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Abstract
Newly calculated bounds on the strength of the coupling of an electron to a proton or a neutron by
a fifth force are presented. These results are derived from the high precision spectroscopic data
currently available for hydrogen, deuterium, helium-3 and helium-4. They do not depend on
specific assumptions on how the interaction would couple to a deuteron compared to a proton or
would couple to an α particle compared to a helion. They depend on its coupling to a muon, but
not in a significant way for carrier masses below 100 keV if one assumes that the strength of the
interaction with a muon would be of a similar order of magnitude as the strength of the interaction
with an electron in that mass region.

1. Introduction

A growing number of atomic systems are relevant in the ongoing search for a new physics interaction in view
of the very high level of precision achieved in their spectroscopy. Two main approaches have been considered
on this front in regard to the possible existence of a fifth force. One is to search for departures from the
predictions of the standard model for differences in transition frequencies between different isotopes of a
same species. This approach is based on the analysis of what is called King plots nonlinearities [1]. It has been
recently applied to ytterbium atoms, ytterbium ions and calcium ions ([2–4] and references therein). The
other is to search for departures from the predictions of the standard model in one- or two-electron systems
whose transition frequencies can be both measured and calculated to a suitably high precision [5–7]. This
second approach has been explored in some detail in [8], in particular in regard to the prospects offered by
transitions in hydrogen, deuterium, helium-3 and helium-4 for setting bounds on the strength of a fifth
force, and also in our more recent work on bounds based on hydrogen and deuterium spectroscopy [9, 10]. It
has been extended to a broader variety of atomic systems and experimental data for specific new physics
models in [11].

We revisit and continue some of these earlier investigations in the present article, in the light of recent
experimental and theoretical advances in the spectroscopy of hydrogen and helium and their muonic
counterparts [12–20]. Specifically, we consider the possibility that a new physics interaction impart a
potential energy VNP(r) to an electron or muon located at a distance r from the nucleus, with

VNP (r) = (−1)s+1 glgN
4π

1

r
exp(−mX0r) (1)

in natural units. HeremX0 is the mass of the new physics boson mediating the interaction, s is the spin of this
boson, and gl and gN are two dimensionless constants (gl ≡ ge for an electron, gl ≡ gµ for a muon, gN ≡ gp for
hydrogen-1, gN ≡ gd for deuterium, gN ≡ gh for helium-3 and gN ≡ gα for helium-4). A large class of new
physics models give rise to such a contribution to the Hamiltonian. Given the form of VNP(r), the
corresponding new physics interaction is attractive when (−1)s+1glgN < 0 and repulsive when
(−1)s+1glgN > 0.
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As is commonly done in this context, we will assume that

gn = gd − gp = gα − gh, (2)

where gn is the coupling constant for a neutron. Our main results are new upper bounds on the products gegp
and gegn. While we make use of the nuclear rms charge radii derived from Lamb shift measurements on the
muonic species, we take into account the possibility that a new physics interaction might need to be taken
into account in the calculation of these charge radii. We do not use scattering data in view of the difficulties
with deriving charge radii from these results [21, 22].

The proton rms charge radius (rp), the deuteron rms charge radius (rd) and the Rydberg constant (R) are
co-determined from a set of experimental and theoretical results including, in particular, high precision
spectroscopic measurements in muonic hydrogen and deuterium (µH, µD) and in electronic hydrogen and
deuterium (eH, eD) [23]. In principle, these data may be significantly affected by the hypothetical fifth force
considered in the present work. As a consequence, setting bounds on the strength of this force involves
redetermining these quantities. However, doing so is hampered by well known discrepancies and
inconsistencies: discrepancies between the measurements on the muonic species and the measurements on
the electronic species and inconsistencies between the latter. These differences result, inter alia, in a
significant scatter in the values of rp derived from these measurements. The value of rd derived from
measurements in muonic deuterium is also in significant tension with the values that can be derived from the
spectroscopy of electronic deuterium [24]. However, there is now excellent agreement between
measurements on the muonic species and measurements on the electronic species in regard to the difference
r2d − r2p, when this difference is derived directly from the isotope shift of the 1s – 2s interval of eH and eD [15].

The relevant experimental results are briefly surveyed in section 2. We calculate bounds based on
hydrogen and deuterium spectroscopy in section 3, deriving them either from the isotope shift of the 1s – 2s
interval [8] or through a global fit of the data to theoretical models [9, 10]. The former approach is extended
to helium in section 4.

2. Current data

2.1. Hydrogen and deuterium spectroscopy
Figure 1(a) and similar figures in [25, 26] illustrate the current situation in regard to high precision
spectroscopy of eH and µH. The measurements in µH yield a value of rp of 0.840 60(39) fm [15, 27] (we
denote this value by rp,µH in the following). The values derived from measurements in eH have a larger
uncertainty. The most precise published so far are based on the 1s – 3s, 2p – 2s, 2s – 4p or 2s1/2 – 8d5/2
intervals, in conjunction with previous measurements of the 1s – 2s interval [28, 29]. A value of
0.8482(38) fm can be derived from the most recent measurement of the 1s – 3s interval [30]. It is in 2σ
tension both with rp,µH and also with the still larger value of 0.877(13) fm derived from an independent
measurement of the same interval [31]. A recent measurement of the 2s1/2 – 8d5/2 interval yield a value of
0.8584(51) fm, larger than and in 3.5σ tension with rp,µH [25] and differing by 2.2σ from the still larger
value implied by the results of a previous measurement of that interval [32]. On the other hand, the values of
rp based on the recent measurements of the 2p – 2s and 2s – 4p intervals, respectively 0.833(10) fm [33] and
0.8335(95) fm [34], are in good agreement with each other and with rp,µH.

By contrast, and as can be seen, e,g, from figure 1(b), the value of the difference r2d − r2p derived from the
measurements on the muonic species is in excellent agreement with the value derived from the isotope shift
of the 1s – 2s interval in the electronic species [15]. The experimental uncertainty on this difference is
remarkably small for the electronic species, owing both to the particularly high precision with which this
isotope shift was measured [35] and to the cancellation of theoretical errors in the final results [12, 36].

2.2. 3He and 4He spectroscopy
As discussed in [8], setting bounds based on individual helium transition frequencies is hampered by
relatively large experimental or theoretical uncertainties for most of these transitions. This issue can be
avoided by using the difference of the squares of the rms charge radii of 3He and 4He instead, r2h − r2α, for
which a set of highly precise experimental results is now available—see, e.g. figure 1(c). Measurements in
muonic 3He and muonic 4He have resulted in a value of 1.0636(31) fm2 for r2h − r2α [13, 15, 18], or
1.0626(29) fm2 as redetermined in [19]. The most precise determination of r2h − r2α in the electronic species
to date, 1.0678(7) fm2, is based on recent measurements of the 2 3S – 2 1S interval in helium-3 [17] and
helium-4 [37], combined with theory [16, 20, 38]; this value differs by 1.3σ and 1.7σ from those deduced
from the muonic species in, respectively, [18] and [19]. The result derived from a previous measurement of
that interval in helium-3 [39] also agrees with these two values but has a much larger uncertainty [17]. Three
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Figure 1. (a) The proton rms charge radius, rp. (b) The difference r2d − r2p. (c) The difference r
2
h − r2α. From top to bottom in (a):

value recommended by CODATA (2018 adjustment) [23]; value derived from measurements of the 1s – 2s and 2s – 4p intervals
in eH [34]; value derived from measurements of the 1s – 2s interval and of the 2p – 2s Lamb shift in eH [33]; value derived from
measurements of the 1s – 2s and 1s – 3s intervals in eH [30]; value derived from measurements in muonic hydrogen [15]. From
top to bottom in (b): Value recommended by CODATA (2014 adjustment) [45]; values recommended by CODATA (2018
adjustment) [23]; result derived from the isotope shift of the 1s – 2s interval in the electronic species [12]; value derived from
measurements in muonic hydrogen and muonic deuterium [15]. From top to bottom in (c): values derived from the isotope shift
of the 2 3S – 2 3P interval in the electronic species as measured by Shiner et al [38, 40] (left) or as measured by Cancio Pastor et al
[38, 41, 42] (right); value derived from the isotope shift of the 2 3S – 2 1S interval in the electronic species [16, 17]; value derived
from measurements in muonic 3He and muonic 4He [13, 18] as redetermined in [19].

experimental values of the 2 3S – 2 3P isotope shift are currently available [38, 40–43]. Two give values of
r2h − r2α in excellent agreement with the value of 1.0636(31) fm2 derived from the measurements on the
muonic species but are in 2σ tension with each other. The third one gives a considerably different result,
1.028(2) fm2 [43]. The value derived from the 2 1S – 3 1D interval, 1.059(25) fm2 [44], is also in agreement
with the muonic value but has a considerably larger uncertainty.

3. Bounds derived from hydrogen and deuterium spectroscopy

3.1. General approach: method
Energy differences between states of electronic hydrogen or deuterium are usually expressed as transition
frequencies, e.g. νba for the energy difference between a state b and a state a. Theoretically, these transition
frequencies have the following general form within the standard model,

νSMba
(
R, rp, rd

)
=Rη

g
ba + r2p η

ps
ba + r2d η

ds
ba + νocba , (3)

where νocba , η
g
ba, η

ps
ba, η

ds
ba and ν

oc
ba are constants. These constants do not need to be calculated with highly

precise values ofR, rp and rd in order to obtain νSMba (R, rp, rd) with a precision matching the corresponding
experimental transition frequency. The termRη

g
ba accounts for the gross structure of the spectrum as

predicted by the non-relativistic theory to leading order in the fine structure constant, the terms r2p η
ps
ba and

r2d η
ds
ba account for the bulk of the dependence of νba on the nuclear charge radii, and the term νocba accounts

for all the other relevant relativistic and QED corrections. The deuteron size term r2d η
ds
ba is absent for

transitions in hydrogen-1, and conversely the proton size term r2p η
ps
ba is absent for transitions in deuterium.

Similar expressions relate rp and rd to the Lamb shift in muonic hydrogen and muonic deuterium.
Given these expressions, the values ofR, rp and rd must be such that these theoretical energy differences

match the measured intervals within experimental and theoretical errors. Namely, they must be such that

νSMbiai
(
R, rp, rd

) .
= ν

exp
biai
, i = 1,2,3, . . . (4)

over all the transitions considered if the possibility of a new physics interaction is ignored. (Since this set of
equations is overdetermined in most cases of interest, the resulting values ofR, rp and rd normally need to be
obtained by χ2-fitting, as the symbol

.
= indicates [46].) A hypothetical fifth force would contribute a new

physics shift of νNPbiai
to the measured interval, for a transition between a state ai and a state bi. If one assumes

the existence of this interaction, comparing experiment to the standard model then involves finding values of
R, rp and rd such that

νSMbiai
(
R, rp, rd

) .
= ν

exp
biai

− νNPbiai , i = 1,2,3, . . . (5)

3



New J. Phys. 27 (2025) 045002 R M Potvliege

Requiring the existence of values ofR, rp and rd consistent with these equations and with the measurements
in muonic hydrogen and muonic deuterium is the main constraint we use for setting bounds on the strength
of this fifth force. We calculate the necessary values of νocba , η

g
ba, η

ps
ba, η

ds
ba and ν

oc
ba as explained in appendix C of

[9] and appendix B of [10]. Like [10], we also follow [14] and [27] for the muonic species. We calculate the
new physics shifts νNPba as outlined in A of the present article.

We set a further constraint on the strength of this hypothetical new physics interaction by requiring that
the above calculations of rp and rd result in a value of r2d − r2p consistent with the value determined from the
experimental isotope shift of the 1s – 2s interval in the electronic species. Specifically, we require that the
experimental isotope shift of that interval matches its theoretical prediction, taking into account the
possibility of a new physics contribution. As is explained in appendix C of [10], this requirement can be
expressed by the inequality

|∆|⩽ 1.96σ∆, (6)

where

∆= 5233.27(42) kHz+∆νNP2s1s −
7α4mec2

12hλ−2
C

[(
meD

r

me

)3

r2d −
(
meH

r

me

)3

r2p

]
, (7)

and σ∆ is the combined experimental and theoretical error on the value of∆. In this last equation, h is
Planck’s constant, α is the fine structure constant, λ−C is the reduced Compton wavelength,me is the electron
mass,meH

r andmeD
r are the reduced masses of the respective isotopes, and∆νNP2s1s is the hypothetical

contribution of the new physics interaction to the experimental isotope shift of the 1s – 2s interval.
To obtain bounds on the products gegp and gegn, we χ2-fit the model to the data for set values of the mass

mX0 , of the ratio gd/gp and of the ratio gµ/ge, subject to the aforementioned constraints and to the
assumption that gd = gp + gn. Doing so results in upper bounds on |gegp| and |gegn|, namely bounds |gegp|max

and |gegn|max depending both on the carrier mass and on the ratios gd/gp and gµ/ge1. We take |gegp|max and
|gegn|max to be the largest values of |gegp| and |gegn| for which Q(χ2,ν)⩾ 0.05 where Q(χ2|ν) is the upper tail
cumulative distribution function for the relevant number of degrees of freedom, ν (the boundary value of
0.05 corresponds to a confidence level of 95% that the data exclude the possibility that |gegp| and |gegn| are
larger than the values of, respectively, |gegp|max and |gegn|max obtained by the fitting procedure). For each
value ofmX0 and of gµ/ge, we then take the absolute upper bound on |gegp| to be the highest value of
|gegp|max over the range−∞< gd/gp <∞, and similarly for the absolute upper bound on |gegn|. We found
that varying gd/gp between−1 and 3 was sufficient for finding these absolute maxima for most values ofmX0 .

3.2. General approach: results for gµ = ge
Proceeding as described in section 3.1 yields bounds depending both on the value of the ratio gµ/ge and on
the experimental data used in the calculation. We first consider results obtained under the lepton universality
assumption that gµ = ge. The bounds represented by the solid black curves in figures 2 and 3 are based on the
World spectroscopic data as in [10]2. Previous results are also shown, for comparison. The shaded region in
figure 2 identifies the values of gegp excluded by the spectroscopy of eH alone [10]. The shaded region in
figure 3 identifies the values of gegn excluded by an analysis of neutron scattering data and measurements of
the anomalous magnetic moment of the electron [1, 8]. The solid green curves, in figure 3, show the bounds
on gegn derived in [2] from a generalized King plots analysis of the spectroscopy of Yb and Yb+ (similar but
slightly more constraining bounds have been obtained in still more recent analyses of King plots
nonlinearities of isotope shifts of ytterbium and calcium transitions [3, 4]).

Tighter bounds can be obtained by using a smaller set of experimental data in the fitting procedure. Only
using the µH and µD data, the highly precise value of 1s – 2s transition frequency in eH [28] and the isotope
shift of this interval [35] gives the tightest bounds on gegn that can be derived from hydrogen and deuterium
spectroscopy [8, 10]. These bounds are represented by long-dashed curves in figure 33. As seen from the
graphs, they are significantly lower than the bounds based on the whole World data set and those based on
King plots nonlinearities, except in the high mass region.

1 These two quantities are not independent since gn = (gd/gp − 1)gp in view of equation (2).
2 As in [10, 23], we alleviated difficulties in the χ2-fitting caused by the internal inconsistencies of this data set by magnifying all the
experimental errors by 60% when calculating these bounds and those represented by the dotted curves. The errors were not magnified
for the other bounds discussed in this article.
3 These results are practically identical to those represented by the ‘1S–2S HD (muonLS)’ curves in figures 1 and 3 of [8], which in effect
were showing the±1.96σgegn confidence interval defined in section 3.4 below rather than bounds as discussed here.
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Figure 2. Bounds on gegp, (a) for an attractive NP interaction, (b) for a repulsive NP interaction. Shaded areas: regions excluded
by the spectroscopy of eH [10]. Solid curves: bounds based on the World spectroscopic data, assuming that gµ = ge. Dotted
curves: the same bounds as the solid curves but for the less constraining assumption that−ge ⩽ gµ ⩽ 100ge. Long-dashed curves:
bounds based only on the 1s – 2s interval of eH, the isotope shift of the 1s – 2s interval and the µH and µD Lamb shifts, assuming
that gµ = ge. Short-dashed curves: the same as the long-dashed curves when the 2s – 4p interval of eH is added to the data set.
Hatched areas: values of |gµgp| for which the new physics interaction between the muon and the proton would shift the
2s1/2 — 2p3/2 interval in muonic hydrogen by more than 5% of the experimental error on the Lamb shift [10].

Figure 3. Bounds on gegn, (a) for an attractive NP interaction, (b) for a repulsive NP interaction. Shaded area: region excluded by
neutron scattering data combined with measurements of the anomalous magnetic moment of the electron [1, 8]. Solid green
curves: upper bounds derived from the Yb/Yb+ isotope shift [2]. Solid black curves, dotted curves and long-dashed curves: as in
figure 2, here for gegn. Solid orange curves, almost identical to the long-dashed curves below 100 keV: upper bounds calculated
from equation (17).

The corresponding 1s – 2s bounds on gegp are considerably weaker than those based on the World data
(figure 2), though, because a calculation based merely on that interval does not strongly constrain gegp when
gd ≈ gp [10]. When gd = gp, indeed, the isotope shift depends on the strength of the new physics interaction
only because of the difference in reduced mass between the two isotopes. This lack of sensitivity can be
remedied by adding the transition frequency of a different interval to the data set, as long as the new physics
shift of this interval differs enough from that of the 1s – 2s interval and the experimental error is sufficiently
small. For example, and as seen from figure 2, adding the 2s – 4p transition frequency measured in eH [34]
yields bound comparable or tighter than those based on the World data.

3.3. Dependence on gµ
How much the results of the previous section depend on the value of gµ compared to the value of ge may be
inferred from appendix A of [10], which concerns the impact of a new physics interaction on the
determination of rp and rd from muonic hydrogen and muonic deuterium spectroscopy. The calculations
described in that previous work aimed at delineating the values of |gµgp| and |gµgd| above which the
interaction might affect the 2s1/2 – 2p3/2 interval significantly (rp and rd are derived from the experimental
values of that interval). As in [10], we conservatively take ‘significant’ as meaning a shift of more than 5% of
the experimental error on the respective Lamb shift. The regions of the (|gµgp|,mX0) plane in which the
impact of a new physics interaction is significant by that definition is represented by hashed areas in figure 2.
It extends down to |gµgp| ≈ 2× 10−8 in the low mass region, and, as can be seen in the figure, to slightly
below 1× 10−10 formX0 ≈ 1 MeV. Up to 10 keV, |gµ| should thus be at least four orders of magnitude larger
than |ge| for invalidating the bounds discussed in the previous section. However, a smaller ratio of |gµ| to |ge|
would be sufficient to do so above 10 keV, particularly above 100 keV.

We examined the impact of a possible difference between gµ and ge by recalculating the World data
bounds under the more general assumption that−ge ⩽ gµ ⩽ 100ge. The calculation yield the bounds
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represented by the black dotted curves in figures 2 and 3. As expected, these bounds are practically identical
to those obtained for gµ = ge for carrier masses below 100 keV. However, they are considerably less tight for
higher masses.

3.4. Bounds based on the difference r2d− r2p
As observed in section 2, there is excellent agreement in the value of r2d − r2p between the result derived from
the measurements in µH and µD and the result derived from the isotope shift of the 1s – 2s interval in eH
and eD. Setting bounds on gegn based on these two results can be done as follows [8]. Let

δr2µ,SM = r2d − r2p, (8)

where we take rd and rp to be the charge radii derived from the measurements in muonic deuterium and
muonic hydrogen according to standard model theory: δr2µ,SM = 3.8200(31) fm2 [15]. Similarly, let

δr2e,SM = r2d − r2p, (9)

here with the difference r2d − r2p directly determined from the measurements of the isotope shift of the 1s – 2s
interval in eD and eH, also according to standard model theory (δr2e,SM = 3.8207(3) fm2 [12]). Also, let

∆r22s1s = δr2µ,SM − δr2e,SM. (10)

Bounds on new physics may be sought in terms of the values of gegn for which∆r22s1s differs more from zero
than would be expected in view of the experimental and theoretical errors on δr2µ,SM and δr2e,SM.

The difference δr2e,SM is determined by equating the experimental isotope shift of the 1s – 2s interval,
∆ν

exp
2s1s = ν

exp
2s1s,eD − ν

exp
2s1s,eH, to its standard model prediction,∆νSM2s1s = νSM2s1s,eD − νSM2s1s,eH. The latter can be

separated into a term∆νSM0
2s1s which does not depend sensitively on rp or rd and a term proportional to δr2e,SM.

Namely,

∆νSM2s1s =∆νSM0
2s1s + C2s1sδr2e,SM, (11)

where C2s1s =−1369.5 kHz fm−2. Thus

δr2e,SM =
∆ν

exp
2s1s −∆νSM0

2s1s

C2s1s
. (12)

Let us suppose that the experimental isotope shift∆νexp2s1s would differ from∆νSM2s1s by a new physics
contribution∆νNP2s1s, and let

δr2e =
∆ν

exp
2s1s −∆νSM0

2s1s −∆νNP2s1s

C2s1s
= δr2e,SM −∆νNP2s1s/C2s1s. (13)

A non-zero∆νNP2s1s would make δr2e a better approximation of the true value of r2d − r2p than δr
2
e,SM. If we now

assume that the new physics interaction does not significantly affect the measurements in the muonic
species, then equating δr2e to δr

2
µ,NP gives

∆r22s1s =∆νNP2s1s/C2s1s. (14)

The results presented in section 3.3 indicate that this assumption is unsafe formX0 > 100 keV. Accordingly,
we do not consider this high mass region here. Below 100 keV, by contrast, these results indicate that a
possible dependence of r2d − r2p on gµ seems unlikely in view of the lack of sensitivity of the measured µH and
µD Lamb shifts on the value of this coupling constant in that mass region. Therefore, in common with [8],
we take gµ to be zero in the present approach.

Apart from negligible differences in the wave functions arising from the different reduced masses,∆νNP2s1s

is proportional to the difference gegd − gegp, which is gegn. We write

∆νNP2s1s =
(
gegd − gegp

)
∆ν̃NP2s1s = gegn∆ν̃

NP
2s1s, (15)

where∆ν̃NP2s1s does not depend on ge or gn. We also set4

σgegn =

∣∣∣∣C2s1sσ2s1s∆ν̃NP2s1s

∣∣∣∣ , (16)

4 Apart from insignificant numerical differences beyond an overall factor of 1.96, the quantity σgegn defined by this equation is equivalent
to the sensitivity parameter σ(|gegp|) defined by equation (30) of [10] if gd is taken to be 2gp when calculating the latter.
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where σ2s1s is the combined experimental and theoretical error on δr2µ,SM − δr2e,SM. Assuming that∆r22s1s is
not affected by systematic or random errors not taken into account through σ, equation (14) then implies
that

C2s1s∆r22s1s
∆ν̃NP2s1s

− 1.96σgegn ⩽ gegn ⩽
C2s1s∆r22s1s
∆ν̃NP2s1s

+ 1.96σgegn (17)

at the 95% confidence level. The precision on the value of gegn obtained in this way is thus determined by
σgegn . This quantity can also be understood as quantifying the sensitivity of the method to a non-zero value of
gegn.

The bounds given by equation (17) are also plotted in figure 3, where they are represented by the solid
orange curves. Up to masses of about 100 keV, these results are practically identical to the bounds
represented by the long-dashed curves, which are based on the same experimental data but are obtained
differently. The significant differences noticeable for higher masses illustrate the importance of allowing for a
possible new physics contribution to the Lamb shift of the muonic species in that region.

4. Extension to 3He and 4He

The approach to bounding gegn outlined in section 3.4 can be immediately extended to helium, now working
with the difference r2h − r2α between the squared nucleus rms charge radii of 3He and that of 4He rather than
on the difference r2d − r2p [8]. This approach also avoids the need of taking into account a possible new physics
interaction between the two electrons (see, e.g. appendix). As noted in section 2.2, the necessary
experimental isotope shifts are available for three different intervals, i.e. the 2 3S–2 1S and 2 3S– 2 3P intervals,
and, with a much lower precision, the 2 1S – 3 1D interval.

Proceeding as in section 3.4 yields the 95%-percent confidence bound

Cba∆r2ba
−∆ν̃NPba

− 1.96σgegn ⩽ gegn ⩽
Cba∆r2ba
−∆ν̃NPba

+ 1.96σgegn . (18)

Here∆r2ba is the difference between the value of r
2
h − r2α derived from measurements in muonic helium

(δr2µ,SM) and the value of this quantity derived from measurements of the isotope shift of the a – b interval in
electronic 3He and 4He according to standard model theory (δr2e,SM). Moreover,

σgegn =

∣∣∣∣Cbaσba∆ν̃NPba

∣∣∣∣ , (19)

where σba is the combined experimental and theoretical error on∆r2ba. The minus signs in the denominators
arise from the definition of the new physics contribution to the isotope shift,∆νNPba , which we take to be
νNPba,3He − νNPba,4He for consistency with the usual definition of the isotope shift for these intervals and the sign of
Cba: here

∆νNPba = (gegh − gegα)∆ν̃
NP
ba =−gegn∆ν̃

NP
ba . (20)

We use the values of Cba,∆r2ba and σba listed in table 1 (we do not consider the 2 1S – 3 1D interval in view of
the large uncertainty on its isotope shift). The calculation of∆ν̃NPba is outlined in the appendix.

The resulting values of σgegn are plotted in figure 4, both for helium and for the 1s – 2s interval of
hydrogen. The form of VNP(r) implies that in themX0 → 0 limit

σgegn ∝
∣∣∣∣ Cbaσba
n⟨b|1/r|b⟩− n⟨a|1/r|a⟩

∣∣∣∣ , (21)

where n is the number of electrons. Cba is larger for the 1s – 2s interval of hydrogen than for the two intervals
of helium considered here. However, the denominator of equation (21) is considerably smaller for the latter
[47], with the consequence that a greater sensitivity is obtained in the low mass region by using the 1s – 2s
interval. As can be seen from the figure, this is also the case beyond that region. Bounds based on the isotope
shift of these two helium intervals can therefore be expected to be less tight than the bounds based on the
1s – 2s interval.

The sensitivity to a non-zero value of gegn of the King plots analysis of [2] and of the World data results of
section 3.2 is also indicated in figure 4. For these two approaches, we take σgegn to be half the width of the
respective 95% confidence interval on the value of gegn, divided by 1.96 for consistency with equations (16)
and (19). More recent results based on ytterbium and calcium spectroscopy [3, 4] have improved the
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Table 1. Data used in the present work. We assume that δr2µ,SM = 3.8200(31) fm2 for muonic hydrogen [15] and 1.0626(29) fm2 for

muonic helium [19]. For δr2e,SM, we use the results of [12] for the 1s – 2s interval, the results of van der Werf et al [16, 17] for the

2 3S– 2 1S interval, and the results of Shiner et al [38, 40] and Cancio Pastor et al [38, 41, 42] for the 2 3S– 2 3P interval. The values of Cba

for helium are taken from [38].

Interval δr2e,SM (fm2) ∆r2ba (fm
2) σba (fm

2) Cba (kHz fm−2)

1s – 2s 3.8207(3) −0.0007 0.0031 −1369.5
2 3S – 2 1S 1.0678(7) −0.0052 0.0030 −214.66
2 3S – 2 3P (S) 1.061(3) 0.002 0.004 −1212.2
2 3S – 2 3P (CP) 1.069(3) −0.006 0.004 −1212.2

Figure 4. The sensitivity parameter σgegn of equations (16) and (19) as derived from the isotope shift of the 1s – 2s interval in
hydrogen (solid orange curve), from the isotope shift of the 23S – 21S interval of He (dash-dotted curve) or from the isotope shift
of the 23S – 23P interval of He (short-dashed curve). The solid green curve and solid black curve indicate the corresponding
values of σgegn for, respectively, the King plots analysis of [2] and the World data results of section 3.2, as explained in the text.

Figure 5. As in figure 3, here with dash-dotted curves indicating the bounds on gegn based on the isotope shift of the 23S – 21S
interval of He. The dotted curve in (b) is the value of gegn for which the new physics shift would entirely explain the difference
between δr2µ,SM and δr2e,SM.

sensitivity of the methods based on King plots analyses by roughly a factor of two. However, at the present
time and within the current state of development of these methods, the comparison points to a greater
sensitivity of the spectroscopy of hydrogen and (to a lesser extent) of helium in regard to the detection of a
fifth force.

The bounds on the value of gegn predicted by equation (18) for the 23S – 21S interval are shown in
figure 5, where they are represented by dash-dotted curves (the corresponding results for the 23S – 23P
interval are presented in the supplementary material, for completeness). These bounds are not symmetrical
around gegn = 0 because of the significant difference between δr2µ,SM and δr2e,SM for this interval, with the
result that the 23S – 21S bound tends to be particularly tight in figure 5(a). However, this difference seems too
large to be primarily due to a new physics shift, if there would be any suspicion that a fifth force might be at
play here, as can be surmised from the dotted curve indicating the centre of the confidence interval defined
by equation (21). The values of gegn represented by this curve are larger than the corresponding 1s – 2s
bound (the solid orange curve), and are therefore excluded by it. Taking the 23S – 21S bound of figure 5(a) at
face value would therefore be imprudent. Nonetheless, it is worth noting that these helium results are
broadly consistent with the bounds derived from hydrogen and deuterium spectroscopy.
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5. Conclusions

In summary, we have presented newly calculated bounds on the products gegp and gegn derived from the high
precision spectroscopic data currently available for hydrogen, deuterium, helium-3 and helium-4. These
results update those of [8] and build up on our previous work on the topic [9, 10]. They do not depend on a
specific assumption on the ratio gd/gp (or on the ratio gα/gh in helium), contrary to the confidence intervals
on gegp presented in [10]. They do depend on the ratio gµ/ge, but in a minor if not completely negligible way
for carrier masses below 100 keV if |gµ| is assumed not to be several order of magnitude larger than |ge|.

In this mass region, the bounds on gegn based on the World spectroscopic data for hydrogen and
deuterium tend to be more stringent than the bounds arising from the analysis of King plots nonlinearities,
in the current state of development of that approach [2–4]. However, they are impacted by the well known
inconsistencies between the available data. As was already pointed out in [8], particularly stringent bounds
can be set by combining the isotope shift of the 1s – 2s interval in eH and eD with the rms charge radii of the
proton and the deuteron derived from the measurements of the Lamb shift in µH and µD. However, being
based on a relatively small number of experiments, these results might conceivably be affected by unknown
systematic errors.

Setting bounds based on the isotope shift of particular intervals in helium is also possible. Doing so
results in bounds broadly consistent with those obtained for hydrogen and deuterium. The approach is less
powerful for helium, though, because of the smaller new physics shift of the intervals for which sufficiently
precise isotope shifts are available.

The theoretical error on the value of r2d − r2p derived from muonic hydrogen and muonic deuterium is the
main limitation on the sensitivity of the bounds based on the isotope shift of the 1s – 2s interval in hydrogen
and deuterium. Lowering this theoretical error would thus make it possible to strengthen these bounds
further. Alternatively, the same could also be achieved by combining the isotope shift of this interval with
that of another interval, which would also bypass the need of using the muonic species data and therefore
eliminate the dependence of these bounds on the value of gµ [8, 10].

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/dph0rmp/New_Physics_bounds. Data will be available from 30 April 2025.
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Appendix. Calculation of the new physics frequency shifts

A new physics interaction of the type considered in this work would potentially affect the experimental
transition frequencies by shifting the energies of the respective states from their standard model values. The
contribution νNPba this interaction would make to the transition frequency of a transition between a state a
and a state b would be

νNPba =
(
δENPb − δENPa

)
/h, (A.1)

in terms of the new physics shifts δENPa and δENPb of the energies of the respective states and of the Planck’s
constant h. Since the potential VNP(r) is certainly very weak compared to the Coulomb potential, if non-zero,
the energy shifts δENPa , δENPb , …, do not need to be calculated beyond first order perturbation theory [5–7].

Accordingly, we simply set, for electronic hydrogen and deuterium,

δENPa =

ˆ
ψ∗
a (r)VNP (r)ψa (r) dr, δENPb =

ˆ
ψ∗
b (r)VNP (r)ψb (r) dr, (A.2)

where ψa(r) and ψb(r) are the unperturbed non-relativistic wave functions of the corresponding bound
states. As in [9, 10], we calculate these energy shifts either analytically or numerically, in the latter case by
obtaining the wave functions by diagonalising the matrix representing the unperturbed Hamiltonian in a
Sturmian basis. For muonic hydrogen and muonic deuterium, we use relativistic wave function obtained by
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solving the Dirac equation for a muon in the Coulomb and Uehling potentials of an extended nuclear charge
distribution, as in [10].

A similar calculation for helium would normally involve computing matrix elements of the new physics
electron–electron interaction, besides computing the matrix elements of VNP(r) for each of the electrons. A
method for doing this is described in [8]. In the present work, however, we only consider the effect of the
new physics interaction on the isotope shift of transitions in electronic 3He and 4He. We only need to
calculate∆νNPba for the relevant transitions, thus, rather than individual new physics energy shifts. In terms of
the latter,

∆νNPba =
[(
δEb,3He− δEa,3He

)
−
(
δEb,4He− δEa,4He

)]
/h. (A.3)

At the level of the Schrödinger equation, the contribution of the new physics electron–electron interaction to
the energy shift of a same state differs between 3He and 4He only because of the different nuclear masses of
these two isotopes, which impact on the wave functions through reduced mass and mass polarisation
corrections. These differences are negligible for our purpose. Hence, only the electron-nucleus new physics
interaction needs to be taken into account in the isotope shifts. In this approximation, and assuming that
gα − gh = gn as noted above,

δEa,4He− δEa,3He = (−1)s+1 gegn

ˆ
ψ∗
a (r1,r2)

[
ṼNP (r1)+ ṼNP (r2)

]
ψa (r1,r2) dr1 dr1, (A.4)

and similarly for the difference δEb,4He − δEb,3He. In this equation, r1 and r2 are the position vectors of the
two electrons, ψa(r1,r2) is the unperturbed non-relativistic wave function of state a for an infinite nuclear
mass, and

ṼNP (r) =
1

4π

1

r
exp(−mX0r) . (A.5)

An accurate calculation requires correlated two-electron wave functions [8]. We use wave functions obtained
by diagonalising the unperturbed Hamiltonian in a Laguerre basis expressed in perimetric coordinates,
following [48] and more recently [49, 50]. Specifically, we use a basis of antisymmetrized products of an
angular factor and radial functions of the following form [49, 50],

ϕlmn (u,v,w) = exp [−(k1u+ k2v+ k3w)/2]Ll (k1u)Lm (k2v)Ln (k3w) , (A.6)

where Lp(·) denotes the Laguerre polynomial of order p, k1 and k2 are two scaling constants,
k3 = (k1 + k2)/2, and

u= r2 + r3 − r1, v= r1 + r3 − r2, w= 2(r1 + r2 − r3) (A.7)

with r3 = |r1 − r2|. We set k1 = 2.01a−1
0 and k2 = 0.765a−1

0 , where a0 is the Bohr radius. This choice, while
presumably not optimal, ensured that the expectation value of the new physics potential converged to
between four and seven significant figures, depending on the state and onmX0 , when the basis was increased
to the maximum size used in the computation (l+m+ n⩽ 10 for the 21S state,⩽ 8 for the 23S state and
⩽ 15 for the 23P state). These parameters also ensured that the corresponding values of ⟨1/r⟩matched the
benchmark results of [47] to five significant figures.

ORCID iD

R M Potvliege https://orcid.org/0000-0003-4624-1064

References

[1] Berengut J C et al 2018 Probing new long-range interactions by isotope shift spectroscopy Phys. Rev. Lett. 120 091801
[2] Hur J et al 2022 Evidence of two-source King plot nonlinearity in spectroscopic search for new boson Phys. Rev. Lett. 128 163201
[3] Door M et al 2025 Probing new bosons and nuclear structure with ytterbium isotope shifts Phys. Rev. Lett. 134 063002
[4] Wilzewski A et al 2024 Nonlinear calcium King plot constrains new bosons and nuclear properties (arXiv:2412.10277)
[5] Jaeckel J and Roy S 2010 Spectroscopy as a test of Coulomb’s law: a probe of the hidden sector Phys. Rev. D 82 125020
[6] Karshenboim S G 2010 Constraints on a long-range spin-independent interaction from precision atomic physics Phys. Rev. D

82 073003
[7] Brax P and Burrage C 2011 Atomic precision tests and light scalar couplings Phys. Rev. D 83 035020
[8] Delaunay C, Frugiuele C, Fuchs E and Soreq Y 2017 Probing new spin-independent interactions through precision spectroscopy in

atoms with few electrons Phys. Rev. D 96 115002

10

https://orcid.org/0000-0003-4624-1064
https://orcid.org/0000-0003-4624-1064
https://doi.org/10.1103/PhysRevLett.120.091801
https://doi.org/10.1103/PhysRevLett.120.091801
https://doi.org/10.1103/PhysRevLett.128.163201
https://doi.org/10.1103/PhysRevLett.128.163201
https://doi.org/10.1103/PhysRevLett.134.063002
https://doi.org/10.1103/PhysRevLett.134.063002
https://arxiv.org/abs/2412.10277
https://doi.org/10.1103/PhysRevD.82.125020
https://doi.org/10.1103/PhysRevD.82.125020
https://doi.org/10.1103/PhysRevD.82.073003
https://doi.org/10.1103/PhysRevD.82.073003
https://doi.org/10.1103/PhysRevD.83.035020
https://doi.org/10.1103/PhysRevD.83.035020
https://doi.org/10.1103/PhysRevD.96.115002
https://doi.org/10.1103/PhysRevD.96.115002


New J. Phys. 27 (2025) 045002 R M Potvliege

[9] Jones M P A, Potvliege R M and Spannowsky M 2020 Probing new physics using Rydberg states of atomic hydrogen Phys. Rev. Res.
2 013244

[10] Potvliege R M, Nicolson A, Jones M P A and Spannowsky M 2023 Deuterium spectroscopy for enhanced bounds on physics
beyond the standard model Phys. Rev. A 108 052825

[11] Delaunay C, Karr J-P, Kitahara T, Koelemeij J C,J, Soreq Y and Zupan J 2023 Self-consistent extraction of spectroscopic bounds on
light new physics Phys. Rev. Lett. 130 121801

[12] Pachucki K, Patkó̌s V and Yerokhin V A 2018 Three-photon-exchange nuclear structure correction in hydrogenic systems Phys.
Rev. A 97 062511

[13] Krauth J J et al 2021 Measuring the α-particle charge radius with muonic helium-4 ions Nature 589 527
[14] Lensky V, Hagelstein F and Pascalutsa V 2022 A reassessment of nuclear effects in muonic deuterium using pionless effective field

theory at N3LO Phys. Lett. B 835 137500
[15] Pachucki K, Lensky V, Hagelstein F, Li Muli S S, Bacca S and Pohl R 2024 Comprehensive theory of the Lamb shift in light muonic

atoms Rev. Mod. Phys. 96 015001
[16] Pachucki K, Patkó̌s V and Yerokhin V A 2024 Second-order hyperfine correction to H, D and 3He energy levels Phys. Rev. A

110 062806
[17] van der Werf Y, Steinebach K, Jannin R, Bethlem H L and Eikema K S E 2023 The alpha and helion particle charge radius difference

from spectroscopy of quantum-degenerate helium (arXiv:2306.02333)
[18] Schuhmann K et al (The CREMA Collaboration) 2023 The helion charge radius from laser spectroscopy of muonic helium-3 ions

(arXiv:2305.11679)
[19] Li Muli S S, Richardson T R and Bacca S 2025 Revisiting the helium isotope-shift puzzle with improved uncertainties from nuclear

structure corrections Phys. Rev. Lett. 134 032502
[20] Qi X-Q, Zhang P-P, Yan Z-C, Tang L-Y, Chen A-X, Shi T-Y and Zhong Z-X 2024 Revised 3He nuclear charge radius due to

electronic hyperfine mixing (arXiv:2409.09279)
[21] Khabarova K Y and Kolachevsky N N 2021 Proton charge radius Usp. Fiz. Nauk 191 1095

Khabarova K Y and Kolachevsky N N 2021 Proton charge radius Phys. Usp. 64 1038
[22] Hiyama E and Suzuki T 2024 Moments of the charge distribution observed through electron scattering in 3H and 3He Prog. Theor.

Exp. Phys. 2024 083D02
[23] Tiesinga E, Mohr P J, Newell D B and Taylor B N 2021 CODATA recommended values of the fundamental physical constants: 2018

Rev. Mod. Phys. 93 025010
[24] Pohl R et al 2016 Laser spectroscopy of muonic deuterium Science 353 669
[25] Brandt A D, Cooper S F, Rasor C, Burkley Z, Matveev A and Yost D C 2022 Measurement of the 2S1/2-8D5/2 transition in hydrogen

Phys. Rev. Lett. 128 023001
[26] Scheidegger S and Merkt F 2024 Precision-spectroscopic determination of the binding energy of a two-body quantum system: the

hydrogen atom and the proton-size puzzle Phys. Rev. Lett. 132 113001
[27] Antognini A et al 2013 Proton structure from the measurement of 2S – 2P transition frequencies of muonic hydrogen Science

339 417
[28] Parthey C G et al 2011 Improved measurement of the hydrogen 1S – 2S transition frequency Phys. Rev. Lett. 107 203001
[29] Matveev A et al 2013 Precision measurement of the hydrogen 1S – 2S frequency via a 920-km fiber link Phys. Rev. Lett. 110 230801
[30] Grinin A, Matveev A, Yost D C, Maisenbacher L, Wirthl V, Pohl R, Hänsch T W and Udem T 2020 Two-photon frequency comb

spectroscopy of atomic hydrogen Science 370 1061
[31] Fleurbaey H, Galtier S, Thomas S, Bonnaud M, Julien L, Biraben F, Nez F, Abgrall M and Guéna J 2018 New measurement of the 1S

– 3S transition frequency of hydrogen: contribution to the proton charge radius puzzle Phys. Rev. Lett. 120 183001
[32] de Beauvoir B, Nez F, Julien L, Cagnac B, Biraben F, Touahri D, Hilico L, Acef O, Clairon A and Zondy J J 1997 Absolute frequency

measurement of the 2S – 8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant Phys. Rev. Lett.
78 440

[33] Bezginov N, Valdez T, Horbatsch M, Marsman A, Vutha A C, Hessels E A Vutha A C and Hessels E A 2019 A measurement of the
atomic hydrogen Lamb shift and the proton charge radius Science 365 1007

[34] Beyer A et al 2017 The Rydberg constant and proton size from atomic hydrogen Science 358 79
[35] Parthey C G, Matveev A, Alnis J, Pohl R, Udem T, Jentschura U D, Kolachevsky N and Hänsch T W 2010 Precision measurement of

the hydrogen-deuterium 1S – 2S isotope shift Phys. Rev. Lett. 104 233001
[36] Jentschura U D, Matveev A, Parthey C G, Alnis J, Pohl R, Udem T, Kolachevsky N and Hänsch T W 2011 Hydrogen-deuterium

isotope shift: from the 1S – 2S-transition frequency to the proton-deuteron charge-radius difference Phys. Rev. A 83 042505
[37] Rengelink R J, van der Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerland M D and Vassen W 2018 Precision

spectroscopy of helium in a magic wavelength optical dipole trap Nat. Phys. 14 1132
[38] Pachucki K, Patkó̌s V and Yerokhin V A 2017 Testing fundamental interactions on the helium atom Phys. Rev. A 95 062510
[39] van Rooij R, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A and Vassen W 2011 Frequency metrology in

quantum degenerate helium: Direct measurement of the 2 3S1 → 2 1S0 transition Science 333 196
[40] Shiner D, Dixson R and Vedantham V 1995 Three-nucleon charge radius: A precise laser determination using 3He Phys. Rev. Lett.

74 3553
[41] Cancio Pastor P, Giusfredi G, De Natale P, Hagel G, de Mauro C and Inguscio M 2012 Absolute frequency measurements of the

23S1 → 23P0,1,2 atomic helium transitions around 1083 nm Phys. Rev. Lett. 92 023001
Cancio Pastor P, Giusfredi G, De Natale P, Hagel G, de Mauro C and Inguscio M 2012 Absolute frequency measurements of the
23S1 → 23P0,1,2 atomic helium transitions around 1083 nm ibid 97 139903(E)

[42] Cancio Pastor P, Consolino L, Giusfredi G, De Natale P, Inguscio M, Yerokhin V A and Pachucki K 2012 Frequency metrology of
helium around 1083 nm and determination of the nuclear charge radius Phys. Rev. Lett. 108 143001

[43] Zheng X, Sun Y R, Chen J-J, Jiang W, Pachucki K and Hu S-M 2017 Measurement of the frequency of the 2 3S – 2 3P transition of
4He Phys. Rev. Lett. 119 263002

[44] Huang Y-J, Guan Y-C, Peng J-L, Shy J-T and Wang L-B 2020 Precision laser spectroscopy of the 21S0 – 31D2 two-photon transition
in 3He Phys. Rev. A 101 062507

[45] Mohr P J, Newell D B and Taylor B N 2016 CODATA recommended values of the fundamental physical constants: 2014 Rev. Mod.
Phys. 88 035009

11

https://doi.org/10.1103/PhysRevResearch.2.013244
https://doi.org/10.1103/PhysRevResearch.2.013244
https://doi.org/10.1103/PhysRevA.108.052825
https://doi.org/10.1103/PhysRevA.108.052825
https://doi.org/10.1103/PhysRevLett.130.121801
https://doi.org/10.1103/PhysRevLett.130.121801
https://doi.org/10.1103/PhysRevA.97.062511
https://doi.org/10.1103/PhysRevA.97.062511
https://doi.org/10.1038/s41586-021-03183-1
https://doi.org/10.1038/s41586-021-03183-1
https://doi.org/10.1016/j.physletb.2022.137500
https://doi.org/10.1016/j.physletb.2022.137500
https://doi.org/10.1103/PhysRevLett.128.163201
https://doi.org/10.1103/PhysRevLett.128.163201
https://doi.org/10.1103/PhysRevA.110.062806
https://doi.org/10.1103/PhysRevA.110.062806
https://arxiv.org/abs/2306.02333
https://arxiv.org/abs/2305.11679
https://doi.org/10.1103/PhysRevLett.134.032502
https://doi.org/10.1103/PhysRevLett.134.032502
https://arxiv.org/abs/2409.09279
https://doi.org/10.3367/UFNr.2021.06.038986
https://doi.org/10.3367/UFNr.2021.06.038986
https://doi.org/10.3367/UFNe.2021.06.038986
https://doi.org/10.3367/UFNe.2021.06.038986
https://doi.org/10.1093/ptep/ptae126
https://doi.org/10.1093/ptep/ptae126
https://doi.org/10.1126/science.aaf2468
https://doi.org/10.1126/science.aaf2468
https://doi.org/10.1103/PhysRevLett.128.023001
https://doi.org/10.1103/PhysRevLett.128.023001
https://doi.org/10.1103/PhysRevLett.132.113001
https://doi.org/10.1103/PhysRevLett.132.113001
https://doi.org/10.1126/science.1230016
https://doi.org/10.1126/science.1230016
https://doi.org/10.1103/PhysRevLett.107.203001
https://doi.org/10.1103/PhysRevLett.107.203001
https://doi.org/10.1103/PhysRevLett.110.230801
https://doi.org/10.1103/PhysRevLett.110.230801
https://doi.org/10.1126/science.abc7776
https://doi.org/10.1126/science.abc7776
https://doi.org/10.1103/PhysRevLett.120.183001
https://doi.org/10.1103/PhysRevLett.120.183001
https://doi.org/10.1103/PhysRevLett.78.440
https://doi.org/10.1103/PhysRevLett.78.440
https://doi.org/10.1126/science.aau7807
https://doi.org/10.1126/science.aau7807
https://doi.org/10.1126/science.aah6677
https://doi.org/10.1126/science.aah6677
https://doi.org/10.1103/PhysRevLett.104.233001
https://doi.org/10.1103/PhysRevLett.104.233001
https://doi.org/10.1103/PhysRevA.83.042505
https://doi.org/10.1103/PhysRevA.83.042505
https://doi.org/10.1038/s41567-018-0242-5
https://doi.org/10.1038/s41567-018-0242-5
https://doi.org/10.1103/PhysRevA.95.062510
https://doi.org/10.1103/PhysRevA.95.062510
https://doi.org/10.1126/science.1205163
https://doi.org/10.1126/science.1205163
https://doi.org/10.1103/PhysRevLett.74.3553
https://doi.org/10.1103/PhysRevLett.74.3553
https://doi.org/10.1103/PhysRevLett.92.023001
https://doi.org/10.1103/PhysRevLett.92.023001
https://doi.org/10.1103/PhysRevLett.92.023001
https://doi.org/10.1103/PhysRevLett.92.023001
https://doi.org/10.1103/PhysRevLett.108.143001
https://doi.org/10.1103/PhysRevLett.108.143001
https://doi.org/10.1103/PhysRevLett.119.263002
https://doi.org/10.1103/PhysRevLett.119.263002
https://doi.org/10.1103/PhysRevA.101.062507
https://doi.org/10.1103/PhysRevA.101.062507
https://doi.org/10.1103/RevModPhys.88.035009
https://doi.org/10.1103/RevModPhys.88.035009


New J. Phys. 27 (2025) 045002 R M Potvliege

[46] Mohr P J and Taylor B N 2000 CODATA recommended values of the fundamental physical constants: 1998 Rev. Mod. Phys. 72 351
[47] Davis B F and Chung K T 1982 Mass-polarization effect and oscillator strengths for S, P, D states of helium Phys. Rev. A 25 1328
[48] Pekeris C L 1958 Ground state of two-electron atoms Phys. Rev. 112 1649
[49] Yang B, Pont M, Shakeshaft R, van Duijn E and Piraux B 1997 Description of a two-electron atom or ion in an ac field using

interparticle coordinates, with an application to H− Phys. Rev. A 56 4946
[50] Li T and Shakeshaft R 2005 S-wave resonances of the negative positronium ion and stability of a system of two electrons and an

arbitrary positive charge Phys. Rev. A 71 052505

12

https://doi.org/10.1063/1.556049
https://doi.org/10.1063/1.556049
https://doi.org/10.1103/PhysRevA.25.1328
https://doi.org/10.1103/PhysRevA.25.1328
https://doi.org/10.1103/PhysRev.112.1649
https://doi.org/10.1103/PhysRev.112.1649
https://doi.org/10.1103/PhysRevA.56.4946
https://doi.org/10.1103/PhysRevA.56.4946
https://doi.org/10.1103/PhysRevA.71.052505
https://doi.org/10.1103/PhysRevA.71.052505

	Spectroscopy of light atoms and bounds on physics beyond the standard model
	1. Introduction
	2. Current data
	2.1. Hydrogen and deuterium spectroscopy
	2.2. 3He and 4He spectroscopy

	3. Bounds derived from hydrogen and deuterium spectroscopy
	3.1. General approach: method
	3.2. General approach: results for gµ= ge
	3.3. Dependence on gµ
	3.4. Bounds based on the difference r2d - r2p

	4. Extension to 3He and 4He
	5. Conclusions
	Appendix. Calculation of the new physics frequency shifts
	References


