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Model or structural discrepancy is an essential com-

ponent in the analysis of computer simulators, rep-

resenting the differences between the outputs of

the simulator and the real-world system that the

simulator seeks to represent. This discrepancy can

arise from various sources such as simplifications of

the model science in the simulator, choices made in

our particular implementation of that science, and

epistemic uncertainties such as the absence of features

or science that we did not know to include or have yet

to discover. In this paper, we define and distinguish

two types of discrepancy: internal discrepancy that

can be assessed by experiments on the simulator

itself; and external discrepancy which lies outside the

scope of such experiments. We present a tractable

methodology and workflow for the assessment of

structural discrepancy on the basis of collections

of experiments applied to the computer model and

illustrate our approach in the context of a simple

biological model.

This article is part of the theme issue ‘Uncertainty

quantification for healthcare and biological systems

(Part 2)’.

1. Introduction
Suppose that we have a simulator for a physical sys-

tem, that we have observations of the real-world system

against which to compare the simulator and that we wish

to make statements about the real world using this in-

formation. No matter how complex a simulation model

of a physical process is, there will always be differences
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by/4.0/, which permits unrestricted use, provided the original author and source
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between the outputs of the simulator and the real process that the model is intended to represent.

Inevitably, there will be simplifications in themodel science based on features that are too compli-

cated for us to include, features that we do not know that we should include, mismatches between

the scales on which the model and the system operate, simplifications and approximations in

solving the equations determining the system, and so on.

If we are interested in making statements about the real system using results from the simu-

lator, we must incorporate these differences into our analysis. Failure to do so leads to grossly

inaccurate inferences, such as overfitting of the model to historical data, wrongly ruling out

potentially useful models and overconfidence in subsequent predictions [1].

Informally,model or structural discrepancy is the difference between reality and appropriately

chosen simulator output. As we will be uncertain about this difference, it is natural to express our

knowledge probabilistically, to be incorporated, for example, within a Bayesian analysis. This arti-

cle is concernedwith systematicmethods to quantify our knowledge about structural discrepancy

in a form that we can use to make inferences about the real physical process. In particular, we will

emphasize the value of separation of structural discrepancy into internal and external compo-

nents, corresponding to features which may be assessed by computer experiments and features

which lie outside such experiments, and explain the role of emulation for integrating each aspect

of the discrepancy assessment within a manageable workflow.

2. Specifying model discrepancy
Suppose that we have a model M(⋅) for a physical system. The model takes as inputs a vector x

related to system properties and outputs a vector M(x) representing some features y of the be-

haviour of the physical system. The model is implemented as a computer simulator f (x). Often,
we have historical observations, z, made, with error, on a subset, yh, of the elements of y, with

corresponding functional outputs fh(x).
Sometimes, we may consider that there is a unique ‘true’ or ‘best’ choice, x∗, for the input vec-

tor x, andwe use the observed value of z tomake an inference for this value, for example assessing

a Bayesian posterior distribution for x∗. This process is termed calibration [2]. At other times, we

do not consider that there is such a unique true value, for example if the inputs are tuning pa-

rameters. In such cases, we may wish to identify the collection of all input choices x for which

the simulator is able to reproduce the observed system history. By this, we mean that the out-

puts fh(x) are acceptably close to the observed values of z, when we have taken into account all

of the uncertainties relevant for assessing the quality of the match. This process is termed history

matching [3,4].

To carry out either of these procedures, we need a probabilistic representation of the difference

between the simulator and the physical system, whichwe can evaluate for each choice of x. A very

common way to introduce such model discrepancy is by supposing that, if x∗ is an appropriate

choice for x, then the state of the world, y, is given by

y= f(x∗) + �d, (2.1)

where �d is a random ‘error’ vector capturing the deficiencies and missing features of the model,

and which is independent of everything else. This choice has the great virtue of simplicity—we

just add, say, a 10% error to all uncertainty statements about the real world produced by the

simulator.

This is far better than ignoring discrepancy altogether, but we usually can, and should, be

more careful. For example, suppose that the main reason for structural discrepancy is that the

implementation of the model as a simulator involves certain approximations for the solutions of

the underlying system equations. Suppose further that for some input choices these approxima-

tions have negligible effects whereas for other choices they have substantial effects. Then accept-

able history matches for the former choices would require a closer fit to the data than matches for
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the latter choices, and similarly the likelihood for a Bayesian calibration would need to include an

additional component of uncertainty for those input choices with larger model implementation

errors.

The difference between a model and the corresponding physical system is a complex structure

which has many different possible representations. We will suggest general forms which are suf-

ficient to support many different aspects of structural discrepancy. Much of our description relies

on the construction of emulators for elements of structural discrepancy. Emulators are a familiar

feature of uncertainty quantification problems. Often, in practice, we are only able to evaluate f

for a limited number of values of x, because of time and resource constraints. In such cases, we

usually construct emulators for the elements of f itself.

An emulator for a function is a fast surrogate model for the function, with known uncertainty

of approximation, which allows us to carry out detailed exploration of model behaviour [2,3]. A

common form for such an emulator, for an individual component fi(x) of f , whichwill be sufficient

for our discussion, is to represent the function as

fi(x) =
∑

j

aijgij(x) + ui(x), (2.2)

where aij are constants to determine, gij(x) are deterministic functions, for example polynomials, of

x, and ui(x) is a stationary stochastic process, often with E
[
ui(x)

]
= 0,∀x and a correlation function

reflecting the smoothness of the function. For example, a common choice is

ℂorr
[
ui(x1),ui(x2)

]
= e−(x1−x2)

TΣ (x1 − x2),

where Σ is an appropriate scaling matrix. We may specify a complete probabilistic form for ui(x),
for example a Gaussian process, for a standard Bayesian calibration analysis. Alternately, for his-

tory matching, we only require means and variances, so that we can specify only the first and

second moments of u, as this is sufficient for a Bayes linear analysis [3,5].

In what follows, we will assume that the computer simulator is represented by a correspond-

ing emulator and explain how the notion of structural discrepancy is represented by appropri-

ate modifications to this emulator. In order to do this, we will structure such discrepancy by

separating it into two categories, namely internal and externalmodel discrepancy.

Internal discrepancy arises from the specific technical choices made in the implementation of

the model as the current simulator, f , and can be assessed by direct experiments on the simulator

itself. Therefore, we learn about internal discrepancy by performing such experiments. External

discrepancy comprises all of the features arising from limitations of the modelling process and

which, therefore, cannot be quantified through such simulator experiments. Some of these fea-

tures may correspond to processes that we know we have omitted from the model. Others may

come from our recognition of the limitations of our understanding about the processes underly-

ing the model. Finally, some may arise simply as we lack the time, expertise or resource to carry

out the appropriate computer experiments, and thus we must count such aspects of structural

discrepancy as external as well.

We will now discuss each of these two forms of discrepancy.

3. Internal discrepancy

(a) Internal discrepancy experiments
Internal discrepancy refers to any aspect of discrepancy variation that we choose to quantify by

direct experiments on the computer simulator. These assess the effect of the various simplifying

assumptions made in the model and the simulator implementation. As with any other aspect of

modelling, we must choose the level of detail with which we carry out the internal analysis. Care

at this stage will reduce the effort required at the later stages when we must account for all other
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aspects of structural discrepancy which were not included in the internal assessment. Here are

some examples.

(1) We may vary parameters that are usually held fixed at pre-assigned values in the planned

evaluations of the simulator, where this choice has beenmade in order to reduce dimension

for the input space.

(2) We may have several subgroups, for example classified by gender, age and so forth, where

the simulator uses the same parameter input values for each subgroup, for reasons of

simplicity and ease of model fitting. The simulator may similarly impose coarse parti-

tions for continuous effects, for example young, middle aged and old for effects which are

continuous in age.

(3) We can add extra flexibility to our input parametrization, for example allowing some

constant parameter values to vary over time and space.

(4) If the model science is based on the deterministic propagation of a state vector, then we

may add a small amount of random noise at each propagation step, in recognition that the

model rules oversimplify the true propagation of the state vector.

(5) If the model uses a simplified solver, then we may explore the effect of more careful equa-

tion solvers, for example increasing the grid resolution and number of iterations for the

solver.

(6) The simulator might use fixed initial conditions, boundary conditions or external forcing

functions, which we might choose to vary.

The aim of these experiments is not to fit a more complex model, as we judge that would be too

expensive to fit to data or for real-world use. Instead, we quantify the effect of making the col-

lection of simplifying assumptions given our intention to use our original simulator. However,

if the experiments do identify such features as very large discrepancy bias or variance, then we

would want to identify which features of the experiments were the major causes of these effects

and consider modifying the simulator accordingly.

In each case, our ability to vary the corresponding feature depends in part on how the simula-

tor is coded. Varying fixed parameters, for example, will usually be straightforward.Adding noise

to the state vector depends entirely on whether this vector is accessible to access and modify in

the simulator code. As a general design principle, the implementation of the model as a simulator

should take careful account of the internal discrepancy experiments that wewill wish to carry out

in order to ensure that the simulator is fit for real-world use.

(b) Assessing internal discrepancy
We assess internal discrepancy through our chosen experiments as follows.

(1) For a single input parameter choice x with model run f(x) = (f1(x), f2(x),… ), we choose a set
of perturbations d1, d2,… , dk, where each di is a perturbation of each one of the attributes se-

lected for the experiment. We are treating discrepancy judgements as part of the modelling

process. Therefore, the perturbations are chosen to reflect the degree of uncertainty that the

modeller wishes to introduce. For example, random choices for a parameter value usually

held fixed are made by consideration of the level of variation that is thought appropriate to

introduce for the parameter. Similarly, wemay replace a parameter fixed over timewith the

output of a continuous stochastic process, with mean equal to the parameter value, small

variance and high correlation to represent the modified parameter at each time point, for

example by judging the anticipated amount of drift in the parameter over a choice of fixed

time intervals that would be considered acceptable and choosing parameters of the process

tomatch these conditional judgements.Aswith anymodelling process, wemay explore dif-

ferent choices for such effects, for example choosing sets of samples representing different

levels of variation.
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(2) We evaluate the collection of kmodel runs, F(x) = (f(x, d1), f(x, d2),… , f(x, dk)). F(x) is a sample

from the internal discrepancy distribution at input x.

(3) For each output, fr(x), we look at the empirical distribution of Fr(x), from which we may

choose to extract simple summary statistics. Natural choices are the bias and variance:

Br(x) = fr(x) −
1

k

k∑

i=1

fr(x, di), (3.1)

Vr(x) =
1

k − 1

k∑

j=1

[fr(x, dj) −
1

k

k∑

i=1

fr(x, di)]

2

. (3.2)

(4) We repeat this experiment for a range of input choices x1,… , xn, giving discrepancy samples

F(x1),… ,F(xn). If the sample distributions are very similar, for each xi, then the average is a

practical working choice for internal discrepancy.

(5) Otherwise, we extract summary statistics, for each xi, and build emulators for our chosen

discrepancy summaries, for example B(x) and V(x), across the input space. Often this em-

ulation is easy as these turn out to be simple smooth monotonic functions. If the number

of experiment repetitions, k, is large, then we can view the observed sample statistics as

being equal to the underlying population values for each chosen input value. Otherwise,

we consider the sample statistics as estimates of these population values and add appro-

priate standard errors of estimation for our uncertainty about each population value, given

the sample. This is similar to the standard way in which we build emulators for summary

measures, such as the mean response, for stochastic simulators [6].

(6) We now have a value, with estimated uncertainty, for the internal discrepancy, at each

choice x in the input space. Further, each internal discrepancy experiment gives samples

from the full joint distribution of the internal discrepancy variables for all of the outputs.

Therefore, we can compute any sample summaries for the joint distribution that we need;

for example, we can assess the sample correlation between any output pair Fr(xi) and Fs(xi)
for each xi.

(7) We now choose a form to incorporate internal discrepancy into our emulator for f . If we

have been mainly focusing on bias and variance, then a simple representation would be of

the form

fI(x) = f(x) + �I(x) + �I(x)�, (3.3)

where �I(x) is a vector of bias terms and �I(x) is a vector of scale parameters, dependent on

x, given by the emulators built from the internal discrepancy experiments. We may view �
as a vector with zero mean and unit variance, independent of everything else, with correla-

tion structure based on a combination of the corresponding correlation structures evaluated

by the internal discrepancy experiments. If these vary greatly, we may take more care and

emulate the general structure of this correlation matrix.

4. External discrepancy
External discrepancy arises from the inherent limitations of the modelling process embodied

in the simulator and cannot be assessed by simulator experiments. This adds onto the internal

discrepancy as

f ∗(x) =MfI(x) + �E(x). (4.1)

Here, �E(x) has some stochastic specification, given x, as we will describe, andM is a scaling ma-

trix, typically diagonal and often the identity, which allows us to rescale the simulator output to

adjust for any mismatch between the scales of the simulator and the real-world phenomena.
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One way to analyse the external component of structural discrepancy is described in [7] and is

as follows. The function f describes how system properties (the inputs) affect system behaviour

(the outputs). Our simulator approximates both the properties of the system and the rules for as-

sessing system behaviour given system properties. Therefore, wemay consider that our simulator

is an approximation to a more detailed form, f ∗, sometimes called the reified model (from reify—to

consider an abstract concept to be real). f ∗ embodies all of our judgements about refinements to

the science, improvements to solution accuracy, etc., so that additional structural discrepancy on

top of this model will be unstructured.

We apply the simple discrepancy model (2.1) to f ∗ and to f ∗ alone, i.e.

y= f ∗(x∗,w∗) + �∗, (4.2)

where �∗ is independent of everything else and w∗ are any extra model parameters that we might

introduce for the reified form.

In this construction, the model, f , is informative for the actual system, y, because f is infor-

mative for reified model f ∗. We cannot evaluate f ∗ but we can emulate it, so all of the analyses

(history matching, calibration, forecasting) that we habitually carry out using the emulator of f

can be transferred directly to the emulator of the reified form.

To see how we might emulate f ∗, consider the simplest case, with one input x and one output

f(x), and an emulator for f of form f(x) = a + bx + �(x), where a, b are constants and �(x) is a sta-
tionary stochastic process. A simple emulator for f ∗ might be f ∗(x) = a∗ + b∗x + �∗(x), where a∗, b∗

are uncertain constants (with prior means a, b) and �∗ is a stationary process correlated with �; for
example we might set �∗(x) = �(x) + ��′(x), where � and �′ are independent. This expresses our
judgement that, with more careful modelling, the global form of the emulator will not change but

the rate of change of f(x)with x is very likely to change. This form allows us to express structured

judgements as to the potential effects of more detailed modelling. In contrast, the simple form for

discrepancy, (2.1), is equivalent to imposing the simplified version of the reified emulator of form

f ∗(x) = a∗ + bx + �(x).
This approach is termed direct reification. In more generality, suppose that our emulator for

component i of f is of form (2.2). Then our simplest emulator for f ∗ would then be

f ∗
i
(x,w) =

∑

j

a∗
ij
gij(x) + u∗

i
(x) + u∗∗

i
(x,w), (4.3)

where we might model a∗
ij
as a∗

ij
= cijaij + �ij with, for example, cij treated as known, reflecting mod-

elling judgements as to the relative rates of change of the two functions (often we will set these to

one), and �ij treated as uncertain. We may choose to correlate u(x) and u∗(x), if we consider that
divergences from the global form will share common features, but we will usually leave u∗∗(x,w)
uncorrelated.

If we have more detailed judgements about particular deficiencies in the simulator, then we

may build an emulator f ′ which represents the particular effects that we are considering and then

link f ′ to f ∗ through direct reification. This is termed structural reification. For a discussion of the

assessment of all of these quantities and an example of structural reification, see [7], which il-

lustrates each part of this assessment in the context of a compartmental model for the potential

shutdown of the Thermohaline circulation in the Atlantic ocean, by adding a notional additional

compartment to represent aspects of circulation not captured in the given model and assessing

the effect of this modified flow on each component of the model.

5. Structural discrepancy workflow
Given data, z, corresponding to simulator outputs fh(x), we are usually interested in structural

discrepancy mainly for those input choices which give acceptable matches to z. In such cases, we

can greatly simplify the workflow for discrepancy quantification. First, we identify, by history

matching, the subspace of input values for which the simulator output is sufficiently close to the

observed system history to be of interest as a possible choice for real-world uses of the simulator.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

03
 A

pr
il 

20
25

 



7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A

383:
20240214

.........................................................................................................................

We can use a simple and cautious overall order of magnitude discrepancy assessment for this

purpose. A good software package for carrying out such history matching is HMER [8]. Then,

we re-sample and re-emulate the simulator, carry out the internal discrepancy experiments and

derive discrepancy forms, such as (3.3) and (4.3), all within this input subspace. This will often be

a much simpler task than to emulate and assess discrepancy accurately for the whole of the input

space, partly as the new space is much smaller and partly because function behaviour within the

reduced space is usually much more consistent. We usually go through a final stage of history

matching with the more careful emulators and discrepancy assessments.

Depending on the problem at hand, the history match may be the endpoint of the analysis.

Alternately, if we prefer to calibrate the model, for example, if we wish to make inferences about

the likely values of some of the model parameters which have clear physical meanings, then we

may carry out a full Bayesian analysis within the reduced parameter space using the disrepancy

structure that we have constructed within this space.

We may have further goals for our modelling. For example, we may want to forecast, which

requires careful structural discrepancy assessment across past and future outcomes for plausible

choices of inputs, x∗. If we want to predict some future system outcomes, yp, corresponding to

function outputs fp(x), given observed historical data z, then we update uncertainties for yp given

z, for each acceptable choice of x∗, using the decompositions

z= fh(x∗) + �∗
h
(x∗) + eh, yp = fp(x∗) + �∗p(x∗), (5.1)

where �∗p , �∗h are structural discrepancies for yp, yh and eh is measurement error for z [3]. Where our

beliefs are described by a second-order specification, the appropriate mechanism for updating

those beliefs are the Bayes linear [5]:

Ez[yp] = E[yp] + ℂov[yp, z]Var
[
z
]−1

(z − E[z]),

Varz[yp] =Var[yp] − ℂov[yp, z]Var
[
z
]−1

ℂov[z, yp], (5.2)

where Ez[yp] and Varz[yp] represent the adjusted expectation and variance of the future outcomes,

yp, given the observations, z - in other words, our forecasts. Where beliefs about z and yp are de-

scribed probabilistically then the distribution yp | z is required, commonly obtained with Markov

chain Monte Carlo methods.

6. Discussion
In this paper, we treat the assessment of structural discrepancy as part of the modelling pro-

cess. This may be contrasted to approaches based on variants of (2.1); see for example [2] in

which model discrepancy depends only on controllable parameters such as time. In such ap-

proaches, assessment of model discrepancy becomes a problem of statistical estimation, which

raises important technical challenges as there is confounding between the model response and

the structural discrepancy component. Various methods have been developed to address these

challenges, for example, the modularization approach, introduced in the context of computer

models in [9], in which these problems are handled by separating the probabilistic specification

into discrete sub-modules and carefully controlling message passing between them. This is sim-

ilar to the idea of ‘cutting feedback’ as implemented in the popular Bayesian software package

Winbugs [10]. A common estimation technique in this area to address such issues, introduced

in [11], is based on projection using the L2 norm of the function, which can be viewed as a contin-

uous analogue of ordinary least squares methods for parameter choice which minimize squared

differences between physical outputs and simulation outputs. A Bayesian formulation for such

approaches was introduced in [12]. A recent overview of advancements in addressing the chal-

lenges of the unidentifiability issues raised when incorporating model inadequacy, and related

issues, is given in [13].
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Figure 1. Output from a single run of the Lotka–Volterra model against time. Note that prey (purple line) exhibits the classic
peaks in population level, while the predator population (orange lines) has similar peaks that follow that of the prey, with the
whole system exhibiting oscillatory behaviour.

In our formulation, such confounding is not an issue as each part of our uncertainty specifi-

cation is separately modelled and assessed. Further, the basic issue with any approach based on

variants of (2.1) is that it implies there is a value x∗ for which all of the information that the sim-

ulator provides is contained in the single evaluation f (x∗). Usually, in practice, this is unlikely to

be the case. [7] provides a careful analysis of the potential logical inconsistencies in such a view,

for example by considering the thought experiment of constructing an improved simulator which

respects the physical behaviour of the system more closely than does the current simulator and

demonstrating contradictionswithin the single sufficient evaluation view. See also [14] for a some-

what more structured approach to model discrepancy assessment, albeit within a fairly specific

setting.

7. Example: the predator–prey model
To illustrate the methods for assessingmodel discrepancy, we employ a relatively simple and fast

Lotka–Volterra Predator–Prey (LVPP) model. This will allow us to focus on demonstrating the

structural discrepancy assessment, however when analysing more expensive and/or more com-

plex models we would follow the same workflow, but make more use of emulation and history

matching (to perform a more extensive input parameter search), as discussed below. See [15] for

an analysis of a more complex variant of the LVPP model. The LVPP model represents the dy-

namics, over time, of two interacting species—the prey, f1, and the predators, f2—describing the

changing populations of each species over time and generating a two-dimensional time series of

species counts, indexed by time t. The system’s dynamics are described by the following pair of

differential equations:

df1

dt
= x1f1 − x2f1f2,

df2

dt
= x2f1f2 − x3f2, (7.1)

where x= (x1, x2, x3) are the inputs to the model and comprise three rate parameters that govern

the speed of reproduction of prey, the predator–prey interaction and the death rate of predators,

respectively. The output froma single evaluation of the Lotka–Volterramodel is shown in figure 1,

exhibiting the classic lag between peaks of prey and predator populations over time.

For our analysis, the input parameters to themodel are assumed to have ranges of x1 ∈ [0.7, 1.3],
x2 ∈ [3.1 × 10−5, 5.7 × 10−4] and x3 ∈ [1.3, 2.3], representing partially informed prior information.
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Figure 2. Lotka–Volterra evaluations in output space (left) and input space (right) for wave 1 (grey), wave 2 (green) andwave
3 (purple). Red point (right) is the wave 2 test point. Yellow points and error bars (left) are the observed data.

Note that, wider ranges would require a more detailed multi-wave history match [16], which

although perfectly feasible, is not our focus here. The LVPP equation (7.1) can be numerically

integrated to generate a time series of simulator output once the initial conditions have been spec-

ified, which we here take to be [f1(t= 0), f2(t= 0)] = [2000, 800]. To explore the full ranges of input
parameter values, a first wave of 750 runs of the model were designed over the three-dimensional

input space using a maximin Latin hypercube [17], and the collection of resulting model outputs

are drawn as the grey curves in figure 2a, with their corresponding input values shown as grey

points in figure 2b.

To illustrate our structural discrepancy assessment workflow for this model we require ob-

served data, z.As thismodel is entirely synthetic, pseudo-observations are generated froma single

evaluation of a more complex and stochastic version of the Lotka–Volterra model simulated us-

ing the Gillespie algorithm (see e.g. [18]), under slightly different initial conditions (1910, 710),
and using time-varying inputs x→ g(t)x that vary with a quadratic dependence centred around

1: g(t) = 1 − ((t − 5)2∕25 − 0.5)∕10, representing a subtle seasonal, periodic change to the reaction
rates of the real system. We, therefore, obtain a set of system outputs y that cannot be perfectly

recreated using the LVPP model described above—just as would be expected in any analysis of a

real-world system and its corresponding data. Uncorrelated observation error ewith �e = 50 (rep-

resenting the accuracy of the observation process) is added to obtain pseudo-observational data

z= y + e, and is shown in figure 2a as yellow points and error bars.

(a) Initial history matching
Given the data z, we are interested in assessing the structural discrepancy of our simulator for

input choices that give acceptable matches to the observations. However, a cursory inspection

of the model evaluations in figure 2a reveals that a sizeable majority of the first wave of model

evaluations show little to no correspondence to our observations. Thus, we follow the outlined
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workflow and begin by seeking to refine our initially broad and conservative input space to a

more focused set of parameter combinations which could feasibly yield outputs that are a close

enough match to the data to be of further interest. The methodology here is that of history match-

ing [6,19] using a conservative order of magnitude model discrepancy assessment of ±15% of

model output values. Our model discrepancy choice is deliberately cautious at this stage and will

be refined in the subsequent analysis; its purpose here is to simply ensure that obviously incom-

patible input parameter combinations can be readily identified and removed from consideration.

We anticipate that the refined assessment will be smaller than this initial, cautious ±15% value.

Given this discrepancy and simple univariate emulators for the simulator outputs, we compute

the implausibility, I
(
x
)
, at each of our wave 1 input points:

I
(
x
)
=

||||E
[
f(x)

]
− z

||||√
Var

[
f(x) − z

] =
||||E
[
f(x)

]
+ E

[
�∗
h

]
− z

||||√
Var

[
f(x)

]
+ Var

[
�∗
h

]
+ Var [eh]

, (7.2)

where E
[
f(x)

]
and Var

[
f(x)

]
are the expectation and variance of our emulator of the simulation

at x (required for slow models while here we use the model output directly), z is the observed

data, eh is the observational data error and �∗h is our structural model discrepancy. This yields an

implausibility value for every input parameter choice, x, and every output component of y. The

implausibility measure takes large values in the presence of strong disagreement between a par-

ticular simulator output and its corresponding data, and small values in the presence of either

good matches or high uncertainty [19]. These implausibility measures are then combined into a

single implausibility value, for each input point x, via the maximum implausibility:

IM
(
x
)
=max

i
I(i)(x), (7.3)

where I(i)(x) is the implausibility (7.2) calculated for the ith output component of the simulator.

This ensures that if the simulator fails to match the data on any single component, it is judged

an implausible match. Conversely, good matches are only declared when all output components

have correspondingly small implausibilities and so are close to the data with low uncertainty for

all model outputs. Here, to demonstrate our methods, we take the historical data z to be outputs

from the first peak only, such that 0≤ t≤ 5. The time t= 5 is viewed as the ‘present day’ (shown

as the vertical dashed line in figure 2a) and all other future data for t> 5 is shown for comparative

purposes but not used in the history match, nor in the subsequent forecasts.

To distinguish these implausible input points to exclude from future study from the remain-

ing non-implausible set of points, we apply a threshold to themaximum implausibility computed

via (7.3) and retain all those input points with lower implausibilities as our wave 2 input points.

We choose a threshold of IM
(
x
)
= 3motivated by Pukelsheim’s 3-sigma rule [20] which states that

for any uni-modal continuous distribution, 95% of its probability lies within 3-sigma of its mean.

When applied directly to the 750 runs, this results in 60 suitable model runs that are deemed suf-

ficiently compatible with the observed data to warrant further analysis. These are shown as green

lines in figure 2a and in the context of the input space in figure 2b as green points, which now

more closely mirror the observed data over the first peak (0≤ t≤ 5) and correspond to a smaller

region within the input parameter space. This refinement stage can be repeated multiple times

with additional design points generated in this reduced input space and emulators re-fit after

each wave to focus further if required. See [16,21,22] for details regarding history matching, in-

cluding applications in cosmology, systems biology and epidemiology and also for comparisons

to alternative approaches such as MCMC and ABC.

(b) Internal discrepancy assessment
Weperform the internalmodel discrepancy assessment following the steps of §3(b).We beginwith

a single input location chosen from our wave 2 runs (step (i)), hereinafter referred to as the wave 2
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test point and highlighted in red on figure 2b.We select a set of perturbations d1,… , dk of the model

inputs to be applied to the test point, in this case formed by varying initial conditions and—given

the time series nature of this simulation—adding temporal variation to the inputs. Specifically, for

each perturbation, the initial conditions were drawn from N(2000, 402) and N(800, 402) for prey
and predator, respectively, rather than being fixed at the values of 2000 and 800 that were used

in the main model runs, with the SD of 40 chosen to reflect the scientist’s uncertainty over these

previously fixed initial conditions. Time-varying inputs were introduced by modifying the LVPP

equation (7.1) to multiply the rate constants by functions of time, such that each xi is replaced

by gi(t)xi for i= 1, 2, 3. The function gi(x) was chosen to be cyclical about the value of 1 and took

the form

gi(t) = 1 + ci sin [(2�{t − ai}bi)∕T] , (7.4)

where T = 10, and where ai ∼U(4.5, 5.5), bi ∼U(0.6, 0.9) and ci ∼N(0.02, 0.052) are drawn indepen-

dently for each perturbation. Note that the time variation here is sinusoidal and hence different

from the quadratic variation used to generate the real system y. Hence, it along with the distribu-

tional choices for ai, bi and ci is designed to capture the scientist’s uncertain judgements regarding

a possible subtle seasonal effect (any remaining uncertainty, not captured by this parameterised

form, can be included in the external discrepancy). Following this scheme, we construct 50 per-

turbations for each of the initial conditions and the time-varying inputs separately, as well as 200

perturbations where both elements were varied together in order to assess the impact of each

modification and compare their relative effects.

We now evaluate the collection of simulator runs under each of our permutations, F(x) =
[f(x, d1), f(x, d2),… , f(x, dk)], per step (ii). The resulting collection of evaluations form a sample of

the internal discrepancy distribution, which can be summarised (step iii) by simple statistics such

as bias (3.1) and variance (3.2). In figure 3a, we focus on the latter, where we plot the contribu-

tions of the initial conditions and the time-varying inputs to the standard deviation of the internal

discrepancy, i.e.
√

Vr(x). The contributions to the internal discrepancy due to varying initial con-
ditions and time varying x inputs are shown as the blue and red lines, respectively (calculated

using the two sets of 50 perturbations that varied each internal feature), while the total internal

discrepancy
√

Vr(x) is given by the black line (calculated using the 200 perturbations that var-

ied both internal features). A nominal external discrepancy equal to 2% of the model output is

employed to represent the remaining structural model discrepancy not captured by the internal

analysis and is given by the green line. The total model discrepancy is shown as the light blue

line. The conservative model discrepancy used above to define the wave 2 runs (15% of the model

output) is shown as the dashed black lines.

First, we note that the discrepancy contributions are not uniform, and clearly vary with time

with peaks in the vicinity of those observed in the data. The initial condition uncertainty (blue line)

is a dominant component of discrepancy at early times, but while the effects of the time-varying

inputs (red line) are small at first they occasionally become the dominant source of discrepancy

at late times. These results are intuitive, with simulation output most sensitive to initial condi-

tions at early times and becoming less relevant as the simulation progresses. Note also that the

total model discrepancy is substantially less than the conservative 15% used in the initial history

matching stage, so there is no risk of mistakenly excluding viable parameter combinations.

A particularly insightful feature of this approach to the assessment of internal discrepancy as-

sessment is that we can also examine the correlation structure (across all outputs over time, and

of prey and predator type) of the induced internal discrepancy. From the collection of 200 per-

mutations where we varied both sources of discrepancy, we can construct the sample correlation

matrix which is shown in figure 3b. This approximates the correlation Corr[Fr(xi),Fs(xi)], where

r and s label both the time and output type (prey or predator). Here, we see substantial structure

between the discrepancy over the different output components, with strong positive and nega-

tive correlations induced by the coupled and oscillatory behaviour of the simulator outputs. This
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Figure 3. Results of internal discrepancy analysis at the wave 2 test input point.
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Figure 4. The standard deviation
√

Vr(x) and bias Br(x) of the internal discrepancy, calculated at each of the 60wave 2 input
points (giving each of the 60 black/blue lines), plotted against time (r = t) for the prey and predator outputs.

provides valuable information that would be entirely overlooked were we to take a naive and

unstructured model discrepancy specification.

While we can glean substantial information from this analysis alone, we have thus far only

explored a single point from the wave 2 runs, and it is reasonable to suspect that the observed

internal discrepancy properties may vary with x. Therefore, the natural progression of the anal-

ysis is to repeat the permutation experiment with each of the remaining wave 2 input points

(step iv).

Recalculating the internal model discrepancy standard deviation,
√

Vr(x), for each of the 60

cases we obtain the results in figure 4a. Similar calculation of the biases, Br(x), yield the results in

figure 4b. Each curve in the plots represent the results of the same calculation as that presented in

figure 3a, only now applied to each of thewave 2 input points.We can see clearly that both
√

Vr(x)
and Br(x) vary substantially with input location x, with similar overall shapes to those observed

above albeit with notable variation in magnitude of the peaks. Given that these expressions of the

discrepancy clearly vary as the inputs to the simulator vary, it would be inappropriate to sim-

ply reduce these results to a simple summary such as an average. If we were to do so, we would

grossly oversimplify our assessment of our internal model discrepancy. Instead, we proceed to

construct emulators for these quantities over the wave 2 input space (step v) for use in subsequent

calculations.

The discrepancy standard deviation,
√

Vr(x), and bias,Br(x), were then emulated over thewave

2 locations. Simple emulators based on linear regressions were used, noting that the regression R2

was above 0.85 for all outputs. This provides a more detailed and nuanced description of model

discrepancy over the space of x that we use to revisit and refine our collection of feasible input

points.We can now refine our emulator for themodel (step vii) into the form (3.3) by using the em-

ulators of the internal discrepancy bias and standard deviation as the �I(x) and �I(x) components.

This provides a more detailed and structured description of the internal discrepancy over the in-

put space, which can be reintroduced to our history matching calculations in §7a. By doing so,
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we can further refine our collection of suitable input parameter combinations using the updated

implausibility given the additional information gained during the structural discrepancy analy-

sis. At this stage, we could generate new input candidate points and, by rejection sampling, retain

only those which satisfied our implausibility threshold under the newmodel discrepancy. Doing

so yields the new input combinations shown in purple on figure 2b, which could form a potential

wave 3 of our analysis were we to continue iterating the history match.

(c) Using structural discrepancy to enhance forecasting
In the previous section, we carefully assessed the internal model discrepancy via a series of ex-

periments on the computer simulator. While this has already refined our understanding of the

gap between our simulation and the real system, the same information can greatly aid other cal-

culations we may seek to perform—such as forecasting, as discussed in §5. Suppose our rationale

for exploring this simulation is to predict the next peak population (in terms of time and magni-

tude) for both species on the basis of only the data observed until time t= 5, with data beyond this

point as yet unseen. Specifically, let us consider how we can use information on the location of

the first population peak alongside our improved discrepancy specification to update the model

discrepancy and improve potential forecasts for the second peak in the two populations.

First, our focus shifts from the time series outputs of the simulator, f(x, t) = [f1(x, t), f2(x, t)],
for the two species, to derived quantities of the timing and magnitude of the kth peak in the

population for the ith species, denoted by f̃ (k)(x) = [f̃ (k)
1,time

(x), f̃ (k)
1,mag

(x), f̃ (k)2,time(x), f̃
(k)
2,mag(x)]. Thus from

every evaluation of the simulator, we can determine the properties of the first simulated popu-

lation peak, f̃ (1)(x), and the second peak, f̃ (2)(x). In the notation of (5.1), our historical simulator

outcomes are fh(x) = f̃ (1)(x), and our future outcomes to be predicted are fp(x) = f̃ (2)(x), and any

forecasting calculation will require a structural discrepancy component for both the past, �∗
h
, and

future values, �∗p . Before assessing the internal discrepancy, we begin by specifying a simple zero

mean uncorrelated external discrepancy of 2% and ±0.03 for the magnitude and the timing of the

peaks, respectively, for both species. Additionally, we adopt a zero-mean uncorrelated observa-

tional error eh with standard deviations 50 and 0.025 for the magnitude and timing of the peaks,

representing an imperfect peak observation process.

A simple approach to the prediction problem would be to identify a single input choice, x,

that we viewed as an acceptable candidate for x∗ and to explore the forecast this particular choice

would give.A naive first stepwould simply use the simulator output for the secondpeak, f̃ (2)(x), as
the forecast, supplemented by the additional uncertainties we had specified for our discrepancies,

�p. However, there are various correlations present between our model discrepancy components -

between peaks of predator and prey, and between past and future—which mean we can transfer

information about our ability to predict at the first peak to our prediction for the second peak via

the model discrepancy. More formally, assuming that x is a suitable x∗, the correlations that exist

between �h and �p induced by the internal discrepancies, in turn, induce correlations between the

past observations z (peak 1) and the future system value yp (peak 2) via (5.1). These correlations

can then be used to update our beliefs about the behaviour of yp given z, represented by Ez[yp]
and Varz[yp] as given by (5.2).

In figure 5, we show an example of this calculation for a single wave 2 input combination,

where the model output, f(x, t), is given as the solid black line and its 200 perturbations from §7b

indicated as purple lines. For eachmember of this collection of 200 evaluations F(x), we can extract
the 8 peak outputs of interest, [f̃ (1)(x), f̃ (2)(x)], and generate a 200 × 8 matrix of simulator outputs

from which we can assess the 8 × 8 discrepancy covariance matrix, V(x), using (3.2) from §7b.

This provides valuable information on the discrepancy correlations between all of the 8 peak

outputs—the first four of which correspond to the first peak, f̃ (1)(x), and the remainder to the

second peak, f̃ (2)(x). Combining this internal discrepancy information with the unstructured ex-

ternal discrepancy specification gives an assessment of the overall discrepancy variance for the 8

peak output variables.
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Figure 5. Impact of updating model discrepancy on the second peak location forecast from a single wave 2 evaluation. Left:
observed first peak location (light blue point) used to update the model discrepancy. Right: forecast before update (green el-
lipse) and after update (yellow ellipse). Actual second peak location (the target for the forecast): light blue point. Note that,
time series data for the second peak was not used, and is just shown for comparative purposes.

Using this information, we draw the green ellipses in figure 5 to represent a naive prediction

that is centred on f(x) with the ellipse orientation and axis lengths describing the assessed dis-

crepancy uncertainties represented by Var[�h] and Var[�p]. It is clear from the left panel that this

yields an inadequate prediction to the first peak, as the observation (cyan point) is both lower and

slightly earlier than this simple simulator-based forecast suggests. Therefore, it is reasonable to

expect a similar deficiency in our forecast of the second peak using this particular evaluation of

the simulator. Usingwhatwe have learned about the prediction at the first peak, we can adjust our

discrepancy, �p, and hence our prediction for yp to Ez[yp] via (5.2). In the right panel of figure 5, the
original naive prediction in green has been adjusted to give the improved forecast for yp, Ez[yp], as
the red point, with associated uncertainty, Varz[yp], in yellow, giving a more accurate prediction

of the second peak location after this update. It is important to note that this calculation is looking

only at a single input choice, x, effectively assuming it is a good candidate for x∗. This will not

be universally true for all x, and this calculation will not rescue a bad prediction made from an

inappropriate input choice; instead the input should be deemed implausible and discarded after

a later history match that used the second peak observation.

It is instructive to repeat this predictive calculation for all of the cautious wave 2 input points.

We thus obtain the results in figure 6 with the simple forecasts for each input as a green ellipse,

alongside the corresponding updated forecasts as yellow ellipses. We can clearly see the effect

of the updated model discrepancy by substantially reducing the uncertainty around each of the

forecasts and moving the forecasts closer to the prediction target. The set of yellow ellipses al-

ready deliver a vastly improved forecast for the peaks and represents a somewhat robust forecast

as it is based on a very cautious set of wave 2 runs (that were defined using a conservative, large

initial model discrepancy assessment). The substantial impact of an additional wave of history

matching to refine our space of plausible input parameters can be seen by contrasting these re-

sults with the naive (purple) and adjusted (red) predictions using the wave 3 evaluations, which

have greatly reduced uncertainties and concentrate predictions in a much tighter region around

the prediction target. Refer to figure 2 for the locations and outputs of the wave 2 and 3 runs. We

assessed the internal model discrepancy for the wave 3 runs in the same way as for wave 2, but

again for a slower model, emulation of the relevant covariance matrices could be employed and

would dramatically reduce the total number of runs required.
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Figure 6. Forecasts for the second peak of the LVPP model: wave 2 predictions without updating the model discrepancy
(green), and after updating model discrepancy (yellow); wave 3 predictions without updating the model discrepancy (pur-
ple), and after updating model discrepancy (red). Actual second peak location (the target for the forecast): light blue point.

The above forecasts are in alignment with the history matching paradigm where we do

not seek to probabilize the input space and seek to employ only a limited set of uncertainty

judgements [16]. However, a further step would be to consider a weighting of the input points

used in the forecast according to their fit to data, and thereby weighting the corresponding fore-

casts they produce. For example, adopting Uniform or Gaussian prior distributions over the

inputs lead to tractable forecasts without the need for extensive numerical integration [23]. Alter-

natively, choices ofmore general prior distributions effectively leads to a fully Bayesian calibration

and forecast [2], though this does require making a number of distributional judgements that

may be harder to justify and possibly unnecessary, e.g. if the current forecast dictates a very clear

decision choice which will be unaltered by further probabilistic nuance.

8. Conclusion
Model or structural discrepancy is an essential component in the analysis of computer models as

it reflects the uncertainty that surrounds our simulator’s ability to reproduce the real system it

attempts to model. While discrepancy can sometimes be a challenging concept to reason about,

we have described various potential strategies for assessing sources of structural discrepancy that

are applicable to a wide range of models.

Careful discrepancy assessment will: (i) correct our overconfidence in our projections (by

adding appropriate levels of additional uncertainty), (ii) increase our forecast accuracy (by mak-

ing better choices for x∗, avoiding overfitting and correcting for systematic biases in our sim-

ulator), (iii) help us to make reliable control choices for future outcomes (by recognising the

real-world risks of our various control choices), and (iv) allow us to have a reasoned view as

to how the quality of the model affects the quality of forecasts (by modifying features such as the

magnitude of discrepancy variances and repeating our calculations).
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