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Abstract. In this paper we construct global in time classical solutions to mean field games master equations in

the lack of idiosyncratic noise in the individual agents’ dynamics. These include both deterministic models and

dynamics driven solely by a Brownian common noise. We consider a general class of non-separable Hamiltonians
and final data functions that are supposed to be displacement monotone. Our main results unify and generalize

in particular some of the well-posedness results on displacement monotone master equations obtained recently
by Gangbo–Mészáros and Gangbo–Mészáros–Mou–Zhang.

1. Introduction

Master equations associated to mean field games (MFG) have been introduced by P.-L. Lions in his lectures
[Lio12] at Collège de France. These are PDEs of hyperbolic type, whose solutions depend both on the state of
individual agents (typically a variable in a finite dimensional Euclidean space) and on the agents’ distribution
(typically a Borel probability measure supported over the state space of the agents). Beside their independent
interest, one of the main motivations for studying these equations lies in the fact that their classical solutions can
be used to provide quantitative rates of convergence for the closed loop Nash equilibria of stochastic differential
games, when the number of agents tends to infinity (cf. [CDLL19]). Although such rigorous convergence results
were obtained in the presence of non-degenerate idiosyncratic noise only, we believe that classical solutions
to the master equation when the idiosyncratic noise is degenerate (the ones that we provide in this paper),
could potentially shed light on the convergence problem in more singular scenarios as well. To the best of our
knowledge, the well-posedness of Nash system associated to the N -player game is open in the case of degenerate
idiosyncratic noise, however, the well-posedness of master equation that we obtain in our manuscript could
potentially be useful for the future proof of the convergence result. They can serve also as important tools in
showing large deviation principles, concentration of measure and central limits theorems for these games (see
[DLR19,DLR20]).

Because of the infinite dimensional character of these equations, their well-posedness provides great math-
ematical challenges and so their investigation has gained considerable attention in the community in the past
decade. Classical solutions to the master equation are known to exist under certain assumptions on the data,
which are responsible for the uniqueness of the MFG Nash equilibria of the underlying game. These assumptions
can be roughly grouped into two categories: (i) the data satisfy some sort of smallness condition (related to
the time horizon, to the Hamiltonian, to a specific subclass of probability measures, etc.) or (ii) the data fulfill
suitable monotonicity conditions.

In the case (i), besides the smallness assumption typically there is no need to impose additional structural
assumptions on the data (such as separability or convexity of the underlying Hamiltonian or final datum or the
presence of a non-degenerate idiosyncratic noise) governing the game (see for instance [CD18b, GS15, May20,
AM23]). The question regarding the global well-posedness of master equations (in the class of classical solutions)
is way more subtle and this is understood in suitably defined monotone regimes (cf. case (ii)). In the literature
to date, these are essentially classified into the following groups: the so-called Lasry–Lions monotonicity and
displacement monotonicity conditions. Historically, the Lasry–Lions monotonicity condition was used first for
the global well-posedness of the master equation (see [CCD22, CDLL19, CD18b]). When dealing with classical
solutions, it worth mentioning that the Lasry–Lions monotonicity condition on its own is in general not enough
for the global well-posedness of the underlying master equation, unless a non-degenerate idiosyncratic noise (or
stronger convexity assumption on the data) is also present and the corresponding Hamiltonians are separable
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in the momentum and measure variables, i.e. they possess a decomposition of the form

(1.1) H(x, µ, p) := H0(x, p)− F (x, µ),

for some H0 : Rd × Rd → R and F : Rd ×P2(Rd)→ R (where the state space of the agents is Rd and P2(Rd)
stands for the set of Borel probability measures with finite second moment, supported on Rd, describing the
agents’ distribution).

Displacement monotonicity (which stems from the notion of displacement convexity arising in optimal trans-
port, [McC97]) is an alternative condition which guarantees the existence and uniqueness of classical solutions
to the master equation. Prior to using this condition in the context of master equations, under different
names (as ‘weak monotonicity’ or ‘L-monotonicity’) this condition has already appeared in works on MFG
(see [Ahu16, ARY19] and [CD18a, Section 3.4.3]) and on FBSDEs of McKean–Vlasov type (see [CD15]). This
condition turned out to be sufficient in the case of deterministic potential master equations in the lack of the reg-
ularizing effect of the idiosyncratic noise ([GM22,BGY24]), or for a general class of non-separable Hamiltonians
in the presence of non-degenerate idiosyncratic noise ([GMMZ22]). In the presence of Lasry–Lions monotonicity
and non-degenerate idiosyncratic noise, for separable Hamiltonians suitable notions of weak solutions have been
proposed if the data are not regular enough ([MZ24c, Ber21]). In such cases, we still have uniqueness of the
MFG Nash equilibria.

Recently, new monotonicity conditions were proposed beyond the Lasry–Lions and displacement monotonicity
regimes. First, so-called anti-monotonicity conditions were introduced in [MZ24a] (see also [BM24] in this
context). This regime includes coupling functions which are not monotone in the Lasry–Lions or displacement
sense. In this work it was shown that if the data are sufficiently anti-monotone in an appropriate sense, one
has uniqueness of Nash equilibria and the global well-posedness of the master equation holds, from the point
of view of classical solutions. Second, the recent works [GM24, GM23] proposed a new notion of monotonicity
condition (in general in dichotomy with all the previously mentioned ones), which is also a sufficient one for the
global well-posedness of the master equation.

When the uniqueness of the MFG Nash equilibria does not hold, the classical well-posedness theory for
the master equation breaks down in finite time and it is a great challenge to define suitable notions of weak
solutions, which may help selecting specific equilibria of the game. In this direction it worth mentioning the
recent breakthrough [CD24] which proposes a notion of weak solution (in the spirit of entropy solutions) for
potential MFG master equations in the presence of non-degenerate idiosyncratic noise. It has been pointed out
in [GM24] that weak solutions in entropy sense (although different from the ones in [CD24]) might in general
not select MFG Nash equilibria of the underlying game. In the very recent work [MZ24b] a partial order has
been proposed on the set of Nash equilibria arising in a class of non-potential MFGs. The value functions
corresponding to the minimal and maximal Nash equilibria are proved to satisfy the master equation in a
certain weak sense. In particular, when these two value functions coincide, this becomes the unique solution to
the master equation.

As discussed above, the Lasry–Lions monotonicity condition on the data without the presence of a non-
degenerate idiosyncratic noise in general cannot guarantee the uniqueness of solutions to the MFG system (see
the discussion in [GM23]) and so, the existence of a classical solution to the corresponding master equation. In
the lack of non-degenerate idiosyncratic noise, the literature discusses two important classes of examples: purely
deterministic problems and problems driven only by a common noise. In the case of deterministic Lasry–Lions
monotone MFG systems, [CP20, Theorem 1.8] presents a uniqueness result under the additional assumption that
the measure component is essentially bounded. MFG systems and master equations driven by common noise
only have been recently investigated in the series of interesting works. We refer the reader to [CS22a, CS22b].
Further progress in this direction was achieved in [CSS22], where the authors consider common noise and
degenerate idiosyncratic noise. In [CS22a], a notion of weak solution for the master equation is obtained in the
spirit of monotone solutions proposed in [Ber21]. The study of MFG with common noise goes back to the works
[Ahu16, CDL16]. Interestingly, already in these early works it has been discussed that additional convexity
properties of the value function can render a stronger notion of solutions to MFG with common noise (than the
ones in [CS22b, CSS22]). It is well-known now that the convexity of the value function in the state variable is
strongly linked to the displacement monotonicity of the data (see [GM22,GMMZ22,MM24,GM23]).

To the best of our knowledge, there are only very few works in the literature studying the global existence and
uniqueness of classical solutions to the master equation in lack of non-degenerate idiosyncratic noise: [GM22]
considers potential deterministic master equation in the case of separable Hamiltonians and displacement con-
vexity; [GM24] studies a class of deterministic master equations in the presence of a different monotonicity
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condition; a particular dimension reduction technique and the associated monotonicity conditions allowed the
authors of [LLS22] to obtain global classical solutions to the deterministic master equation. Finally, in [CS22a]
the authors obtain weak monotone solutions to a class of time independent master equations both in the deter-
ministic setting and driven by common noise only (clearly, without any displacement monotonicity assumptions
on the data, and in the case of separable Hamiltonians).

Our objective in this manuscript is to show the global existence and uniqueness of classical solutions to the
master equation in the lack of idiosyncratic noise and the presence of displacement monotone data. Our result
cover both the deterministic problem and the one driven purely by a common noise. The main actor of our
study is the master equation
(1.2){
−∂tV (t, x, µ) +H(x, µ, ∂xV )− (NV )(t, x, µ)− β2

2 ∆comV (t, x, µ) = 0, in (0, T )× Rd ×P2(Rd),
V (T, x, µ) = G(x, µ), in Rd ×P2(Rd)

where

(NV )(t, x, µ) := −
∫
Rd
∂µV (t, x, µ, x̃) · ∂pH(x̃, µ, ∂xV (t, x̃, µ))dµ(x̃)

and

∆comV (t, x, µ) := tr(∂xxV (t, x, µ)) +

∫
Rd

tr(∂x̃µV (t, x, µ, x̃))dµ(x̃) + 2

∫
Rd

tr(∂xµV (t, x, µ, x̃))dµ(x̃)

+

∫∫
Rd×Rd

tr(∂µµV (t, x, µ, x̃, x̄))dµ(x̃)dµ(x̄).

Here T > 0 is the time horizon of the game, β ∈ R stands for the intensity of the common noise represented
by a Brownian motion (B0

t )t∈[0,T ] on Rd, H : Rd ×P2(Rd) × Rd → R and G : Rd ×P2(Rd) → R are the
Hamiltonian and the final cost function, respectively.

Definition 1.1. A function V : (0, T ) × Rd ×P2(Rd) → R is said to be a classical solution to the master
equation if all of the derivatives that appear in the equation exist and are continuous (with respect to Euclidean
distance and W1) and V satisfies the master equation pointwise.

The master equation (1.2) is strongly linked to the following mean field games system: for any t0 ∈ (0, T ),

(1.3)
du(t, x) = −

[
tr
(β2

2
∂xxu(t, x) + β∂xv

>(t, x)
)
−H(x, ρt, ∂xu(t, x))

]
dt+ v(t, x) · dB0

t , in (t0, T )× Rd,

dρ(t, x) =
[β2

2
tr
(
∂xxρ(t, x)

)
+ div(ρ(t, x)∂pH(x, ρt, ∂xu(t, x)))

]
dt− β∂xρ(t, x) · dB0

t , in (t0, T )× Rd,
ρ(t0, ·) = µ, u(T, x) = G(x, ρ(T, ·)), in Rd.

The solution to (1.3) is a triple (ρ, u, v), progressively measurable with respect to the filtration generated by the
common noise B0, which serves formally as the system of generalized characteristics for (1.2). We note that if
β 6= 0, then ρ(t, ·, ω) is a random probability measure. Conversely, the solution V to the master equation (1.2)
also serves as the decoupling field for this forward-backward SPDE system, i.e.

(1.4) u(t, x, ω) = V (t, x, ρ(t, ·, ω)).

The description of our results. As our main result (Theorem 5.2) we show the global in time existence and
uniqueness of a classical solution to (1.2), by assuming that H and G satisfy the displacement monotonicity and
suitable regularity conditions. The roadmap to the proof of our main result is similar in spirit to the one used
in [GMMZ22,MZ24a], but several new ideas were necessary to fulfill this because of the lack of the idiosyncratic
noise.

Let us discuss the main similarities and differences in the two approaches. First, the heart of our analysis
is the a priori propagation of the displacement monotonicity: if V is a classical solution to (1.2) and H and
G are displacement monotone, so is V (t, ·, ·). Displacement monotonicity will readily imply that ∂xV (t, x, ·) is
Lipschitz continuous with respect to the metric W2 (with a Lipschitz constant depending on the data and on
‖∂xxV ‖L∞). It is well-known (see [CD18b, CCP23, BLL24]) that the master equation is well-posed for short
time if the data is regular enough (without any monotonicity assumptions). The short time horizon depends
on the Lipschitz constant of ∂xV (t, ·, ·) (in the metric W2 for the measure variable). However, for the global
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well-posedness of classical solutions to (1.2), the uniform a priori Lipschitz continuity of ∂xV (t, x, ·) in the
metric W1 is essential (see the discussion in [GMMZ22]). To show that this W1-Lipschitz constant is a priori
bounded, we use two arguments. First, the uniform a priori estimates on ‖∂xxV ‖L∞ are a consequence of
the semi-concavity bounds (a result of classical optimal control arguments) and convexity (a consequence of
the displacement monotonicity) of V (t, ·, µ). To obtain the necessary a priori bounds on ‖∂µxV ‖L∞ we rely
on several representation formulas via suitable FBSDE systems. Although these representation formulas are
similar in spirit to the ones used in [MZ24c, GMMZ22], we need to work with different systems of FBSDEs.
During this process, we show also that – similarly as in [MZ24c,GMMZ22] – the small time horizon depends on
the W2-Lipschitz constant of ∂xV .

This approach represents one of the major differences with the work [GMMZ22]. Let us elaborate more on
this. Indeed, we can observe that the FBSDE systems in [GMMZ22] (see for instance the [GMMZ22, System
(2.24)]) are not natural if the intensity of the idiosyncratic noise is taken to be zero. Therefore, instead we
will be working with FBSDE systems of Pontryagin type, where the natural variables are the state and the
momentum (instead of the state and optimal value, as in [GMMZ22]). Such FBSDE systems have already been
introduced and studied in [CCD22,CD18b,MZ24a] for the study of master equations. It will become the classical
forward-backward Hamiltonian system in case of deterministic problems. This subtlety has been emphasized
in [CCD22, Section 5.2]: in the case when non-degenerate idiosyncratic noise is present optimal paths may
be characterized by solutions of FBSDEs, where the value function is represented as the decoupling field of
the forward-backward system (similarly to the approach used also in [GMMZ22]); on the contrary, when the
idiosyncratic noise is degenerate but additional convexity is present on the data (which is provided in our case
by the displacement monotonicity), the natural characterization of the optimal paths may be obtained via the
stochastic Pontryagin principle, where the decoupling field of the FBSDE system is understood as the gradient
of the value function of the optimization problem.

The FBSDE systems used in [GMMZ22] required stricter assumptions on the data. For instance, as we can
see in [GMMZ22, Assumpotions 3.1 and 3.2], G was assumed to be globally Lipschitz continuous (with respect
to the metric W1 in the measure variable) and H was assumed to be Lipschitz continuous in all three variables
(locally in the momentum variable, but globally in the state and measure variables). These actually imposed
that ∂xG, ∂µG are uniformly bounded (in Rd ×P2(Rd)) and in case of H, ∂xH, ∂pH are uniformly bounded
in Rd ×P2(Rd)×BR(0) and ∂µH uniformly bounded in Rd ×P2(Rd)× Rd ×BR(0) (with constants possibly
depending on R > 0). In contrast to these, we improve these assumptions in the way that we require only
∂xG, ∂xH, ∂pH to be uniformly Lipschitz continuous (see Assumptions 2.6 and 2.7 below). As a result of the
assumption in [GMMZ22] the value function was such that both ∂xV and ∂µV are uniformly bounded, while
this will not be the case in our work (allowing for instance both ∂xV and ∂µV to have linear growth in x at
infinity).

Another significant difference is that in contrast to [GMMZ22], in the current manuscript the displacement
monotonicity conditions imposed both on G and H are first order conditions (in [GMMZ22] the displacement
monotonicity condition imposed on H was a delicate second order condition). As a result of this, we have
sharpened the assumptions on the data significantly. This condition on H was proposed first in [MM24], and
we refer to a discussion therein, which details that this in general does not imply the second order monotonicity
condition imposed on H in [GMMZ22], even in the case of smooth Hamiltonians. Because of this, the analysis
that we use here is significantly different from the one in [GMMZ22], as for the propagation of the displacement
monotonicity we avoid differentiating the master equation itself. We work directly at the level of the FBSDE
and MFG systems. Our inspiration for these techniques comes from [MM24].

It is not hard to see that adding an additional idiosyncratic Brownian noise (with a constant intensity) would
result in essentially the same analysis as the one present in this manuscript. The Pontryagin principle used here
is very similar in spirit to the analysis on the deterministic Hamiltonian system in [GM22], however, the results
there (as they rely both on the separable Hamiltonian and potential game structure) cannot imply our results
if β = 0. Therefore, the results of our manuscript unify and generalize the results of [GM22] and [GMMZ22]
significantly.

The structure of the rest of the paper is simple. In Section 2 we present some notations and the necessary
assumptions on the data. Section 3 contains the classical semi-concavity estimates and convexity results for
the master field (i.e. the candidate solution to the master equation). Here we discuss the propagation of
the displacement monotonicity and its consequences as well. Section 4 contains the technical results on the
representation formula for ∂µxV which yields the crucial a priori W1-Lipschitz estimate for ∂xV . Section 5
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contains a by now standard argument describing how to extend the local in time well-posedness theory for the
master equation, in case of sufficient a priori estimates.

2. Notations, setup and assumptions

Let us fix an arbitrary finite time horizon T > 0. Throughout the paper we will use the following product
filtered probability space on [0, T ]:

Ω := Ω0 × Ω1, F := {Ft}0≤t≤T := {F0
t ⊗F1

0}0≤t≤T , P := P0 ⊗ P1, E := EP.

Here, for ω = (ω0, ω1) ∈ Ω, B0(ω) = B0(ω0) is a d-dimensional Brownian motions; F0 = {F0
t }0≤t≤T is generated

by B0; we assume F1
0 has no atom. Let (Ω̃1, F̃1

0 , P̃1) be a copy of the probability space (Ω1,F1
0 ,P1) and define

the larger filtered probability space by

Ω̃ := Ω× Ω̃1, F̃ = {F̃t}0≤t≤T := {Ft ⊗ F̃1
0}0≤t≤T , P̃ := P⊗ P̃1, Ẽ := EP̃.

Given an Ft-measurable random variable ξ(ω̃) = ϕ(ω0, ω1), ω̃ = (ω0, ω1, ω̃1) ∈ Ω̃, we see that ξ̃(ω̃) := ϕ(ω0, ω̃1)

is a conditionally independent copy of ξ, conditional on F0
t under P̃.

Throughout the paper we will use the filtered probability space (Ω,F,P). However, when conditionally indepen-
dent copies of random variables or processes are needed, we will tacitly use their extensions to the larger space
(Ω̃, F̃, P̃) without mentioning. For any t0 ∈ [0, T ] we define B0,t0

t := B0
t −B0

t0 . For any G ⊂ F , we use L2(G) to
denote the set of G-measurable and 2-integrable random variables.

2.1. Elements of analysis and calculus on the Wasserstein space. Let P(Rd) be the set of Borel proba-

bility measures supported in Rd. For any q ≥ 1 and any measure µ ∈P(Rd), we set Mq(µ) :=
(∫

Rd |x|
qdµ(x)

) 1
q .

Furthermore, let Pq(Rd) := {µ ∈P(Rd) : Mq(µ) <∞}. For any µ, ν ∈Pq(Rd), the Wq–Wasserstein distance
is defined as

Wq(µ, ν) := inf

{∫∫
Rd×Rd

|x− y|qdγ(x, y) : γ ∈ Π(µ, ν)

} 1
q

,

where Π(µ, ν) :=
{
γ ∈P2(Rd × Rd) : (π1)]γ = µ, (π2)]γ = ν

}
, and π1, π2 : Rd × Rd → Rd stand for the

canonical projections, i.e. π1(x, y) = x and π2(x, y) = y.
According to the terminology in [AGS08], the Wasserstein gradient of a function U : P2(Rd) → R at µ, is an

element ∂µU(µ, ·) ∈ ∇C∞c (Rd)
L2
µ

(the closure of gradients of C∞c functions in L2
µ(Rd;Rd)) and so, it is a priori

defined µ–almost everywhere. The theory developed in [Lio12,WZ17,GT19,CP20], shows that ∂µU(µ, ·) can be
characterized by the property

U(Lξ+η)− U(µ) = E
[
〈∂µU(µ, ξ), η〉

]
+ o(‖η‖2), ∀ ξ, η, with Lξ = µ.(2.1)

Let C0(P2(Rd)) denote the space of W2–continuous functions U : P2(Rd) → R. For k ∈ {1, 2} we next define
a subset of Ck(P2(Rd)), referred to as functions of full Ck regularity in [CD18a, Chapter 5]), as follows. By
C1(P2(Rd)), we mean the space of functions U ∈ C0(P2(Rd)) such that ∂µU exists for all µ ∈ P2(Rd) and it
has a unique jointly continuous extension to P2(Rd)× Rd, which we continue to denote by

Rd ×P2(Rd) 3 (x̃, µ) 7→ ∂µU(µ, x̃) ∈ Rd.

Similarly, C2(P2(Rd)) stands for the space of functions U ∈ C1(P2(Rd)) such that the global version of ∂µU is
differentiable in the sense that all the following maps exist and have unique jointly continuous extensions

Rd ×P2(Rd) 3 (x̃, µ) 7→ ∂x̃µU(µ, x̃) ∈ Rd×d and

R2d ×P2(Rd) 3 (x̃, x̄, µ) 7→ ∂µµU(µ, x̃, x̄) ∈ Rd×d.

We define similarly the spaces C1(Rd ×P2(Rd)) and C2(Rd ×P2(Rd)). In particular C2(Rd ×P2(Rd)) is the
space of continuous functions U : Rd ×P2(Rd)→ R satisfying the following
(i) ∂xU, ∂xxU exist and are jointly continuous on Rd ×P2(Rd);
(ii) The following maps exist and have unique jointly continuous extensions

R2d ×P2(Rd) 3 (x, x̃, µ) 7→ ∂µU(x, µ, x̃) ∈ Rd and

R2d ×P2(Rd) 3 (x, x̃, µ) 7→ ∂xµU(x, µ, x̃) ∈ Rd×d;
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(iii) Finally, the following maps exist and have unique jointly continuous extensions

R2d ×P2(Rd) 3 (x, x̃, µ) 7→ ∂x̃µU(x, µ, x̃) ∈ Rd×d and

R3d ×P2(Rd) 3 (x, x̃, x̄, µ) 7→ ∂µµU(x, µ, x̃, x̄) ∈ Rd×d.

We underline that for notational conventions, we always denote the ‘new spacial variables’ appearing in Wasser-
stein derivatives with ‘tilde’ symbols (for first order Wasserstein derivatives), with ‘bar’ symbols (for second order
Wasserstein derivatives) and so on, and we place them right after the corresponding measures variables. For ex-
ample, when U : Rd×P2(Rd)×Rd → R is typically evaluated as U(x, µ, p), we use the notations ∂µU(x, µ, x̃, p),
∂x̃µU(x, µ, x̃, p), ∂µµU(x, µ, x̃, x̄, p), and so on. This convention will be carried through to compositions with

random variables too, for example ∂µU(x, µ, ξ̃, p), when ξ̃ is an Rd-valued random variable.

2.2. Displacement Monotonicity. Following [GMMZ22], we can recall the displacement monotonicity con-
dition for the final cost function G.

Definition 2.1. Let G : Rd × P2(Rd) → R. Assume G is differentiable in the first variable and ∂xG is
continuous on Rd ×P2(Rd). We say that G is displacement monotone if for all ξ1, ξ2 ∈ L2(F0)

(2.2)

∫
Ω

[∂xG(ξ1(ω),Lξ1)− ∂xG(ξ2(ω),Lξ2)] · (ξ1(ω)− ξ2(ω))dP(ω) ≥ 0.

Remark 2.2. Assume further that ∂xG ∈ C1(Rd×P2(Rd)) and ∂xµG, ∂xxG are bounded. Then G is displace-
ment monotone if and only if for all ξ, η ∈ L2(F0)∫∫

Ω×Ω

[
〈∂xµG

(
ξ(ω),Lξ, ξ̃(ω̃)

)
η̃(ω̃), η(ω)〉+ 〈∂xxG (ξ(ω),Lξ) η(ω), η(ω)〉

]
dP(ω)dP(ω̃) ≥ 0,

where ξ̃, η̃ are independent copies of ξ and η, respectively.

We recall the following lemma from [MM24, Lemma 2.3].

Lemma 2.3. Suppose that G is displacement monotone and ∂xG ∈ C1(Rd ×P2(Rd)). Then ∂xxG(x, µ) ≥ 0
for all (x, µ) ∈ Rd ×P2(Rd).

Following [MM24], we can recall the displacement monotonicity condition for the Hamiltonian H.

Definition 2.4. Let H : Rd ×P2(Rd) × Rd → R. Assume that H is differentiable in the x and p variables
and ∂xH, ∂pH are continuous on Rd × P2(Rd) × Rd. We say that H is displacement monotone if for all
ξ1, ξ2, p1, p2 ∈ L2(F0)∫∫

Ω×Ω

[〈
− ∂xH(ξ1(ω),Lξ1 , p1(ω)) + ∂xH(ξ2(ω),Lξ2 , p2(ω)), ξ1(ω)− ξ2(ω)

〉]
+

[〈
∂pH(ξ1(ω),Lξ1 , p1(ω))− ∂pH(ξ2(ω),Lξ2 , p2(ω)), p1(ω)− p2(ω)

〉]
dP(ω) ≥ 0.

Remark 2.5. Assume further that H ∈ C2(Rd ×P2(Rd) × Rd) and ∂xµH, ∂xxH, ∂ppH, ∂pµH are bounded.
Suppose that∫∫

Ω×Ω

[
〈∂xµH

(
ξ(ω),Lξ, ξ̃(ω̃), p(ω)

)
η̃(ω̃), η(ω)〉+ 〈∂xxH (ξ(ω),Lξ, p(ω)) η(ω), η(ω)〉

]
dP(ω)dP(ω̃)(2.3)

≤ −1

4

∫∫
Ω×Ω

∣∣∣∣[∂ppH(ξ(ω),Lξ, p(ω))]−
1
2 ∂pµH(ξ(ω),Lξ, ξ̃(ω̃), p(ω))η̃(ω̃)

∣∣∣∣2dP(ω)dP(ω̃),

for all ξ, η, p ∈ L2(F0), where ξ̃, η̃ are independent copies of ξ and η, respectively. Then H is displacement
monotone.
We would like to underline that the main standing assumption on H in [GMMZ22] was the inequality (2.3). In
contrast to this, in the current manuscript we impose the inequality from Definition 2.4, which is considerably
weaker, and in general does not imply (2.3) (cf. [MM24]).
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2.3. Standing assumptions. We will always assume that G,H are displacement monotone in the sense of
Definition 2.1 and Definition 2.4, respectively. We also make the following regularity assumptions.

Assumption 2.6. We assume that

(1) G ∈ C2(Rd ×P2(Rd)) and that there exists LG such that |∂xxG| , |∂µxG| ≤ LG and G ≥ −LG.
(2) All second order derivatives of G are uniformly continuous with respect to the space and measure

variables (the latter with respect to W2).

Assumption 2.7. We assume that

(1) H ∈ C2(Rd×P2(Rd)×Rd) and there exists LH > 0 such that |∂pxH| , |∂xxH| , |∂ppH| , |∂xµH| , |∂pµH| ≤
LH and

(2.4) 〈∂pH(x, µ, p), p〉 −H(x, µ, p) ≥ −LH , ∀ (x, µ, p) ∈ Rd ×P2(Rd)× Rd.
(2) ∂ppH ≥ c0I for some c0 > 0.
(3) All second order derivatives of H are uniformly continuous with respect to the space and measure

variables (the latter with respect to W2).

We underline furthermore that these assumptions are weaker than those in [GMMZ22, Assumption 3.1] in
the sense that we do not require the uniform boundedness of ∂xG or ∂µG and moreover we need much less
regularity assumptions on the data. However, we impose strong convexity condition for the Hamiltonian in the
p variable because of the absence of the idiosyncratic noise. Also, as mentioned above, instead of the second
order displacement monotonicity condition, as imposed on H in [GMMZ22], here we impose the first order
condition. We denote by LG2 the Lipschitz constant of ∂xG with respect to space and W2 norm in measure.
Note that |∂µxG| ≤ LG1 implies that ∂xG is Lipschitz with respect to W1 norm in measure with the Lipschitz
constant LG1 , and so LG2 ≤ LG1 .

Definition 2.8. A constant C is said to be universal if it depends only on the above quantities (LG, LH , and
c0) and T .

2.4. The roadmap of the well-posedness theory. The proof of our main theorem (Theorem 5.2) will go as
follows. First we assume that we have a smooth solution, V , to the master equation (1.2). We show that V is
displacement monotone. This is a consequence of the displacement monotonicity assumption on H and G and
the proof of this is inspired by the results in [MM24].

The heart of our analysis is to show that ∂xV is Lipschitz continuous (with respect to the Euclidean norm in x
and the W1 distance in µ) where the Lipschitz constant is universal. To achieve this, we will proceed as follows.
First, the uniform boundedness of ∂xxV will be implied by semi-concavity estimates on V in the space variable
(which comes from classical optimal control arguments) and its convexity in the space variable (which is implied
immediately by displacement monotonicity, c.f. Lemma 2.3). Second, for the Lipschitz continuity of ∂xV in the
measure variable we will first show that this is Lipschitz continuous with respect to the W2 distance. Instead of
the approach used in [GMMZ22], for this result we follow the ideas from [MM24]. From this, together with the
uniform bounds on ∂xxV , we will be able to see that a certain system of FBSDEs is well-posed and that this
system gives us a representation formula for ∂xµV . From here we deduce that ∂xµV is bounded by a universal
constant which is equivalent to ∂xV being W1-Lipschitz continuous (with the same universal constant).

Once these a priori bounds are proven, the well-posedness of the master equation will follow easily.

3. Semi-concavity and displacement monotonicity of the master field

3.1. Semi-concavity of value functions.

Lemma 3.1. Assume G,H satisfy Assumptions 2.6 and 2.7. Let V be a classical solution to the master
equation with bounded ∂xxV and ∂xµV on [0, T ]. Fix some t0 ∈ [0, T ] and µ ∈ P2(Rd). Then there exists a

FB0,t0
-progressively measurable stochastic probability measure flow (ρt)t∈[t0,T ] solving

(3.1) dρ(t, x) =
[β2

2
tr
(
∂xxρ(t, x)

)
+div(ρ(t, x)∂pH(x, ρt, ∂xV (t, x, ρt)))

]
dt−β∂xρ(t, x) · dB0

t , in (t0, T )×Rd

with ρt0 = µ such that

(3.2) V (t0, x, µ) = inf
α

E

{
G(Xα

T , ρT ) +

∫ T

t0

L(Xα
t , ρt, αt)dt

}
,
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where L is the Legendre transformation of H, the infimum is taken over the set of admissible controls which are
progressively measurable and square integrable, and Xα

t satisfies the SDE

dXα
t = αtdt+ βdB0

t , with Xα
t0 = x.

Proof. This is essentially a folklore result discussed in [GMMZ22, Remark 2.10 part (ii)]. �

Proposition 3.2. Assume that the assumptions in Lemma 3.1 hold. Then V is semi-concave in the x-variable
with a semi-concavity constant (1 + T )C.

The results of this proposition are certainly well-known for experts (see for instance [CS04] for the deterministic
setting, i.e. when β = 0, and [BCQ10] for a similar stochastic control problem). However we were unable to
find a reference that matches our exact assumptions. Hence for completeness we reprove it.

Proof of Proposition 3.2. By (1) in Assumption 2.7 (specifically the bound on ∂xxH) and (1) in Assumption
2.6 we have that L and G are semi-concave (in x) with a universal constant. Note that (2.4) implies that L
is bounded from below. Fix some (t0, x, µ) ∈ [0, T ] × Rd ×P2(Rd). Let (ρt)t∈[t0,T ] be given in (3.1) and let

(αt)t∈[t0,T ] be an associated ε-optimal control for (3.2). Fix some λ ∈ Rd. Consider the exact same control
(αt)t∈[t0,T ] as a proposed control for the problem initiated at (t0, x± λ). Note that the solution to{

dX±t = αtdt+ βdB0
t , t ∈ (t0, T ),

X±t0 = x± λ
is simply Xα

t ± λ. We get

V (t0, x+ λ, µ) ≤ E

{
G(X+

T , ρT ) +

∫ T

t0

L(X+
t , ρt, αt)dt

}
.

By a symmetric argument we get

V (t0, x− λ, µ) ≤ E

{
G(X−T , ρT ) +

∫ T

t0

L(X−t , ρt, αt)dt

}
and so

V (t, x+ λ, µ) + V (t, x− λ, µ)

2
− V (t, x, µ)− ε ≤ E

{
G(X+

T , ρT ) +G(X−T , ρT )

2
−G(XT , ρT )

}
+ E

{∫ T

t0

L(X+
t , ρt, αt) + L(X−t , ρt, αt)

2
− L(Xt, ρt, αt)dt

}
≤ C |λ|2 + TC |λ|2 .

By the arbitrariness of ε > 0 we conclude as desired. �

3.2. Propagation of displacement monotonicity and a priori W2-Lipschitz continuity. Suppose that V
is a classical solution to the master equation (1.2) with bounded ∂xxV and ∂xµV on [0, T ]. Under Assumption
2.7, we have that (t, x, µ) 7→ ∂pH(x, ∂xV (t, x, µ), µ) is continuous with respect to t and globally Lipschitz
continuous with respect to x and the W1 distance in µ. Then the following McKean–Vlasov SDE admits a
strong solution Xξ

(3.3) Xξ
t = ξ −

∫ t

t0

DpH(Xξ
s , ∂xV (s,Xξ

s , ρs), ρs)ds+ βB0,t0
t , t ∈ [t0, T ]

where ξ ∈ L2(Ft0) and ρs := LXξs |F0
s
. We define

(3.4) Y ξt := ∂xV (t,Xξ
t , ρt) and Z0,ξ

t = ∂xxV (t,Xξ
t , ρt) + ẼFt [∂xµV (t,Xξ

t , ρt, X̃
ξ
t )], t ∈ [t0, T ].

Then, we have that (Xξ, Y ξ, Z0,ξ) is a strong solution to the following McKean–Vlasov FBSDE on [t0, T ]
associated to the master equation (1.2)

(3.5)


Xξ
t = ξ −

∫ t

t0

∂pH(Xξ
s , ρs, Y

ξ
s )ds+ βB0,t0

t ,

Y ξt = ∂xG(Xξ
T , ρT )−

∫ T

t

∂xH(Xξ
s , ρs, Y

ξ
s )ds− β

∫ T

t

Z0,ξ
s · dB0

s .
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A crucial step in our analysis is the a priori propagation of the displacement monotonicity for the solution of
the master equation. In contrast to the approach present in [GMMZ22], where the a priori propagation of the
second order condition has been obtained via differentiating the master equation itself, here we follow a different
route. We show the propagation of the first order condition, using the first order assumption (from Definition
2.4) on H. This will be done by relying on the solution to the MFG system (1.3). This idea is inspired from
[MM24] to show uniqueness of solutions to the MFG system, where a similar analysis has been carried out in
the absence of common noise.

Proposition 3.3. Suppose that G,H are displacement monotone and satisfy Assumptions 2.6 and 2.7 and that
V is a classical solution to the master equation with bounded ∂xxV and ∂xµV on [0, T ]. Then for each fixed t,
we have that V (t, ·, ·) is displacement monotone.

Proof. For any t0 ∈ [0, T ] and ξi ∈ L2(Ft0), i = 1, 2, let Xi
t be the strong solution of the stochastic differential

equation

(3.6) Xi
t = ξi −

∫ t

t0

∂pH(Xi
s, ρ

i
s, ∂xV (s,Xi

s, ρ
i
s))ds+ βB0,t0

t , i = 1, 2

where ρit := LXit |F0
t
. Define ui(t, x) := V (t, x, ρit) and vi(t, x) := βEFt [∂µVi(t, x, ρit, X̃i

t)]. Then (ρi, ui, vi) is a
classical solution of the mean field game system
(3.7)

dui(t, x) = −
[

tr
(β2

2
∂xxui(t, x) + β∂xv

>
i (t, x)

)
−H(x, ρi(t, ·), ∂xui(t, x))

]
dt+ vi(t, x) · dB0

t , (t0, T )× Rd,

dρi(t, x) =
[β2

2
tr
(
∂xxρ

i(t, x)
)

+ div(ρi(t, x)∂pH(x, ρi(t, ·), ∂xui(t, x)))
]
dt− β∂xρi(t, x) · dB0

t , (t0, T )× Rd,
ρi(t0, ·) = µi, ui(T, ·) = G(·, ρi(T, ·)), Rd,

where µi = Lξi . To obtain our desired result, we need to work with ∂xui. By the regularity we assumed for V
in x, we cannot directly differentiate the backward SPDE in (3.7) in x. Therefore we will mollify the function
ui. Let {ζn}n be a sequence of densities in C∞c (B 1

n
(0)), as standard convolution kernels. Define

(3.8) ui,n(t, x) :=

∫
Rd
ui(t, x− y)ζn(y)dy, wi,n(t, x) := ∂xui,n(t, x) and wi := ∂xui(t, x).

Then

dui,n(t, x) =

∫
Rd
ζn(y)vi(t, x− y)dy · dB0

t(3.9)

−
[β2

2
∆ui,n(t, x) +

∫
Rd
ζn(y)

[
βdivxvi(t, x− y)−H(x− y, ρit, wi(t, x− y))dy

]
dt.

We then differentiate (3.9) in x and obtain

dwi,n(t, x) =

∫
Rd
ζn(x− y)∂xvi(t, y)dy · dB0

t −
[β2

2
∆wi,n(t, x)

−
∫
Rd
ζn(y)

[
∂xH(x− y, ρit, wi(t, x− y)) + ∂pH(x− y, ρit, wi(t, x− y))∂xwi(t, x− y)

]
dy

+ β

∫
Rd
∂xζn(y)divxvi(t, x− y)dy

]
dt.(3.10)

By the Itô–Wentzell formula, we have

dwi,n(t,Xi
t) =

{∫
Rd
ζn(y)

[
∂xH(Xi

t − y, ρit, wi(t,Xi
t − y))

+ ∂pH(Xi
t − y, ρit, wi(t,Xi

t − y))∂xwi(t,X
i
t − y)

]
dy − ∂pH(Xi

t , ρ
i
t, wi(t,X

i
t))∂xwi,n(t,Xi

t)

}
dt

+
[ ∫

Rd
ζn(Xi

t − y)∂xvi(t, y)dy + β∂xwi,n(t,Xi
t)
]
· dB0

t .

Letting n→ +∞ in the above equation, we have

dwi(t,X
i
t) = ∂xH(Xi

t , ρ
i
t, wi(t,X

i
t))dt+

[
∂xvi(t,X

i
t) + β∂xwi(t,X

i
t)
]
· dB0

t .(3.11)
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Now set X̄t := X1
t −X2

t . Then by Itô’s formula we have

d〈w1(t,X1
t )− w2(t,X2

t ), X̄t〉 = 〈X̄t, d(w1(t,X1
t )− w2(t,X2

t ))〉+ 〈w1(t,X1
t )− w2(t,X2

t ), dX̄t〉

=
[
〈X̄t, ∂xH(X1

t , ρ
1
t , w1(t,X1

t ))− ∂xH(X2
t , ρ

2
t , w2(t,X2

t ))〉

− 〈w1(t,X1
t )− w2(t,X2

t ), ∂pH(X1
t , ρ

1
t , w1(t,X1

t ))− ∂pH(X2
t , ρ

2
t , w2(t,X2

t ))〉
]
dt

+
[
X̄>t

(
∂xv1(t,X1

t )− ∂xv2(t,X2
t ) + β(∂xw1(t,X1

t )− ∂xw2(t,X2
t ))
) ]
· dB0

t .(3.12)

Integrating both sides from t to T and taking expectation, we obtain

E
[
〈w1(t,X1

t )− w2(t,X2
t ), X̄t〉

]
= E

[
〈∂xG(X1

T , ρ
1
T )− ∂xG(X2

T , ρ
2
T ), X̄T 〉

]
−
∫ T

t

E
[
〈X̄s, ∂xH(X1

s , ρ
1
s, w1(s,X1

s ))− ∂xH(X2
s , ρ

2
s, w2(s,X2

s ))〉

− 〈w1(s,X1
s )− w2(s,X2

s ), ∂pH(X1
s , ρ

1
s, w1(s,X1

s ))− ∂pH(X2
s , ρ

2
s, w2(s,X2

s ))〉
]
ds

≥ 0,

where in the last line we have used the displacement monotonicity conditions of G and H. By the definition of
wi, we have that V (t, ·, ·) is displacement monotone for each t ∈ [0, T ]. �

Proposition 3.4. Suppose that G,H satisfy Assumptions 2.6 and 2.7 and that V is a classical solution to
the master equation with bounded ∂xxV and ∂xµV on [0, T ]. Suppose moreover, that V (t, ·, ·) satisfies the
displacement monotonicity condition for each t ∈ [0, T ]. Then ∂xV is Lipschitz continuous in µ with respect to
the W2 metric and the Lipschitz constant depends only on the data and ‖∂xxV ‖L∞ .

Proof. We first recall that ui(t, x) := V (t, x, ρit), wi(t, x) = ∂xV (t, x, ρit) for i = 1, 2, and w̄ := w1 − w2, where
(ui, ρ

i, vi) (i = 1, 2) is the solution to the MFG system (3.7). Setting ξ̄ := ξ1 − ξ2, integrating both sides of
(3.12) from t0 to t and taking expectation, we obtain by Young’s inequality

E
[
〈∂xV (t,X1

t , ρ
1
t )− ∂xV (t,X2

t , ρ
2
t ), X̄t〉

]
= E

[
〈w1(t0, ξ1)− w2(t0, ξ2), ξ̄〉

]
+

∫ t

t0

E
[
〈X̄s, ∂xH(X1

s , ρ
1
s, w1(s,X2

s ))− ∂xH(X2
s , ρ

2
s, w2(s,X2

s ))〉

− 〈w1(s,X1
s )− w2(s,X2

s ), ∂pH(X1
s , ρ

1
s, w1(s,X1

s ))− ∂pH(X2
s , ρ

2
s, w2(s,X2

s ))〉
]
ds

≤ E
[
〈w1(t0, ξ1)− w2(t0, ξ2), ξ̄〉

]
+

∫ t

t0

{
CE
[
|X̄s|2

]
+ CE

[
|X̄s||w1(s,X1

s )− w2(s,X2
s )|
]
− c0E

[
|w1(s,X1

s )− w2(s,X2
s )|2

]}
ds

≤ E
[
〈w1(t0, ξ1)− w2(t0, ξ2), ξ̄〉

]
+

∫ t

t0

{
CE
[
|X̄s|2

]
− c0

2
E
[
|w1(s,X1

s )− w2(s,X2
s )|2

]}
ds,

where in the penultimate inequality we have used the uniform Lipschitz continuity of ∂xH and ∂pH, as well as
the strong convexity of H in the p-variable.
Then by the displacement monotonicity of V (t, ·, ·) and the Lipschitz continuity of w1(t0, ·), by rearranging the
previous inequality and increasing the value of C, we obtain∫ t

t0

E
[
|w1(s,X1

s )− w2(s,X2
s )|2

]
ds ≤ CE[|ξ̄|2] + CE

[
〈w̄(t0, ξ2), ξ̄〉

]
+ C

∫ t

t0

E
[
|X̄s|2

]
ds

≤ CE[|ξ̄|2] + CE
[
|w̄(t0, ξ2)|2

] 1
2E[|ξ̄|2]

1
2 + C

∫ t

t0

E
[
|X̄s|2

]
ds(3.13)
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Derived from (3.6), we obtain by (3.13)

E[|X̄t|2] ≤ CE[|ξ̄|2] + C

∫ t

t0

E
[
|∂pH(X1

s , ρ
1
s, w1(s,X1

s ))− ∂pH(X2
s , ρ

2
s, w2(s,X2

s ))|2
]
ds

≤ CE[|ξ̄|2] + C

∫ t

t0

E
[
|X̄s|2

]
+ E

[
|w1(s,X1

s )− w2(s,X2
s )|2

]
ds

≤ CE[|ξ̄|2] + C

∫ t

t0

E
[
|X̄s|2

]
ds+ CE

[
|w̄(t0, ξ2)|2

] 1
2E[|ξ̄|2]

1
2

By Grönwall’s inequality, we have

E[W 2
2 (ρ1

t , ρ
2
t )] ≤ E[|X̄t|2] ≤ CE[|ξ̄|2] + CE

[
|w̄(t0, ξ2)|2

] 1
2E[|ξ̄|2]

1
2 , ∀t ∈ [t0, T ].(3.14)

For (ρit)t∈[0,T ], i = 1, 2 given, with ρit0 = µi, by the assumptions on V , we have that the following equations
have strong solutions

Xξi,x
t = x−

∫ t

t0

∂pH(Xξi,x
s , ρis, ∂xV (t,Xξi,x

t , ρit))ds+ βB0,t0
t ,

and

(3.15) Y ξi,xt = ∂xG(Xξi,x
T , ρiT )−

∫ T

t

∂xH(Xξi,x
s , ρis, Y

ξi,x
s )ds− β

∫ T

t

Z0,ξi,x
s · dB0

s .

In particular, the solution to (3.15) can be obtained via the representation formulas

Y ξi,xt := ∂xV (t,Xξi,x
t , ρit) and Z0,ξi,x

t = ∂xxV (t,Xξi,x
t , ρit) + ẼFt [∂xµV (t,Xξi,x

t , ρit, X̃
ξi,x
t )], t ∈ [t0, T ].

By the global Lipschitz continuity of ∂pH and ∂xV (t, ·, ρ), standard results for SDEs and Grönwall’s inequality
yield that

(3.16) sup
s∈[t0,T ]

(
E
[∣∣Xξ1,x

s −Xξ2,x
s

∣∣2]) 1
2 ≤ C

∫ T

t0

E
[
‖∂xV (s, ·, ρ1

s)− ∂xV (s, ·, ρ2
s)‖L∞(Rd) +W2(ρ1

s, ρ
2
s)
]
ds.

We note that the first term on the right hand side of the previous inequality is finite because of the assumptions
on V . Letting t = t0 and taking expectation on (3.15), we have

∂xV (t0, x, ρ
i
t0) = E

[
∂xG(Xξi,x

T , ρiT )
]
−
∫ T

t0

E
[
DxH(Xξi,x

s , ρis, Y
ξi,x
s )

]
ds, for i = 1, 2,

and thus by the Lipschitz continuity assumptions on ∂xG and ∂xH and by (3.16) we have

|∂xV (t0, x, µ
1)− ∂xV (t0, x, µ

2)| ≤ C

[
sup

s∈[t0,T ]

EW2(ρ
1
s, ρ

2
s) +

∫ T

t0

E
[∣∣∣∂xV (s,Xξ1,x

s , ρ1s)− ∂xV (s,Xξ2,x
s , ρ2s)

∣∣∣] ds]

+ C

[
E|Xξ1,x

T −Xξ2,x
T |+

∫ T

t0

E
∣∣∣Xξ1,x

s −Xξ2,x
s

∣∣∣ ds]
≤ C

[
sup

s∈[t0,T ]

EW2(ρ
1
s, ρ

2
s) +

∫ T

t0

E
[∣∣∣∂xV (s,Xξ1,x

s , ρ1s)− ∂xV (s,Xξ2,x
s , ρ1s)

∣∣∣] ds]

+ C

∫ T

t0

E
[∣∣∣∂xV (s,Xξ2,x

s , ρ1s)− ∂xV (s,Xξ2,x
s , ρ2s)

∣∣∣] ds
+ C

[
E|Xξ1,x

T −Xξ2,x
T |+

∫ T

t0

E
∣∣∣Xξ1,x

s −Xξ2,x
s

∣∣∣ ds]
≤ C

[
sup

s∈[t0,T ]

EW2(ρ
1
s, ρ

2
s) +

∫ T

t0

E
∥∥∂xV (s, ·, ρ1s)− ∂xV (s, ·, ρ2s)

∥∥
L∞(Rd) ds

]

+ C

[(
E
[
|Xξ1,x

T −Xξ2,x
T |2

]) 1
2
+

∫ T

t0

(
E
[
|Xξ1,x

s −Xξ2,x
s |2

]) 1
2
ds

]
≤ C

[
sup

s∈[t0,T ]

EW2(ρ
1
s, ρ

2
s) +

∫ T

t0

E
∥∥∂xV (s, ·, ρ1s)− ∂xV (s, ·, ρ2s)

∥∥
L∞(Rd) ds

]
.
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By Gronwall’s inequality, we derive

sup
s∈[t0,T ]

E
∥∥∂xV (s, ·, ρ1

s)− ∂xV (s, ·, ρ2
s)
∥∥
L∞(Rd)

≤ C sup
t∈[t0,T ]

EW2(ρ1
t , ρ

2
t ).(3.17)

Plugging (3.17) into (3.14) and applying Young’s inequality, we obtain

sup
t∈[t0,T ]

EW2(ρ1
t , ρ

2
t ) ≤ C

{
E
[
|ξ1 − ξ2|2

]} 1
2

.

We can choose ξi ∈ L2(Ft0 , µi) to be such that W2(µ1, µ2) =
{
E
[
|ξ1 − ξ2|2

]} 1
2

and thus

sup
t∈[t0,T ]

EW2(ρ1
t , ρ

2
t ) ≤ CW2(µ1, µ2).(3.18)

Combining (3.17) and (3.18)

sup
s∈[t0,T ]

E
∥∥∂xV (s, ·, ρ1

s)− ∂xV (s, ·, ρ2
s)
∥∥
L∞(Rd)

≤ CW2(µ1, µ2).

Thus, the thesis of this proposition follows. �

Corollary 3.5. Suppose that V is a classical solution to the master equation. Then ∂xV is uniformly Lipschitz
in space and measure variables with respect to the W2 metric in the case of the measure component. Furthermore,
the Lipschitz constant is universal.

Proof. From Lemma 2.3 and Proposition 3.3 we have that ∂xxV ≥ 0 and from Proposition 3.2 we get that
∂xxV ≤ CId. Hence |∂xxV | is bounded by a universal constant and so ∂xV is Lipschitz continuous in space with
universal Lipschitz constant.
The Lipschitz continuity in the measure variable comes from Proposition 3.4. �

4. A Priori W1-Lipschitz estimates on ∂xV (x, ·)

Several FBSDE systems will play a crucial role in our analysis.

4.1. FBSDE of Pontryagin type. Let t0 ∈ [0, T ) and ξ ∈ L2(Ft0) and on the time interval [t0, T ] we consider

(4.1)


Xξ
t = ξ −

∫ t

t0

∂pH(Xξ
s , ρs, Y

ξ
s )ds+ βB0,t0

t

Y ξt = ∂xG(Xξ
T , ρT )−

∫ T

t

∂xH(Xξ
s , ρs, Y

ξ
s )ds−

∫ T

t

Z0,ξ
s dB0

s

where ρt0 := Lξ and ρt := LXξt |F0
t
.

Lemma 4.1. Suppose that G,H satisfy Assumptions 2.6 and 2.7 and that V is a classical solution to the master

equation with bounded ∂xxV and ∂xµV on [0, T ]. Then we have the representation formulas Y ξt = ∂xV (t,Xξ
t , ρt)

and Z0,ξ
t = β

(
∂xxV (t,Xξ

t , ρt) + ẼFt [∂xµV (t,Xξ
t , ρt, X̃

ξ
t )]
)

.

Proof. This result is well-known for experts and its proof follows the same lines as the proofs of [CD18b,
Proposition 5.42], [CCD22, Remark 57], [GMMZ22, Theorem 6.3] and [MM24, Theorem 4.1]. �

We also consider the standard system

(4.2)

 Xx
t = x+ βB0,t0

t

Y x,ξt = ∂xG(Xx
T , ρT )−

∫ T

t

∂xH(Xx
s , ρs, Y

x,ξ
s )ds−

∫ T

t

Z0,x,ξ
s dB0

s

and the alternative system

(4.3)


Xξ,x
t = x−

∫ t

t0

∂pH(Xξ,x
s , ρs, Y

ξ,x
s )ds+ βB0,t0

t

Y ξ,xt = ∂xG(Xξ,x
T , ρT )−

∫ T

t

∂xH(Xξ,x
s , ρs, Y

ξ,x
s )ds−

∫ T

t

Z0,ξ,x
s dB0

s ,

which also have the corresponding representation formulas. Note the the difference between the variables

(Y x,ξt , Z0,x,ξ
s ) and (Y ξ,xt , Z0,ξ,x

s ) which is expressed in the superscript labels. We underline that the solutions of
(4.2) and (4.3) depend implicitly on ξ via the flow of measures (ρt)t∈[t0,T ].
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We emphasize that these differ from the systems in [GMMZ22] in that for us the variable Y plays the role of
the momentum along the characteristics whereas in [GMMZ22] it is the value function along the characteristics.
All the previous FBSDE systems presented above are strongly linked to the Pontryagin system associated to
the stochastic maximum principle (or to the classical Hamiltonian system when β = 0), and the systems used
in [GMMZ22] have no such connection.

Both previously presented systems have similar representation formulas as in Lemma 4.1. Indeed,

Y x,ξt = ∂xV (t,Xx
t , ρt), Y ξ,xt = ∂xV (t,Xξ,x

t , ρt).

These are clearly different quantities, as in particular, if β = 0, we simply have Y x,ξt = ∂xV (t, x, ρt) 6=
∂xV (t,Xξ,x

t , ρt), except when t = t0, when Y x,ξt0 = Y ξ,xt0 = ∂xV (t0, x, ρt0).

4.2. Intuition. To help to give some intuition for the role of the different systems considered above, let us

consider β = 0 for this subsection. In the deterministic case we can use Xξ,x
t to define ρt. In particular we get

that ρt = L(X
ξ,ξ(·)
t ) = L(Xξ,·

t ◦ ξ) (note that Xξ,x
t0 = x).

Our objective is to develop some equations that give a representation for ∂µxV . Since Y x,ξt = ∂xV (t, x, ρt)

(since β = 0) it would be natural to try to differentiate the defining equation of Y x,ξt with respect to ξ (this will
become (4.6) below). Let us formally attempt this. Our equation is

Y x,ξt = ∂xG(Xx
T , ρT )−

∫ T

t

∂xH(Xx
s , ρs, Y

x,ξ
s )ds

and so we see that this comes down to differentiating the flow of measures L(Xξ,·
t ◦ξ) with respect to ξ. Replacing

ξ with ξ + εe1 we get

Xξ+εe1,·
s ((ξ(ω) + εe1)) ≈ Xξ+εe1,·

s (ξ(ω)) + ε∇Xξ,·
s (ξ(ω)) · e1

≈ Xξ,·
s (ξ(ω)) + ε∇Xξ,·

s (ξ(ω)) · e1 + εδXξ,·
s (ξ(ω))

where δXξ,·
s represents the value that one gets when from Xξ,·

s when perturbing ξ. So we see that an equation

that gives the variation of Y x,ξt with respect to ξ will involve two types of variations of X. The first is a gradient
in space and the second is a variation with respect to ξ. Each of these will require their own system of FBSDEs
which gives us three systems in total.
This also helps us understand why we need to consider the three systems above (4.1),(4.2),(4.3). Having (4.2)
is a matter of convenience as it provides the simplest representation formula. (4.3) is necessary because we need
to understand the gradient in space of X. In the case of no noise these two alone would have been sufficient.
However in the presence of noise we must also consider (4.1) because we cannot extract the ρs directly from
(4.3).

4.3. FBSDEs for pointwise representation. In order to gain the necessary a priori regularity estimates
on ∂xV (notably the fact that it is W1–Lipschitz continuous in the measure variable), we work at the level of
linearized FBSDE systems. These are derived from (4.1), (4.2) and (4.3). Linearization techniques combined
with finite dimensional projections (in the measure variable) are underneath essentially all well-posedness results
on master equations. This is typically carried out either at the PDE level using the MFG system (as for
instance in [CDLL19, AM23], etc.) or at the level of the Hamiltonian/FBSDE system (as for instance in
[CD18b,GS15,MZ24c,GM22,GMMZ22,MZ24a], etc.)

Consider {e1, . . . , ed} ⊂ Rd the canonical basis and for k ∈ {1, . . . , d}. First, we differentiate (4.3) in the ek
direction to obtain

(4.4)



∇kXξ,x
t = ek−

∫ t

t0

{
(∇kXξ,x

s )>∂xpH(Xξ,x
s , ρs, Y

ξ,x
s ) + (∇kY ξ,xs )>∂ppH(Xξ,x

s , ρs, Y
ξ,x
s )

}
ds

∇kY ξ,xt = ∂xxG(Xξ,x
T , ρT ) · ∇kXξ,x

T

−
∫ T

t

{
∂xxH(Xξ,x

s , ρs, Y
ξ,x
s ) · ∇kXξ,x

s +∂pxH(Xξ,x
s , ρs, Y

ξ,x
s ) · ∇kY ξ,xs

}
ds

−
∫ T

t

∇kZ0,ξ,x
s · dB0

s .
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

∇kX ξ,xt = −
∫ t

t0

{
(∇kX ξ,xs )>∂xpH(Xξ

s , ρs, Y
ξ
s ) + (∇kYξ,xs )>∂ppH(Xξ

s , ρs, Y
ξ
s )

−ẼFs
[
(∇kX̃ξ,x

s )>(∂µpH)(Xξ
s , ρs, X̃

ξ,x
s , Y ξs ) + (∇kX̃ ξ,xs )>∂µpH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s )
]}

ds

∇kYξ,xt = ∂xxG(Xξ
T , ρT ) · ∇kX ξ,xT

+ẼFT
[
∂µxG(Xξ

T , ρT , X̃
ξ,x
T ) · ∇kX̃ξ,x

T + ∂µxG(Xξ
T , ρT , X̃

ξ
T ) · ∇kX̃ ξ,xT

]
−
∫ T

t

{
∂xxH

(
Xξ
s , ρs, Y

ξ
s ) · ∇kX ξ,xs + ∂pxH

(
Xξ
s , ρs, Y

ξ
s ) · ∇kYξ,xs

+ẼFs
[
∂µxH

(
Xξ
s , ρs, X̃

ξ,x
s , Y ξs ) · ∇kX̃ξ,x

s + ∂µxH
(
Xξ
s , ρs, X̃

ξ
s , Y

ξ
s ) · ∇kX̃ ξ,xs

]}
ds

−
∫ T

t

∇kZ0,ξ,x
s · dB0

s ,

(4.5)

and

∇µkY
x,ξ,x̃
t = ẼFT

[
∂µxG(Xx

T , ρT , X̃
ξ,x̃
T ) · ∇kX̃ξ,x̃

T + ∂µxG(Xx
T , ρT , X̃

ξ
T ) · ∇kX̃ ξ,x̃T

]
−
∫ T

t

{
∂pxH(Xx

s , ρs, Y
x,ξ
s ) · ∇µkY x,ξ,x̃s(4.6)

+ ẼFs
[
∂µxH(Xx

s , ρs, X̃
ξ,x̃
s , Y x,ξs ) · ∇kX̃ξ,x̃

s + ∂µxH(Xx
s , ρs, X̃

ξ
s , Y

x,ξ
s ) · ∇kX̃ ξ,x̃s

]}
ds

−
∫ T

t

∇µkZ0,x,ξ,x̃
s · dB0

s .

Remark 4.2. The motivation behind the notation ∇µk in (4.6) is that this is linked to the kth component for
the Wasserstein gradient. Later we will also use the notation ∂µk with a similar purpose, i.e. ∂µkF := ∂µF · ek,
for any F regular enough.

Lemma 4.3. Suppose that G,H satisfy Assumptions 2.6 and 2.7. There is a constant δ > 0 so that whenever
T−t0 < δ the systems (4.1), (4.4), and (4.5) have a unique solution, where δ depends only on LH and LG2 (these
are the bounds on the second derivatives of H and the bounds on Lipschitz constant of ∂xG, with respect to space
and W2 in measure). Furthermore the solutions to these systems are bounded by controlled quantities, specifically

there is a constant C depending only on T , LH , and LG2 so that if At is one of ∇kXξ,x
t ,∇kY ξ,xt ,∇kX ξ,xt , or

∇kYξ,xt then

E

[
sup

s∈[t0,T ]

|As|2
]
≤ C

It is crucial in the above lemma that the constant δ depends only on the W2-Lipschitz constant of ∂xG and not
on the W1-Lipschitz constant.

Proof. The proof is similar to [MZ24c, Section 9] and [GMMZ22, Proposition 6.2(i)].
The described short time existence and uniqueness for (4.1) follows from [CD18b, Theorem 5.4].

For (4.4) we use [Zha17, Theorem 8.2.1]. In particular we note that because (4.4) is linear (in ∇kXξ,x
T and

∇kY ξ,xT ) the short time interval only depends on the absolute value of the coefficients which only include ∂xxG

and second derivatives of H. Finally from the cited theorem we see that E
[
sups∈[t0,T ] |As|

2
]

is bounded for

As = ∇kXξ,x
t or ∇kY ξ,xt .

Next we consider (4.5). Again this is a linear FBSDE. The proof follows very similiarly to [Zha17, Theorem
8.2.1] however a modification is required.
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Consider the standard mapping F given by ys maps to ∇kYξ,xs where ∇kYξ,xs is the solution to

∇kX ξ,xt = −
∫ t

t0

{
(∇kX ξ,xs )>∂xpH(Xξ

s , ρs, Y
ξ
s ) + (ys)

>∂ppH(Xξ
s , ρs, Y

ξ
s )

+ẼFs
[
(∇kX̃ξ,x

s )>(∂µpH)(Xξ
s , ρs, X̃

ξ,x
s , Y ξs ) + (∇kX̃ ξ,xs )>∂µpH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s )
]}

ds

∇kYξ,xt = ∂xxG(Xξ
T , ρT ) · ∇kX ξ,xT

+ẼFT
[
∂µxG(Xξ

T , ρT , X̃
ξ,x
T ) · ∇kX̃ξ,x

T + ∂µxG(Xξ
T , ρT , X̃

ξ
T ) · ∇kX̃ ξ,xT

]
−
∫ T

t

{
∂xxH

(
Xξ
s , ρs, Y

ξ
s ) · ∇kX ξ,xs + ∂pxH

(
Xξ
s , ρs, Y

ξ
s ) · ys

+ẼFs
[
∂µxH

(
Xξ
s , ρs, X̃

ξ,x
s , Y ξs ) · ∇kX̃ξ,x

s + ∂µxH
(
Xξ
s , ρs, X̃

ξ
s , Y

ξ
s ) · ∇kX̃ ξ,xs

]}
ds

−
∫ T

t

∇kZ0,ξ,x
s · dB0

s ,

We will show that F is a contraction mapping under the norm given by ‖ys‖2 = sups E(|ys|2) when T is
sufficiently small (for now assume T < 1). Indeed fix some y1, y2 denote by ∆y := y1 − y2 and ∇kX i be the
solutions to the above system with ys = yis. Let ∆X := ∇kX 1 − ∇kX 2 and ∆Y := F (y1) − F (y2). Applying
Grönwall’s inequality to the first equation in the system we see that ∆X satisfies ‖∆X‖ ≤ CT‖∆y‖ where C
depends only on LH . From the second equation we see that ∆Y satisfies the system

∆Yt = ∂xxG(Xξ
T , ρT ) ·∆XT

+ẼFT
[
∂µxG(Xξ

T , ρT , X̃
ξ
T ) · ∆̃XT

]
−
∫ T

t

{
∂xxH

(
Xξ
s , ρs, Y

ξ
s ) ·∆Xξ,x

s + ∂pxH
(
Xξ
s , ρs, Y

ξ
s ) ·∆ys

+ẼFs
[
∂µxH

(
Xξ
s , ρs, X̃

ξ
s , Y

ξ
s ) · ∆̃Xξ,x

s

]}
ds

−
∫ T

t

∆Z0,ξ,x
s · dB0

s ,

The only term that may seem concerning is ẼFT
[
∂µxG(Xξ

T , ρT , X̃
ξ
T ) · ∆̃XT

]
since we want to claim that the

short time interval depends only on the W2-Lipschitz constant of ∂xG and not on the W1-Lipschitz constant of
G. However, note that ∣∣∣ẼFT [∂µxG(Xξ

T , ρT , X̃
ξ
T ) · ∆̃XT

]∣∣∣ ≤ LG2 E(∆X2
T )

1
2

which follows from (2.1). It now follows from standard BSDE estimates (see [Zha17, Theorem 4.2.1]) that
‖∆Y ‖ ≤ C1T‖∆y‖ + C2‖∆X‖ where C1, C2 depend only on LH and LG2 . Combining this with our estimate
‖∆X‖ ≤ CT‖∆y‖ we see that F is a contraction mapping as long as T is sufficiently small and so there exists a
unique solution to the above system. In particular the small time interval and corresponding bound will depend
only on LG2 and not ‖∂xµG‖L∞ .

�

Corollary 4.4. Suppose that G,H satisfy Assumptions 2.6 and 2.7 and δ is given in Lemma 4.3. Then

E
[∣∣∣∇µkY x,ξ,x̃t0

∣∣∣2] is bounded by a universal constant on [t0, T ], for any t0 with T − t0 < δ.

Proof. We see that ∇µkY
x,ξ,x̃
t0 is the solution to a linear BSDE with coefficients that are bounded by universal

constants. �

4.4. Proof of the representation formula. The proof is broken into four steps. In the first step we develop
a system of FBSDE that gives a representation for E

[
∂µxV (t0, x, µ, ξ)η

]
where η ∈ L2(Ft0) is arbitrary. In the

next two steps we prove the representation formula for discrete and absolutely continuous measures respectively.
Finally we prove it for general measures. Let us remark that the approach via passing through measures with
discrete supports is a natural and typical one in the context of such representation formulas. We refer to the
proof of [CD18b, Proposition 5.55] and to the discussion on pages 218-219 from [CD18a] on this matter.

Proposition 4.5. Assume that G,H satisfy Assumptions 2.6 and 2.7 and δ is given in Lemma 4.3. Recall the

system (4.2) and define ~U(t0, x, µ) := Y x,ξt0 for any t0 with T − t0 < δ. Then
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(4.7) ∂µk
~U(t0, x, µ, x̃) = ∇µkY

x,ξ,x̃
t0

and, moreover, ∂µ~U is uniformly bounded by a universal constant.

Proof. Step 1. For any ξ ∈ L2(Ft0 , µ) and any scalar random variable η ∈ L2(Ft0 ,R), following standard
arguments and by the stability property of the involved systems we have

lim
ε→0

E
[

sup
t0≤t≤T

∣∣∣1
ε

[
Xξ+εηe1
t −Xξ

t

]
− δXξ,ηe1

t

∣∣∣2] = 0,(4.8)

where
(
δXξ,ηe1 , δY ξ,ηe1 , δZ0,ξ,ηe1

)
satisfies the linear McKean–Vlasov FBSDE

δXξ,ηe1
t = ηe1−

∫ t

t0

{
(δXξ,ηe1

s )>∂xpH
(
Xξ
s , ρs, Y

ξ
s ) + (δY ξ,ηe1s )>∂ppH

(
Xξ
s , ρs, Y

ξ
s )

+ẼFs
[
∂µpH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s ) · δX̃ξ,ηe1

s

]}
ds

δY ξ,ηe1t = ∂xxG(Xξ
T , ρT ) · δXξ,ηe1

T + ẼFT
[
∂µxG(Xξ

T , ρT , X̃
ξ
T ) · δX̃ξ,ηe1

T

]
−
∫ T

t

{
∂xxH

(
Xξ
s , ρs, Y

ξ
s ) · δXξ,ηe1

s + ∂pxH
(
Xξ
s , ρs, Y

ξ
s ) · δY ξ,ηe1s

+ẼFs
[
∂µxH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s ) · δX̃ξ,ηe1

s

]}
ds−

∫ T

t

δZ0,ξ,ηe1
s · dB0

s .

(4.9)

Specifically let δΦξ,ηe1,εt = 1
ε (Φξ+εηe1t −Φξt ) for Φ ∈ {X,Y, Z0}. By substituting and subtracting in (4.1) we see

δXξ,ηe1,ε
t = ηe1 −

1

ε

∫ t

t0

{
∂pH(Xξ+εηe1

s , ρξ+εηe1s , Y ξ+εηe1s )− ∂pH(Xξ
s , ρ

ξ
s, Y

ξ
s )
}

ds

= ηe1−
∫ t

t0

{
(δXξ,ηe1,ε

s )>∂xpH
(
Xξ
s , ρs, Y

ξ
s ) + (δY ξ,ηe1,εs )>∂ppH

(
Xξ
s , ρs, Y

ξ
s )

+ ẼFs
[
∂µpH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s ) · δX̃ξ,ηe1,ε

s

]}
ds+O(ε)

and

δY ξ,ηe1,εt = ∂xxG(Xξ
T , ρT ) · δXξ,ηe1,ε

T + ẼFT
[
∂µxG(Xξ

T , ρT , X̃
ξ
T ) · δX̃ξ,ηe1,ε

T

]
−
∫ T

t

{
∂xxH

(
Xξ
s , ρs, Y

ξ
s ) · δXξ,ηe1,ε

s + ∂pxH
(
Xξ
s , ρs, Y

ξ
s ) · δY ξ,ηe1,εs

+ ẼFs
[
∂µxH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s ) · δX̃ξ,ηe1,ε

T

]}
ds−

∫ T

t

δZ0,ξ,ηe1,ε
s · dB0

s +O(ε).

Note that aside from the O(ε) term,
(
δXξ,ηe1,ε

t , δY ξ,ηe1,εt , δZ0,ξ,ηe1,ε
)

satisfies the exact same FBSDE system

as
(
δXξ,ηe1,

t , δY ξ,ηe1t , δZ0,ξ,ηe1
)
. By the stability of FBSDE we get

lim
ε→0

E
[

sup
t0≤t≤T

∣∣∣δXξ,ηe1,ε
t − δXξ,ηe1

t

∣∣∣2] = 0

as desired.
Similarly to (4.8), using (4.2), one can show that

lim
ε→0

E
[

sup
t0≤t≤T

∣∣∣1
ε

[
Y x,ξ+εηe1t − Y x,ξt

]
− δY x,ξ,ηe1t

∣∣∣2] = 0,(4.10)

where
(
δY x,ξ,ηe1 , δZ0,x,ξ,ηe1

)
satisfies the linear (standard) BSDE

δY x,ξ,ηe1t = ẼF0
T

[
∂µxG(Xx

T , ρT , X̃
ξ
T ) · δX̃ξ,ηe1

T

]
−
∫ T

t

δZ0,x,ξ,ηe1
s · dB0

s

−
∫ T

t

{
∂pxH(Xx

s , ρs, Y
x,ξ
s ) · δY x,ξ,ηe1s + ẼFs

[
∂µxH(Xx

s , ρs, X̃
ξ
s , Y

x,ξ
s ) · δX̃ξ,ηe1

s

]}
ds

(4.11)
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In particular, (4.10) implies,

lim
ε→0

∣∣∣1
ε

[
~U(t0, x,Lξ+εηe1)− ~U(t0, x,Lξ)

]
− δY x,ξ,ηe1t0

∣∣∣2 = 0.(4.12)

Thus, by the definition of ∂µ~U ,

E
[
∂µ~U(t0, x, µ, ξ)ηe1

]
= E

[
∂µ1

~U(t0, x, µ, ξ)η
]

= δY x,ξ,ηe1t0 .(4.13)

Step 2. In this step we assume that ξ (or say, µ) is discrete: pi = P(ξ = xi), i = 1, · · · , n. In particular, we have
that µ =

∑n
i=1 pixi, for some {x1, . . . , xn} ⊂ Rd. Fix i and consider the following system of McKean–Vlasov

FBSDEs: for j = 1, · · · , n,

∇µ1
Xi,j
t = δije1−

∫ t

t0

{ n∑
k=1

pkẼFs
[
(∇µ1

X̃i,k
s )>∂µpH(Xξ,xj

s , ρs, X̃
ξ,xk
T , Y ξ,xjs )

]
+(∇µ1X

i,j
s )>∂xpH

(
Xξ,xj
s , ρs, Y

ξ,xj
s ) + (∇µ1Y

i,j
s )>∂ppH

(
Xξ,xj
s , ρs, Y

ξ,xj
s )

}
ds,

∇µ1
Y i,jt = ∂xxG(X

ξ,xj
T , ρT ) · ∇µ1

Xi,j
T +

n∑
k=1

pkẼFT
[
∂µxG(X

ξ,xj
T , ρT , X̃

ξ,xk
T ) · ∇µ1

X̃i,k
T

]
−
∫ T

t

{
∂xxH

(
Xξ,xj
s , ρs, Y

ξ,xj
s ) · ∇µ1

Xi,j
s + ∂pxH

(
Xξ,xj
s , ρs, Y

ξ,xj
s ) · ∇µ1

Y i,js

+

n∑
k=1

pkẼFs
[
∂µxH(Xξ,xj

s , ρs, X̃
ξ,xk
s , Y ξ,xjs ) · ∇µ1

X̃i,k
s

}
ds

−
∫ T

t

∇µ1
Z0,i,j
s · dB0

s ,

(4.14)

where δij stands for Kronecker’s symbol. In the above system ∇µ1
Xi,j
t represents perturbing xi in µ in the

e1 direction and measuring the variation in Xt at Xξ,xj (the place where xj has moved to by time t). The

interpretation for ∇µ1
Y i,jt is similar.

For any Φ ∈ {X,Y, Z0}, we define

∇1Φξ,xi := ∇µ1Φi,i, ∇1Φξ,xi,∗ :=
1

pi

∑
j 6=i

∇µ1
Φi,j1{ξ=xj}.

Note that Φξ =
∑n
j=1 Φξ,xj1{ξ=xj}. Since (4.14) is linear, one can easily check that

∇1X
ξ,xi
t = e1−

∫ t

t0

{
(∇1X

ξ,xi
s )>∂xpH

(
Xξ,xi
s , ρs, Y

ξ,xi
s ) + (∇1Y

ξ,xi
s )>∂ppH

(
Xξ,xi
s , ρs, Y

ξ,xi
s )

+ piẼFs
[
(∇1X̃

ξ,xi
s )>∂µpH(Xξ,xi

s , ρs, X̃
ξ,xi
s , Y ξ,xis )(4.15)

+ (∇1X̃
ξ,xi,∗
s )>∂µpH(Xξ,xi

s , ρs, X̃
ξ
s , Y

ξ,xi
s

]}
ds,

∇1X
ξ,xi,∗
t = −

∫ t

t0

{
(∇1X

ξ,xi,∗
s )>∂xpH

(
Xξ
s , ρs, Y

ξ
s ) + (∇1Y

ξ,xi,∗
s )>∂ppH

(
Xξ
s , ρs, Y

ξ
s )

+ ẼFs
[
(∇1X̃

ξ,xi
s )>∂µpH(Xξ

s , ρs, X̃
ξ,xi
s , Y ξs )(4.16)

+ (∇1X̃
ξ,xi,∗
s )>∂µpH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s )
]
1{ξ 6=xi}

}
ds

∇1Y
ξ,xi
t = ∂xxG(Xξ,xi

T , ρT ) · ∇1X
ξ,xi
T −

∫ T

t

∇1Z
0,ξ,xi
s dB0

s

+ piẼFT
[
∂µxG(Xξ,xi

T , ρT , X̃
ξ,xi
T ) · ∇1X̃

ξ,xi
s + ∂µxG(Xξ,xi

T , ρT , X̃
ξ
T ) · ∇1X̃

ξ,xi,∗
T

]
(4.17)

−
∫ T

t

{
∂xxH

(
Xξ,xi
s , ρs, Y

ξ,xi
s ) · ∇1X

ξ,xi
s + ∂pxH

(
Xξ,xi
s , ρs, Y

ξ,xi
s ) · ∇1Y

ξ,xi
s

+ piẼFs
[
∂µxH(Xξ,xi

s , ρs, X̃
ξ,xi
s , Y ξ,xis ) · ∇1X̃

ξ,xi
s + ∂µxH(Xξ,xi

s , ρs, X̃
ξ
s , Y

ξ,xi
s ) · ∇1X̃

ξ,xi,∗
T )

]}
ds
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∇1Y
ξ,xi,∗
t = ∂xxG(Xξ

T , ρT ) · ∇1X
ξ,xi,∗
T −

∫ T

t

∇1Y
0,ξ,xi,∗
s · dB0

s

+ ẼFT
[
∂µxG(Xξ

T , ρT , X̃
ξ,xi
T ) · ∇1X̃

ξ,xi
s + ∂µxG(Xξ

T , ρT , X̃
ξ
T ) · ∇1X̃

ξ,xi,∗
T

]
1{ξ 6=xi}

−
∫ T

t

{
∂xxH

(
Xξ
s , ρs, Y

ξ
s ) · ∇1X

ξ,xi,∗
s + ∂pxH

(
Xξ
s , ρs, Y

ξ
s ) · ∇1Y

ξ,xi,∗
s(4.18)

+ ẼFs
[
∂µxH(Xξ

s , ρs, X̃
ξ,xi
s , Y ξs ) · ∇1X̃

ξ,xi
s + ∂µxH(Xξ

s , ρs, X̃
ξ
s , Y

ξ
s ) · ∇1X̃

ξ,xi−
T )

]
1{ξ 6=xi}

}
ds

Since (4.9) is also linear, one can check that, for Φ ∈ {X,Y, Z0},

δΦξ,1{ξ=xi}e1 = ∇1Φξ,xi1{ξ=xi} + pi∇1Φξ,xi,∗.(4.19)

Moreover, note that

ẼFT
[
∂µxG(Xx,ξ

T , ρT , X̃
ξ
T ) · δX̃ξ,1{ξ=xi}e1

T

]
= ẼFT

[
∂µxG(Xx,ξ

T , ρT , X̃
ξ
T ) ·

[
∇1X̃

ξ,xi
T 1{ξ=xi} + pi∇1X̃

ξ,xi,∗
T

]]
= piẼFT

[
∂µxG(Xx,ξ

T , ρT , X̃
ξ,xi
T ) · ∇1X̃

ξ,xi
T + ∂µxG(Xx,ξ

T , ρT , X̃
ξ
T ) · ∇1X̃

ξ,xi,∗
T

]
and similarly

ẼFs
[
∂µxH(Xx,ξ

s , ρs, X̃
ξ
s , Y

x,ξ
s ) · δX̃ξ,1{ξ=xi}e1

s

]
= piẼFs

[
∂µxH(Xx,ξ

s , ρs, X̃
ξ,xi
s , Y x,ξs ) · ∇1X̃

ξ,xi
s + ∂µxH(Xx,ξ

s , ρs, X̃
ξ
s , Y

x,ξ
s ) · ∇1X̃

ξ,xi,∗
s )

]
.

Plug this into (4.11), we obtain

δΦ
x,ξ,1{ξ=xi}e1
t = pi∇µ1

Φx,ξ,xit ,(4.20)

where

∇µ1
Y x,ξ,xit = ẼFT

[
∂µxG(Xx

T , ρT , X̃
ξ,xi
T ) · ∇1X̃

ξ,xi
T + ∂µxG(Xx

T , ρT , X̃
ξ
T ) · ∇1X̃

ξ,xi,∗
T )

]
−
∫ T

t

{
∂pxH(Xx,ξ

s , ρs, Y
x,ξ
s ) · δY x,ξ,xis

+ẼFs
[
∂µxH(Xx,ξ

s , ρs, X̃
ξ,xi
s , Y x,ξs ) · ∇1X̃

ξ,xi
s + ∂µxH(Xx,ξ

s , ρs, X̃
ξ
s , Y

x,ξ
s ) · ∇1X̃

ξ,xi,∗
s

]}
ds

−
∫ T

t

∇µ1
Z0,x,ξ,xi
s · dB0

s .

(4.21)

In particular, by setting η = 1{ξ=xi} in (4.13) we obtain:

∂µ1
~U(t0, x, µ, xi) = ∇µ1

Y x,ξ,xit0 .(4.22)

We shall note that (4.15)-(4.16), (4.17)-(4.18) is different from (4.4) and (4.5), so (4.22) provides an alternative
discrete representation.
Step 3. We now prove (4.7) in the case that µ is absolutely continuous. For each n ≥ 3, set

xn~i :=
~i

n
, ∆n

~i
:=

[
i1
n
,
i1 + 1

n

)
× · · · ×

[
id
n
,
id + 1

n

)
, ~i = (i1, · · · , id)> ∈ Zd.

For any x ∈ Rd, there exists ~i(x) := (i1(x), · · · , id(x)) ∈ Zd such that x ∈ ∆n
~i(x)

. Let

~in(x) := (in1 (x), · · · , ind (x)) ∈ Zd, where inl (x) := min{max{il,−n2}, n2}, l = 1, · · · , d.

Denote Qn := {x ∈ Rd : |xi| ≤ n, i = 1, · · · , d}, Zdn := {~i ∈ Zd : ∆n
~i
∩Qn 6= ∅}, and

ξn :=
∑
~i∈Zdn

xn~i 1∆n
~i

(ξ) +
~in(ξ)

n
1Qcn(ξ).(4.23)
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It is clear that limn→+∞ E
[
|ξn − ξ|2

]
= 0 and thus limn→∞W2(Lξn ,Lξ) = 0. Then for any scalar random

variable η, by stability of FBSDE (4.9) and BSDE (4.11), we derive from (4.13) that

E
[
∂µ1

~U(t0, x, µ, ξ)η
]

= δY x,ξ,ηe1t0 = lim
n→∞

δY x,ξn,ηe1t0 .(4.24)

For each x̃ ∈ Rd, let ~i(x̃) be the i such that x̃ ∈ ∆n
~i

, which holds when n > |x̃|. Then
(
Lξn ,

~i(x̃)
n

)
→ (µ, x̃) as

n→∞ in W2 and as a sequence in Rd, respectively. By the stability of FBSDEs (4.1)-(4.2), we have as n→∞
that Xξn,

~i(x̃)
n → Xξ,x̃ and Y ξn,

~i(x̃)
n → Y ξ,x̃, as n → +∞, under the norm given by ‖A‖ := E

(
supt |At|

2
)

.

Moreover, since µ is absolutely continuous,

P
(
ξn =

~i(x̃)

n

)
= P

(
ξ ∈ ∆n

~i

)
→ 0, as n→∞.

Then by the stability of (4.15)-(4.16), (4.17)-(4.18) and (4.21) we can check that

(4.25) lim
n→∞

(
∇1Φξn,

~i(x̃)
n , ∇1Φξn,

~i(x̃)
n ,∗, ∇µ1

Φx,ξn,
~i(x̃)
n

)
=

(
∇1Φξ,x̃, ∇1Φξ,x̃,∗, ∇µ1

Φx,ξ,x̃
)
.

Now for any bounded function ϕ ∈ C(Rd), set η = ϕ(ξ) in (4.24), we derive from (4.20) that

E
[
∂µ1

~U(t0, x, µ, ξ)ϕ(ξ)
]

= lim
n→∞

δY
x,ξn,ϕ(ξn)e1
t0 = lim

n→∞

∑
~i∈Zdn

ϕ
(
xn~i

)
δY

x,ξn,1{ξn=xn
~i

}e1

t0

and so,

E
[
∂µ1

~U(t0, x, µ, ξ)ϕ(ξ)
]

= lim
n→∞

∑
~i∈Zdn

ϕ(xn~i )∇µ1
Y
x,ξn,x

n
~i

t0 P(ξ ∈ ∆~i) =

∫
Rd
ϕ(x̃)∇µ1

Y x,ξ,x̃t0 dµ(x̃).

This implies (4.7) immediately.

Step 4. We finally prove the general case. Denote ψ(x, µ, x̃) := ∇µ1
Y x,ξ,x̃t0 . By the stability of FBSDEs, ψ

is continuous in all the variables. Fix an arbitrary (µ, ξ). One can construct ξn such that Lξn is absolutely
continuous and limn→∞ E[|ξn − ξ|2] = 0. Then, for any η = ϕ(ξ) as in Step 3, by (4.13) and Step 3 we have

E
[
∂µ1

~U(t0, x, µ, ξ)ϕ(ξ)
]

= lim
n→∞

δY
x,ξn,ϕ(ξn)e1
t0 = lim

n→∞
E
[
ψ(x,Lξn , ξn)ϕ(ξn)

]
= E

[
ψ(x, µ, ξ)ϕ(ξ)

]
,

which implies (4.7) in the general case for k = 1. Similarly, we can show (4.7) for k = 1, · · · , d.

Note that ∂µk
~U(t0, x, µ, x̃) is deterministic and so∣∣∣∂µk ~U(t0, x, µ, x̃)

∣∣∣2 = E
(∣∣∣∂µk ~U(t0, x, µ, x̃)

∣∣∣2) = E
(∣∣∣∇µkY x,ξ,x̃t0

∣∣∣2)
which is bounded by a universal constant by Corollary 4.4. �

Corollary 4.6. Assume that G,H satisfy Assumptions 2.6 and 2.7 and δ is given in Lemma 4.3. Recall the

system (4.2) and define ~U(t0, x, µ) := Y x,ξt0 for any t0 with T − t0 < δ. Then the following decoupled McKean–
Vlasov FBSDE

(4.26)

 Xx
t = x+ βB0,t0

t

Y xt = G(Xx
T , ρT )−

∫ T

t

H(Xx
s , ρs, Y

x,ξ
s )ds−

∫ T

t

Z0,x
s dBt0s

is well-posed on [t0, T ] for any x ∈ Rd. Define V (t0, x, µ) := Y xt0 . Then V is the unique classical solution of the

master equation (1.2) and ∂xV = ~U on [t0, T ]× Rd ×P2(Rd).

Proof. The proof is essentially the same as [MZ24a, Proposition 5.2]. The only difference is that here we do
not have the presence of idiosyncratic noise and we need to take care of the less regular data G,H. This can be
done by using the smooth mollifier constructed in [MZ24c, Section 3]. �
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5. Long Time Well-Posedness for the Master Equation

First we recall a short time existence result, [CD18b, Theorem 5.45].

Lemma 5.1. Suppose that Assumptions 2.6 and 2.7 are satisfied. Then there exists a universal constant c > 0
and V so that V is a classical solution to the master equation on [T − c, T ] × Rd ×P2(Rd). Furthermore for
each fixed t ∈ [T − c, T ], V (t, ·, ·) satisfies the same assumptions as G in Assumption 2.6.

Proof. First note that Assumption 2.6 and 2.7 gives the regularity conditions for the short time existence that
will not affect the size of the time interval (in the notation of [CD18b] the terms bounded by Γ).
We note that the length of the time interval, c, is a universal constant for us. Indeed we have that φ is the
identity (since in the notation of [CD18b], b = α for us), λ = 1

4c0
(this is the strong convexity constant for

the Lagrangian which was assumed for us in Assumption 2.7), and L is the sum of the Lipschitz constants of
∂xH and ∂xV in space and in measure with respect to W1, which is bounded by a universal constant due to
Corollaries 3.5 and 4.4. �

Finally we prove our global well-posedness result.

Theorem 5.2. Suppose that G,H are displacement monotone and satisfy Assumptions 2.6 and 2.7.
Then there is a unique global in time classical solution V to the master equation (1.2) within the class of bounded
∂xxV and ∂xµV .

Proof. We first prove uniqueness. Let V, Ṽ be two classical solutions to the master equation with bounded ∂xxV ,
∂xµV , ∂xxṼ , ∂xµṼ . Because of the short time well-posedness of the system (4.1) we obtain that ∂xV = ∂xṼ .

We will now use (1.3) to show that V = Ṽ . Let u, ũ be the value functions given by (1.4) and ρ, ρ̃ be the

associated solutions of the second equation of (1.3). Since ∂xV = ∂xṼ we have that ∂xu = ∂xũ and so from the

second equation of (1.3) we obtain that ρ = ρ̃. It now follows from Lemma 3.1 that V = Ṽ .
Next we prove existence. Let T > 0 be an arbitrary long time horizon.

We will repeatedly apply the short time existence result Lemma 5.1. By the results of the previous sections,
any solution V to the master equation will be such that ∂xV (t, ·, ·) is uniformly Lipschitz continuous in the
(x, µ)-variable (with respect to W1 in the µ-variable), and this constant depends only on G,H and T .
We let V0 be a short time solution to the master equation on [T − δ, T ]. For k = 1, 2, . . . , we can recursively
define solutions Vk to the master equation by letting Vk be the short time solution on [T − (k + 1) δ2 , T − k

δ
2 ]

with the terminal condition Vk(T − k δ2 , ·) = Vk−1(T − k δ2 , ·). Since δ is a universal constant (as in particular
the Lipschitz constants of ∂xVk(t, ·, ·) are universally bounded by a constant depending on G,H and T ) we will
need only finitely many steps to cover the whole interval [0, T ]. Because of the uniqueness proved above we
have that the Vk’s agree where their domains overlap and so we can stitch these together to obtain a classical
solution to the master equation. �

Remark 5.3. The stability of the classical solution to the master equation (1.2) obtained above is expected.
Indeed, this is the consequence of the notion of solution in the full Ck spaces and would follow along the same
lines as the proof of [CD18b, Theorem 5.45] (which is based on an approximation argument). Based on the proof
of that theorem, we expect the following result. Let (Hn, Gn)n∈N be a sequence of data functions, satisfying
our main assumptions, such that this sequence, and its derivatives up to order two, converge locally uniformly
to (H,G), and to its derivatives, respectively, as n → +∞. The convergence in the measure variable is with
respect to W1. Suppose that (H,G) satisfies our standing assumptions, including the displacement monotonicity.
Then (Vn)n∈N (the solution to the master equation with data (Hn, Gn)) and its derivatives up to order two
convergence locally uniformly to V (the solution to the master equation with data (H,G)), and to its derivatives,
respectively, as n→ +∞. As this result is expected, we decided not to give further details on it.
It worth however mentioning that for given data (H,G) satisfying suitable monotonicity conditions, it is a subtle
question to construct smooth approximations which satisfy the same monotonicity conditions. In the case of
Lasry–Lions monotone data, we refer to the discussion in [MZ24c] on this matter.
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