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The exact quantum dynamics of lattice models can be computationally intensive, especially when aiming for
large system sizes and extended simulation times necessary to converge transport coefficients. By leveraging
finite memory times to access long-time dynamics using only short-time data, generalized master equations
(GMEs) can offer a route to simulating the dynamics of lattice problems efficiently. However, such simulations
are limited to small lattices whose dynamics exhibit finite-size artifacts that contaminate transport coefficient
predictions. To address this problem, we introduce a novel approach that exploits finite memory in time
and space to efficiently predict the many-body dynamics of dissipative lattice problems involving short-
range interactions. This advance enables one to leverage the short-time dynamics of small lattices simulate
arbitrarily large systems over long times. We demonstrate the strengths of this method by focusing on
nonequilibrium polaron relaxation and transport in the dispersive Holstein model, successfully simulating
lattice dynamics in one and two dimensions free from finite-size effects, reducing the computational expense of
such simulations by multiple orders of magnitude. Our method is broadly applicable and provides an accurate
and efficient means to investigate nonequilibrium relaxation with microscopic resolution over mesoscopic
length and time scales that are relevant to experiment.

I. INTRODUCTION

Lattice models play a key role in understanding phys-
ical and chemical phenomena. For instance, the Hol-
stein1,2 and Fröhlich3 models shed light on polaron for-
mation and electrical transport in semiconductors,4,5 the
Hubbard model6 helps elucidate the mechanisms of high-
temperature superconductivity,7 and the Ising model8 is
used to interrogate magnetism9 and phase transitions.10

However, while modern algorithms can efficiently simu-
late the quantum dynamics of small lattices over short
times,11–27 reaching sufficiently large systems and long
times to compare to experiments remains a fundamental
challenge. is is because these methods often scale expo-
nentially or, at best, polynomially with lattice size and
simulation time, rendering the thermodynamic limit in-
accessible.

The severity of this limitation becomes clear when cal-
culating dynamic properties, e.g., conductivities, viscosi-
ties, and diffusion constants, which are sensitive to finite-
size effects.28–35 For example, finite-size effects can cause
simulations to underestimate diffusion constants of poly-
mers near the glass-transition,36 relaxation times of glass-
forming liquids,37 the Curie temperature for Ni nanopar-
ticles,38 and the diffusion constant and viscosity of model
fluids;39 overestimate the critical fermion-phonon cou-
pling causing the metal-to-Peierls phase transition in a
Holstein-Hubbard lattice;40 and yield apparently non-
converging mobilities of dispersive Holstein polarons.41

These examples reveal the need of computing the dynam-
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ics of lattice models in thermodynamically large systems
over long timescales.

Generalized Master Equations (GMEs) have emerged
as a powerful tool for reducing the computational cost
of dynamical simulations.42–61 GMEs are exact non-
Markovian equations of motion for nonequilibrium av-
erages, correlation functions, and even multi-time corre-
lators of select variables that encapsulate the effects of
an environment into a memory kernel.62–64 In dissipa-
tive systems, the memory kernel decays to zero over a
finite memory lifetime, which can be shorter than the re-
laxation time of the desired correlation function. Thus,
in principle, one can use a reference simulation over the
memory lifetime to construct a GME that predicts the
dynamics of the desired correlation function to arbitrar-
ily long times. This temporal truncation of memory at
its lifetime can reduce the computational cost of simulat-
ing the quantum or classical dynamics of complex many-
body systems in different problems, including charge
transfer reactions in solution,65,66 protein folding,67–69

nonlinear spectroscopy,60,70 and transport.71,72 However,
to construct a GME from a short-time reference simula-
tion, it must satisfy two conditions: (1) the simulation
time must span the memory kernel lifetime, and (2) the
reference calculation must be performed in the same sys-
tem whose dynamics one intends to interrogate with the
GME. If one constructs a GME using a small lattice sim-
ulation, particles encounter the lattice boundaries and
manifest finite-size effects: one reduces the cost but still
obtains the wrong answer. Hence, one must be able to
afford an admittedly short-time reference simulation, but
of a thermodynamically large lattice. The poor scaling
of dynamical methods with system size renders this cal-
culation at best impractical and at worst impossible.
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Here, we propose a novel approach to lattice problems
that exploits our observation that certain GME formula-
tions display a finite spatial memory to motivate truncat-
ing memory in time and space. This allows us to employ
short-time reference simulations of small lattices to gen-
erate the exact quantum dynamics of thermodynamically
large lattices over arbitrarily long times for the cost of
only the small reference calculation. We demonstrate the
strengths of this method by applying it to nonequilibrium
polaron formation and transport in dispersive Holstein
lattices. Enabled by our space-local GME, we simulate,
for the first time, the exact nonequilibrium quantum dy-
namics of small polaron formation, relaxation, and flow in
thermodynamically large one-(1D) and two-dimensional
(2D) lattices with up to 900 sites over 100 ps, free of
finite-size contamination. Our method is model-agnostic
and can be expected to enable the efficient investigation
of nonequilibrium excitation dynamics in dissipative lat-
tices displaying local interactions.

II. SMALL POLARON LATTICE

The dispersive Holstein model offers a physically trans-
parent description of small polaron formation and trans-
port in many semiconductors displaying strong carrier-
phonon interactions, including organic crystals,73 poly-
mers,74 and nanomaterials.75 This model describes the
migration of charge carriers (electrons or holes) or ex-
citons that interact with their environment, influencing
local lattice (nuclear) motions. This interaction causes
the material to deform around the carrier, forming a po-
laron.

In the dispersive Holstein model,

Ĥ = Ĥs + Ĥph + Ĥs−ph, (1)

where Ĥs describes the electronic carriers:

Ĥs =

N∑
i

ϵiâ
†
i âi +

N∑
⟨ij⟩

vij â
†
i âj . (2)

Here ϵi represents the on-site energy, vij the hopping in-
tegral connecting the ith and jth sites, N the number of
sites on the lattice, and ⟨ij⟩ restricts the sum to nearest
neighbor coupling. While a carrier couples to a single
local phonon mode per lattice site in the classic Holstein
model,1,2,76 we opt for the dispersive version where a car-
rier couples to a continuum of local phonon modes, which
more faithfully represents condensed phase systems77–80

and has a full harmonic phonon environment per lattice
site,

Ĥph =
1

2

∑
i

∑
α

[
P̂ 2
i,α + ω2

iαX̂
2
i,α

]
. (3)

X̂i,α and P̂i,α are mass-weighted positions and momenta
for the αth phonon connected to the carrier on site i.

The carrier-phonon coupling is linear in the phonon co-
ordinates,

Ĥs−ph =
∑
i

∑
α

ci,αX̂i,αâ
†
i âi. (4)

This carrier-phonon coupling is fully characterized by the

spectral density Ji(ω) =
π
2

∑
α

c2i,α
ωiα

δ(ω − ωiα).

Consistent with previous works,5,41,71 we focus on the
dilute limit (one-carrier manifold) of homogeneous lat-
tices, making all our parameters site-independent. With-
out loss of generality, we set ϵi = 0, nearest-neighbor hop-
ping integral vij = v, intersite distances r0 = 5 Å, and
all spectral densities to an Ohmic-Debye form commonly
used to mimic dissipation in the condensed phase:81

J(ω) = ηωcω/(ω
2 + ω2

c ). Here, η/2 is the lattice reor-
ganization energy of an occupied lattice site, and 1/ωc

the phonon environment’s decorrelation time.
In our simulations, we track the population matrix

C(t), where Ci,j(t) = Tr[â†i âie
−iLtρ̂j(0)] with initial

condition ρ̂j(0) = â†j âje
−βĤph/Tr[e−βĤph ], which cor-

responds to creating an excitation at site j at t = 0
when all the phonon modes are in thermal equilibrium
with the electronic ground state at inverse temperature
β = 1/kBT . Ci,j(t) quantifies the probability of finding
the polaron at site i at time t given that it was initiated at
site j. In homogeneous systems with equivalent sites and
periodic boundary conditions, C(t) exhibits translational
invariance, i.e., Ci,i+l mod N (t) = Cj,j+l mod N (t) for all
i, j, l. This allows one to identify all distinct elements of
this matrix by their relative site index, |i − j| = k, al-
lowing one to rewrite Ci,j(t) = C|i−j|(t) = Ck(t). Hence,
one only needs to perform a single simulation starting
the carrier at any particular site, j, and record the time-
dependent probability of finding the carrier at all lattice
sites, i, as a function of time to construct C(t).
To characterize transport, we compute the polaron’s

mean squared displacement, MSD(t) = r20
∑

k k
2Ck(t),

which determines its diffusion constant D via the time
derivative when the MSD scales linearly in time:

D =
1

2Nd
lim
t→∞

dMSD

dt
. (5)

Here Nd indicates the lattice dimension. We calculate
the reference C(t) using the numerically exact Hierar-
chical Equation of Motion (HEOM)82–84 under periodic
boundary conditions at T = 300 K for all simulations in
this work (see App. A for additional details).

III. METHOD DEVELOPMENT & ANALYSIS

We begin with the dMSD
dt dynamics of dispersive Hol-

stein polarons on a 1D lattice. To align with previ-
ous work on organic semiconductors,41,85 we take η =
323 cm−1, v = 50 cm−1 and ωc = 41 cm−1. Beyond
encoding the diffusion constant, dMSD

dt provides insights
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FIG. 1. Nonequilibrium polaron dynamics on a 20-site 1D
lattice with η = 323 cm−1, v = 50 cm−1 and ωc = 41 cm−1.
(a) Comparison of dMSD/dt between the exact (pink) and
TL-GME dynamics generated with different lifetimes (broken
blue lines). (b) ||L||2 error for the TL-GME prediction as a
function of the proposed time cutoff reveals τU ≈ 820 fs. The
error is normalized by the number of time points predicted
by the GME, Nt.

into polaron formation, the transition from nonequilib-
rium relaxation to diffusive transport, and the onset of
finite-size contamination.41 For example, in the reference
(HEOM) dynamics for the 20-site lattice (solid pink line)
in Fig. 1 (a), the initial hump at ∼ 100 fs reports on
far-from-equilibrium lattice reorganization from polaron
formation, and is followed by a plateau that suggests dif-
fusive motion between 800 and 2000 fs. While this region
is not truly flat, it approximates the diffusion constant.41

This putative plateau falls off at ∼ 2000 fs, marking the
onset of finite-size effects. We denote this onset timescale
as τR.

We significantly reduce the computational cost of this
simulation by adopting a GME for the population ma-
trix. Specifically, we adopt the integrated time-local (TL)
master equation59 (see App. B):

C(t+ δt) = U(t)C(t), (6)

where U(t) is the generator of the non-Markovian dy-
namics for C(t). In dissipative lattice systems, U can
be expected to have a finite memory lifetime τU , after
which it becomes a time-independent matrix U(τU ), in-
dicating the onset of Markovianity. At this point, Eq. 6
simplifies to a time-independent rate equation and one
can efficiently generate long-time dynamics through ma-
trix multiplication:

C(τU + nδt) = [U(τU )]
nC(τU ), (7)

where n ∈ N. We use the reference HEOM dynamics to
calculate the generator using

U(t) = C(t+ δt)[C(t)]−1. (8)

To identify the generator lifetime,59 we truncate U(t)
at sample lifetimes τ and use the resulting generator
to produce TL-GME dynamics, from which we compute
the ||L||2 norm of the difference between the reference
dynamics and the TL-GME dynamics. We find that
τU = 820 fs, which is when the error metric in Fig 1
(b) plateaus near zero, allowing the resulting TL-GME
dynamics (dotted blue line) to agree with the reference
dynamics (pink line) in Fig 1 (a). Employing a smaller
lifetime for the generator causes the TL-GME to pre-
dict inaccurate dynamics, as illustrated by the dashed
blue lines in Fig. 1 (a). Hence, one only needs a refer-
ence simulation up to the generator lifetime τU = 820 fs
to generate the dynamics over 25 ps—more than an or-
der of magnitude longer—via simple matrix multiplica-
tion. Yet, while combining exact simulations with the
TL-GME can reduce the computational cost of gener-
ating long-time dynamics in such lattice problems, the
finite size of the lattice invariably poisons the dynamics
once the polaron reaches the boundary. This prompts us
to ask: can one reach large system sizes without incurring
the cost of reference simulations over increasingly larger
lattices that become prohibitively expensive?
Spatial memory: We address this fundamental prob-

lem by leveraging the concept of spatial memory to de-
velop a space-local (SL) GME that uses only a short-
time simulation of a small lattice to predict the dynamics
of thermodynamically large lattices over arbitrary times.
We begin by noting that, like C(t), U(t) exhibits transla-
tional invariance in homogeneous lattices, allowing us to
use relative indices to identify the elements. Figure 2 (a)
shows that as intersite distance increases, the elements
of U(t) become progressively smaller, Ud+2 < Ud+1 < Ud,
suggesting that our TL-GME generator exhibits decay-
ing spatial memory. Further, one may posit that gen-
erator elements connecting sites separated by a distance
greater than a characteristic memory distance, dU , be-
come negligibly small, allowing one to set them to zero.
We illustrate this concept of spatial memory truncation
in Fig. 2 (b), where we discard the elements of U(t) be-
yond a particular distance, d = dU , as they become neg-
ligibly small.
We turn to testing the validity of SL-GME. We begin

by examining the ||L||2 error metric for the SL-GME as
a function of the proposed memory distance cutoff, d,
to identify the characteristic memory distance, dU . Fig-
ure 3 (a) shows that the SL-GME reproduces the refer-
ence dynamics (solid pink line) when dU = 3r0 (dotted
brown line), but not for smaller cutoff distances. The
plateau in the error as a function of distance cutoff in
Fig. 3 (b) confirms that dU = 3r0, achieving an aver-
age error of less than 1%. These results thus support
the proposal of a memory distance cutoff that preserves
accuracy in the SL-GME dynamics.
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FIG. 2. (a) Elements of U(t) as a function of lattice distance d for the dispersive Holstein lattice with the same parameters as
Fig. 1. As inter-site distance, d, increases, the elements of U(t) become smaller. (b) Schematic representation of the spatial
locality in the generator, U(t), where elements beyond a characteristic distance dU become negligible. The color intensity
quantifies the magnitude of the elements and the scissors indicate the spatial truncation of the generator.

Since obtaining the generator up to its lifetime τU
allows one to simulate the dynamics for all time, one
may hypothesize that constructing the generator up to
its characteristic memory distance dU should enable one
to simulate a lattice of any size, albeit of the same di-
mension. This is the central insight of our space- and
time-local GME (STL-GME). To achieve this in a 1D
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FIG. 3. Demonstration of the SL-GME’s ability to capture
the polaron dynamics on the 20-site 1D lattice with the same
parameters as Fig. 1. (a) Comparison of dMSD/dt dynamics
obtained with exact HEOM (pink solid line) and SL-GME
(brown broken lines) dynamics. (b) Deviation (error) of the
SL-GME dynamics from the exact dynamics as a function of
distance cutoff, revealing that dU = 3r0. Error is defined in
the same way as of Fig. 1 (b)

lattice, we propose augmenting the dimension of U(t),
which is a 3-tensor with dimensions [N,N, tsteps], to
[M,M, tsteps], where M > N and all new elements are
assigned a value of 0. Further truncating the temporal
dimension of our augmented generator at time τU enables
us to easily generate the dynamics after τU via simple ma-
trix multiplication. This spatial and temporal truncation
of U(t) followed by its spatial augmentation constitutes
our STL-GME. We offer details of its implementation
in App. C. The resulting STL-GME should thus offer a
route to employ the dynamics of a small lattice over short
times to simulate the behavior of a thermodynamically
large lattice across arbitrarily long timescales.

We test our STL-GME’s performance by turning again
to the Holstein lattice in Figs. 1 and 3. Since U is an
intrinsic property of the dynamics, one can extract it
from short-time t ≤ τU reference dynamics of a lattice
with N ≥ 2dU + 1 sites. One can then employ U(t) to
predict relaxation dynamics over arbitrarily large spaces
and times, removing all finite-size artifacts. We validate
this idea in Fig. 4, where we construct the generator
for our STL-GME dynamics for a lattice with N = 20
sites using a reference simulation of a lattice with only
N = 8 > 2 × (dU = 3) + 1 sites (solid purple line).
Our size-augmented STL-GME in Fig. 4 (light purple
dots) reproduces the reference dynamics for a lattice with
N = 20 sites (solid pink line). In fact, the STL-GME can
access the dynamics of arbitrarily large systems, indefi-
nitely delaying the onset of finite-size effects. As we show
in the inset of Fig. 4, a 20-site lattice exhibits finite-size
artifacts around ∼ 2000 fs, whereas our STL-GME calcu-
lation for the 100-site system shows no signs of finite-size
effects, even by 25 ps.

Yet, that N can be so small in the reference calculation
used to construct the generator in Fig. 4 is surprising.
Here, τU ≃ 800 fs, but for an 8-site lattice, finite-size ef-
fects manifest in dMSD/dt at ∼ 300 fs, i.e., τR ≃ 300 fs.
However, despite τU > τR, the STL-GME and reference
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calculations agree, meaning the STL-GME correctly sim-
ulates the larger lattice and is not contaminated by the
smallness of the reference system.

How can one understand this seeming contradiction
where the generator lifetime, τU , can be longer than τR,
the onset of finite-size effects in dMSD/dt? Immedi-
ately at τR, the finite-size effect contaminates only the
elements of U connecting the origin to the most distant
sites. This is true because the population density is con-
served and its current local. In time, this artifact spreads
to elements of U progressively closer to the origin, as the
density interferes with itself. One might hypothesize that
finite-size effects only manifest in the STL-GME when
the elements of U that survive the spatial truncation have
been contaminated—a time longer than τR.

To confirm this hypothesis, in Fig. 5 we compare the
STL-GME generator and dynamics constructed from ref-
erence data for two different lattice sizes with varying
cutoff distances. The parameter regime is the same as in
Fig. 4, where we found dU = 3r0 and τR = 300 fs, thus re-
quiring a minimal lattice of N = 8. Keeping τU = 800 fs
constant, we consider two complementary cases. First,
for a too-small 6-site lattice, we know that obtaining a
result free of finite-size effects is impossible because the
periodic boundary is always closer than 3 sites from the
initial polaron position. Indeed, UN=6(d = 3r0, t) dif-
fers significantly from the benchmark UN=20(d = 3r0, t)
(Fig. 5 (a)), with the former producing STL-GME dy-
namics that deviate from the reference simulation for a
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FIG. 5. Convergence of generator elements as a function of
lattice size and characteristic memory distance, dU , for dis-
persive Holstein parameters v = 50 cm−1, η = 323 cm−1,
ωc = 41 cm−1. (a) U(d = 3r0, t) as a function of lattice
size. (b) Impact of adopting a generator from a too-small
lattice, UN=6(d = 3r0, t). (c) U(d = 4r0, t) as a function of
lattice size. (d) Impact of adopting a (contaminated) gener-
ator from a too-large choice of cutoff distance for the lattice
size, UN=8(d = 4r0, t).

20-site lattice (Fig. 5 (b)). Second, we consider the pre-
viously sufficient 8-site lattice, but increase the cutoff to
dU = 4r0. Since N < 2dU + 1, we predict finite-size con-
tamination in UN=8(d = 4r0, t). This is evident when
comparing with the benchmark UN=20(d = 4r0, t) (Fig. 5
(c)) and from the STL-GME dynamics, which again de-
viate from the reference (Fig. 5 (d)). That is, while the
8-site lattice generator’s first 4 entries are correct for this
τU , the fifth element is contaminated by finite-size arti-
facts, degrading the predicted dynamics. In both of these
pathological cases, truncation in time and space happens
after knowledge of the lattice’s finite size reaches those
elements in U that we keep. Therefore, a lattice with
N = 8 sites converges to the right value when one trun-
cates spatially at dU = 3r0, as we confirm by comparing
UN=8(d = 3r0, t) and UN=20(d = 3r0, t), and the result-
ing STL-GME prediction with the reference results for
a 20-site lattice, shown in Fig. 4. Hence, the STL-GME
is even more efficient in accessing the dynamics of ther-
modynamically large systems from small reference calcu-
lations than one might have expected based on simple
physical arguments.

Applicability: Thus far, we have assumed only
nearest-neighbor coupling, raising questions about the
extent to which our conclusions depend on the locality of
the Hamiltonian. For example, if the electronic coupling
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extends further, over second and third nearest neighbors,
do the cutoffs extend by 2r0, or is there a more perni-
cious, qualitative change?

To probe this potential sensitivity to non-locality,
we recalculate our dispersive Holstein dynamics with
beyond-nearest-neighbor electronic couplings for the pa-
rameter regime of Fig. 3, where we had identified dU =
3r0 when considering only nearest-neighbor coupling.
Motivated by atomic orbital decays, we consider inter-
actions that decrease exponentially with inter-site dis-
tance up to third nearest neighbors, as shown in Fig. 6,
with v(d) = ve−a(d−r0), a = 2r0

−1. Even in this non-
locally interacting problem, Fig. 6 shows that our STL-
GME captures the reference dynamics with dU = 4r0.
This change in cutoff distance of one lattice spacing is
even less severe than the 2r0 one may have anticipated.
Thus, our STL-GME efficiently handles Hamiltonians
with non-local, albeit short-range, interactions. While
more general models include long-range, through-space
effects like carrier-carrier interaction, screening in the
condensed phase86–93 usually allows for a truncation that
can be modeled similarly to the modification tested here
and should therefore preserve the space-local arguments
central to our STL-GME method.

Computational efficiency: The major advantage of
our STL-GME is the significant computational savings it
offers. Specifically, exact numerical methods scale poly-
nomially or exponentially withN and simulation time. In
contrast, our STL-GME scales only as N2 with a pref-
actor that heavily suppresses the cost to keep it effec-
tively constant (see Fig. 7) and (sub)linearly94 in time.
The main source of computational expense in our STL-
GME arises from the short-time reference calculation on
a small lattice needed to construct the generator. Fig-
ure 7 compares the computational cost of HEOM and the
STL-GME built from a small reference calculation as a
function of N . We fit the time costs for HEOM with a
polynomial regression (gray dashed line in Fig. 7). Even
with our highly optimized implementation of HEOM that
exploits recent advances in dynamic filtering of auxiliary
density matrices82 and the n-particle approximation,84

the direct simulation for a 100-site lattice over 25 fs is
∼ 300 times more computationally expensive than our
STL-GME for the same parameter regime. We can fur-
ther extend the 100-site lattice’s dynamics to arbitrarily
long times using our STL-GME for the trivial cost of
repeated small matrix multiplications. This STL-GME-
enabled simulation allows us to find that finite-size effects
emerge at ∼ 65 ps for the 100-site lattice—a timescale
that is currently unreachable for a system of this size with
a direct HEOM simulation. Such a calculation would re-
quire at least 10, 500 CPU hours (optimistically assuming
a linear relationship between simulation time and CPU
time), making it 750 times more computationally costly
than our STL-GME. Instead, with our STL-GME, the
same 100-site simulation requires effectively the same
amount of time as an 820 fs-long simulation for an 8-
site lattice (13.5 CPU hours), as we can compute the
STL-GME dynamics in less than a minute.

2D polaron transport : Our STL-GME method can
easily generalize to higher-dimensional lattices. This en-
ables us to access, for the first time, the exact quantum
dynamics of polaron formation and transport in dimen-
sions above one. Accessing transport in 2D is particu-
larly significant as it yields the spatiotemporal spread
of polarons on a surface—a phenomenon that recent
microscopy experiments measure.95–102 Such simulations
can elucidate the microscopic factors that influence en-
ergy and charge flow in materials and offer insights on
how to modify them for specific applications, such as en-
ergy storage or battery development.103–106

For our demonstration, we select Hamiltonian param-
eters characterized by high reorganization energy rela-
tive to the hopping integral and a fast phonon decorre-
lation speed, appropriate for polarons in organic crys-
tals.107 To interrogate the effect of various energy scales
on polaron transport, we examine a homogeneous 2D lat-
tice characterized by two types of hopping integrals that
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FIG. 7. Comparison of computational resources (CPU time)
needed to reach 25 ps of simulation time using a direct HEOM
simulation versus our STL-GME-enabled simulation. Inset:
log scale plot of computational time requirement for the STL-
GME extension and (extrapolated fit to) exact simulation for
large N .
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can cause anisotropic flow, V⊥ and V∥, as illustrated in
Fig. 8 (a). Figure 8 (b)-(d) illustrates the polaron mo-
tion on a 30× 30-site 2D lattice with a total of 900 sites.
Such a large-scale simulation is made possible exclusively
through our STL-GME method (see App. D for imple-
mentation details).

We turn to the effect of varying V⊥ relative to V∥.
Unsurprisingly, when V⊥ = V∥, we observe a symmetric
spread of the polaron at t = 10 ps, as shown in Fig. 8
(b). Anisotropic motion can be expected to emerge when
V⊥ ̸= V∥. Indeed, when V⊥ = 2V∥ and V⊥ = 4V∥, po-
laron density spreads more rapidly along the vertical axis,
as shown in Figs. 8 (c) and (d), respectively, with the ra-
tio V⊥/V∥ dictating the anisotropy of the polaron distri-
bution on the 2D surface. This demonstrates that STL-
GME can efficiently simulate nonequilibrium polaron mo-
tion in higher-dimensional systems, even in the thermo-
dynamic limit. Hence, this framework offers an accurate
and efficient means to simulate polaron transport over
the length and time scales needed to compare to experi-
ments.

Time nonlocal formulation: Our space locality ar-
guments are also compatible with the time-nonlocal de-
scription of memory.62–64 In App. E, we formulate the
space-local time-nonlocal (SL-TNL) GME, where we fur-
ther unify the SL framework with the Transfer Ten-
sor Method.108 Interestingly, we find that the time-local
characteristic memory distance, dU , is shorter than its
time-nonlocal counterpart, dK. We also find that the
generator and memory kernel lifetimes in the time-local
and time-nonlocal formulations follow a similar inequal-
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FIG. 8. Polaron density in a 30 × 30-site lattice with dis-
persive Holstein parameters η = 500 cm−1, v = 25 cm−1 and
ωc = 41 cm−1. (a) Schematic of a 2D lattice with two types
of hopping integrals: V⊥ and V∥. Polaron density at t = 10 ps
for three cases: (b) V∥ = V∥ = v; (c) V∥ = v/2 and V⊥ = v;
and (d) V∥ = v/4 and V⊥ = v.
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FIG. 9. The computational cost of HEOM (solid brown
line) rises with growing electronic-phonon coupling (η) while
the cutoff (and therefore cost) decreases for our STL-GME
(solid purple line). Hamiltonian parameters: v = 50 cm−1,
ωc = 100 cm−1.

ity, τU ≤ τK, consistent with our previous findings in
biomolecular dynamics.68

Entanglement: For systems involving coupling be-
tween spins or fermions with phonons, increasing the re-
organization energy leads to high electronic-nuclear en-
tanglement. This generally translates into greater com-
putational cost for many numerically exact11–14,16 and
approximate dynamics methods.109–111 For instance, the
number of differential equations that must be propa-
gated at each step in HEOM grows significantly with in-
creasing reorganization energy, raising its computational
cost. Similarly, in matrix product state-based propaga-
tion schemes, the bond dimension increases with increas-
ing reorganization energy and simulation time,22,26 fur-
ther escalating computational demands. In contrast, in
our SL-GME approach, increasing reorganization energy
reduces dU (see Fig. 9). This allows us to perform refer-
ence calculations on smaller lattices, providing dramatic
computational savings in systems with large reorganiza-
tion energies.

IV. CONCLUSION

While it is well-known that the temporal truncation of
memory in traditional GMEs can significantly lower the
computational cost of dynamic simulations over arbitrary
times, here we introduce space-local GMEs where spatial
truncation of memory can dramatically lower the cost of
accessing the dynamics of complex many-body systems of
arbitrary sizes. By integrating both spatial and temporal
truncation in the same GME framework within a time-
local framework, we have developed a novel STL-GME
that allows us to leverage the dynamics of small lattices
over short times to exactly simulate the dynamics of ther-
modynamically large systems across arbitrary times, free
from finite-size effects. In addition to our time-local for-
mulation, we have developed analogous continuous and
discrete time-nonlocal GMEs.

We have demonstrated the benefits offered by our STL-
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GME when simulating polaron formation and transport
in dispersive Holstein lattices in 1D and 2D with short-
range couplings. In fact, our STL-GME has already re-
vealed that nonequilibrium lattice relaxation can expo-
nentially delay the onset of polaron diffusion.112 Our ap-
proach, however, can be expected to find applications
across a wide range of dissipative lattice problems to
interrogate the nonequilibrium relaxation dynamics of
charge, electronic energy, and heat flow. We have shown,
for example, that our SL-GMEs are broadly compatible
with systems displaying short-range interactions and in
arbitrary dimensions. In addition, like previous GMEs,
our SL-GMEs are agnostic to the choice of dynamics
solver (classical or quantum, exact or approximate) used
to construct the time-local generator or memory kernel,
broadening its applicability to a wide variety of systems
and phenomena. By offering access to experimentally
relevant nonequilibrium relaxation processes in thermo-
dynamically large systems over arbitrarily long times, our
STL-GME can be expected to provide a transformative
tool to uncover and explain new dynamical phenomena
in periodic materials.

ACKNOWLEDGEMENTS

Acknowledgment is made to the donors of the Ameri-
can Chemical Society Petroleum Research Fund for par-
tial support of this research (No. PRF 66836-DNI6).
A.M.C. acknowledges the support from a David and
Lucile Packard Fellowship for Science and Engineering.
S.B. acknowledges the John Bailar Memorial Endowment
and the Marion L. Sharrah Fellowship for partial sup-
port of the research. T.S. is the recipient of an Early
Career Fellowship from the Leverhulme Trust. We thank
Prof. Qiang Shi for sharing his HEOM code with us. This
work utilized the Alpine high-performance computing re-
source at the University of Colorado Boulder. Alpine
is jointly funded by the University of Colorado Boul-
der, the University of Colorado Anschutz, Colorado State
University, and the National Science Foundation (award
2201538).

DATA ACCESSIBILITY

The data supporting our study’s findings are available
from the corresponding author upon reasonable request.

Appendix A: HEOM simulations

HEOM11 is a numerically exact method that predicts
the dynamics of the reduced density matrix of an open
quantum system by mapping environmental degrees of
freedom to auxiliary density matrices (ADMs) that quan-
tify the number of coupled differential equations being
solved simultaneously. The reduced density matrix pro-
vides information about the polaron population.

We converge all HEOM calculations with respect to the
hierarchical depth L, the number of Matsubara frequen-
cies K, and the time step δt. For our 1D simulations,
L = 22, K = 1, and δt = 0.25 fs. When changing reor-
ganization energy for Fig. 9, we use L = 26, K = 2, and
δt = 0.25 fs. Due to the extreme computational cost,
we employed a high-temperature approximation for 2D
simulations, setting K = 0, and converged the hierarchi-
cal depth and timestep to L = 26 and δt = 0.25 fs. In
all our simulations, we apply dynamic filtering,82 using
a threshold of Ncut = 10−7 atomic units, in line with
previous work.41,71 We also employ n-particle approxi-
mation84 to minimize numerical costs without affecting
the accuracy of the results.

Appendix B: GME Formulation

At the heart of GMEs is the projection operator,113

P, which enables one to derive the GME and estab-
lish the form of the correlation function of interest. Be-
cause we are interested in tracking the population matrix,
we choose the nonequilibrium population projector51,114

P = |A)(A| =
∑N

j=1 |Aj)(Aj |, where Aj = â†j âj is the
operator tracking fermionic occupation of site j. As in
previous work,51 we define the inner product as

(Ai|Ô|Aj) =
1

Zph
Tr

[
A†

i ÔAje
−βĤph

]
, (B1)

where Ô is a superoperator and Zph is the partition func-
tion of the phonon modes. With this choice of projection
operator, we can obtain the population correlation ma-
trix C(t) as follows

C(t) = (A|e−iLt|A), (B2)

where C(0) = 1. Here, e−iLt is the propagator that
evolves an initial density in time, and L = [H, ...] is the
Liouvillian operator. The i, j element of this correlation
function takes the form

Ci,j(t) =
1

Zph
Tr

[
A†

ie
−iLtAje

−βĤph

]
= Tr

[
â†i âie

−iLtρ̂j(0)
]
.

(B3)

We calculate C(t) using HEOM.

Appendix C: STL-GME for a 1D lattice

Here, we outline our protocol for building a size-
augmented STL-GME for a 1D lattice using only a short-
time simulation of a small lattice. Here we use HEOM
to generate the reference dynamics, but our method is
agnostic to the choice of solver.

1. Construct the generator U(t) from the reference
C(t) using Eq. 8.
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2. Identify the lifetime τU by computing the ||L||2
error between reference and GME-generated dy-
namics as a function of the proposed lifetime, τ ,
Error(τ) = 1

Nt
||Cref(t) − CGME(t; τ)||2, and iden-

tify when the error function plateaus to a suffi-
ciently low value. Nt represents the number of time
points predicted by TL-GME, i.e., the number of
time points used to construct the generator sub-
tracted from the total number of time points in the
reference dynamics. Our threshold per element of
C(t) is 3× 10−8.

3. Identify characteristic memory distance dU in a
similar way by analyzing the error between refer-
ence dynamics and GME dynamics via the error
as a function of the proposed cutoff distance, d,
Error(d) = 1

Nt
||Cref(t) − CGME(t; d)||2. For SL-

GME,Nt is the total number of points. Our thresh-
old per element of C(t) is 6× 10−8.

4. If one finds dU < N/2, this means reference simu-
lation is sufficiently large for system size extension
via generator augmentation. Keep the generator up
to its lifetime τU only. Truncate the generator by
setting its entries connecting sites with a relative
distance d > dU to 0.

5. Augment the generator’s dimension from
[N,N, tsteps] to [M,M, tsteps], where M is
the length of the extended lattice. Then, populate
all additional new entries in the matrix with 0.

6. Employ U(t)[M,M ] to propagate the dynamics.
For time t ≤ τU , use Eq. 6. For t > τU , use Eq. 7.

Ensuring population conservation: In our STL-
GME method, we discard the elements of U with relative
lattice spacings larger than dU by setting them to 0. Our
generator truncation—like singular value truncations in
tensor network-based methods115—can cause violations
of population conservation. We track this population loss
via σ(t) = |1−

∑
k Ck(t)|. Ideally, σ(t) should be as close

to zero as possible. Figure 10 (a)—which corresponds to
the parameter regime of Fig. 4 where we employ an 8-site
reference simulation to predict the dynamics of a 20-site
lattice—reveals that our spatial truncation causes a 1%
population loss over the first 1 ps, which will continue to
grow with simulation time.

To conserve the population, we propose two schemes:

1. Redistribution: Add all discarded elements and dis-
tribute them equally among all remaining elements
of U after truncation,

U [i, j; d < dU ] = U [i, j; d < dU ]

+
1

NdU

∑
j

U [i, j; d > dU ], ∀i, (C1)

where NdU is the number of elements in U that
we keep as nonzero entries in our generator after
spatial truncation.
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FIG. 10. Population loss σ(t) due to spatial truncation of
the generator elements for the STL-GME dynamics for a 20-
site lattice built from a reference 8-site simulation, as shown
in Fig. 4. Population loss as a function of simulation time
arising from: (a) performing a direct truncation of the gen-
erator; (b) adopting the redistribution scheme; (c) adopting
the renormalization scheme

2. Renormalization: After spatial truncation, renor-
malize the generator U matrix at each time step,

U [i, j; d < dU ] =
U [i, j; d < dU ]∑
j U [i, j; d < dU ]

, ∀i. (C2)

Figure 10 shows when we add our population conserva-
tion schemes by redistributing or renormalizing spatially
truncating generator U we can keep the population loss
in the order of 10−11 and 10−12, even for longer simu-
lation time. Figure 10 (b) and (c) shows the popula-
tion loss quantity for redistribution and renormalization
scheme respectively. In our study, we employ redistribu-
tion scheme for all 1D simulations and renormalization
scheme for 2D simulations. While we show that we mod-
ify the generator to conserve the population, one could,
in principle, imagine some level of modification in the
population level to conserve the population.
Managing finite numerical precision of the dy-

namical solver : Figure 2 (a) shows that increasing
lattice distance d makes the elements of the generator
U smaller. At some point, the size of these genera-
tor elements is commensurate with the statistical error
or numerical precision error of the reference dynamical
solver. While keeping the full generator intact ensures
that the generator recovers the reference dynamics, trun-
cating generator elements that may be at the level of the
solver error can introduce small disagreements between
the STL-GME and reference dynamics because of imper-
fect cancellation of error.
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of noise in the STL-GME dynamics.

To see how this finite precision error in the underly-
ing solver can manifest in the STL-GME, consider gen-
erator elements connecting sites separated by inter-site
distances of 6r0 and 7r0 in Fig. 12 (purple lines), which
have contributions on the order of 10−6 to 10−7. In our
reference HEOM simulations, from which we build the
generator, we use dynamic filtering with a threshold of
Ncut = 10−7 atomic units. Including these small noisy
elements in the truncated U risks introducing noise into
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FIG. 12. Generator elements of U for inter-site distances
d = 6r0 and d = 7r0 for the parameters in Fig. 1 as a function
of the strength of dynamic filtering in the HEOM solver, Ncut.

our dynamical quantities, with derivative quantities mag-
nifying the effect of such noise. Specifically, when we
choose dU = 6r0 and compare the exact and STL-GME-
predicted MSD, as shown in Fig. 11 (a), one cannot no-
tice any visual difference. In contrast, when we compare
the more sensitive dMSD/dt, we find a minor noisy be-
havior in the green-encircled region of Fig. 11 (b). This
noise arises because elements in U for d ≥ 6r0 are dis-
carded and set to 0, leading to insufficient noise cancella-
tion from elements with d = 7r0 and beyond. Reducing
this filter threshold to Ncut) to 10−8 decreases the noise
in the 6r0 and 7r0 elements of U (see Fig. 12). Hence,
if smaller elements need to be included in the genera-
tor when implementing STL-GME, one must be mindful
of the numerical precision of the underlying dynamical
solver.

Appendix D: STL-GME for a 2D lattice

Here we summarize our modified protocol to build the
STL-GME for a homogeneous 2D lattice. We note, how-
ever, that the same protocol can be used for an ND
lattice with N ≥ 2. To construct the input dynamical
matrix, C(t), we perform a single reference HEOM sim-
ulation and then exploit translational symmetry. Once
we construct C(t), we follow the following workflow to
implement the STL-GME for a 2D lattice:

1. Compute the generator U(t) from reference C(t)
using Eq. 8.

2. Identify the generator lifetime τU by comparing the
||L||2 error between TL-GME results and reference
dynamics.

3. Identify the spatial distance cutoff dU :

(a) Keep the generator up to its lifetime,
U [N,N, t ≤ τU ].

(b) Reshape the first two lattice indices into x and
y coordinate indices such that any lattice in-
dex a can be rewritten as

a = i×Nx + j, (D1)

where N = Nx × Ny. This transforms the
generator into a 5-rank tensor: U [N,N, t] →
U [Nx, Ny;Nx, Ny, t].

(c) To spatially truncate the generator for a ho-
mogeneous lattice:

i. Select an excitation starting at any lattice
point, e.g., the origin of the 2D lattice,
U [Nx, Ny; 0, 0, t].

ii. Compute the distance between this initial
excitation at coordinates (0, 0) and any
measurement site (i, j) as

di,j =
√

i2 + j2 ∀i, j. (D2)
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iii. Discard all the elements where di,j > dU
by making them numerically 0.

iv. Apply Eq. C2 to this spatially truncated
U [Nx, Ny; 0, 0, t] to conserve the popula-
tion.

v. Employ translational symmetry to
populate full U [Nx, Ny;Nx, Ny, t] from
U [Nx, Ny; 0, 0, t] by varying initial
excitation lattice coordinates.

(d) Collapse the coordinate indices into lat-
tice indices using Eq. D1 such that
U [Nx, Ny;Nx, Ny, t] → U [N,N, t].

(e) Use the modified generator to propagate the
dynamics using Eq. 6 (before t < τU ) and
Eq. 7 after t < τU .

(f) Calculate the ||L||2 error metric by comparing
the exact dynamics with GME-predicted dy-
namics for different potential distance cutoffs
to find dU .

4. If dU < N/2, the reference calculation is sufficiently
large for spatial extension of the dynamics. To gen-
erate the dynamics of a system with extended size:

(a) Augment the generator’s dimension. Ex-
pand generator obtained from step (3c)
U [Nx, Ny; 0, 0, t] to U [Mx,My; 0, 0, t] for all
time points, where Mx ≥ Nx, My ≥ Ny and
M = Mx × My., and assign 0 to all the new
entries.

(b) Similar to step (3d), use translational sym-
metry to populate U [Mx,My;Mx,My, t] for
all initial conditions from U [Mx,My; 0, 0, t]
and collapse the coordinate indices to lat-
tice indices, yielding the expanded generator,
U [M,M, t], for the M ×M lattice system.

(c) Similar to step (4d), propagate the GME dy-
namics using U [M,M, t] which predict popu-
lation correlation matrix C(t) for M ×M lat-
tice.

For Figs. 8 (b)-(d), we simulate a 8× 8 lattice to obtain
the referenceC(t) dynamics for the STL-GME extension.
We find that the generator lifetime τU = 800 fs and ap-
propriate distance cutoff dU = 3r0, suggesting that the
8× 8 lattice is sufficient as the reference simulation. We
employ this 8× 8 dynamics to predict the dynamics of a
10×10 lattice and confirm that our STL-GME dynamics
agree with a separate exact HEOM simulation. In the
main text (see Fig. 8 (b)-(d)), we employ our STL-GME
protocol to augment the size to a 30 × 30 lattice and
simulate over the first 100 ps.

Appendix E: Space-local time-nonlocal GME

Here we discuss the spatial locality of the memory ker-
nel in the time-local GME and how to truncate small el-
ements that become negligible with increasing inter-site
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FIG. 13. Elements of the transfer tensor, T (t), as a function
of intersite distance d for the dispersive Holstein lattice with
the same parameters as Fig. 1.

distance. For lattice problems with short-range interac-
tions and local couplings (such as the dispersive Holstein
lattice), space-locality is also present in the time-nonlocal
description of memory. We demonstrate space-locality in
the Transfer Tensor Method (TTM), which is the discrete
analog of the time-nonlocal GME.108

For the population projector, one can write the inte-
grated time-nonlocal master equation via the TTM for-
mulation,

C(t) =
∑
k

T (t− k)C(k), (E1)

where the memory kernel of the dynamics is encoded into
the transfer tensor, T (t). We observe that the elements of
the Ti,j(t) tensor become smaller with increasing lattice
distance d, (see Fig. 13). Hence, we can spatially truncate
T (t) and then augment it to a larger dimension by adding
zeroes to the new entries.
To demonstrate the performance of the SL-TNL-GME,

we focus on the parameter regime of Fig. 1. Figure 14
(a) confirms that the SL-TNL-GME can recover the ref-
erence simulation. Figure 14 (b) shows that the charac-
teristic memory distance in the time-nonlocal framework
is dK = 5r0, which is bigger than the analogous char-
acteristic memory distance in the time-local framework,
dU = 3r0. Similarly, we find the memory kernel lifetime
in the time-nonlocal formulation is τK = 850 fs, which
is bigger than the lifetime we identify in the time-local
case, τU = 820 fs. The latter result is consistent with
previous findings in the context of biomolecular dynam-
ics.68 Hence, this example shows one can implement the
idea of spatial memory truncation in the time-nonlocal
formulation of reduced dynamics.
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