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Abstract

This paper discusses the existence and uniqueness of random periodic paths of
stochastic periodic semi-flows. Random periodic attractors are introduced and syn-
chronization for stochastic periodic semi-flows is proved under some conditions to find
the unique random periodic path. The multiplicative ergodic theorem of stochastic
periodic semi-flows is proved to characterize Lyapunov exponents. The Benzi-Parisi-
Sutera-Vulpiani climate model is an example to verify the results by estimating the
negative Lyapunov exponent constructed by the density function from the Fokker-
Planck equation. Numerical approximations are performed with great agreement. A
case of gradient systems is considered to be another example of a negative Lyapunov
exponent.

Keywords: random periodic path, random attractor, Lyapunov exponent, multiplica-
tive ergodic theorem, Fokker-Planck equation.

1 Introduction

Periodic phenomena are ubiquitous in various fields, including biology, economics, chem-
istry, climate dynamics and so on. The study of periodic solutions has been a cornerstone
of dynamical systems theory since Poincaré’s seminal work ([19]). Random periodic paths
(solutions) addressed in [22] have recently emerged as a subject of significant interest. The
definition of random periodic paths for stochastic periodic semi-flows was given in [14], which
demonstrated the existence of stochastic periodic semi-flows generated by non-autonomous
stochastic differential equations (SDEs) with additive noise. The random periodic solution
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in stochastic partial differential equations (SPDEs) was studied in [11]. Numerical approxi-
mations of random periodic paths for some SDEs are studied in [9]. The precise formulation
for periodic measures was given in [12]. The existence of ergodic periodic measures for SDEs
with local Lipschitz continuous property and weakly dissipative coefficients was obtained in
[13].

To study the convergence for stochastic trajectories, the global attractor (a random
set attracting any stochastic trajectories) plays an important role. Global attractor was
discussed in [6], [7] and [20]. The periodic pullback attractors of parametric dynamical
systems with cocycle property were considered in [21]. Bates et al. studied attractors of non-
autonomous stochastic lattice systems ([3]). When the global attractor becomes a singleton,
synchronization (all trajectories converge to a single one) happens and it was studied in [15]
and [17] for random dynamical systems.

The multiplicative ergodic theorem (MET), first formulated by Oseledets in the 1960s
([18]), provides a powerful tool for analyzing the asymptotic behaviour of the trajectories of
dynamical systems. A complete description of MET for random dynamical systems is given
in [1].

Lyapunov exponent is a fundamental concept in the study of dynamical systems, par-
ticularly in the realm of stochastic stability analysis. The assumption in the MET is closely
related to the calculation of the Lyapunov exponent. Le Jan offers a comprehensive frame-
work for analyzing the statistical behaviour of dynamical systems governed by the products
of diffeomorphisms ([16]). According to his work, the asymptotic stable property for cocycles
is guaranteed by negative Lyapunov exponents.

This paper investigates the existence and uniqueness of random periodic paths for
stochastic periodic semi-flows. By introducing random periodic attractors for stochastic pe-
riodic semi-flows, we extend existing synchronization results for random dynamical systems
to the context of stochastic periodic semi-flows. Specifically, we show that under certain
conditions, asymptotically stable stochastic periodic semi-flows possess a unique random
periodic path.

In the studies of synchronizations in SDEs, we use the largest Lyapunov exponent to
determine the asymptotic stability of stochastic periodic semi-flows. We prove the multi-
plicative ergodic theorem for stochastic periodic semi-flows to characterize the Lyapunov
exponents. We find that the Lyapunov exponents satisfy the real periodic relation rather
than the random periodicity. These results are of independent interest.

We intend to study the pathwise random periodic paths in SDEs with local Lipschitz
continuous property and weakly dissipative coefficients. In the absence of strong dissipative
property, it is difficult to find pathwise convergences for stochastic periodic semi-flows from
two arbitrarily different initial points. We overcome the difficulties in specific examples
which find the existence and uniqueness of random periodic paths by using random periodic
attractors and Lyapunov exponents.

An example corresponding to the Benzi-Parisi-Sutera-Vulpiani (BPSV) model ([4]) is
a model for the physical transition between two climates. A resonance intuitive physical
explanation of transition at the same frequency as the periodic forcing was given without a
rigorous analysis. An analytic estimation of the solution (density function) in the Fokker-
Planck equation generated from the model is provided. It is shown that the largest Lyapunov
exponent estimated by the density function is negative. Then the existence and uniqueness of
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random periodic paths in this model are proved. Numerical simulations have been performed
with great agreement.

The other example is a case of gradient systems. We remove periodic coefficients and
extend the work of Flandoli et al. in [15] to large diffusion coefficients. We show that the
largest Lyapunov exponent of the stochastic periodic semi-flows in the considered SDEs is
negative, which proves the asymptotic stability.

2 Preliminaries and notation

Let (Ω,F ,P) be a probability space and
(
Ω,F ,P, (θt)t∈R

)
be a metric dynamical sys-

tem, where θt : R×Ω→ Ω is a measure P-preserving map. We consider a complete separable
metric space (X, d), and for any A,B ∈ B (X), the semi-distance is defined by

d (A,B) = sup{d (x,B) : x ∈ A},

where d(x,B) = inf{d(x, y) : y ∈ B}. Taking ∆ = {(t, s) ∈ R2, s ≤ t}, we will consider a
stochastic semi-flow u : ∆× Ω× X→ X which satisfies for P-a.e. ω,

u (t, s, ω)x = u (t, r, ω) ◦ u (r, s, ω)x, for all s ≤ r ≤ t and x ∈ X, (2.1)

and u (t, s, ω) : X→ X is continuous for all (t, s) ∈ ∆. Moreover, a stochastic periodic semi-
flow which can be generated by stochastic differential equations with periodic coefficients
([14]) is defined in the following:

Definition 2.1. ([9],[14]) The two-parameter random map u is called a stochastic τ -periodic
semi-flow if it satisfies formula (2.1) and an additional property: there exists a constant τ > 0
such that for all (t, s) ∈ ∆,

u (t+ τ, s+ τ, ω) = u (t, s, θτω) , for almost all ω ∈ Ω.

The random periodic paths (solutions) of stochastic periodic semi-flows are defined by:

Definition 2.2. ([14]) A random periodic path of period τ for a stochastic semi-flow u is
an B(R)⊗F -measurable process Y : R× Ω→ X, such that for any (t, s) ∈ ∆,

u (t, s, ω)Y (s, ω) = Y (t+ s, ω) , Y (s+ τ, ω) = Y (s, θτω) for almost all ω ∈ Ω.

Random periodicity is considered as a mixture of periodicity and randomness, which
differs from periodicity in deterministic situations. Feng et al. proved that if the metric
dynamical system

(
Ω,F ,P, (θkτ )k∈Z

)
is ergodic, then the period τ cannot be random ([10]).

Let (Fs,t)−∞<s<t<∞ be a filtration of F such that Fs,t ⊆ Fu,v for u ≤ s ≤ t ≤ v, and
θ−r (Fs,t) = Fs+r,t+r for all r and (s, t) ∈ ∆. Furthermore, Fs,t and Fu,v are assumed to
be independent for s ≤ t ≤ u ≤ v. When s ≤ t, the smallest σ-algebra containing all Fs,t

is defined by Ft, when t ≤ u, the smallest σ-algebra containing all Ft,u is defined by Ft,∞,
and we define F−∞,∞ = F . Moreover, u (t, s, ω) is assumed to be Fs,t-measurable for every
(t, s) ∈ ∆.
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Now, let us introduce a τ -periodic Markov transition probability ([13]):

P (·, ·, ·, ·) : ∆× X×B → [0, 1],

which satisfies:

(i) P (t, s, x, ·) is a probability measure on (X,B) for all (t, s) ∈ ∆ and x ∈ X;

(ii) P (t, s, ·,Γ) is a B-measurable function for all (t, s) ∈ ∆ and Γ ∈ B;

(iii) For all s ≤ r ≤ t, it satisfies

P (t, s, x,Γ) =

∫
R
P (r, s, x, dy)P (t, r, y,Γ), x ∈ R,Γ ∈ B;

(iv) P (s, s, x,Γ) = 1Γ(x) for all s ∈ R, x ∈ X and Γ ∈ B;

(v) P (t+ τ, s+ τ, x,Γ) = P (t, s, x,Γ), (t, s) ∈ ∆, x ∈ X.

For (t, s) ∈ ∆, the linear operator P (s, t) acting on Bb(X) (the space of bounded measurable
functions) is defined by

P (t, s)f(x) =

∫
E

f(y)P (t, s, x, dy), f ∈ Bb(X), x ∈ X.

For (t, s) ∈ ∆, the adjoint operator P ∗(t, s) acting on P(X) (the space of probability measures
on (X,B)) is defined by

(P ∗(t, s)µ) (Γ) =

∫
X
P (t, s, x,Γ)µ(dx), µ ∈ P(X), Γ ∈ B.

The measure-valued function ρ : R → P(X) is called a τ -periodic measure of τ -periodic
Markov transition probability P (t, s, ·, ·) ([12]), if for any (t, s) ∈ ∆,

P ∗(t, s)ρs = ρt, ρs+τ = ρs.

3 Random periodic paths through random periodic at-

tractors and synchronizations

In this section, we consider the random periodic attractor associated with stochastic
periodic semi-flows and give some conditions to make it a singleton. Subsequently, synchro-
nizations of stochastic periodic semi-flows happen, and the existence and uniqueness of the
random periodic paths are studied.
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3.1 Random periodic attractors for stochastic periodic semi-flows

We consider a stochastic semi-flow u and let D̂ be the collection of all nonempty bounded
subsets of X. By the work of Crauel et al. in [6], for a given t ∈ R, a random set K(t, ω) is
called an attracting set of u if it satisfies for all D ∈ D̂,

lim
s→−∞

d(u(t, s, ω)D,K(t, ω)) = 0, for almost all ω ∈ Ω.

We say that a stochastic semi-flow u is asymptotically compact if there exists a measurable
set Ω0 ⊂ Ω with measure one such that for all t ∈ R and ω ∈ Ω0, there exists a compact
attracting set K (t, ω).

Definition 3.1. ([6],[7]) Let u(t, s, ω) be a stochastic semi-flow on (X, d) for all (t, s) ∈ ∆,
a random set Ā(t, ω) is said to be a global attractor of u for every t ∈ R if it is compact and
for almost all ω ∈ Ω, it satisfies the following conditions:

(i) For any set D ∈ D̂, lim sup
s→−∞,x∈D

d(u(t, s, ω)x, Ā(t, ω)) = 0;

(ii) Ā is u-invariant, i.e. u(t, s, ω)Ā(s, ω) = Ā(t, ω), where s ≤ t.

From the Theorem 2.1 in [6], we know that for a given t ∈ R and D ∈ D̂, if the stochastic
semi-flow u is asymptotically compact, then the random set A (t,D, ω) of stochastic semi-flow
u constructed by :

A (t,D, ω) =
⋂
T<t

⋃
s<T

u (t, s, ω)D, (3.1)

can be proved to attract D. Furthermore, the random set Ā (t, ω) obtained from

Ā (t, ω) =
⋃
D∈D̂

A (t,D, ω). (3.2)

is a global attractor and it is minimal.
We notice that for any x ∈ A (t,D, ω), there are sequences xn ∈ D and sn → −∞ when

n→∞ such that
lim
n→∞

u (t, sn, ω)xn = x.

Given t ∈ R, a global attractor Ā (t, ω) is said to be a random τ -periodic attractor
for a stochastic periodic semi-flow u if it satisfies Ā (t+ τ, ω) = Ā (t, θτω). The following
proposition shows that Ā (t, ω) constructed by formula (3.2) is a random periodic attractor.

Proposition 3.2. Suppose u is a stochastic periodic semi-flow with period τ > 0 and the
random set A (t,D, ω) is defined by formula (3.1) for every t ∈ R, then Ā (t, ω) constructed
by formula (3.2) is a random τ -periodic attractor.
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Proof. Let A (t,D, ω) be constructed by formula (3.1) for every t ∈ R, then we have

A (t+ τ,D, ω) =
⋂

T<t+τ

⋃
s<T

u (t+ τ, s, ω)D

=
⋂

T−τ<t

⋃
s−τ<T−τ

u (t, s− τ, θτω)D

=
⋂
T<t

⋃
s<T

u (t, s, θτω)D

= A (t,D, θτω) .

Therefore, the global attractor Ā (t, ω) satisfies that Ā (t+ τ, ω) = Ā (t, θτω) which means it
is a random periodic attractor.

3.2 Synchronization of stochastic periodic semi-flows

Given t ∈ R, the global attractor Ā (t, ω) attracts all compact sets (compact sets are
bounded), i.e., for every compact set C and for P-a.e. ω,

lim sup
s→−∞, x∈C

d
(
u (t, s, ω)x, Ā (t, ω)

)
= 0, t ≥ s.

Then we define the synchronization for stochastic semi-flows below:

Definition 3.3. Stochastic semi-flows are synchronized if the global attractor Ā is a singleton
P-a.e.

Similarly to the definition in [15], asymptotically stability for stochastic semi-flows is
defined.

Definition 3.4. Suppose U is a non-empty open set, a stochastic semi-flow u is called
asymptotically stable on U if there is a sequence sn → −∞ as n→∞ such that for a given
t ∈ R,

P
(

lim
n→∞

diam (u (t, sn, · )U) = 0
)
> 0, (3.3)

where
diam (u (t, sn, ·)U) = sup

x, y∈U
d (u (t, sn, ·)x, u (t, sn, ·) y) .

For stochastic periodic semi-flows, we can consider the asymptotically stable property
as the limit on the multiples of periods i.e. if there is a sequence t− knτ → −∞, such that

P
(

lim
n→∞

diam (u (t, t− knτ, · )U) = 0
)
> 0, τ > 0, (3.4)

then formula (3.3) holds.
Subsequently, we consider a theorem about the synchronizations of stochastic periodic

semi-flows.
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Theorem 3.5. Let u be a stochastic τ -periodic semi-flow, U is a non-empty open set. If
u is asymptotically stable on U with the formula (3.4) for fixed time t, the random periodic
attractor Ā(t, ω) is Ft-measurable, and P(Ā (t, ω) ⊂ U) > 0, then Ā (t, ω) is a singleton
P-almost surely, and synchronization of u occurs.

Proof. Since u is asymptotically stable on U with the formula (3.4), there is a sequence
kn →∞ as n→∞, such that

P
(

lim
n→∞

diam (u (t, t− knτ, ω)U) = 0
)
> 0.

As θkτ is a P-preserving map, we have

P
(

lim
n→∞

diam (u (t+ knτ, t, ω)U) = 0
)
> 0.

Noting that
P
(
Ā (t, ω) ⊂ U

)
> 0,

u (t+ knτ, t, ·) is Ft,t+knτ -measurable and Ā (t, ·) is Ft-measurable. Moreover, by the inde-
pendence of Ft,t+knτ and Ft, we have

P
(

lim
n→∞

diam
(
u (t+ knτ, t, ω) Ā (t, ω)

)
= 0
)
> 0.

Since Ā is random periodic attractor, we obtain

P
(
diam

(
Ā (t, ω)

)
= 0
)
> 0.

Meanwhile, for every k > 0,

diam
(
Ā (t, ω)

)
= diam

(
u (t, t− kτ, ω) Ā (t− kτ, ω)

)
, for almost all ω ∈ Ω.

Especially, diam
(
Ā (t− kτ, ω)

)
= 0 implies diam

(
Ā (t, ω)

)
= 0. Subsequently, Ā (t− kτ, ω) =

Ā (t, θ−kτω) implies {
diam

(
Ā (t, θ−kτω)

)
= 0
}
⊆ {diam

(
Ā (t, ω)

)
= 0}.

Furthermore,{
diam

(
Ā
(
t, θ−(k+1)τω

))
= 0
}
⊆ {diam

(
Ā (t, θ−kτω)

)
= 0} ⊆ {diam

(
Ā (t, ω)

)
= 0},

then ⋂
k≥0

{diam
(
Ā (t, θ−kτω)

)
= 0} ∈

⋂
k≥0

Ft−kτ .

Since θt satisfies measure preserving property, we have

P

(⋂
k≥0

{diam
(
Ā (t, θ−kτω)

)
= 0}

)
= lim

k→∞
P
(
diam

(
Ā (t, θ−kτω)

)
= 0
)

= P
(
diam

(
Ā (t, ω)

)
= 0
)
> 0.
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And by Kolmogorov’s Zero-One Law for the σ-field
⋂
k≥0

Ft−kτ , we get

P

(⋂
k≥0

{diam
(
Ā (t, θ−kτω)

)
= 0}

)
= 1,

so
P
(
diam

(
Ā (t, ω)

)
= 0
)

= 1.

Thus Ā is a singleton P-almost surely.

Define Y (t, ω) = lim
s→−∞

u (t, s, ω)x, for any x ∈ C ( C is any compact subset of X) and

given t ∈ R, we have the following theorem:

Theorem 3.6. For a given t ∈ R, let u be a synchronized stochastic τ -periodic semi-flow,
then Y (t, ω) is the unique random periodic path.

Proof. By Definition 2.1, we can get that for almost every ω ∈ Ω and for any x ∈ C,

Y (t+ τ, ω) = lim
s→−∞

u (t+ τ, s, ω)x

= lim
s→−∞

u (t, s− τ, θτω)x

= Y (t, θτω) .

Moreover, for any s ≤ t, we have

u (t, s, ω)Y (s, ω) = u (t, s, ω) lim
r→−∞

u (s, r, ω, x)

= lim
r→−∞

u (t, r, ω, x)

= Y (t, ω) .

Therefore, Y (t, ω) is the unique random periodic path by the random periodic attractor is
a singleton.

4 Multiplicative ergodic theorem (MET)

We consider calculating their Lyapunov exponent to show the asymptotic stability for
stochastic periodic semi-flows. In this section, we consider the multiplicative ergodic theorem
(MET) for stochastic periodic semi-flows, which is an effective tool for finding the existence
of Lyapunov exponents.

Note that for a stochastic τ -periodic semi-flow u, for a given t ∈ R and any n ∈ N,
define ut (nτ, ω) := u (t+ nτ, t, ω), τ > 0, we have

ut ((n+m) τ, ω) = u (t+ (n+m) τ, t, ω)

= u (t+ (n+m) τ, t+mτ, ω)u (t+mτ, t, ω)

= u (t+ nτ, t, θmτω)u (t+mτ, t, ω)

= ut (nτ, θmτω)ut (mτ, ω) ,

(4.1)
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which means that ut (nτ, ω) satisfies the cocycle property. Lifting equation (4.1) to ∧k Rd

(1 ≤ k ≤ d ), we obtain

∧kut ((n+m) τ, ω) = ∧kut (nτ, θmτω) ∧k ut (mτ, ω) ,

where ∧k is the k-fold exterior power.

4.1 Furstenberg-Kesten theorem for stochastic periodic semi-flows

For a given t ∈ R and τ > 0, we define ϕt (nτ, ·), n ∈ N, be a linear cocycle with random
periodic property over a metric dynamical system (Ω,F ,P, {θnτ}n∈N) generated by ϕ̂ if:

(i) ϕt(nτ, ω) = ϕ̂t
(
θ(n−1)τω

)
◦ · · · ◦ ϕ̂t(ω), where ϕ̂t(ω) = ϕt(τ, ω);

(ii) ϕt(nτ, ω) = ϕt ((n− 1) τ, θτ ω) ◦ ϕt(τ, ω);

(iii) ϕt+τ (nτ, ω) = ϕt((n+ 1)τ, ω) = ϕt(nτ, θτω).

In particular, for a stochastic τ -periodic semi-flow u, let Ω̃ = Ω× X, F̃ = F ⊗B (X),
and Θτ (ω, x) = (θτω, ut (τ, ω, x)). Then for ω̃ = (ω, x) ∈ Ω̃, we can define ϕ̃t (nτ, ω̃) =

Dut (nτ, ω, x) which satisfies the above properties over
(

Ω̃, F̃ , µ, {Θnτ}n∈N
)

, where µ ∈
P(Ω× X).

Recalling the Furstenberg-Kesten theorem for random dynamical systems in [1], we
directly have the following theorem of ϕt:

Theorem 4.1. Let ϕ̂t(·) = ϕt(τ, ·) : Ω→ Rd×d, ϕt (nτ, ω), n ∈ N, be a linear cocycle operator
generated by ϕ̂t(·) for a given t ∈ R over the metric dynamical system (Ω,F ,P, {θnτ}n∈N).
Then if the generator ϕ̂t(·) satisfies

log+ ‖ ϕ̂t(·) ‖∈ L1(Ω,F ,P),

the following properties hold:

(i) For each k = 1, . . . , d, fkt,n(ω) = log
∥∥∧kϕt(nτ, ω)

∥∥ is subadditive and fk+
t,1 ∈ L1;

(ii) There is a forward invariant set Ω̄ ∈ F of full measure and the measurable function
γkt : Ω→ R ∪ {−∞} such that on Ω̄

γkt (ω) = lim
n→∞

1

n
log
∥∥∧kϕt(nτ, ω)

∥∥ (4.2)

and
γkt (θτω) = γkt (ω), γk+m

t (ω) ≤ γkt (ω) + γmt (ω).

In particular, if the P-preserving θτ is ergodic with respect to τ , then γkt (ω) = Eγkt is
deterministic, and

lim
n→∞

1

n
E log

∥∥∧kϕt(nτ, ω)
∥∥ = γkt ;
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(iii) Define the measurable function Λt,k as

Λt,1(ω) + Λt,2(ω) + · · ·+ Λt,k(ω) = γkt (ω), k = 1, . . . , d,

and Λt,k(ω) = −∞ if γkt = −∞, then Λt, k has the properties:

(a) Λt,k(ω) = lim
n→∞

1
n

log δk (ϕt(nτ, ω)),

where δk (ϕt(nτ, ω)) are the singular values of ϕt(nτ, ω);

(b) Λt,k (θτω) = Λt,k(ω);

(c) Λt,1(ω) ≥ · · · ≥ Λt,d(ω).

In the case that P-preserving θτ is ergodic, then Λt,k(ω) = EΛt,k, and

lim
n→∞

1

n
E log δk (ϕt(nτ, ·)) = Λt,k.

4.2 MET for stochastic periodic semi-flows

Theorem 4.2. Let ϕt (nτ, ω) for a given t ∈ R be a linear cocycle with

ϕ̂t (·) = ϕt (τ, ·) : Ω→ Rd×d, and ϕt (nτ, ω) = ϕ̂t (θnτω) ◦ · · · ◦ ϕ̂t (ω)

over the metric dynamical system (Ω,F ,P, {θnτ}n∈N). If the generator ϕ̂t (ω) satisfies

log+ ‖ ϕ̂t (·) ‖∈ L1 (Ω,F ,P) ,

then there is a forward invariant set Ω̂ ∈ F of full measure such that for each ω ∈ Ω̂, the
followings hold:

(i) lim
n→∞

(ϕt (nτ, ω)∗ ϕt (nτ, ω))
1
2n = Ψt (ω) > 0 exists;

(ii) Let eλt,pt(ω)(ω) < · · · < eλt,1(ω) be the different eigenvalues of Ψt (ω), λt,pt(ω) (ω) = −∞
possible, and Ut,pt(ω) (ω) , . . . , Ut,1 (ω) be the corresponding eigenspaces with

dt,i (ω) = dim (Ut,i (ω)) ,

then
λt,i (θτω) = λt,i (ω) ,

where i = 1, . . . pt (ω);

(iii) Putting Vt,pt(ω)+1 = {0}, and let

Vt,i (ω) = Ut,pt(ω) (ω)⊕ · · · ⊕ Ut,i (ω) , Vt,pt(ω) (ω) ⊂ · · · ⊂ Vt,1 (ω) = Rd.

Then the Lyapunov exponent λt (ω, x) = lim
n→∞

1
n

log ‖ ϕt (nτ, ω)x ‖ exists, and

λt (ω, x) = λt,i (ω) ,

when x ∈ Vt,i (ω) \ Vt,i+1 (ω). This is equivalent to

Vt,i (ω) =
{
x ∈ Rd : λt (ω, x) ≤ λt,i (ω)

}
;
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(iv) For all x ∈ Rd \ {0}, λt (θτω, ϕ̂t (ω)x) = λt (ω, x), and ϕ̂t (ω)Vt,i (ω) ⊂ Vt,i (θτω);

(v) The Lyapunov exponent satisfies that λt+τ,i (ω) = λt,i (ω) and we have Vt+τ,i (ω) =
Vt,i (ω), pt+τ (ω) = pt (ω);

(vi) If ϕ̂t (ω) is inverse, then

ϕ̂t (ω)Vt,i (ω) = Vt,i (θτω) = Vt+τ,i (ω) ;

(vii) If (Ω,F ,P, θnτ )n∈N is ergodic, then p (·) is constant, dt,i (·) and λt,i (·) are constant on
{ω : p (ω) ≥ i}, i = 1, . . . , d as well.

Proof. Since log+ ‖ ϕ̂t (·) ‖∈ L1, by Furstenberg-Kesten theorem, there is a forward invariant
set Ω̂ ∈ F of full measure, such that for all ω ∈ Ω̂, k = 1, . . . , d:

(a) γkt (ω) which is defined in formula (4.2) exists;

(b) γkt (θτω) = γkt (ω);

(c) Λt,k (ω) = lim
n→∞

1
n

log δt,k (ϕt (nτ, ω)) = Λt,k (θτω).

Then (i), (ii), (iii) can be proved directly by Theorem 3.4.1 in [1]. To prove (iv), we
note that

Λt,k (ω) = lim
n→∞

1

n
log δk (ϕt (nτ, ω)) ,

Λt+τ,k (ω) = lim
n→∞

1

n
log δk (ϕt+τ (nτ, ω))

= lim
n→∞

1

n
log δk (ϕt (nτ, θτω))

= Λt,k (θτω) = Λt,k (ω) .

Similarly, we have

λt+τ (ω, x) = lim
n→∞

1

n
log ‖ ϕt+τ (nτ, ω)x ‖

= lim
n→∞

1

n
log ‖ ϕt+τ ((n− 1) τ, θτω) ◦ ϕt (τ, ω)x ‖

= λt (θτω, ϕt (τ, ω)x) .

(4.3)

Meanwhile, we note that

λt (ω, x) = lim
n→∞

1

n+ 1
log ‖ ϕt ((n+ 1) τ, ω)x ‖

= lim
n→∞

1

n+ 1
log ‖ ϕt (nτ, θτω) ◦ ϕt (τ, ω)x ‖

= λt (θτω, ϕt (τ, ω)x) .

(4.4)

Combining equations (4.3) and (4.4), we obtain λt (ω, x) = λt+τ (ω, x). If we take x ∈ Vt,i (ω),
then λt (ω, x) ≤ λt,i (ω). Consequently, (iv) is proved with

λt (θτω, ϕ̂t (ω)x) = λt (ω, x) ≤ λt,i (ω) = λt,i (θτω) .
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To prove (v), we consider that

λt+τ (ω, x) = lim
n→∞

1

n
log ‖ ϕt+τ (nτ, ω)x ‖

= lim
n→∞

1

n
log ‖ ϕt (nτ, θτω)x ‖

= λt (θτω, x) ,

then
λt+τ (ω, x) = λt (θτω, x) = λt (ω, x) .

Noting that
Vt, i (ω) =

{
x ∈ Rd : λt (ω, x) ≤ λt, i (ω)

}
=
{
x ∈ Rd : λt+τ (ω, x) ≤ λt+τ, i (ω)

}
= Vt+τ,i (ω) ,

therefore
Vt+τ, i (ω) =

{
x ∈ Rd : λt+τ (ω, x) ≤ λt+τ, i (ω)

}
=
{
x ∈ Rd : λt (θτω, x) ≤ λt, i (θτω)

}
= Vt, i (θτω) .

Furthermore, we get
Vt,i (ω) = Vt+τ,i (ω) = Vt,i (θτω) .

From (iv), we can find that

ϕ̂t (ω)Vt,i (ω) ⊂ Vt,i (θτω) = Vt+τ,i (ω) ,

consequently, pt (ω) = pt+τ (ω), and (v) is proved.
To prove (vi), we note that for any t ∈ R, if taking x ∈ Vt+τ,i (ω), then

λt+τ
(
ω, ϕ̂−1

t (ω)x
)

= lim
n→∞

1

n
log ‖ ϕt (nτ, ω) ◦ ϕ̂−1

t x ‖

= lim
n→∞

1

n
log ‖ ϕt ((n− 1) τ, θτω) ◦ ϕ̂t ◦ ϕ̂−1

t x ‖

= lim
n→∞

1

n
log ‖ ϕt (nτ, θτω)x ‖

= λt (θτω, x)

≤ λt,i (θτω, x) .

This implies that ϕ̂−1
t Vt+τ,i (ω) ⊂ Vt,i (θτω), and form (iv), (vi) can be proved.

Finally, (vii) can be proved directly by (vi).

For log+ |Dut (τ, ω, x) | ∈ L1
(

Ω̃, F̃ , µ
)

, the Lyapunov exponent exists and it can be

considered as λt (ω, x) = lim
n→∞

1
n

log |Dut (nτ, ω, x) |.

12



5 Applications in SDE

In this section, we show that in some examples, the largest Lyapunov exponent corre-
sponding to stochastic periodic semi-flows is negative, then the asymptotically stable prop-
erty holds, and there is a unique random periodic solution. We mainly consider the following
one-dimensional SDE:

dXt = b (t,Xt) dt+ σdWt, (5.1)

where Wt is one-dimensional Wiener process, σ > 0 is a constant. The state space is defined
as X = R, time t ∈ R+, and b (t, x) satisfies the following assumption:

Assumption 5.1.

(i) (x− y) (b (t, x)− b (t, y)) ≤ α|x− y|2 for all x, y ∈ R and for some α > 0;

(ii) (x− y) (b (t, x)− b (t, y)) ≤ L1 − L2|x− y|2 for all x, y ∈ R, and L1, L2 > 0.

The following gives two typical examples that satisfy Assumption 5.1.

5.1 Benzi-Parisi-Sutera-Vulpiani stochastic resonance model

When b (t, x) = x− x3 + ε cos t, then equation (5.1) turns to be

dXt =
(
Xt −X3

t + ε cos t
)
dt+ σdWt, (5.2)

which is a stochastic resonance model introduced by Benzi et al. in [4]. It is a seminal
theoretical framework for explaining the periodic occurrence of ice ages. In their work, ε was
considered very small to comply with real-world issues. Small ε is assumed in this example
as well.

Let u (t, s, ω) be a stochastic 2π-periodic semi-flow generated by the equation (5.2),
we will show that the synchronization of u (t, s, ω) happens, and there is a unique random
periodic path.

Recalling the works by Cherubini et al. in [5], the random attractor for a non-autonomous
random dynamical system of (5.2) exists. Similarly, there is a random periodic attractor for
stochastic periodic semi-flow. We will show the asymptotic stability of the stochastic peri-
odic semi-flow u (t, s, ω) in (5.2) to show that the random periodic attractor is a singleton.
Thus, it is important to consider the largest Lyapunov exponent, and we have the following
Theorem.

Theorem 5.2. For a given t ∈ R+, let U be an open subset of R, if the largest Lyapunov
exponent λt,1 for the stochastic periodic semi-flow u (t, s, ω) is negative, then the stochastic
periodic semi-flow u (t, s, ω) is asymptotically stable on U , i.e. there is sequence sn → −∞
for n→∞ such that the formula (3.3) holds.

Proof. Le Jan in [16] proved that when the largest Lyapunov exponent for cocycle Sn is
negative, then for all ε > 0, there is a δ > 0, such that when d (x, y) < δ,

P
(

lim
n→∞

d (Sn (ω)x, Sn (ω) y) < ε
)
> 0, x, y ∈ R. (5.3)
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Here, for a given t ∈ R+, we consider the stochastic τ -periodic semi-flow u (t+ nτ, t, ω).
Since u (t+ nτ, t, ω) = u (t, t− nτ, θnτω) satisfies the equation (4.1) (cocycle property in
random periodic case), and the largest Lyapunov exponent λt,1 < 0, then by inequality
(5.3), for any ε > 0, there is a δ > 0, such that when d (x, y) < δ,

P
(

lim
n→∞

d (u (t, t− nτ, ω)x, u (t, t− nτ, ω) y) < ε
)
> 0.

Let U be an open subset of R. If δ ≥ diam (U), we have

P
(

lim
n→∞

diam (u (t, t− nτ, ω)U) < ε
)
> 0.

If δ < diam (U), for x, y ∈ U , we can find a sequence {cm} in U , such that

d (x = c0, c1) < δ, d (c1, c2) < δ, · · · , d (cm−1, y = cm) < δ,

then for any εi > 0,

P
(

lim
n→∞

d (u (t, t− nτ, ω) ci, u (t, t− nτ, ω) ci+1) < εi

)
> 0, i = 0, . . . ,m− 1.

Since εi is arbitrary, taking ε =
m−1∑
i=0

εi, for any x, y ∈ U , we have

P
(

lim
n→∞

d (u (t, t− nτ, ω)x, u (t, t− nτ, ω) y) < ε
)
> 0.

Therefore,

P
(

lim
n→∞

diam (u (t, t− nτ, ω)U) < ε
)
> 0.

This implies that the formula (3.4) holds. In particular, taking sn = t− nτ , we get

P
(

lim
n→∞

diam (u (t, sn, ω)U) < ε
)
> 0,

which means u is asymptotically stable on U .

Now we will show that the largest Lyapunov exponent is negative. In fact, noting that
the derivative flow Du (t, s, ω) satisfies

d

dt
Du (t, s, ω) ξ =

(
1− 3u2 (t, s, ω)

)
Du (t, s, ω) ξ,

by Assumption 5.1 (i), we have

d

dt
|Du (t, s, ω) ξ|2 = 2

((
1− 3u2 (t, s, ω)

)
Du (t, s, ω) ξ

)
Du (t, s, ω) ξ

≤ 2α|Du (t, s, ω) ξ|2,
(5.4)

for some α > 0. Then by Gronwall’s inequality, we get

|Du (t, s, ω) | ≤ eα(t−s).
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For a given t ∈ R+, by MET for stochastic periodic semi-flows (Theorem 4.2), the largest
Lyapunov exponent λt, 1 exists and can be computed with the help of equation (5.4)

λt, 1 = lim
n→∞

1

n

∫ t+nπ

t

((
1− 3u2 (r, t, ω, x)

))
dr.

Noting that the Markov transition probability function is given by

P (t, s, x, A) = P (ω ∈ Ω : u (t, s, ω)x ∈ A) , t ≥ s.

It has been proved in [13] that there is an ergodic periodic measure ρt under Assumption
5.1. Therefore with the ergodicity, to show λt, 1 < 0, we need to prove that E (1− 3u2) < 0
under the Markov transition probability.

By [12], we have

1

2π

∫ 2π

0

(∫
R

((
1− 3u2 (t, s, ω) ξ

)
P (t, s, ξ, du)−

(
1− 3u2 (t, s, ω) ξ

)
dρs (u)

))
ds = 0.

Thus we will prove ∫ 2π

0

∫
R

(
1− 3u2

)
dρs (u) ds < 0, (5.5)

to guarantee the largest Lyapunov exponent is negative.
Moreover, from the work of [13], ρs has the density function q (s, x), and q(s, x) satisfies

the Fokker-Planck equation

∂q (s, x)

∂s
= − ∂

∂x

((
x− x3 + ε cos s

)
q(s, x)

)
+

1

2
σ2 ∂

2

∂x2
q(s, x). (5.6)

Noting that ∫
R

(
1− 3u2

)
dρs (u) =

∫
R

(
1− 3u2

)
q (s, u) du,

and we take x = u, then proving the inequality (5.5) is equivalent to prove that for s ∈ [0, 2π],∫
R

(
1− 3x2

)
q (s, x) dx < 0.

Firstly, noting that when x ∈
(
−∞,−

√
3

3

)
∪
(√

3
3
,∞
)

, (1− 3x2) < 0, then for large a�
√

3
3

,∫
R

(
1− 3x2

)
q (s, x) dx <

∫ a

−a

(
1− 3x2

)
q (s, x) dx.

Thus it is enough to prove that on a bounded interval [−a, a] (a�
√

3
3

),∫ a

−a

(
1− 3x2

)
q (s, x) dx < 0. (5.7)

Inspired by the proof of averaging method in [2], the estimation of the inequality (5.7)
is presented in the following Theorem.
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Theorem 5.3. Let q̂ (x) = e−
2
σ2

(− 1
2
x2+ 1

4
x4), and q (s, x) be the density function satisfying the

Fokker-Planck equation (5.6), then there exists a bounded function f (s, x) such that

lim
ε→0

(q − q̂ − εq̂f) = 0,

and the inequality (5.7) holds for all s ∈ [0, 2π] and for all σ > 0 on a bounded interval

[−a, a], where a�
√

3
3

.

Proof. Firstly, we prove the existence of the solution f (s, x) of the partial differential equa-
tion:

∂f

∂s
=
(
x− x3

) ∂f
∂x

+
σ2

2

∂2f

∂x2
+ cos s · 2

σ2

(
x− x3

)
. (5.8)

This PDE can be rewritten as

−df̄
ds

= Af̄ + h,

where

f̄ =


f
∂f
∂x

(x− x3) f
(1− 3x3) f

 , A =


0 −σ2

2
d
dx
− d
dx

1
0 − d

ds
0 0

0 0 − d
ds

0
0 0 0 − d

ds

 , h =


− cos s · 2

σ2 (x− x3)
0
0
0

 .

Let B be a linear operator:

B v = −dv
ds
.

According to [8], for λ̂ ∈ ρ̂ (B), where ρ̂ (B) is the resolvent set of B, if(
λ̂I −B

)−1

= R
(
λ̂, B

)
exists, then it satisfies

R
(
λ̂, B

)
v (s) =

∫ s

0

e−λ̂(s−r)v (r) ds

and ∥∥∥R(λ̂, B)∥∥∥
Lp
≤ 1

λ̂
, λ̂ ∈ R, λ̂ > 0. (5.9)

Now we consider the equation
B v = Av + h,

and we will find a bounded sequence vn ∈ Lp satisfying

−Bn vn + Avn + h = 0, n ∈ N+, (5.10)

where Bn = n2R (n,B) is chosen by Proposition 3.1 in [8] and it satisfies lim
n→∞

‖ Bn−B ‖Lp=
0. In fact, the equation (5.10) can be written as

(A− n) vn = n2

∫ s

0

e−n(s−r)vndr − h− nvn.
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Taking (n− A)−1 = R (n,A) on both sides, we get

(−I + nR (n,A)) vn = n2e−ns
∫ s

0

enrR (n,A) vndr −R (n,A)h. (5.11)

Let

wn =

∫ s

0

enrR (n,A) vndr, w′n = ensR (n,A) vn,

substituting into equation (5.11), we have

(−I + nR (n,A))w′n = ensR (n,A)wn −R2 (n,A) ensh,

as well as

(−I + nR (n,A))wn =

∫ s

0

en
2R(n,A)(s−r)R2 (n,A) e−nrh dr.

Let σ be a finite positive constant, x ∈ [−a, a], then by the definition of A, we obtain

nI − A =


nI nI + d

dx
σ2

2
nI + d

dx
(n− 1) I

0 nI + d
dt

0 0
0 0 nI + d

ds
0

0 0 0 nI + d
ds

 ,

and its reverse (nI − A)−1 is

− 1

n

(
nI +

d

ds

)−1


−
(
nI + σ2

2
d
dx

) (
nI + σ2

2
d
dx

) (
nI + d

ds

)
(n− 1) I

0
(
nI + d

ds

)−1
0 0

0 0
(
nI + d

ds

)−1
0

0 0 0
(
nI + d

ds

)−1

 .

By the inequality (5.9), we get ‖R (n,B)‖Lp < 1/n. Therefore

‖nR (n,A)‖Lp <∞,
∥∥(−I + nR (n,A))−1

∥∥
Lp
<∞.

Define
M = sup

k∈N,n>0

∥∥∥nkR (n,A)k
∥∥∥
Lp
<∞,

then we have ∥∥∥en2R(n,A)(s−r)R2 (n,A)
∥∥∥
Lp

=

∥∥∥∥∥
∞∑
k=0

1

k!

(
n2R (n,A) (s− r)

)k
R2 (n,A)

∥∥∥∥∥
Lp

=

∥∥∥∥∥
∞∑
k=0

1

k!

(
n2kRk+2 (n,A) (s− r)k

)∥∥∥∥∥
Lp

≤M
∞∑
k=0

n2k (s− r)k

k!nk+2
=
Men(s−r)

n2
.
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Thus

‖(−I + nR (n,A)) vn‖Lp ≤M

(∫ s

0

‖h‖Lp dr +
1

n
‖h‖Lp

)
≤MK ‖h‖Lp ,

where K is some finite positive constant. Furthermore, we get

||vn||Lp ≤ M̄ ||h||Lp (5.12)

for some finite positive constant M̄ . Thus, we showed a bounded sequence vn in equation
(5.10).

Now we rewrite equation (5.10) as

−Bn

(
vn − f̄

)
+ A

(
vn − f̄

)
−Bnf̄ +Bf̄ = 0, (5.13)

and define
h̄ = Bf̄ −Bnf̄ , V = vn − f̄ .

By inequality (5.12) and equation (5.13), we have

‖V ‖Lp =
∥∥vn − f̄∥∥Lp ≤ M̄

∥∥h̄∥∥
Lp

= M̄
∥∥Bf̄ −Bnf̄

∥∥
Lp
, (5.14)

which means lim
n→∞

∥∥vn − f̄∥∥Lp = 0. Therefore, we proved the existence of the solution f (s, x)

in PDE (5.8).
We come to the estimation of the density function q (s, x). Initially, we find q̂ satisfies

equations:
∂q̂

∂s
= −

(
1− 3x2

)
q̂ −

(
x− x3

) ∂q̂
∂x

+
σ2

2

∂2q̂

∂x2
, (5.15)

and
∂q̂

∂x
=

2

σ2

(
x− x3

)
q̂. (5.16)

Multiplying equation (5.8) by q̂ on both sides, and then substituting equation (5.16) into
equation (5.8), we have

q̂
∂f

∂s
= −

(
x− x3

)
q̂
∂f

∂x
+ σ2 ∂q̂

∂x

∂f

∂x
+
σ2

2
q̂
∂2f

∂x2
+ cos s · ∂q̂

∂x
. (5.17)

From equations (5.15) and (5.17), we obtain g (s, x) = q̂ + εq̂f satisfying the equation:

∂g

∂s
= −

(
1− 3x2

)
g −

(
x− x3

) ∂g
∂x

+
σ2

2

∂2g

∂x2
+ ε cos s

∂q̂

∂x
.

Combined with equation (5.6), the equation about q̃ = q − g is

∂q̃

∂s
= −

(
1− 3x2

)
q̃ −

(
x− x3

) ∂q̃
∂x

+
σ2

2

∂2q̃

∂x2
− ε cos s

∂q

∂x
+ ε cos s

∂q̂

∂x
. (5.18)

Meanwhile, we note that

ε cos s
∂g

∂x
= ε cos s

∂q̂

∂x
+ ε2 cos s

∂q̂

∂x
f + ε2 cos s

∂f

∂x
q̂, (5.19)
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and

ε cos s
∂q

∂x
= ε cos s

∂q̃

∂x
+ ε cos s

∂g

∂x
. (5.20)

Substituting equations (5.19) and (5.20) into equation (5.18), we get

∂q̃

∂s
=−

(
1− 3x2

)
q̃ −

(
x− x3

) ∂q̃
∂x

+
σ2

2

∂2q̃

∂x2

− ε cos s
∂q̃

∂x
− ε2 cos s

∂q̂

∂x
f − ε2 cos s

∂f

∂x
q̂.

(5.21)

When x ∈ [−a, a], by inequalities (5.12) and (5.14), the solution f of equation (5.8) is
bounded, then we have

G (s, x) = cos s
∂q̂

∂x
f + cos s

∂f

∂x
q̂ ≤ C, C is some positive constant.

Equation (5.21) can be written as

−L (q̃) = ε2G (s, x) ,

where L is an operator satisfying

L (q̃) =
∂q̃

∂s
+
(
1− 3x2

)
q̃ −

(
x− x3

) ∂q̃
∂x
− σ2

2

∂2q̃

∂x2
+ ε cos s

∂q̃

∂x
.

Therefore, we have ∣∣∣∣q − gε2

∣∣∣∣ ≤ ∣∣∣Ĉ∣∣∣ , x ∈ [−a, a], s ∈ [0, 2π],

where Ĉ is some finite positive constant. Thus lim
ε→0

(q − q̂ − εq̂f) = 0.

Finally, for very small ε to prove∫
[−a,a]

(
1− 3x2

)
qdx < 0,

it is enough to prove∫
[−a,a]

(
1− 3x2

)
q̂dx+ ε

∫
[−a,a]

(
1− 3x2

)
q̂fdx < 0.

Flandoli et al. have shown that ∫
[−a,a]

(
1− 3x2

)
q̂dx < 0

in [15], and since f is bounded, then we have∫
[−a,a]

(
1− 3x2

)
q̂fdx < 0.

Therefore inequality (5.7) holds, and the theorem has been completely proved.
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Thus by Theorem 5.2, we have u (t, s, ω) is asymptotically stable in any open set U .
For the random periodic attractor Ā, it is straightforward to show that it is swift transitive
and contracting on large sets in a similar way to the proof of Proposition 3.10 in [15], and
from Lemma 2.10 and Theorem 2.14 in [15], P

(
Ā ⊂ U

)
> 0. Therefore by Theorem 3.5, u

is synchronized, and by Theorem 3.6, there is a unique random periodic path.
We perform some numerical simulations in Matlab to verify the above results. The

density function q (s, x) is firstly calculated to approach the largest Lyapunov exponent.
Calculating the density function q (s, x) with infinity x is not realistic. The numerical results
show that |x| < 100 is enough for the calculation because the result is nearly invariant when
choosing x from −200 to 200.

In fact, we take s from 0 to 2π, σ = 1, x from −100 to 100 and −200 to 200 separately.
We also choose some different values of small ε. Then we solve the Fokker-Planck equation
(5.6) numerically, and substitute the numerical solution q1,num (s, x) (x choosing from −100
to 100) and q2,num (s, x) (x choosing from −200 to 200) into

λ̂1 (s) =

∫ 100

−100

(
1− 3x2

)
q1,num (s, x) dx, λ̂2 (s) =

∫ 200

−200

(
1− 3x2

)
q2,num (s, x) dx.

According to inequality (5.7), it is enough to verify λ̂1 = max
s∈[0,2π]

(
λ̂1 (s)

)
and λ̂2 = max

s∈[0,2π]

(
λ̂2 (s)

)
are negative with respect to different ε. Numerical results in Table 1 show thatλ̂1 and λ̂2

are negative for small values of ε and they are much similar.

Table 1: Numerical results of λ̂1 and λ̂2.

ε 0.01 0.05 0.1 0.2 0.5

λ̂1 -35.5678 -35.5479 -35.5478 -35.5407 -35.5379

λ̂2 -35.5498 -35.5315 -35.5287 -35.5207 -35.5179

The numerical results showed great agreement with our analytical results for small ε,
which means that there is a unique random periodic path in the equation (5.2). As an open
question, one can take large values of ε to see if the largest Lyapunov exponent is negative
or not.

5.2 A case of gradient systems

From the above example, we have shown the largest Lyapunov exponent is negative
with a small periodic coefficient, for the large periodic coefficient, it may be more difficult to
calculate the largest Lyapunov exponent. In this part, we consider a case of gradient systems
where the periodic function is removed:

dXt = −∇V (Xt) dt+ σdWt, σ > 0. (5.22)

Flandoli et al. in [15] considered equation (5.22) with

V (x) ≥ C0 log |x|, ||D2V (x) || ≤ C0|x|N , (5.23)
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for all x ≥ R0 and some constants C0, R0 ≥ 1, N ≥ 0. They proved the largest Lyapunov
exponent λ1 < 0 for small σ > 0. We consider an example of equation (5.22) with V (x) =
−1

2
x2 − 1

3
x3 + 1

4
x4 satisfying condition (5.23) for arbitrary σ > 0:

dXt =
(
Xt +X2

t −X3
t

)
dt+ σdWt, (5.24)

We will prove the largest Lyapunov exponent is negative in this example for all σ > 0.
According to [15], the density function of equation (5.24) is

q (x) =
1

Zσ
e−

2
σ2
V (x), Zσ =

∫ ∞
−∞

e−
2
σ2
V (x)dx, V (x) = −1

2
x2 − 1

3
x3 +

1

4
x4.

The largest Lyapunov exponent is

λ1 (x) =

∫ ∞
−∞

(
1 + 2x− 3x2

) 1

Zσ
e−

2
σ2
V (x)dx.

One the one hand, when 1 + 2x − 3x2 ≤ 0, i.e., x ≤ −1
3

or x ≥ 1, we take a small δ
(0 < δ < 1

4
in this paper), then

λ1 (x) =

∫ ∞
−∞

(
1 + 2x− 3x2

) 1

Zσ
e−

2
σ2
V (x)dx

≤
∫ − 1

3
−δ

− 7
12

(
1 + 2x− 3x2

) 1

Zσ
e−

2
σ2
V (x)dx

+

∫ 1+δ

− 1
3
−δ

(
1 + 2x− 3x2

) 1

Zσ
e−

2
σ2
V (x)dx

+

∫ 1.63

1+δ

(
1 + 2x− 3x2

) 1

Zσ
e−

2
σ2
V (x)dx,

(5.25)

where 0 < 1
Zσ

< 1 can be proved by

Zσ =

∫ ∞
−∞

e−
2
σ2
V (x)dx ≥

∫ 0.5

−0.5

e−
2
σ2
V (x)dx >

∫ 0.5

−0.5

e−
V (0)

σ2 = 1.

Noting that in inequality (5.25),∫ − 1
3
−δ

− 7
12

(
1 + 2x− 3x2

)
e−

2
σ2
V (x)dx

≤
∫ − 1

3
−δ

− 7
12

(
1 + 2x− 3x2

)
e−

2
σ2
V (− 1

3
−δ)dx

=

(
− 9

64
+ δ3 + 2δ2

)
e−

2
σ2
V (− 1

3
−δ),

(5.26)

and ∫ 1+δ

− 1
3
−δ

(
1 + 2x− 3x2

)
e−

2
σ2
V (x)dx

≤
∫ 1

− 1
3

(
1 + 2x− 3x2

)
e−

2
σ2
V (x)dx =

32

27
e−

2
σ2
V (1),

(5.27)

21



as well as ∫ 1.63

1+δ

(
1 + 2x− 3x2

)
e−

2
σ2
V (x)dx

≤
∫ 1.63

1+δ

(
1 + 2x− 3x2

)
e−

2
σ2
V (1+δ)dx

=
(
−1.043847 + δ3 + 2δ2

)
e−

2
σ2
V (1+δ).

(5.28)

We consider σ2 < 1.756 and δ = 1
5
, then

− 2

σ2
V (1 + δ) =

972

625σ2
, − 2

σ2
V

(
−1

3
− δ
)

=
7232

50626σ2
, − 2

σ2
V (1) =

7

6σ2
. (5.29)

Combining equations (5.26), (5.27), (5.28) and (5.29), we have

(
−1.043847 + δ3 + 2δ2

)
e−

2
σ2
V (1+δ) +

(
− 9

64
+ δ3 + 2δ2

)
e−

2
σ2
V (− 1

3
−δ) +

32

27
e−

2
σ2
V (1) < 0.

By inequality (5.25) and (5.26), (5.27), (5.28), we proved λ1 < 0. Therefore, when σ2 < 1.756,
λ1 < 0.

On the other hand, when x ≤ 2−
√

22
3

or x ≥ 2+
√

22
3

, −2V (x) ≤ 0, and 1 + 2x− 3x2 < 0,
then λ1 < 0. Meanwhile, we have

λ1 ≤
∫ 2+

√
22

3

2−
√
22

3

(
1 + 2x− 3x2

)
e−

2
σ2
V (x)dx

=

∫ 2+
√
22

3

2−
√

22
3

e−
2
σ2
V (x)dx+ 2

∫ 2+
√
22

3

2−
√
22

3

xe−
2
σ2
V (x)dx− 3

∫ 2+
√

22
3

2−
√
22

3

x2e−
2
σ2
V (x)dx.

When x = 1+
√

5
2

, −2V (x) takes the maximum value 13
12

+ 5
√

5
12

< 2.1. Then we obtain

∫ 2+
√
22

3

2−
√
22

3

e−
2
σ2
V (x)dx ≤ 2

√
22

3
e

2.1
σ2 ,

2

∫ 2+
√
22

3

2−
√

22
3

xe−
2
σ2
V (x)dx < 2

∫ 2+
√
22

3

0

xe−
2
σ2
V (x)dx =

26 + 4
√

22

9
e

2.1
σ2 ,

3

∫ 2+
√
22

3

2−
√
22

3

x2e−
2
σ2
V (x)dx ≥

∫ 2+
√
22

3

2−
√
22

3

x2dx =
68
√

22

27
.

Thus

λ1 <
1

Zσ

2
√

22

3
e

2.1
σ2 +

1

Zσ

26 + 1
Zσ

4
√

22

9
e

2.1
σ2 − 1

Zσ

68
√

22

27
.

With some calculations, we can prove λ1 < 0 for σ2 > 1.58. Combining the previous result
σ2 < 1.756, we conclude that the Lyapunov exponent λ1 < 0 for arbitrary σ > 0.
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