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Abstract Two bilayer flow arrangements, involving either (i) shear- or (ii) gravity-driven fluids, are explored
in the presence of a periodically repeating surface topography. Key simplifying assumptions are that the
flow is considered two-dimensional and inertialess. The solutions are obtained utilising a novel first-integral
representation of the Navier–Stokes equations, leading to a highly efficient methodology for generating the
accompanying flow structure within the layers in tandem with the disturbance experienced by the internal
interface separating them—for configuration (ii) this extends also to the upper layer’s free-surface shape.
Representative examples of each flow type, with a change of key parameters, are provided with particular
emphasis on (ii).

1 Introduction

Gravity-driven single layer, steady film flow over a rigid substrate containing surface topography has been a topic
of considerable research interest over the past four decades. The industrial motivation being the need to minimise,
ideally avoid, any subsequent lack of planarity and resultant optical defects in the finished protective or functional
coated layer applied. It is arguably the early work of Stillwagon and Larson [1], concerning the use of spin-
coating driven by a centrifugally generated body force, that spawned the subsequent research efforts addressing
the simpler problem of gravity driven film flow directed at unravelling the impact of the presence of unwanted
micro-scale surface features, such as an isolated dust particle considered by Decré and Baret [2], or extensively
printed electronic circuitry explored by Lee et al. [3].

It is only latterly that related interest has emerged for problems when such flows involve two or more superposed
adjacent immiscible liquids. A long wave approximation, extendable to any number of layers, was used by Abdalla
et al. [4] to explore numerically the disturbance the internal separating interface and free-surface experience when
a bilayer film encounters steep-sided topographical surface features. Recent associated work of note, but in the
absence of surface topography, is that of Thompson and Blyth [5] and Alexander and Papageorgiou [6] investigating
the stability and dynamics of inertialess multilayer film and channel flow, respectively. The focus of the contribution
reported here is the efficient generation of inertialess steady-state, base-flow bilayer solutions, useful for subsequent
stability analyses, influenced by the presence of a periodically patterned substrate. Beginning with shear-driven
flow, having direct tribological applications related to artificial replacement joints as reported by Qiu et al. [7],
Basri et al. [8], Nečas et al. [9] and the beneficial use of surface texturing in this context demonstrated by Gachot
et al. [10], Chyr et al. [11]; followed, but with a greater attention directed at gravity-driven, free-surface film flow
over both weak and strong surface undulations, due to its broad relevance in coating technology—see Kistler and
Schweitzer [12].

The paper is structured as follows. Section 2 provides details of the overall problem specification which, to set the
scene, is followed by a brief review of the underpinning potential based variational approach for the general case of
three-dimensional (3D) steady flow. The particular case of two-dimensional (2D) bilayer inertialess (Stokes) flow is
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then addressed, where the governing PDEs are formulated for the first time as Euler–Lagrange equations from the
variational principle and boundary/interface conditions. Section 3 provides a description of their rapid method of
solution involving transformation to complex variables; it is comprised of a brief description of the semi-analytic
complex variable (CV) approach adopted, followed by its novel formulation for bilayer flow, before continuing with
an outline of the related spectral discretisation employed. Two complementary additional methods of solution are
considered next: an analytic first integral formulation together with high-fidelity computations utilising a finite-
element discretisation of the governing Navier–Stokes equations. The results and comparisons reported in Sect. 4
cover both problems of interest. Conclusions are drawn in Sect. 5.

2 Problem specification

The problems of interest, steady, shear- and gravity-driven bilayer flow over a stationary, rigid substrate containing
a repeating topographical feature (given by x2 = b(x1)) and of infinite width, are illustrated in Fig. 1. They involve
two immiscible liquids (Newtonian, dynamic viscosity η, and incompressible, density �), lying one above the other
and separated from each other by an internal interface at x2 = f1(x1).

In the shear-driven case, the confining substrates are in parallel alignment—the upper planar one moving with
constant speed u0, while for the gravity-driven case, the layers flow down a patterned substrate inclined at an
fixed angle to the horizontal. For the latter, both the free-surface shape, as well as that of the internal interface,
remain to be determined.

Using tensor notation with Einstein’s summation convention, the general governing continuity and momentum
equations for an assumed velocity field, ui, within the layers are:

∂iui = 0 , (1)

∂j [�ujui − Tij + �V δij ] = 0 , (2)

respectively; Tij = −pδij + η[∂iuj + ∂jui] denotes the associated stress tensor and V = g[x2 cos α − x1 sin α] the
specific potential energy.

At the patterned substrate, x2 = b(x1), the no-slip/no-penetration condition ui(x1, b(x1)) = 0 requires fulfil-
ment. Along the internal interface, x2 = f1(x1), the velocity must remain continuous, [[ui]] = 0—the double square
bracket denoting the jump condition. Additionally, both kinematic, niui = 0, where ni denotes the normal vector at
the interface, and dynamic, [[Tij ]]nj = [[σ]]κni, where [[σ]] is the interfacial tension and κ := f ′′

1 (x1)/
√

1 + f ′
1(x1)2

3

denotes the curvature, conditions must be fulfilled there.
Depending on the flow type, the boundary conditions at the upper boundary will differ: shear-driven flow

requires satisfaction of a no-slip/no-penetration condition there, ui(x1, h2) = u0δ1i; while for gravity-driven flow,
kinematic, niui = 0, and dynamic, Tijnj = σ2κni, conditions apply at x2 = f2(x1), where σ2 is the surface tension.
At the left and right boundaries of the flow domains, periodic conditions are assumed to exist.

Fig. 1 In-plane schematics of bilayer flow over topography: (i) purely shear-driven (left) and (ii) gravity-driven while open
to the atmosphere (right), both taken to be of infinite lateral extent. The geometry is shown for each—h1 (h2) represents the
mean height of the lower (upper) layer with reference to the mean height of the patterned lower, stationary substrate. u0 is
the speed of the upper confining planar substrate, λ the wavelength of the topography and g the gravitational acceleration
which can be ignored in the case of (i)
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2.1 Mathematical formulation

2.1.1 Potential-based variational formulation—general case

The continuity equation (1) is fulfilled identically on introduction of a stream function vector Ψk, such that:

ui = εijk∂jΨk . (3)

In an analogous way, the momentum balance (2) is fulfilled identically by introducing a tensor potential, akq, for
the momentum flux density, leading to:

�uiuj − Tji + �V δij = εiklεjpq∂k∂palq, (4)

motivated by an analogy with Maxwell’s theory, see Scholle et al. [13]—for a more detailed treatise the reader is
referred to Marner [14]’s thesis.

The most striking advantages of the above is the resulting self-adjoint form achieved, allowing the following
Lagrangian [13] for viscous flow to be obtained:


 = �āijuiuj + 2[ηuj − ∂jΦ]∂iāij +
1
2
εilkεjpq∂lāij∂pākq , (5)

where the tensor potential is, according to aij = āij + 2Φδij , decomposed into traceless, āij and isotropic parts
with a scalar potential Φ. The velocity field is expressed in terms of the stream function vector via Eq. (3). The
Euler–Lagrange equations resulting by variation of the action integral with respect to āij and Φ, reproduce the
tensor field equation (4) by linear combination; whereas, variation with respect to Ψi and Φ provides gauging
conditions for the potentials [13].

2.1.2 Two-dimensional steady inertialess flow

With reference to the problem specification, the flows of interest are assumed two-dimensional (2D), which is
the norm under the assumption that the substrate topography does not vary in the comparably infinite lateral
direction. In this case the above general formulation can be adapted accordingly by taking Ψk = ψδk3 and āi3 = 0
as a specific choice for the stream function vector and the tensor potential, respectively, implying the well-known
relationships u1 = ∂2ψ, u2 = −∂1ψ and u3 = 0.

In addition, the layers are taken to be inertialess, hence neglect of the cubic term �āijuiuj in the Lagrangian
(5). The validity of this assumption rests on the Reynolds number being sufficiently small, which for a single fluid
layer is generally expressed as Re = �hU/η where h is the layer thickness and U is the maximum velocity. For a
monolayer gravity-driven film the Reynolds number takes the form Re = �2gh3 sin α/

(
2η2

)
, see Marner et al. [15].

The latter and numerous other studies, for example, by Nguyen and Bontozoglou [16], Aksel and Schörner [17],
involving both numerical predictions and experimental observation, reveal the effect of inertia in monolayer films
at Reynolds numbers of around 30 and higher. Conversely, for Re ≤ 10 its effect is negligible. For coating and
lubrication flows, Re � 1 is typical. Additional support for assuming Stokes flow for the problems of interest, is the
work of Gaskell et al. [18] and Veremieiev et al. [19], showing that lubrication theory, although not strictly valid
above Re = 0, produces excellent results for the more challenging case of film flow over steep-sided topography
when compared with complementary experimental data [2]. This feature of lubrication theory for small Re when
surface patterning is present, is widely accepted within the coating community.

Accordingly, the Euler–Lagrange equations of the Lagrangian (5) with the inertia term neglected, resulting from
variation with respect to a11 and a12, are:

∂1(η∂2ψ − ∂1Φ) + ∂2(η∂1ψ + ∂2Φ) = 0 , (6)

∂2(η∂2ψ − ∂1Φ) − ∂1(η∂1ψ + ∂2Φ) = 0 . (7)

On expressing the velocity in terms of the stream function, the no-slip/no-penetration conditions at the profiled
substrate become:

∂iψ(x1, b(x1)) = 0 , (8)

one consequence of which is that ψ(x1, b(x1)) = const. Since the stream function is thus determined apart from
one additional constant, the gauging ψ(x1, b(x1)) = 0 follows. Similarly, the continuity condition at the internal
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interface reads:

[[∂iψ(x1, f1(x1))]] = 0 . (9)

A key feature of this potential-based first integral approach, is a greatly simplified expression for the dynamic
condition at an internal layer-separating interface, or at a free-surface, namely:

[[∂iΦ]] =
[[σ]]
2

ni +
[[�]]
2

∫
V dxi , (10)

for the gradient of the scalar potential [15]. Which, in turn, is an extremely convenient form for obtaining solutions:
by decomposition in the tangential and normal directions, the above condition becomes of Dirichlet–Neumann type
[15].

The kinematic conditions at the internal interface (k = 1) and for gravity-driven flow at the bounding upper
free-surface (k = 2) also, determining their associated shapes, read:

ψ(x1, fk(x1)) = ψk = const . (11)

3 Method of solution

Equations (6) and (7) are solved, subject to boundary conditions (8) to (11), using a novel formulation of the
complex variable (CV) method for 2D multilayer Stokes flow problems described below, and involves an analytic
reduction in dimension (from 2D → 1D).

3.1 Complex Variable (CV) method

3.1.1 Analytic formulation and solution of the field equations

Representing the field equations (6) and (7) in terms of the complex variable:

ξ := x1 + ix2 , (12)

together with its complex conjugate, ξ̄, leads to the following integrable complex equation:

∂2

∂ξ
2 [Φ + iηψ] = 0 . (13)

By direct twofold integration one obtains:

Φ + iηΨ = ξ̄g0(ξ) + g1(ξ), (14)

containing two holomorphic functions g0, 1(ξ), frequently referred to as Goursat functions as, for example, in
Mikhlin [20], Scholle et al. [21], requiring determination via the boundary and interface conditions.

The use of holomorphic functions points again to an analogy with the mathematical methods used in Maxwell’s
theory for the computation of stationary fields, since the general solution (14) fulfils the set of two PDEs,
∇2[Φ + iηΨ] = 4g0 and ∇2g0 = 0, consisting of a Poisson and a Laplace equation. Vice versa, the use of holomor-
phic functions in classical electrodynamics is widespread and reported in textbooks, for example Jackson [22]. The
fact that holomorphic functions fulfil Laplace’s equation can be used for their reconstruction from their boundary
values by finite differencing—see Sect. 4.3.

3.1.2 Boundary and interface conditions for the CV formulation

For convenience, the notation x is used subsequently in place of x1. The lower boundary (k = 0), interface (k = 1)
and upper boundary (k = 2) read:

ξ = ξk(x) := x + ihk + iH ′
k(x) ,
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with periodic functions H ′
k(x), the period average of which vanishes. These functions indicate the deviation of the

local height of the upper boundary of the respective layer from its mean value, hk. In particular, H ′
0(x) = b(x) is

the prescribed topographically featured shape of the solid substrate, whereas H ′
1(x) denotes the a priori unknown

shape of the internal interface. In the case of gravity-driven film flows, H ′
2(x) denotes the likewise unknown free-

surface shape, whereas H ′
2 ≡ 0 for shear-driven flow. Since the stream function must fulfil periodic boundary

conditions only, while the potential Φ may also contain aperiodic terms, the Goursat functions conveniently split
into polynomial and periodic parts as in the work of Marner et al. [23] according to:

g0(ξ) = iAξ +
3C

4
ξ2 + iQ(ξ), (15)

g1(ξ) = −i�Aξ2 − C

4
ξ3 + 2R(ξ) − iξQ(ξ), (16)

containing two periodic functions Q(ξ), R(ξ) and two constants, A ∈ C, C ∈ R. The no-slip/no-penetration
condition (8), multiplied by η1ξ

′
0(x), results in:

d
dx

[R(ξ0) + bQ(ξ0)] + 	[
ξ̄′
0Q(ξ0)

]
= −

[
2�Ab +

3
2
Cb2

]
ξ′
0 . (17)

The continuity condition (9) and the dynamic condition (10) can be beneficially combined to form one complex
equation, resulting finally in the jump condition:

2i[[Q]] =
[[σ]]
2

(n − i) +
[[�]]g
2

eiα
[∫

H ′
1dx +

i
2
H1′2

]
+ 2i[[η]]

∂Ψ
∂ξ

+ B , (18)

supplemented with [[A]] = −i[[�]]gh exp(iα)/4 and [[C]] = −[[�]]g sinα/6, where B ∈ C is an integration constant and
n = n1 + in2 the normal vector. A different linear combination of (9) and (10) leads to a jump condition for R.

The upper boundary condition as the main distinguishing feature between the two flow arrangements is, for the
shear-driven flow a no-slip/no-penetration one:

d
dx

[R(ξ2) + h2Q(ξ2)] + 	Q(ξ2) + 2h2�A = u0 ; (19)

while for gravity-driven film flow a dynamic one applies:

d
dx

[R + (h2 + H ′
2)Q]2 − i�[

ξ̄′
2Q

]
2

=
[
�g

4

(
e−iα

∫
H ′

2dx − i
2
eiαH ′2

2

)
− iσ

4
n̄ + B

]
ξ′
2 , (20)

supplemented by the kinematic boundary condition (11) for k = 2, determining the free-surface shape.

3.1.3 Spectral discretisation and solution

Subsequently, all lengths are scaled with λ/(2π), leading to a 2π-periodic problem. The boundary and interface
conditions formulated in Sect. 3.1.2 are discretised using a spectral method, making use of Fourier series represen-
tations of the form:

Q(ξ) = i
N∑

n=−N

Qn exp(inξ) , R(ξ) = i
N∑

n=−N

Rn exp(inξ) (21)

for the function Q and R, leading to an algebraic set of equations for the respective coefficients Qn, Rn and for
the Fourier coefficients of Hk(x). The resulting nonlinear equation set can be conveniently solved iteratively and
was achieved using Python, as in the case of the FE formulation mentioned in Sect. 3.2—further details of which
are available in the book chapter Scholle et al. [24] or the thesis by Mellmann [25].
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3.2 Comparative methods of solution

In order to highlight the CV method’s efficiency, comparisons are also drawn with two further sets of corresponding
solutions: the first a purely analytic one based on a long wave approximation applied to the first integral formulation
of Navier–Stokes equation [24, 26], referred to here so as to distinguish it from a standard lubrication approximation,
as the first integral lubrication method (FL)—see the Appendix; the second involving a finite element (FE)
discretisation of the corresponding classical Navier–Stokes equations, solved numerically [24, 25].

4 Results and discussion

4.1 Non-dimensional parameters

By adopting L = λ/(2π), see Sect. 3.1.3, as a characteristic length scale, the coordinates can be written in
dimensionless form as x̃ = 2πx/λ and ỹ = 2πy/λ, and the dimensionless mean film heights as:

h̃1 = 2π
h1

λ
,

h̃2 = 2π
h2

λ
,

and together with the dimensionless amplitude of the substrate:

ã = π
b(λ) − b(0)

λ

appear as geometric parameters for both flow configurations. In the case of gravity-driven film flow, the inclination
angle α is an additional geometric parameter.

For the sake of simplicity, the tildes above the letters can be dispensed with and x̃, ỹ and h̃1, h̃2, ã, written as
x , y and h1, h2, a, subsequently.

The non-dimensional parameters related to the material properties are the ratios of the viscosities, η1/η2, and
densities �1/�2, while for gravity-driven film flow, the capillary number:

Ca =
�2gλ2 sin α

8π2σ2

is relevant. If, as in the results which follow, tension at the internal interface is neglected, [[σ]] = 0 for both flow
configurations.

4.2 Comparison of CV and FL results with FE computations for the case of shear-driven flow

For the purpose of demonstrating the benefits of the CV method, comparisons are drawn between solutions
obtained using all three methods for the case of a patterned substrate containing harmonic corrugations given by
b(x) = −a cos x with a = 0.5.

The corresponding geometry parameters for the two layers are h1 = 0.7 and h2 = 1.3. Two viscosity ratios,
η1/η2 = 2 and 1/2 are considered, with �1/�2 = 1. All three predictions reveal flow separation to occur. While the
FL results capture the main features of the flow, those obtained using the CV method compare almost identically
with the corresponding high-fidelity FE ones—but with the former generated in a fraction of the computational
time: the CV computations of Fig. 2 taking approximately 0.24s of CPU time on MacBook Pro, M1 processor,
8 GB memory; while the corresponding FE ones took approximately 250s of CPU time—a factor of the order of
1000 times greater. Both methods were implemented using Python 3.9.

The samples shown here also confirm the reliability of the CV method, which has already been validated for
monolayer flows via comparisons with both numerical results and experimentally obtained flow visualisations by,
for example, Aksel and Schörner [27], Marner et al. [23], Scholle et al. [17].

The FL method, although less accurate than the CV and FE approaches, which produce comparable results,
nevertheless proves itself to be a very useful and cheap tool for quickly identifying the rudimentary features of
both flow arrangements worthy of a more detailed and accurate investigation using one of the other two solvers.
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Fig. 2 Streamline flow patterns for bilayer inertialess shear-driven flow, as predicted by the FL (top), CV (middle) and
FE (bottom) methods of solution: a = 0.5, η1/η2 = 2 (left) and η1/η2 = 1/2 (right). The upper planar substrate is moving
from left to right, consistent with Fig. 1

The efficacy of the CV method having been established for shear-driven flow when predictions are compared to
their high-fidelity FE counterparts, the subsequent need to generate FL and FE solutions for comparison purposes
is now dispensed with.

4.3 Gravity-driven flow over weak surface undulations

Based on the above results, the CV method alone is now used to solve for bilayer gravity-driven flow over harmonic
corrugations; first for the case of comparatively small amplitude a = 0.3.

Figure 3 shows results for the internal flow structure within both layers for four different angles, α, of inclination
to the horizontal of the rigid substrate shaded grey. The geometrical values are a = 0.3, h1 = 0.7, h2 = 1.3, the
capillary number, Ca = 1, and the ratio of the fluid properties �1/�2 = 1, η1/η2 = 1/3. The component of gravity
acting in the direction of flow increases with inclination angle, revealing that the free-surface minimum, indicated
by the vertical arrow pair, shifts to the upstream side the lower the value of α, accompanied by a corresponding
increased free-surface disturbance recognisable by the peak-to-peak amplitude indicated again by the vertical arrow
pair.

In Fig. 4 a change in the value of the surface tension at the upper free-surface is investigated for a substrate
inclination angle of α = 60°, keeping the other parameters the same. For the smaller of the two Ca values there
is a clear smoothing of the surface tension effect and hence a decrease in the disturbance there. This is consistent
with what is found for single layer flows with the obvious outcome that in the limit of Ca → 0 the free-surface
would be planar.

4.4 Gravity-driven flow over strong surface undulations

The CV method as presented above is restricted to amplitudes a ≤ 0.5, since for larger values the Fourier series (21)
diverges, which is well known from prior investigations by Scholle et al. [27], Malevich et al. [28]. This shortcoming
can be satisfactorily addressed and overcome by various strategies: a Padé approximation replacing the divergent
Fourier series is used by Malevich et al. [28]; while Scholle et al. [27] utilise, and as adopted here, a local Fourier
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Fig. 3 Bilayer gravity-driven film flow: streamlines for the case a = 0.3, h1 = 0.7, h2 = 1.3, �2/�1 = 1, Ca = 1, η1/η2 = 1/3
for different inclination angles of the profiled substrate. The flow is from left to right as indicated by the large single arrow,
while the vertical arrow pairs indicate both the position of the surface minimum and the peak-to-peak amplitude of the
free-surface disturbance

Fig. 4 Bilayer gravity-driven film flow: streamlines for a = 0.3, h1 = 0.7, h2 = 1.3, �2/�1 = 1, η1/η2 = 1/3, for the case
when the profiled substrate is at an angle α = 60°, and for two different capillary numbers. The flow is from left to right as
indicated by the large arrow

discretisation according to:

Q±(ξk(x)) = i
N∑

m=−N

q±
k,m exp(imx) , (22)

for the boundary values of Q above (+) and below (−) the k -th boundary line. The same applies to R. The
functions Q and R themselves are reconstructed via a second step, from their boundary values, which in the
present work is achieved via finite differencing of the Laplace equation. This additional numerical step requires
some additional CPU time1, but is only necessary for the visualisation of the streamlines, while, for example, the
free-surface shape can be determined without the need for reconstructing the values of the holomorphic functions
inside the flow domain.

Exemplary results, obtained using the above methodology, for varying viscosity ratio η2/η1, Ca = 1 and a
substrate inclination angle of α = 45°, are shown in Fig. 5. In all cases the upper free-surface is essentially planar
due to the thickness of the upper layer compared to the lower one. However, while the curvature of the internal
interface is found to be influenced only slightly by a change in the viscosity ratio, the size and extent of the eddy
structure present depends strongly on it.

1Typically ≈ 10s for the samples shown in Fig. 5 using the same hardware and Python version as reported in Sect. 4.1.
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Fig. 5 Bilayer gravity-driven film flow: streamlines with a = 1.257, h1 = 1.885, h2 = 8.168, �2/�1 = 1, and Ca = 1 for the
case when the profiled substrate is at an angle α = 45°, and for three different viscosity ratios η2/η1 = 0.9 (left), η2/η1 = 1
(middle) and η2/η1 = 2 (right). The flow is from left to right as indicated by the large arrow

5 Concluding remarks

The potential-based first integral approach adopted provides a promising basis for the development of highly
efficient analytical (FL) and semi-analytical (CV) solution methods for the exploration of multilayer lubrication
like and related coating flow problems in the Stokes flow limit. Its major benefits are the existence of a variational
principle and a considerably simplified form of the dynamic interface condition to a Dirichlet/Neumann form.

Apart from the efficiency of the CV method, allowing solutions to be generated in a mere fraction of the
time required to produce equivalent high-fidelity FE solutions of the corresponding full Navier-Stokes equations
for incompressible flow, their beneficial representation in terms of Fourier series promotes their use as base-flow
solutions for a subsequent stability analysis; the latter forming the topic of a forthcoming investigation making
use of a more general first integral formulation developed by Marner et al. [23] for unsteady 2D flow with inertia.
In addition it would be a relatively straight forward matter to extend the above investigations to the case of
non-Newtonian liquids.

Likewise, more demanding 3D related flow problems, see Veremieiev et al. [29] and D’Alessio [30], can be
addressed as future research, which is clear from the potential-based variation formulation shown in its general
form in Sect. 2.1.1.
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Appendix A. Analytical first integral lubrication (FL) method of solution

Invoking the long-wave (lubrication) approximation, see Oron et al. [31], Craster and Matar [32], based on the
assumptions that (i) the flow velocity u1 in the direction of flow dominates compared to the velocity in the cross-
flow direction, u2, while (ii) gradients in the cross-flow direction are dominant compared to those in direction
of flow, namely ∂2

1ψ � ∂2
2ψ, simplifies the field equation (7) to the integrable form ∂2[ηu1 − 2∂1Φ] = 0, which

following integration yields:

2∂1Φ = ηu1 + F1(x1) , (A1)

containing the function F1(x1). substituting the above into Eq. (6), results once more in an integrable form, which
following integration, leads to:

2∂2Φ = 3ηu2 + F ′
1(x1)x2 + F2(x1) , (A2)

giving rise to a second integration function F2(x1). After elimination of the potential Φ by computing
∂2(A1)−∂1(A2) and further integration steps, one finally obtains the following analytical solution—see [24] for
the stream function:

ηψ = F ′′
1 (x1)

x3
2

6
+ F ′

2(x1)
x2
2

2
+ F3(x1)x2 + F4(x1) . (A3)

The integration functions F1(x1), . . . , F4(x1) are obtained by inserting the above solution into the boundary and
interface conditions. This procedure is explained in detail by Scholle et al. [26] for a monolayer film flow and
applied to bilayer shear-driven flow in the book chapter Scholle et al. [24].
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