
Identification of Photovoltaic and Electric Vehicle 
Profiles in Distribution Networks Using Long 

Short-Term Memory Network 

Abstract—The widespread implementation of global 

initiatives focused on achieving net-zero carbon emissions and 

the electrification of transportation has resulted in the extensive 

deployment of distributed energy resources (DERs) within the 

low-voltage distribution network. The rapid integration of 

DERs has introduced technical challenges, altering the electrical 

characteristics of conventional distribution networks. This 

challenge is exacerbated by the absence of monitoring 

infrastructure on the low-voltage side. Non-intrusive load 

monitoring (NILM) methods offers a chance to enhance the 

traditional electric measurements and boost the visibility of 

distribution network. The present work proposes a long short-

term memory based NILM framework for the disaggregation of 

photovoltaic and electric vehicle profiles from the aggregated 

measurements in the distribution network. The comparative 

analysis has also been carried out with other machine learning 

classifiers Random Forest and k-Nearest Neighbors for the same 

dataset. The proposed approach has been rigorously validated 

for dataset with different input time frames to ensure robustness 

and reliability and found to achieve average F-scores in excess 

of 99.52% and 92.29% for identification of PV and EV profiles 

respectively. 
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I. INTRODUCTION

As per the COP21 Paris Agreement held on December 12, 
2015, there is a requirement for greenhouse gas emissions to 
reach their peak by 2025, undergo a gradual reduction of 43% 
by 2030, and ultimately progress towards achieving net-zero 
emissions by 2050 [1]. At the COP28 UN climate summit 
convened in Dubai on December 12, 2023, an agreement has 
been ratified to shift away swiftly and ambitiously from 
reliance on fossil fuels. This initiative aims to move from 
agreement to action and achieve the goal of limiting global 
warming to 1.5℃, as articulated in the Paris Agreement. In 
this regard, the deal has been made to triple the integration of 
renewable energy resources and to submit stronger carbon 
cutting plans by 2025 [2].  

A growing global focus on reaching net-zero emissions in 
the energy sector requires massive deployment of clean 
energy technologies such as solar photovoltaics (PVs), wind, 

electric vehicles (EVs). As per the latest findings of 
International Energy Agency, there has been huge surge in 
the deployment of solar PV and wind power driven by higher 
fossil fuel prices, global energy crisis and growing policy 
momentum which is set to continue till the global renewable 
electricity capacity reaches to 4500 GW [3,4]. Similarly, EVs 
play a crucial role in clean energy transitions by 
decarbonizing road transport, a sector responsible for 
approximately one-sixth of the global energy-related 
emissions [5]. The sale of EVs has experienced remarkable 
growth in recent years, accompanied by enhanced range, 
broader model availability, and improved performance. 
Specifically, electric car sales have achieved unprecedented 
records, and this momentum is anticipated to persist in the 
years to come [6]. 

The adoption of global initiatives related to net-zero 
carbon emissions and electrification of transportation has led 
to the massive deployment of distributed energy resources 
(DERs) particularly PVs and EVs in the distribution network. 
The rapid integration of these DERs has caused technical 
challenges to power grid operations modifying the electrical 
characteristics of the conventional distribution network [7,8]. 
Furthermore, the intermittent and stochastic behavior 
associated with renewable-based DERs and lack of visibility 
at the system level can lead to unanticipated disconnection of 
DER units, as evidenced by the UK power outage on 9th 
August 2019 [9]. As such, the proliferation of millions of 
DERs necessitates effective management strategies and 
improved visibility at the distribution system level. Also, 
incorporating these new technologies in the present 
distribution system demands for innovative methods to 
interact between the utility and the consumers via internet-
connected devices. These smart appliances along with smart 
metering will enable the network operators to monitor the 
infrastructure on the low-voltage side of the distribution 
network. The real-time monitoring will thus enhance the 
observability of the network. Moreover, using these advanced 
monitoring techniques will increase the accuracy of the 
electrical maps, encompassing the locations of DER and 
network facilitates the implementation of effective energy 
management strategies [10].  

Load monitoring methods can be classified into two 
categories: intrusive load monitoring (ILM) and non-
intrusive load monitoring (NILM). ILM entails the 
installation of sensors on each individual device, enabling the 
acquisition of the electrical profile associated with each load. 
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NILM however, involves aggregated load measurements 
representing load profiles of several electrical devices 
connected to a common power supply. Thus, NILM methods 
focus on classification/disaggregation of individual loads 
from aggregated electrical measurements [11]. Early studies 
on NILM have mainly focused on the disaggregation of 
conventional household appliances. The majority of NILM 
algorithms documented in the literature have emphasized on 
distinguishing residential loads at the end-user distribution 
side. To date, only a limited number of research papers have 
addressed the identification of DERs on the low-voltage side 
of the distribution network. A few research studies that have 
already tackled the challenges of disaggregating EV charging 
patterns and identifying PV activity based on power 
consumption data from smart meters can be found in the 
literature. In this context, a predominant number of papers 
have used the public Pecan Street dataset [12]. In [13,14], 
NILM methods have been developed utilizing traditional 
machine learning algorithms like multilayer perceptron 
(MLP), random forest (RF), k-Nearest neighbors (kNN) and 
artificial neural network (ANN) for the identification of EV 
and PV profiles from smart meter net demand data. A similar 
approach for the detection of EV and PV from smart meter 
data using convolutional neural network (CNN) and MLP can 
be found in [15]. The primary shortcomings of the state-of-
the-art techniques related to NILM for EV and PV revolve 
around inadequate transparency in disclosing critical 
information, including precise house locations i.e., dataid 

which is the unique identifier for each house, number of 
houses, exact span of data employed in training and testing. 
Hence, it becomes challenging to reproduce and compare 
results for various classification algorithms. Moreover, the 
inability of conventional machine learning classifiers (RF and 
kNN) to capture complex non-linear dynamics and increased 
sensitivity to noisy data during EV charging and PV 
generation leads to reduced accuracy in identification tasks. 
Similarly, the inability of MLP to capture spatial relationship 
in PV and EV data and requirement of feature engineering 
results in poor performance.  Also, the constraint of CNNs in 
capturing long-term temporal dependencies within time-
series data, coupled with the necessity for extensive labelled 
data, leads to suboptimal performance. 

In this regard, the present work develops a long short-term 
memory (LSTM) based NILM framework for the 
disaggregation of EV charging and PV generation profiles in 
a distribution network with sufficient transparency in the 
dataset used. The LSTM network has the ability to capture 
temporal long-term dependencies and stochastic variations 
associated with the penetration of different EV and PV on the 
low-voltage side of the distribution network [16]. Also, 
LSTM exhibits the ability to adjust to varying lengths of input 
sequences, rendering it well-suited for a range of diverse 
scenarios. For distribution networks having scenarios with 
fluctuations profiles and intermittent behaviors, LSTMs 
demonstrates reduced sensitivity to noisy data. Moreover, 
unlike conventional machine learning algorithms, LSTM is 
free from challenges related to generalizability when applied 
to larger datasets [17]. Motivated by the significance of 
attaining improved accuracy in the identification of EV and 
PV profiles from the smart meter net demand data with 
robustness to noise, a LSTM-based NILM approach is 
adopted in the present work. 

The contributions/highlights of the proposed work can be 
summarized as: 

1) A LSTM-based NILM framework has been 
proposed for the effective identification of EV and 
PV profiles from the smart meter power 
consumption data.  

2) Evaluation on larger dataset (Pecan Street Dataport) 
comprising of 6 months of data from 25 households 
in New York using LSTM classifier and comparison 
with existing RF and kNN based NILM techniques. 

3) The proposed NILM approach is proved to be 
effective in identifying PV and EV profiles for 
dataset with different input time spans i.e., daily, 
weekly and monthly and can achieve F-scores in 
excess of 99.52% and 92.29% respectively. 

 
The remaining paper is organized in four sections. Section 

II provides the brief description of dataset and describes the 
proposed LSTM-based NILM framework. Section III 
presents the performance of the LSTM classifier and its 
comparative analysis. Finally, Section IV presents the 
conclusions and directions for future work. 

II. METHODOLOGY 

The methodology for identification of EV and PV 
profiles in distribution network using LSTM basically 
involves two parts: (i) Data acquisition and pre-processing 
(ii) Implementation of proposed LSTM-based NILM 
framework. 
 
A. Data Acquisition and Pre-processing 

 
In this study, PV and EV profiles sourced from the public 

dataset, ‘Pecan Street Dataport’, recognized as the world's 
largest repository for residential energy usage data, are used 
to simulate the training and testing data. Time-series dataset 
with 15-minute energy for 15 individual homes located across 
New York region are used [12]. The detailed description of 
dataset for individual households with PV and EV integration 
is shown in Table I. The Pecan Street Dataset undergoes 
filtration to disaggregate DER electrical profiles, specifically 
those related to PV and EV along with aggregated household 
load measurement. This curated data is essential for both the  
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 
 

Dataset 

Description 

 

Dataset for PV 

Generation 

Dataset for EV 

Demand 

Number of 
individual houses 

With PV- 14 
Without PV- 11 

With EV- 5 
Without EV- 20 

Exact location of 
House IDs with 
PV and EV 
respectively 
 
 
 

Ithaca- 387, 914, 950, 
1222, 3000, 3488, 
3517, 5058, 5587, 
5679, 5997 

Groton- 1240 
Trumansburg- 142 
Brooktondale- 27 

Ithaca-1222, 3000, 
5679 

Brooktondale- 27 

Lansing- 9053 

Frequency 15-minute 15-minute 

Data span 6 months of data of 
year 2019  
(May, June, July, 
Aug, Sep, Oct) 

6 months of data of 
year 2019  
(May, June, July, 
Aug, Sep, Oct) 

 

TABLE I. SUMMARY OF NEW YORK HOUSES WITH PV AND EV 

INTEGRATION 



 
 

 
 

Fig. 1. Electrical profiles for House ID 27 from 25th to 27th June 2019. 
 

training and testing phases. Consequently, different electrical 
profiles are derived, as depicted in Fig.1 for House ID 27 in 
New York from 25th to 27th June 2019. The EV charging 
process and the power generation of the PV system are 
depicted proportionally along with the energy provided by the 
grid and load demand. It can be observed that the 
identification of EV charging profile becomes more 
challenging in the presence of PV generation.  
 
B. Proposed LSTM-based NILM framework 

 

LSTM belongs to the family of recurrent neural networks 
(RNNs), designed to adeptly capture and learn long-term 
dependencies in data. However, vanishing gradient problem 
in traditional RNNs poses challenges in effectively learning 
and retaining information over long sequences. LSTMs have 
a more complex structure consisting of the memory cell state 

(��), input gate (��), forget gate (��), and output gate (��) as 
depicted in Fig.2 below which allow LSTM to selectively 
memorize or forget long term data. The memory cell state 
stores information over long periods. The input gate controls 
the flow of information into the memory cell whereas forget 
gate manages the removal of information from the memory 
cell. The output gate controls the information that is output 
from the memory cell and entering the next hidden state. At 

time �, ��  represents the input to an LSTM unit, while ��  
denotes the output of the hidden layers of the LSTM unit. The 

weight values connecting LSTM input (�) and output (�) 
respectively to input gate, forget gate, output gate, memory 

cell state are denoted as 	
�, 	��, 	�, 	�� and 	
�, 	�� , 

	� , 	��. The bias vectors for the input gate, forget gate, 

output gate and memory cell are denoted as �
, ��, � and ��  
respectively [17]. 
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Fig. 2. LSTM network architecture. 
 

�� = �������(	���� + 	������ + ��)                           (2) 
 

�� = �������(	��� + 	����� + �)                          (3) 
 

��
∗ = � !ℎ (	���� + 	������ + ��)                     (4)          

                               

�� = � �
∗ ⊙ �� + ���� ⊙ ��                                    (5)

                    

�� = � !ℎ (��) ⊙ ��                                                  (6) 
     
where, sigmoid(.) denotes the sigmoid function, tanh(.) 

denotes the hyperbolic tangent function, the operator ⊙ 
denotes the element-wise product. 

Fig.3 depicts the flowchart of the proposed LSTM-based 
NILM framework. The NILM process initiates with the 
acquisition of data from Pecan Street Dataport for households 
in New York region followed by pre-processing. The data 
processed above is then randomly divided into training and 
testing scenarios. The dataset has been assessed across 

varying training/testing ratios, specifically (90%) (10%)⁄  

(80%) (20%)⁄ , (70%) (30%)⁄  and (50% 50%)⁄ . The 
accuracy of the LSTM classifiers i.e., LSTM_EV and 
LSTM_PV for the identification of EV and PV respectively 
has been checked for the above training-testing ratios. 
However, among the various combinations explored, the 
LSTM classifiers demonstrated notable accuracy, 
particularly with a split of 80% training and 20% testing 
scenarios. A summary of the hyperparameters selected during 
the training of each LSTM classifiers is provided in Table II. 
The hyperparameters were chosen through pilot runs, aiming 
to maximize the accuracy of LSTM classifiers. 

Further, to assess the effectiveness of LSTM-based 
NILM in accurately detecting the integration of EV and PV 
profiles within the low-voltage distribution network, various 
metrics including precision, recall, accuracy, and F-Score are 
employed. These metrics typically rely on four parameters: 
true positive (TP), true negative (TN), false positive (FP), and 
false negative (FN) [13]. 
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III. PERFORMANCE ANALYSIS 

 
The efficacy of the proposed LSTM-based NILM 

technique for identifying EV and PV profiles from 
aggregated measurements of smart meter data has been 
evaluated in this section. In this regard, all the time series 
simulations have been tested on an Intel Core i5-2400 @ 3.10 
GHz PC MATLAB R2021a, version 9.10. The performance 
assessment of the LSTM_PV and LSTM_EV modules for 
different input time spans (daily, weekly and monthly) is 
discussed in the following subsections. 

 
A. Identification of PV and EV Profiles 

 
A comparative analysis of the evaluation metrices for 

LSTM-based NILM in classifying PV and EV has been 
carried out with conventional machine learning algorithms 
RF and kNN as depicted in Fig.4 and Fig.5 respectively for 
daily input time spans. Overall, the proposed LSTM-based 
NILM approach outperformed both RF and kNN classifiers. 
It can be observed that the F-Score takes into account both FP 
and FN, providing a more rigorous evaluation than accuracy, 
especially in the context of datasets with a substantial 
imbalance. As depicted in Fig.4, LSTM outperformed both 
RF and kNN, achieving F-Score of 99.22%, while RF and 
kNN obtained F-Scores of 94.62% and 90.92% respectively 
during the classification of PV generation profiles. Similarly, 
for the classification of EV load profile, LSTM provided F-
Score of 93.99% when compared to 92.66% and 89.91% for 
RF and kNN as in Fig.5. 
 

 

Fig. 3. Flowchart of proposed LSTM-based NILM framework. 

Parameters LSTM_PV LSTM_EV 

Input layer size 1 1 

No. of Hidden Units 100 100 

Input Activation Function ReLU ReLU 

No. of Fully Connected 

Layers 

2 2 

Output Activation Function Sigmoid Sigmoid 

Solver Adam Adam 

Maximum Epochs 400 600 

Mini Batch Size 100 100 

Initial Learning Rate 0.001 0.001 

Target Labels PV, No PV EV, No EV 

 

TABLE II. SUMMARY OF HYPERPARAMETERS FOR TRAINING THE 

LSTM_PV AND LSTM_EV  



 
 

Fig. 4. Evaluation metrices for PV. 
 

 
While the above conventional metrices illustrate the 

performance of each classifier models in NILM studies, 
misclassification may arise during the interpretation of 
imbalanced data as input to those classification models. It is 
observed that the imbalanced dataset can create an illusion of 
good classification accuracy when either TP or TN values 
dominate. Hence, it is advisable to employ a confusion matrix 
to obtain a more comprehensive understanding of the 
obtained predictions. This confusion matrix serves as a 
valuable tool for assessing the effectiveness of a classification 
model by offering a detailed breakdown of its performance. 
It illustrates specific instances in which the model encounters 
confusion while making predictions. Employing this metric 
to assess a classification algorithm offers the benefit of 
clearly pinpointing any deviations or biases the algorithm 
may exhibit towards certain class over the other. 

Fig.6 shows the confusion matrix with and without PV 
generation. Considering the daily input time span, it can be 
observed that the LSTM_PV classifier is able to classify 
98.45% of the households with PV generation correctly. 
Moreover, the LSTM_PV classifier classifies 100% of the 
houses without PV generation. Similarly, the LSTM_EV 
classifier detects 93.48% of the households with EV load 
demand and 98.64% of the houses with no EV power 
consumption as depicted in Fig.7. 

 
 

 
Fig. 5. Evaluation metrices for EV. 

 
 

B. Performance Evaluation of Proposed Technique for 

Different Input Time Spans 

 
The LSTM classifiers' classification accuracies are 

evaluated by comparing them across various input time 
spans, including daily, weekly, and monthly intervals. Upon 
examination of the classification accuracies of LSTM_PV for 
detecting PV from power consumption data, as detailed in 
Table III, it is evident that the classification accuracy 
diminishes. This decline is noticeable particularly when 
considering a shorter input time span. The classification 
accuracies for the monthly input period are significantly 
higher as compared to weekly and daily inputs.  

For the detection of PV systems, the LSTM_PV 
classifier achieves F-Score of 100% for the monthly input 
time span, while comparable F-Scores of 99.22% and 99.34% 
have been observed for the daily and weekly input time spans, 
respectively. Within the daily input span, 1.55% of 
households equipped with a PV system are misclassified. 
However, within the weekly input period, this figure 
decreases to 1.32%. Moreover, the LSTM_PV classifier 
demonstrates good performance for all input samples from 
households without PV, regardless of the input time span. In 
contrast to PV detection, LSTM_EV shows reduced 
performance for the identification of EV charging patterns for 
the different input time spans.  
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Fig. 6. Confusion matrix for LSTM_PV. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LSTM_EV module attains F-Score of 92.31% for monthly 
whereas F-Scores of 90.57% for weekly and 93.99% for daily 
input time spans. 
 

TABLE III. ACCURACY OF  LSTM_PV AND LSTM_EV MODULES FOR 

DIFFERENT INPUT TIME SPANS 

 
 
 
 
 

 

IV. CONCLUSION 

The present work proposes a LSTM-based NILM framework 
for disaggregating EV load demand and PV generation 
profiles from the aggregated measurements within a 
distribution network. The dataset ‘Pecan Street Dataport’ 
employed in the present study ensures ample transparency in 
the analysis. Moreover, the ability of the proposed LSTM 
model to capture temporal dependencies and stochastic 
variations associated with the penetration of DERs in the 
distribution network has significantly improved the 
performance as compared to other conventional machine 
learning techniques. Significantly improved F-Scores have 
been obtained for identifying PV generation profiles 
(99.52%) and EV load profiles (92.29%) using LSTM 
approach, thus increasing the observability of distribution 
network operators. Future work is planned on imparting 
resilience to distribution network against extreme weather 
events by incorporating climatic and environmental data. 
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LSTM 
classifier  
Modules 

          Input time spans 
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LSTM_EV 93.99% 90.57% 92.31% 

 

Fig. 7. Confusion matrix for LSTM_EV. 
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