑟

]

= 1 −
[(10

11
× 11

12

)

×
( 3
4
× 6

7
× 8

9

)]

= 1 − 40
84

= 0.5238.

Appendix C. Proof of the results in Section 4

We now take into account the second largest observed value in 
the dataset, denoted by 2 = 𝑥𝑢−1, as long as there are no censored 
observations past it, such that 𝑥𝑢−1 > 𝑐𝑣. We consider the event 
of interest: for at least one of the individuals whose lifetimes have 
been right-censored, the actual lifetime value is larger than the second 
largest observed value, 2. For ease of notation, let 𝐺2

(0) denote this 
event. The probability for the event 𝐺2

(0) is then found in the same 
manner as for the event 𝐺(0) (exceeding the first largest observation), 
as derived in Section 3.

For individuals whose lifetimes have been right-censored at time 𝑐𝑟, 
where 𝑟 = 1, 2,… , 𝑣, censoring does not need to be considered as long 
as all these individuals failed before  , and we only know the number 
2
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of individuals between 𝑋𝑐𝑟  and 2. Based on the shifted-𝐴̃(𝑛) as given 
in Eq.  (5), we have

𝑃𝑋𝑐𝑟
(2,) = 𝑃𝑋𝑐𝑟

(,∞) = 1
𝑛̃𝑐𝑟 + 1

,

where 𝑛̃𝑐𝑟  is the number of observations in the risk set just before time 
𝑐𝑟, for 𝑟 = 1, 2,… , 𝑣. Therefore, the probability that 𝑋𝑐𝑟 > 2, given 
that all other individuals failed before 2, is

𝑃 (𝑋𝑐𝑟 > 2|𝑋𝑐𝑟+1 < 2,… , 𝑋𝑐𝑣−1 < 2, 𝑋𝑐𝑣 < 2) =
2

𝑛̃𝑐𝑟 + 1
.

The probability for the event of interest, that nobody survives the value 
2, is then

𝑃 (𝑋𝑐𝑟 < 2|𝑋𝑐𝑟+1 < 2,… , 𝑋𝑐𝑣−1 < 2, 𝑋𝑐𝑣 < 2) = 1 − 2
𝑛̃𝑐𝑟 + 1

=
𝑛̃𝑐𝑟 − 1
𝑛̃𝑐𝑟 + 1

.

Thus, the probability for the event 𝐺2
(0), denoted by 𝑃 (𝐺2

(0)), is 
given by

𝑃 (𝐺2
(0)) = 1 −

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟 − 1
𝑛̃𝑐𝑟 + 1

.

Following the same reasoning, we obtain the probability for the 
event 𝐺3

(0), where at least one individual, whose lifetime has been 
right-censored, has an actual lifetime greater than the third largest 
observed value, 3 = 𝑥𝑢−2, with 𝑥𝑢−2 > 𝑐𝑣. The probability is

𝑃 (𝐺3
(0)) = 1 −

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟 − 2
𝑛̃𝑐𝑟 + 1

.

In a similar fashion, one can compute the probability for any event 
where at least one individual’s lifetime exceeds a specified largest 
observed value, as long as it is greater than the largest censored 
observation at 𝑐𝑣. Specifically, for 𝑗 = 𝑥𝑢−𝑗+1, where 𝑥𝑢−𝑗+1 > 𝑐𝑣, we 
have

𝑃 (𝐺𝑗
(0)) = 1 −

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟 − 𝑗 + 1
𝑛̃𝑐𝑟 + 1

.

We are now considering the addition of future items to the study, 
as we did in Section 3. We then examine the event of interest where, 
for at least one of the individuals whose lifetimes have been right-
censored, or one of the 𝑚 ≥ 1 future individuals added to the study, 
the actual lifetime would be larger than the second largest observed 
value, 2 = 𝑥𝑢−1, with 𝑥𝑢−1 > 𝑐𝑣. Let 𝐺2

(𝑚) denote this event.
The probability for the event 𝑋𝑛+𝑖 > 2, for 𝑖 = 1, 2,… , 𝑚, condi-

tional on the failure of all previous future individuals and those whose 
lifetimes have been right-censored at times 𝑐𝑟, where 𝑟 = 1, 2,… , 𝑣, 
before 2 = 𝑥𝑢−1, is derived based on the shifted-𝐴̃(𝑛) in Eq.  (5) as

𝑃 (𝑋𝑛+𝑖 > 2|𝑋𝑛+1 < 2,… , 𝑋𝑛+𝑖−1 < 2, 𝑋𝑐1 < 2,… , 𝑋𝑐𝑣 < 2) =
2

𝑛 + 𝑖
.

The probability for the event 𝑋𝑛+𝑖 < 2, given that 𝑋𝑛+1 < 2,
… , 𝑋𝑛+𝑖−1 < 2, is
𝑃 (𝑋𝑛+𝑖 < 2|𝑋𝑛+1 < 2,… , 𝑋𝑛+𝑖−1 < 2, 𝑋𝑐1 < 2,… , 𝑋𝑐𝑣 < 2)

= 1 − 2
𝑛 + 𝑖

= 𝑛 + 𝑖 − 2
𝑛 + 𝑖

.

Thus, the probability for the event of interest 𝐺2
(𝑚), denoted by 

𝑃 (𝐺2
(𝑚)), is given by

𝑃 (𝐺2
(𝑚)) = 1 −

[ 𝑚
∏

𝑖=1

𝑛 + 𝑖 − 2
𝑛 + 𝑖

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟 − 1
𝑛̃𝑐𝑟 + 1

]

,

which simplifies to

𝑃 (𝐺2
(𝑚)) = 1 −

[

𝑛(𝑛 − 1)
(𝑛 + 𝑚)(𝑛 + 𝑚 − 1)

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟 − 1
𝑛̃𝑐𝑟 + 1

]

.
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Using the same reasoning, the probability for the event of interest 
𝐺3

(𝑚), where at least one individual (from either the right-censored 
individuals or the 𝑚 future individuals) has a lifetime exceeding the 
third largest observed value 3 = 𝑥𝑢−2, is given by

𝑃 (𝐺3
(𝑚)) = 1 −

[ 𝑚
∏

𝑖=1

𝑛 + 𝑖 − 3
𝑛 + 𝑖

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟 − 2
𝑛̃𝑐𝑟 + 1

]

,

which simplifies to

𝑃 (𝐺3
(𝑚)) = 1 −

[

𝑛(𝑛 − 1)(𝑛 − 2)
(𝑛 + 𝑚)(𝑛 + 𝑚 − 1)(𝑛 + 𝑚 − 2)

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟 − 2
𝑛̃𝑐𝑟 + 1

]

.

Similar to the above explanation, one could straightforwardly ob-
tain the probability for the event that at least one of the individuals 
whose lifetimes have been right-censored, or one of the 𝑚 ≥ 1 future 
individuals added to the study, has an actual lifetime value larger than 
any other largest observed value, as long as it is greater than the largest 
censored observation at 𝑐𝑣. Consequently, the probability that someone 
survives any largest observed value recorded in a data set, when it 
exceeds the largest censored observation, increases as it is calculated 
backwards from the largest recorded value to the 𝑗th largest observed 
value, provided that it surpasses the largest censored observation. In 
general, for 𝑗 = 𝑥𝑢−𝑗+1, where 𝑥𝑢−𝑗+1 > 𝑐𝑣, the probability is given as 
follows:

𝑃 (𝐺𝑗
(𝑚)) = 1 −

[ 𝑚
∏

𝑖=1

𝑛 + 𝑖 − 𝑗
𝑛 + 𝑖

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟 − 𝑗 + 1
𝑛̃𝑐𝑟 + 1

]

which simplifies to:

𝑃 (𝐺𝑗
(𝑚)) = 1 −

[

𝑛(𝑛 − 1)… (𝑛 − 𝑗 + 1)
(𝑛 + 𝑚)(𝑛 + 𝑚 − 1)… (𝑛 + 𝑚 − 𝑗 + 1)

𝑣
∏

𝑟=1

𝑛̃𝑐𝑟 − 𝑗 + 1
𝑛̃𝑐𝑟 + 1

]

.

Thus, the proof is complete.
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