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Abstract
We demonstrate a novel approach to reservoir computation measurements using randommatrices.
We do so to motivate how atomic-scale devices could be used for real-world computational
applications. Our approach uses random matrices to construct reservoir measurements,
introducing a simple, scalable means of generating state representations. In our studies, two
reservoirs, a five-atom Heisenberg spin chain and a five-qubit quantum circuit, perform time series
prediction and data interpolation. The performance of the measurement technique and current
limitations are discussed in detail, along with an exploration of the diversity of measurements
provided by the random matrices. In addition, we explore the role of reservoir parameters such as
coupling strength and measurement dimension, providing insight into how these learning
machines could be automatically tuned for different problems. This research highlights the use of
random matrices to measure simple quantum reservoirs for natural learning devices, and outlines
a path forward for improving their performance and experimental realization.

1. Introduction

Computing with physical systems such as particle swarms (Lymburn et al 2021, Wang and Cichos 2024) or
lasers (Duport et al 2012, Nakajima et al 2021) has emerged as a promising candidate for a new wave of
technologies built around better utilizing natural systems as learning devices. These approaches to
computation, broadly captured under the term extreme learning machines (Huang 2014), of which reservoir
computing (RC) can be seen as a subset, suggest that the majority function of highly parameterized learning
devices is simply the projection of information into high dimensions, from there, a much smaller, trainable
readout layer may be tuned to make predictions on this projection.

One promising research direction is the use of quantum devices for RC (Fujii and Nakajima 2017, Tanaka
et al 2019, Mujal et al 2021, Innocenti et al 2023). Quantum systems studied include spin-lattices (Čindrak
et al 2024), superconducting qubits (Suzuki et al 2022, Dudas et al 2023), or artificial atoms (Bravo et al
2022), which are viable candidates for future, real-world devices due to their size and solid-state nature. A
convenient aspect of utilizing quantum devices for this form of computing comes in their power-law scaling
of states as a function of particles. This factor makes relatively small quantum devices well-suited for
projecting input signals into high-dimensional spaces, which can then be read off for predictions. To this
end, there have been numerous demonstrations of the efficacy of quantum RC (QRC) methods ranging from
excited state energy predictions in molecules (Domingo et al 2022), quantum reinforcement learning (Chen
2024), and object or image classification (Spagnolo et al 2022, Suzuki et al 2022) to mention just a few. A
critical problem, however, is the construction of the state representations of the learning machine. This
representation must comprise a large set of numbers that provide a complete or over-complete representation
of the system. In the case of quantum systems, the space of well-defined measurements that could be used in
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this representation is small, and in most cases, only the Pauli spin matrices are used on individual
spins (Mujal 2022, Domingo et al 2023, Martínez-Peña et al 2023) to construct such a state representation.
This approach results in small state representations and, therefore, less expressive measurements. In this
work, we suggest utilizing randommeasurements on the reservoir as an alternative to the Pauli spin matrices.
This approach is motivated by the fact that the state representation passed into the reservoir’s readout layer
need not be interpretable; rather, it should be sensitive to changes in the internal state. Therefore, rather than
restricting measurements to the Pauli spin matrices, we explore a fixed set of random measurements. This
can be achieved by constructing random hermitian matrices, which can then act on the systems’ state in the
presence of a time-varying input. In this way, large numbers of diverse measurements can be made on the
reservoir, producing larger state representations, which, we argue, aids in better RC.

Incorporating random matrix theory (RMT) into the framework of QRC here presents a novel approach
to harnessing the intrinsic complexities of quantum systems for computational tasks. RMT, with its roots
deeply embedded in statistical physics and mathematical theories, provides a versatile tool for understanding
the statistical behaviors of complex systems (Guhr et al 1998, Anderson et al 2010, Fyodorov 2010, Livan et al
2018), particularly those governed by quantum mechanics. The application of RMT in this context is
motivated by the unique ability of random matrices to capture the dynamic properties of quantum systems,
thereby enriching the state representations used in RC. Using random matrices to generate reservoir state
representations in quantum systems can increase the richness of a reservoir’s state space can significantly
enhance its computational capacity. This strategy not only expands the expressive power of the state
representations but also aligns with the core philosophy of RC, where the non-linearity and
high-dimensionality of the reservoir’s dynamics are crucial for processing and predicting complex
time-series data.

Previous work has explored how the scaling of the Hilbert space can improve reservoir
performance (Kalfus et al 2022) as well as the role of certain kinds of quantum interactions such as
entanglement (Götting et al 2023). Some work has looked directly at the measurement problem as in Mujal
et al (2023) where they study to use of intermittent measurements to produce a more reliable workflow for
online RC. In their 2022 work, Domingo et al (2022) demonstrated that random quantum circuits could be
used to construct state representations from molecular-input data. Such an approach is similar to the work
presented here, albeit requiring a larger number of implemented quantum circuits. In all cases, these
investigations have utilized the standard set of observables for the state representation, typically the Pauli
spin matrices. While this allows for a more interpretable state representation, the important aspect of the
representation is its sensitivity to changes with respect to the evolution of the reservoir. In other recent work
by Haug et al (2023) and Elben et al (2019), random measurements were used to describe quantum support
vector machines and quantum many-body systems, respectively, to great effect in a similar vein to what is
presented here. This work introduces a more generalizable approach to state measurement wherein random
matrices are used as measurements on the reservoir to construct a vector representation.

The remainder of this paper is organized as follows. First, we introduce the fundamental framework of
RC and present the two reservoir systems studied in this work, a five-atom spin chain and a gate-based
quantum circuit. We then discuss the formalism of a quantum reservoir state representation. Subsequently,
we present the results of our investigations on several test problems, which aim both to demonstrate the
capability of the measurement method and to better understand the effects of tuning certain model
parameters. Finally, we discuss the practical limitations and give an outlook on future research directions.

2. Framework

2.1. RC
RC is an approach to machine learning where the non-linear dynamics of a system are used to embed some
input signal into a high dimensional space from which it can be read out by a trainable readout
layer (Gauthier et al 2021). They were initially proposed based on the so-called echo state networks (Jaeger
and Haas 2004) but have since expanded well beyond their humble origins (Tanaka et al 2019). In a typical
neural network architecture, hidden layers play the role of a high-dimensional embedding

f :AN →BM :M> N (1)

where A and B are mathematical spaces. After being passed through these layers, data is read out by a simple
linear combination

yi = wijxj (2)
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where yi is the ith output of the neural network and wij the weight matrix of the final layer. During training,
this embedding is trained on the data such that for each data point passed through the network, a unique
representation of this point in the high dimensional space is produced. In this work, we often found slightly
improved results by allowing one additional layer with a ReLU non-linearity, still vastly reducing the size of
the networks but increasing the complexity of the reservoir readout. In the case of the spin chains, a single
ReLU activation is used in the readout layer whereas in the quantum circuit reservoir, no non-linearity was
required.

In RC, rather than using a trainable embedding, a fixed mapping (the reservoir) is selected to perform the
role of equation (1). This mapping can be as simple as a large random matrix, however, in recent years, it has
been shown that using dynamical systems as a reservoir provides access to a non-linear function in a
high-dimensional space. These reservoirs work by interacting with their inputs, typically by some coupling of
their dynamics. For example, in the case of Swarm computing, a predator particle is driven through a swarm
of reservoir particles, which, in turn, avoids the incoming predator (Lymburn et al 2021, Wang and Cichos
2024). The coupling of these two dynamical systems makes it possible to predict the movement of the
predator using some state representation of the swarm. Beyond the immediate benefit of requiring far less
effort in training, RC also naturally incorporates memory into the prediction process. Most systems used in
RC display non-markovian dynamics, that is, their movement can be very sensitive to their initial conditions
and depend on their states far into the past (Inubushi and Yoshimura 2017). Not only does this result in a
non-linear mapping, it also provides a means for predicting time series problems that also display this kind
of memory (Fang et al 2023).

In this study, the first reservoir studied is a five-atom spin chain, simulated in the QuTIP
engine (Johansson et al 2012, 2013). The spin chain is modeled by the time-dependent Quantum Heisenberg
Hamiltonian

H=− 1

2
J
∑
⟨ij⟩

(
σ(i)
x σ( j)

x +σ(i)
y σ( j)

y +σ(i)
z σ( j)

z

)
− 1

2
h(t)

∑
l

σ(l)
z ,

(3)

where J is the spin coupling constant, σ(m)
k with k ∈ {x,y,z} are the Pauli spin matrices acting on spinm, and

h(t) is a time varying magnetic field. The summation over ⟨ij⟩ includes all nearest neighbors in the spin
chain without boundary condition, while the summation over l includes all spins. The driving signal is
encoded into the reservoir through the magnetic field as it couples to the spins in the chain. The unitary time
evolution is simulated in QuTIP.

Additionally, we utilize a quantum circuit of five qubits as a quantum reservoir. We sequentially encode
sequences of data-points from a time series into the quantum state by angle-encoding (Havlíček et al 2019).
In this method, a rotation gate is acting on qubits with an angle corresponding to the value of a data point
xi ∈ R. In the course of this work, the encoding unitary is the tensor product of Pauli-X rotation gates Rx

over n qubits

Uent (xi) =
n⊗

j=1

Rx (xi) . (4)

A further unitary operation on the quantum state is applied in order to realize a versatile state representation.
The circuit is simulated using the Python library Pennylane (Bergholm 2018).

2.2. State representation
RC relies on the ability to embed information from an input into a system that distributes it across many
degrees of freedom. This is, however, not difficult to achieve and therefore, not the bottleneck in RC research.
Rather, developing a state representation to measure this distribution of information from the system is a far
more tedious task, particularly in the field of QRC, where the list of known observables can be painfully
small. In this work, we set out to discuss whether random matrices can be used for RC on very small
quantum systems. Therefore, we do not address these limitations in great detail but instead, provide an
outlook at the end of the paper about how they could be overcome or even used in future investigations.

In our approach, a set of random hermitian matrices is used to make measurements of a quantum system
evolving under a driven Hamiltonian. Consider the indexed set of random matrices

M=
{
Oi :O†

i =Oi ∀ 0⩽ i ⩽ N and i ∈ Z
}
, (5)

3
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referred to hereafter as themeasurement set. The state representation, s ∈RN can then be constructed by
acting on a quantum system using the measurement set with

si = tr(ρOi) , (6)

where ρ is the density matrix of the system. In a real quantum reservoir, the density matrix ρ is a product
over subsystems

ρ=
⊗
m

ρm, (7)

where ρm is the density matrix of themth subsystem. Measurements like those in equation (6) would destroy
the system state under study, thereby damaging the reservoir. Furthermore, larger measurements of the
reservoir can be more expensive, particularly on a computer. Therefore, it may be favourable to reduce this
complexity and measure local states. In practice, this is represented by substituting the trace operation for the
partial trace

mj
i = tr(ρmOi) , (8)

where ρm = trρkρ and ρk =
⊗

l ρl : l ̸=m is understood to be the composite formed without the test
subsystem. With this approach, each test subsystem will be assigned its own state representation,
sα ∈RPα⩽N. The reasoning is that one can now decide whether or not to apply all observable measurements
to all test subsystems or choose some distribution strategy. The combined state representation, g, will have
the dimension F=

⊕
αPα : F⩾ N. Combining these state representations into a readout is then handled by

the readout, or neural, layer of the reservoir. In this work, we randomly select test sites for each observable,
Oi, and concatenate their expectations before passing them to the readout layer.

3. Experiments

3.1. Observable study
In the studies presented here, we employ either coupled spins or qubits within a quantum circuit. In such
composite systems, the possible states attainable scales by the power of the number of elements, i.e, for a
combined state, |ψ⟩

|ψ⟩=
N⊗
i

|ϕ⟩i ∈H2N , (9)

for N spins and Hilbert space,H. When computing measurements in this space, one can apply a sufficiently
large matrix and compute a value for the full state. However, measurements over subsets are also possible,
improving computation time and reducing the problems associated with wavefunction collapse. As an
observable’s outcome is related to its eigenspectrum, it is relevant to identify the impact of partial
measurements on constructing a state representation and whether performing partial trace measurements
improves or degrades the representation. To do so, we perform two experiments. In the first, observable
matrices of different sizes are randomly produced and their spectra compared, and in the second, these
random matrices are used to compute observables on random density matrices with and without partial
traces. The maximum size matrix is fixed by the theoretical maximum number of coupled spin sites
considered during our investigations, which was 9. Therefore, in the largest case, a 512× 512 matrix is
considered. All matrices are constructed using the QuTIP random_herm and random_dm functions.

3.1.1. Matrix statistics
Figure 1(a) outlines the results of the first investigation. In these figures, each frame shows the results of the
computation on a set of different dimensional observables constructed with a fixed density, stated in the title
of the frame. For a low density, the random matrix is mostly populated with zeros. This figure shows that the
larger matrices, perhaps unsurprisingly, produce a more diverse range of eigenvalues. This result suggests
that the space of solutions for these larger matrices is larger and, therefore, more ideal for measurements.
However, in real studies, the observable is applied to a state, and therefore, it is important to understand
what effect this will have on the measurement’s outcome.
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Figure 1. (a) Distribution of random matrix eigenvalues used for the observables computations during the QRC studies. (b)
Distribution of the expectation values of observables computed using random matrices of varying sizes and densities. For
matrices smaller than 512, measurement sites are chosen randomly.

3.1.2. Measurement statistics
The next component to study is the outcome of measurements on randomly generated states. This study is
performed by fixing a set of measure sites in a Hilbert space built from nine individual spin states, producing
a net dimension of 512. A set of random observables is then computed on these sites via the partial trace.
This is repeated for new sites and observables of larger dimensions. Results of this study are displayed in
figure 1(b). In this case, we see that the smaller observables, computed on partial traces of the full systems,
produce more diverse measurements than the larger ones. This could be due to the states’ self-averaging, but
it is important for how we construct the state representations in the following studies. Specifically, these
results suggest that we should use the computationally inexpensive option of many measurements of partial
traces of the reservoir.

3.2. Cosine wave
As a simple investigation, we train the spin chain to fit a cosine wave and vary the properties of the reservoir
to identify the effect on performance. The initial aim is to show whether the reservoir, measured using
random matrices, can accurately reproduce the input function. To produce the data, a cosine wave is fed into
the five-atom reservoir through the magnetic field, coupling to all spins in the chain. After the simulation, a
set of random measurements is made to construct a state representation for each time step, which may then
be fed into a readout layer for future predictions. Figure 2 shows the results of this study for a strongly
coupled (10 ·π) spin chain on single-step, open-loop prediction. In open-loop prediction, the real
underlying cosine data is still fed into the reservoir, but the readout layer predicts future steps at previously
unseen times. While the results look reasonable, we found that adjusting parameters such as the coupling
strength between the spins and the dimensions of the state representation could significantly impact reservoir
performance. To illuminate this effect, we studied how the coupling strength, state representation, and
prediction length relate to the system’s overall performance. To do so, we ran a scan of these parameters with
coupling strength J ∈ {0.01,0.1,0.5,1.0,2.0,5.0,10.0,50,100.0}, state dimension s ∈ {1,10,20,50,100,500}
and prediction length τ ∈ {0.05τ,0.5τ,1.0v,2.5τ,5.0τ,25.0τ}where τ is the period of the driving wave.
Figure 3 outlines the results of this investigation. Looking first at the prediction length, we see that the
performance decreases as the reservoir must predict further into the future. This is expected. However, it is
interesting to note that the model can make relatively stable predictions even at 2.5 times the period. The
relationship between the reservoir parameters is perhaps of more interest. We see a stable region of coupling
strengths and state dimensions within which the reservoir can produce well-correlated predictions to the
underlying signal. This region is relatively unaffected by prediction length. Interestingly, there appears to be a
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Figure 2. Reservoir predictions of the sine wave. The orange data corresponds to what was passed into the reservoir during
training, whereas the green line shows the predictive-only regime.

Figure 3. Scan over reservoir parameters for the prediction of the Cosine wave. τ is a period of the cosine wave and the color
corresponds to the Pearson correlation coefficient between the reservoir predictions and the ground truth data. Red indicates a
better correlation, whereas blue indicates anti-correlation.

slight tradeoff between coupling strength and state dimension for the higher spin couplings. As this exists for
all prediction lengths, it does appear that a larger state dimension may be required to map the more strongly
correlated reservoirs correctly. It should be noted that these coupling strengths do not explore any strongly
correlated regime, as they respond only to mild driving signals. This is largely due to limitations on the
simulation time but is an avenue that should be explored in future work.

3.3. Stock data interpolation
The subsequent study we performed using the spin chain was price interpolation on the Dow Jones
Industrial Average stock market index (Dow30) of daily opening prices. We do so to demonstrate the ability
of the reservoir to perform accurate data interpolation on stochastic time-series data. The data is fed into a
five-atom spin chain through the magnetic field with a 2π coupling strength. We then use a 100-dimensional
state representation to predict stock prices one-time step ahead (1 d in real-time), albeit on shuffled data.
This means the reservoir is used purely as an interpolation device, not for extrapolation. To study the
performance, we train the readout layer of the reservoir on varying fractions of the overall dataset,
x ∈ {0.1..0.9}, and compute the Pearson correlation coefficient on the test data each time. This compares
with two prominent interpolation methods, Cubic Splines and Cubic Hermite Splines, to judge the efficacy.
The results are displayed in figure 4. Interestingly, the QRCmethod can perform excellent interpolation on as
little as 20% of the data. This is comparable to the other spline methods, although these methods do not use
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Figure 4. (left) Interpolation of the Dow30 price using the QRC and a 70% split. (top right) Pearson correlation coefficients for
QRC, Cubic spline, and Cubic Hermite spline methods as a function of the train fraction. (bottom right) Sample Correlation
diagrams from the QRC fitting on 70% train splits for test (left) and train (right) data.

a high-dimensional representation of the reservoir but rather simple 1-D interpolation. We also attempted to
perform direct future prediction on the input data; however, the approach appears to be much more capable
of interpolation than extrapolation. This also suggests that some memory elements are poorly characterized
in the current implementation and could be improved in future work.

3.4. Quantum circuit RC on theMackey–Glass series
For our final investigation, we examine a quantum circuit comprising 5 qubits as a reservoir. We train the
reservoir to predict the future dynamics of the Mackey–Glass time series P(t) (Mackey and Glass 1977),
which is described by the one dimensional delayed differential equation

dP(t)

dt
=

βP(t− τ)

1+ P(t− τ)
n − γP(t) . (10)

For the standard parameters {β,γ,τ,n}= {0.2,0.1,17,10} and P(0) = 1.2 the system shows chaotic
behavior. The time series is generated using a fourth-order Runge–Kutta integrator (Runge 1895, Kutta 1901)
at a 1s time step. The data is split into sequences of length l and sequentially encoded into a state
representation by the circuit depicted in figure 5(a). A single data point xi is encoded via angle encoding as
described in equation (4). In an alternating manner, the encoding and an ansatz of Pauli-Y rotation gates and
controlled Pauli-Z rotation gates is executed. The role of the ansatz is to realize a versatile state representation
of the input sequence. The parameters θijk are sampled randomly from a uniform distribution over [0,2π]
and are fixed in the subsequent process. Following the circuit’s execution, a batch of random Hermitian
matrices’ expectation values is measured. These results are then fed into a classical linear layer, which is
trained to predict a future data point. We conducted a parameter scan for different sequence lengths
l= {4,8,12,16}, different prediction steps {1,10,50,100} and different numbers of measurements equally
spaced on a logarithmic scale in the interval [1,1000]. We split the data set into 67% training and 33% test
data and compute the Pearson Correlation between the actual and predicted test data of the trained reservoir.
The best result of the parameter scan is shown in figure 5(b). The values on the test set are predicted by
feeding a sequence of the test data into the reservoir. The model achieves a correlation of up to 0.999.
Figure 5(c) displays the results of the parameter scan. It’s noticeable that with an increased number of
measurements, the model attains a higher correlation on the test data. Two effects can contribute to this
effect. First, the size of the classical output layer increases and the model may gain more flexibility in learning
the data. Second, the model obtains access to a more comprehensive representation of the state
representation. Moreover, it becomes apparent that by extending the sequence length, the model’s
performance appears to diminish for a comparable number of measurements. This suggests the necessity for
a more expressive model architecture to effectively capture longer sequences. Lastly, we notice that even for
large prediction lengths of 50 or 100 steps, the model can perform predictions on the non-linear time series
with a high accuracy.
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Figure 5. (a) Quantum circuit used in this study. A sequence of data points is sequentially encoded into the quantum state of the
five-qubit system. Single and multi-qubit gates with fixed rotation parameters θi act on the quantum state. At the end of the
circuit, the expectation values of random Hermitian matrices are measured and fed into a linear layer. (b) Mackey–Glass Function
and the predictions of the trained model with the highest correlation score on the test data. (c) Result of the parameter scan for
different sequence lengths, different prediction lengths, and different numbers of random hermitian measurements. Shown is the
correlation on the test data for the trained models.

4. Conclusion and outlook

We presented a new approach to measuring QRCs using random matrices. Our method is scalable to
arbitrary state dimensions and performs well in test cases using two quantum reservoirs, a Heisenberg spin
chain, and a quantum circuit. While the results shown here correspond to quantum systems, any RC
paradigm could be substituted as long as the measurement problem can be formulated in terms of matrix
operations. As a first investigation, we showed the spectrum and observable range of random matrices on
random system states. We found that partial traces over the entire system may improve the diversity of
observables that can be used in reservoir computation. We then demonstrated the effectiveness of our
method on the problem of time series prediction for a sine wave and the Mackey–Glass time series, as well as
data interpolation on historical Dow30 data. Our results suggest that random matrices work well for
different reservoirs for state representation. However, its practical application to real hardware remains an
open question. Currently, it is not feasible to fulfill expectation values over hundreds of measurements with
quantum devices. However, there are ways to overcome this challenge. In many real devices, scientists
perform measurements far away from the driving mechanism so that multiple measurements can be made
without perturbing the primary dynamics. In these cases, the drive signal is often repeated to obtain the
required statistics, resulting in a non-real-time workflow. Looking to the future, just as we use chips that are
limited by a bit architecture, it is intriguing to imagine that this could be extended to RC, where small devices
such as stacks of spin lattices are designed to perform hundreds of measurements over thousands of
ensembles simultaneously. One avenue for future research is to investigate much more highly correlated spin
systems or alternative reservoirs with better learning capabilities. In addition, larger reservoirs should be
explored to better understand the influence of correlations spanning more degrees of freedom, possibly also
in experiments. Another key element to be studied is the influence of quantum phenomena such as
entanglement and the phase space used on the performance of the storage. The aim is to determine whether
true quantum phenomena influence reservoir performance. While for a certain QRC architecture an
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influence of quantum properties on the reservoir performance has been observed (Götting et al 2023), these
results have to be investigated for the architectures of this paper in future work.
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