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We propose symbolic regression as a powerful tool for the numerical studies of proposed models of
physics beyond the Standard Model. In this paper we demonstrate the efficacy of the method on a
benchmark model, namely the constrained minimal supersymmetric Standard Model, which has a four-
dimensional parameter space. We provide a set of analytical expressions that reproduce three low-energy
observables of interest in terms of the parameters of the theory: the Higgs mass, the contribution to the
anomalous magnetic moment of the muon, and the cold dark matter relic density. To demonstrate the power
of the approach, we employ the symbolic expressions in a global fits analysis to derive the posterior
probability densities of the parameters, which are obtained two orders of magnitude more rapidly than is
possible using conventional methods.
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The chief test of any proposal for beyond the Standard
Model (BSM) physics is to confront it with experimental
data. The standard approach is well trodden: first one
chooses a reasonable parameter space motivated by a
combination of physical argumentation and expediency;
for each point in the parameter space the physical low-
energy spectrum is determined and possibly an initial cut
made for phenomenological viability (for example in
supersymmetry (SUSY) the mass and charge of the lightest
SUSY partner); for each remaining viable point the cross-
sections are calculated and the relevant observables deter-
mined such as dark matter relic density, anomalous
magnetic moment of the muon, and so forth; finally with
this information to hand each point can be evaluated and
assessed. One can then attempt to scan the entire parameter
space this way, or alternatively use a Markov Chain
Monte Carlo or nested sampling algorithm [1–3], such
as that in MultiNest [4] and Dynesty [5], to arrive at posterior
probability densities for the parameters.
This approach has the appeal of being directly connected

to the underlying physics, but it suffers from a severe
bottleneck, namely the computation of the observables.
Indeed each one of them is the result of a painstaking

physical analysis which may need to encompass many
subtle effects (for example, three loop running from the
grand unified theory (GUT) scale, coannihilation for dark
matter relic density and so forth). Typically, this leads to a
chain of computation to get from the input parameters to the
low-energy observables. Thus, although closed-form
expressions for the observables in terms of the input
parameters are in principle “knowable” (at least in pertur-
bation theory), they would be exceedingly complex and
could not be usefully expressed analytically except pos-
sibly in the case of a restricted set of observables in extreme
limits of parameter space.
To avoid this bottleneck, it is natural to turn to machine

learning to bypass the computation chain or more effi-
ciently sample points of interest (for recent examples and
applications, see Refs. [6–10]). However, the negative
aspect of machine learning is that it is generally neither
interpretable nor explainable.
This lack of interpretability (by which we mean an

inability to be able to understand the dependence of the
observables on the input parameters) is frustrating because
certain correlations between input parameters and observ-
ables can be motivated by physical arguments. For exam-
ple, it is clear that SUSY contributions to ðg − 2Þμ, the
anomalous magnetic moment of the muon, generally
decrease with increasing values of the soft SUSY-breaking
parameters because the superpartner states begin to decou-
ple. This correlation provides a modest degree of explain-
ability, but one feels that there must exist analytic
expressions that can more finely reproduce the dependence
of the low-energy observables on the parameters. Indeed if
it were possible to infinitely refine such expressions, then
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the end result would be a set of analytic formulas that
would accurately predict all low-energy observables from
any given set of input parameters, with no need for time-
consuming computation.
For certain observables, ðg − 2Þμ for example, some

progress can be made following this physics-oriented
pathway in which one continually refines expressions with
increasing levels of physical complexity. However this is
not possible for the majority of observables, for example
ΩDM which involves multiple scales of physics, complex
coannihilation effects and so forth. For this and indeed most
observables the full analytic expressions that would be
derived from a purely physical approach would ultimately
yield regressors that are quite unintelligible from a physics
perspective. Thus, there is clearly a trade-off to be made
between the simplicity of analytic expressions and their
power as regressors for physical observables. Conversely
making expressions easily physically interpretable typi-
cally yields very poor regressors, although physical inter-
pretability may be enhanced once accurate analytic
regressors have been found. The thrust of this work is
that there can be a large improvement in efficiency if one
focusses on the accuracy of analytic regression rather than
on its interpretability. However we emphasize that there are
further advantages of finding accurate analytic regression
formulas beyond mere speed-up, which arises primarily
from the fact that such a methodology is still more
interpretable than traditional machine learning which pro-
duces noninterpretable black-box regressors to reproduce
the BSM predictions. For example one can easily use
analytic expressions for observables to find interpretable
asymptotic formulas in the limit of large or small param-
eters. In addition perhaps one of the most important and
promising aspects of such expressions is that one can take
derivatives of them, so they can for example be used in
differential programming.
The business of producing analytic expressions that

reproduce the output of complicated computations is
known as symbolic regression [11]. In the physics context,
it has most famously been discussed in generality in
Ref. [12] and for specific applications in Refs. [13–18].
Symbolic regression attempts to provide analytic expres-
sions for the outputs by learning the symbolic formulas
that best fit the observed results. It does not attempt to
provide any kind of rationale for the expressions it finds
(although as in Ref. [12] the bank of symbolic expressions
which are considered can be motivated by physics), the
goal being merely to discover the simplest and most
accurate analytic expressions that reproduce the observ-
ables in the region of the parameter-space of interest. As we
shall see this is a useful compromise: if we are prepared to
forego the physically organized chain of computation that
determines the observables at each point in parameter
space, then we can black indeed gain much greater analytic
power.

The purpose of this letter is to demonstrate that symbolic
regression is a powerful tool for studying BSM physics.
As a benchmark model, we will consider the so-called
constrained minimal supersymmetric Standard Model
(CMSSM), which has a four-dimensional parameter space,
consisting of GUT scale degenerate gaugino masses, scalar
masses, and universal trilinear coupling, and the electro-
weak scale Higgs vacuum expectation value (VEV) ratio,
denoted respectively asm1=2; m0; A0, and tan β. We provide
a set of analytical expressions that reproduce the Higgs
mass, mH0 , the SUSY contribution to the muon anomalous
magnetic moment, δðg − 2Þμ, and the dark matter relic
density, ΩDMh2, in terms of these parameters (which are
available at [19] alongside the code that produced them,
and the dataset used can be found at [20]). In addition we
provide a “classifier” Cðm1=2; m0; A0; tan βÞ, which is a
function that takes values greater than 0.5 when a point is
physically viable in the sense that it has neutral dark matter,
lack of charge and color breaking minima, and a positive
dark matter relic density. As an example application of our
methodology, we will demonstrate that by employing these
symbolic expressions one may determine the posterior
probabilities of the CMSSM extremely rapidly compared
to conventional methods.
There are several approaches to symbolic regression that

could be considered for this purpose, ranging from evolu-
tionary methods to transformer-based neural networks.
A comprehensive overview and comparison of symbolic
regression methods is included in Refs. [21–25]. However,
the specific properties that we require of a symbolic
regressor for this letter, and for BSM more generally, are
somewhat specific to BSM physics. Not only is the
parameter space often high dimensional, but also it tends
to contain fairly focussed regions of interest which are
localized around poles and mass-degeneracies, and these
need to be captured by the expressions. Consequently,
successful training involves a large and relatively fine
multidimensional set of training data. This excludes the
most commonly used symbolic regression packages (e.g.,
PySR) and favors Operon (and its Pythonically wrapped
version, PyOperon) [26], due to its highly efficient vec-
torized structure and low memory footprint.

I. ANALYTIC EXPRESSIONS FOR THE MSSM

Operon is a framework for symbolic regression based on
genetic programming (GP), which is an evolutionary
method in which each individual in the population is an
expression tree that represents a symbolic expression built
from a bank of prechosen functions. Evolution of the
population is then simulated by repeated cycles of selec-
tion, breeding, and mutation. The selection probability for
breeding is governed by a loss-function for each individual,
which is determined from the properties of the symbolic
formula that is generated by its expression tree.
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Obviously, these properties include closeness to the
training data (which in this study is a set of 105 predeter-
mined CMSSM points), but also the properties of the
expression itself. The SymbolicRegressor module of
PyOperon runs the GP loop with two objectives: one of
several possible regression metrics and the “length” of the
expression itself. The regression metric is a user-defined
hyperparameter that can be chosen from one of the follow-
ing: “mean square error,” “mean average error,” “r2,” and
“normalized mean square error.” The “length” is simply the
number of characters (string length) of the mathematical
expression. During the GP loop, the population is evaluated
on these two metrics, with the best individuals being those
inhabiting the corresponding Pareto front. At the end of the
run (i.e., after the specified number of generations/budget is
exhausted), SymbolicRegressor returns all the Pareto
front individuals.
To optimize the regression metrics, an Optuna loop was

implemented in our analysis. This uses a Tree Parzen
Estimator (TPE), a Bayesian optimization algorithm, to
determine the best hyperparameters in the algorithm,
which, as well as the regression metrics, include for
example population size, population initialization, and so
forth (see Ref. [26]). As a “figure of merit” for a particular
choice of hyperparameters, we use the relative error of each
of the three observables for each individual in the final
Pareto front. Denoting the observables generically as y, this
is given by jypred − ytruej=jytruej, where ytrue are points taken
from the validation set (also composed of 105 points).
The relative error was preferred over other more

common regression metrics, such as r2, because the latter
tend to be biased toward higher nominal values, which can
be problematic for observables that span multiple orders of
magnitude. The average of the relative errors was taken,
weighted by “flattening weights” which level the distribu-
tion to ensure that the regressor performs well over the
whole range of values of the observable, thus preventing it
from focusing on the most common values of the observ-
able. Therefore, during training, because Operon does not
use sample weights to produce weighted averages when
computing the loss function, at each Optuna iteration, the
training data were resampled without replacement accord-
ing to the “flattening weights,” which ultimately reduced
our useable dataset from 105 to 104 data points, while
ensuring a mostly flat distribution of the target observable.
Such weighting is an important feature especially for

ΩDMh2 because its values range over many orders of
magnitude, and, as we shall see, it poses by far the most
challenging regression problem in this study. In fact,
without resampling the training data to produce a flat
distribution the symbolic regressor was unable to accu-
rately map the physical region of interestOðΩDMh2Þ ∼ 0.1,
due to the relative scarcity of points with values in that
range. By producing a flatterOðΩDMh2Þ distribution during
training, this was greatly improved, but there was still

considerable contamination in the range of physical inter-
est. Further significant improvement was achieved by
allowing a larger budget and a larger maximal tree-size
for both ΩDMh2 andmH0 , and rerunning the Optuna loop to
produce their final expressions. Meanwhile, for δðg − 2Þμ
and the classifier it was sufficient to keep the smaller
expressions obtained with a smaller budget.
To evaluate the quality of the symbolic regressors that

were obtained with this procedure, we present in Fig. 1 the
“true vs prediction” scatter plots (upper panels) and the
distribution of the relative errors of the predictions (lower
panels), produced using the test set. It can be seen that for
the Higgs mass the regression is very accurate throughout
all the values, with virtually every point having a relative
error below 1%. For δðg − 2Þμ the relative errors are greater,
but importantly remain diminishingly small in the region
of physical viability (where δðg − 2Þμ is enhanced). (The
distribution of points is typical of a regressor with a
constant absolute error.) For ΩDMh2 relative errors are
on average above 10%. This is actually better than the 20%
theoretical error that is typically assigned to ΩDMh2 in
global fit analyses. Despite this, the symbolic regressor is
capable of producing viable estimates in the physical region
of interest. It is important to note that each scatter plot
shows 105 points of the test set, and the points with poor
predictions in the upper panels of Fig. 1 are actually very
few, constituting only a small scattered minority of the test
set (as is evident in the lower panels of Fig. 1).
Regarding the classifier regressor, which can be used to

discriminate unphysical from physical points in order to
allow rapid rejection of the former, the performance is
shown in the two panels of Fig. 2. Clearly the performance
of this classifier regressor is extremely good!

II. APPLICATION: GLOBAL FITS

Generally, to make convergent and statistically robust
global fits, say using state-of-the-art nested sampling
algorithms, the main difficulty is the need to draw samples
at each iteration of the algorithm, until a point is found that
has a likelihood greater than that of the lowest point within
the likelihood-sorted live points. There are various
approaches to achieving this with varying costs to compute
the usually simulation-based or scientific software pack-
age-based likelihoods. Hence, we would now like to
demonstrate that a complete or partial replacement with
symbolic expressions of the high energy physics packages
employed for making BSM global analyses is a solution to
the resource problems that are associated with the stringent
experimental limits and the nonobservation of new funda-
mental particles.
For our benchmark model, the CMSSM, the observables

mH0 ,ΩDMh2, and δðg − 2Þμ can be computed for each point
in the parameter space via particle spectrum generators
such as SPheno [27] and particle dark matter packages such
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as MicrOMEGAs [28]. We use the most precise Higgs
boson measurement, mH0 ¼ 125.04� 0.12 GeV [29] and
ΩDMh2 ¼ 0.12� 0.0012 [30] but include the aforemen-
tioned theoretical uncertainty of 20% in predicting the
relic density. Thus, ΩDMh2 ¼ 0.12� 0.02 is used for
the fits. The discrepancy between the high precision
Standard Model (SM) prediction for the muon anoma-
lous magnetic moment [31] and the experimental
measurements [32] which we adopt for the fits is
δðg − 2Þμ ¼ ð249� 48Þ × 10−11. These constitute the set

of data, d ¼ fμi � σig that we use to make the global
fit, where μi and σi represent the measurement central
values and uncertainties for the above observables (with
i ¼ 1, 2, 3).
The CMSSM parameters were sampled from uniformly

distributed prior probability densities, which were respec-
tively within [0, 10] TeV for m1=2 and m0, ½−6; 6� TeV
for A0, and [1.5, 50] for tan β. For each point in the
parameter space, θ ¼ fm1=2; m0; A0; tan βg, the likelihood
is estimated as

FIG. 2. Performance of the classifier symbolic regressor on the test set. Left panel shows the output of the classifier where class 0 (in
blue) are physically disallowed points and class 1 (in green) are allowed points. The right panel shows the ROC curve which makes clear
the excellent performance of the classifier.

FIG. 1. Symbolic regressors’ performance on the test set. Upper panels: “true vs prediction” scatter plots, the solid lines marking the
boundary of the physically viable values of the observables. Lower panels: distribution of relative errors, the vertical lines offering a
visual guide for relative errors of order 1%, 10%, and 100%.
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pðdjθÞ ¼
Y3

j¼1

1

σj
ffiffiffiffiffiffi
2π

p exp

�−ðyjpred − μjÞ2
2σ2j

�
; ð1Þ

where again yjpred represents the predictions for our three
observables. We study the results for two distinct imple-
mentations of nested sampling by MultiNest and Dynesty. We
used version 3.10 of MultiNest with 4000 live points in the
nested importance sampling mode and with tuning param-
eters chosen as mmodal ¼ 1, ceff ¼ 0, efr ¼ 1.8,
tol ¼ 0.5, and seed ¼ −1. For Dynesty, we used version
2.1.4, and ran the DynamicNestedSampler with the
default 500 live points, no bootstrap, with pfrac=1
for posterior estimation.
We find that the global fit analysis using symbolic expres-

sions compares exceedingly well with that made using
the conventional method (packages-based). To illustrate,

Figs. 3 and 4 show the posterior distributions of the
CMSSM parameters fit to our three observables using
MultiNest and Dynesty respectively, plotted using GetDist [33].
The 65% and 95% Bayesian probability contour lines (in
red on the 2-dimensional plots, and labeled “Expressions”
in the legend) represent the 2-dimensional posterior dis-
tributions from the symbolic regression fit, while the
2-dimensional scatter plots (with points colored according
to the Higgs mass, and labelled “Packages” on the legends)
represent conventional fits in which all the observables are
computed with packages. These results are clearly in
excellent agreement, confirming that the dynamical fea-
tures of the symbolic expressions correctly approximate
those of the packages.
We note that the MultiNest fit using packages returned

some evidence for a second modality for m0 ∼ 1 TeV, with
slightly higher values of δðg − 2Þμ. This region has been

FIG. 3. The posterior distributions obtained by MultiNest for global fits of the CMSSM parameters tomH0 , δðg − 2Þμ, andΩDMh2, using
solely package-based (2-dimensional scatter plots on the off-diagonal entries, and black lines on the 1-dimensional plots) versus solely
expression-based (the red lines) approaches. Mass dimensionful parameters are in GeV.
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omitted in the plots above for ease of readability, as Dynesty

with packages also missed it. While the goal of our paper is
not to provide a realistic global fit to the CMSSM, we also
believe that this region would not survive current collider
limits, and therefore does not change the discussion
presented herein. We believe that the expressions did not
capture this mode because the dataset (which was produced
by random sampling) used to produce the expressions had
very few phenomenologically viable points with high
likelihood in that region of the parameter space.

III. DISCUSSION

Given these results, we can conclude that symbolic
regression can be a very powerful tool where analytic results
are absent or hard to employ. While it may be possible to
analytically approximate the form of the Higgs mass for
example, observables such as ΩDM have no known analytic

formula, and indeed it is difficult to see how one could ever
be derived. Symbolic regression can successfully provide
predictive expressions for such observables.
Generally, one anticipates a huge reduction in the com-

putational resources required to perform a global fit using
symbolic regression: for example, we find that two orders of
magnitude less CPU time are required for the CMSSM
global fit when all three of our observables are computed
using the symbolic expressions. In this comparison we used
simple CPU-time and did not factor in the time required to
generate the data set nor the time required to train PyOperon.
However note that our time comparison is between two
methods for making fits, and the training times constitute an
initial investment to generate the symbolic expressions
which can then be reused for future studies.
It is interesting to note that symbolically regressed

expressions can be in conflict, and some care must be
taken in using them according to the physical problem.

FIG. 4. The posterior distributions obtained by Dynesty for global fits of the CMSSM parameters to mH0 , δðg − 2Þμ, and ΩDMh2, using
solely package-based (2-dimensional scatter plots on the off-diagonal entries, and black lines on the 1-dimensional plots) versus solely
expression-based (the red lines) approaches. Mass dimensionful parameters are in GeV.

ABDUSSALAM, ABEL, and ROMÃO PHYS. REV. D 111, 015022 (2025)

015022-6



When this is the case, we argue that it reflects the tension
between constraints in the underlying BSM candidate. In
fact, this partly motivated our choice of these three
observables for this particular study. Indeed, studying
our training data points in a frequentist fashion reveals
that good ΩDMh2 values are mostly obtained for Higgsino
dark matter, whereas good δðg − 2Þμ values are mostly
obtained for bino dark matter. In other words, good values
for these two observables are relatively rare in the CMSSM
parameter space, and the most populated regions do not
overlap. Thus our symbolic expressions for Ωh2 are not
sensitive to those very rare points that also have the
required δðg − 2Þμ contribution, but are instead swamped
by Higgsino dark matter points. The existence of alternative
modalities is difficult for the expressions (and also Dynesty)
to pick up simply because the original dataset had very few
points with high likelihood. Therefore if one wished to
refine the global fit using symbolic expressions one should
proceed by first including into the classifier regressor the
requirement that the dark matter candidate should be
binolike. In order to do this one would use the method-
ologies developed in [9] in order to enrich the data set with
points of phenomenological interest. This and similar
refinements will be the subject of future work. By contrast,
it is already remarkable that such accurate expressions
could be obtain from a nonideal dataset (produced, recall,
by random sampling) as can be confirmed by the posteriors
presented above.
We should briefly remark on how the method scales with

complexity, in particular with an increase in the number of
parameters and constraints. First we note that as we saw in
Fig. 2 the symbolic classifier is extremely effective for the
constraints that are being applied. This includes charge and
color breaking minima, charged dark matter and negative
ΩDM. However in the parameter space note that these are
effectively many constraints as there are many flat direc-
tions in parameter space that can yield CCB minima.
Therefore given this and the remarkable strength of the
classifier it is unlikely that additional constraints would
lead to a bottle-neck. On the other hand the fitting of more
observables may become more difficult if the associated
regressors have poor quality, for example if the observables
in question behave more like ΩDM (which is hard to
regress) rather than the Higgs mass (which is easy).
Several observables with poor regressors would in turn
impact the quality of the fits. This is indeed one of the
important reasons for seeking good regressors rather than
interpretable ones. Of course for other studies the meth-
odology can be adapted accordingly.

Regarding the applicability of these methods, we see
them as exploratory tools that can be used in conjunction
with more conventional methods in order to map out BSM
parameter spaces. To appreciate the potential impact of this
method, note that there are multiple physics cases where
calculating the observables for a single point can take
minutes—as an example reference Ref. [10] quotes 120 sec-
onds to evaluate a single point by conventional methods. If
a good regressor can be found for these observables then it
can be used as a replacement in subsequent analyses which
are focussed on different physical aspects, without the need
to recompute the observables for each new point in the
study, or to attempt to exhaustively scan a parameter space
(which is of course impossible if each point takes 120 sec-
onds). In this sense the symbolic regression approach is
akin to “amortized inference” which seeks to reuse results
of a previous analysis by training a generative model that
can be used for subsequent studies.
As a final comment, we remark that as well as offering a

different and very efficient way of analysing BSM models,
symbolic regression opens up several new avenues for
analysing high energy physics models. As an example, it is
interesting to note that it may now be possible to perform
global fit analyses on a quantum computer in a manner
analogous to that in Ref. [34], but instead by directly
encoding the symbolic expressions for the observables in
the quantum circuit. This kind of analysis would be out of
the question using the conventional calculational route due
to the impossibility of fully encoding the required chain of
computation in a quantum circuit. Another promising
application of our approach is to further the potential of
differentiable and probabilistic programming in BSM
studies, where the symbolic expressions can replace the
black-box imposed by the computational packages.
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