
1

T-STAR: Time-Optimal Swarm Trajectory Planning
for Quadrotor Unmanned Aerial Vehicles

Honghao Pan, Mohsen Zahmatkesh, Fatemeh Rekabi-Bana, Farshad Arvin, Senior Member, IEEE,
and Junyan Hu, Senior Member, IEEE

Abstract—This paper introduces a time-optimal swarm tra-
jectory planner for cooperative unmanned aerial vehicle (UAV)
systems, designed to generate collision-free trajectories for flock-
ing control in cluttered environments. To achieve this goal, model
predictive contour control is utilised to generate time-optimal tra-
jectories for each UAV. By demonstrating the differential flatness
dynamic equations, the system state constraints are simplified,
the algorithm’s complexity is reduced, and the overall stability
is improved. Additionally, flocking control is achieved among
multiple UAVs by applying virtual repulsive and attractive forces.
Furthermore, an event-triggered trajectory deconflict strategy for
trajectory replanning is considered to resolve multiple trajectory
conflicts. Comparative experiments with baseline methods have
confirmed that the proposed planner can generate faster and
safer trajectories than conventional methods.

Index Terms—Unmanned aerial vehicles, optimisation, model
predictive contour control, distributed trajectory planning, colli-
sion avoidance, swarm robotics.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are widely recognised for
their high agility, performing exceptionally well in various sce-
narios, such as trajectory planning in unknown environments
[1]–[3], and high-speed competitions in known environments
[4]. There is also an increased research interest focusing on
formation control for multiple UAVs where a team of UAVs
is required to form a desired pattern in a given workspace
[5]. However, most studies on formation control often com-
promise the agility of drones [6]–[8], which may cause some
limitations in emergency situations like search and rescue [9].
Therefore, this paper aims to develop a multi-UAV trajectory
planner that focuses on enhancing agility, enabling aerial
clusters to rapidly adapt and manoeuvre through cluttered
environments.

The high-agility UAV swarm trajectory planner faces three
significant challenges. Firstly, the planner is designed to
navigate complex environments by avoiding dense obstacles
and dynamically adjusting trajectories to prevent collisions
with other UAVs while maintaining optimal flight speeds
[10]–[12]. Additionally, generating smooth and high-quality
trajectories is crucial for stable flight, allowing quadrotor
drones to operate at their performance limits. Furthermore,
another critical challenge lies in resolving trajectory conflicts
within the swarm, requiring efficient distributed strategies to
ensure safe manoeuvring in highly dynamic and constrained
environments [13].

The authors are with the Department of Computer Science, Durham
University, Durham, UK. (e-mail: {honghao.pan; mohsen.zahmatkesh;
fatemeh.rekabi-bana; farshad.arvin; junyan.hu}@durham.ac.uk)

In this paper, these challenges are addressed by designing a
Time-optimal Swarm TrAjectory planner (T-STAR). A novel
distributed swarm trajectory planning strategy that signifi-
cantly improves the efficiency of task completion is proposed.
This method consists of three main parts. Firstly, the planner
uses local perception data for the convex decomposition of a
cluttered space and builds a time-optimal model based on the
cost function from Model Predictive Contour Control (MPCC)
[14]. Unlike established approaches, the proposed strategy
does not use the constraints of MPCC to update control vari-
ables because the nonlinear dynamics during the high-velocity
flight of quadrotor drones significantly increase the computa-
tional load. The differential flatness is applied to represent
the drone’s position, yaw angle, and their finite derivatives
as control variables, updating them by the smoothness of flat
output, thereby preventing numerical instabilities associated
with MPCC-based state updates. Then, by predetermining the
relative positions between individuals, a resilient distributed
strategy is established in which each UAV exerts repulsive
forces on the other UAVs while generating attractive forces
to maintain swarm collaboration. Finally, an Event-triggered
Trajectory Deconflict strategy (ETD) is designed to avoid
trajectory conflicts between multiple UAVs. The contributions
of this paper are as follows.

1) A new time-optimal trajectory planning method is pro-
posed for quadrotor drones based on MPCC, utilising
the differential flatness to reduce model complexity and
enhance numerical stability.

2) A novel decoupled swarm planning strategy is designed,
which maintains high swarm speeds while keeping for-
mation errors bounded. This is achieved by incorporating
slack variables related to formation errors, enabling a
flexible trade-off between swarm speed and formation
quality.

3) A new event-triggered mechanism strategy is introduced
that allows individual UAVs to locally replan their trajec-
tories, using information from neighbouring UAVs when
a trajectory conflict is detected, in order to generate a
collision-free swarm trajectory.

4) Extensive benchmark testing, simulations, and real-
world experiments are conducted to validate the ef-
fectiveness of our method. Compared to conventional
trajectory optimisation-based control methods, our ap-
proach can generate trajectories that are shorter in du-
ration and faster in speed.

2

II. RELATED WORK

A. Differentially Flat Control of Quadrotor Drones

Differential flatness was proposed by Fliess et al. [15]
and has been widely used in control systems [16]–[18].
This property indicates that all states and inputs of a flat
system can be determined by flat outputs and their finite
derivatives. Mellinger and Kumar demonstrated the flatness
of quadrotor aircraft model, defining position and yaw angle
as the flat outputs [19]. Therefore, the planning of states
for a quadrotor can be transformed into planning based on
flat outputs. For instance, a fault-tolerant trajectory planning
algorithm was proposed by combining differential flatness and
the uncertainties of the quadrotor model [20]. Differential
flatness was applied to model predictive control, resulting in a
trajectory planning method based on quadratic programming
and feedforward linearisation [21]. However, these methods
do not consider the aerodynamic effects associated with the
high-speed flight of quadrotors. Faessler et al. proved the
flatness of quadrotors affected by linear rotor drag effects, with
position and heading remaining as the flat outputs [22]. An
aerodynamic model for fixed-pitch quadrotors was developed
in [23], with the introduction of a thrust controller to improve
tracking accuracy. In [17], the incremental nonlinear dynamic
inversion method was proposed to handle aerodynamic drag,
utilising optical sensors to measure motor speed for closed-
loop control.

However, the above methods focus on the motion planning
of a single UAV and do not consider the complexity and
coordination requirements of multi-UAV systems. As task
complexity increases, multi-UAV systems need to achieve
efficient and reliable coordinated motion in dynamic environ-
ments, which imposes higher demands on trajectory planning
algorithms.

B. Model Predictive Control for Trajectory Planning

Model Predictive Control (MPC) is widely studied for its
ability to predict future behaviours in highly uncertain envi-
ronments and to handle complex constraints [24]–[26]. MPC
solves an optimisation problem over a finite time horizon to
obtain a locally optimal solution, thereby iteratively updating
the optimal state of the control system.

However, MPC requires significant computational re-
sources. This is particularly challenging when establishing the
nonlinear dynamics models for quadrotors, making nonlinear
MPC computationally intensive. Therefore, many studies have
reduced the computational complexity by linearising the non-
linear MPC (NMPC) [27]. With the development of nonlinear
optimisation solvers, NMPC has become a popular control
method for quadrotors. In [28], a time-optimal trajectory
planning method using NMPC is proposed by setting the
quadrotor’s progression along the trajectory as waypoints. The
NMPC model, which used Gaussian processes, was estab-
lished to compensate for aerodynamics in high-speed flight
[29]. However, traditional NMPC heavily relies on reference
trajectories, and generating these trajectories is a complex task.

MPCC is a variant of NMPC that expands the search
space of MPC by maximising the progress along a reference

trajectory and minimising the distance to reference points
[30]. Therefore, MPCC reduces the dependence on reference
trajectories to enhance the robustness of the tracking system
effectively. Liniger et al. proposed an MPCC model for
autonomous racing cars, integrating trajectory generation with
tracking [31]. The feasibility of the MPCC approach was
demonstrated in racing tasks for quadrotors [14]. Additionally,
collision-avoidance constraints were incorporated in MPCC to
generate safe trajectories [32].

Although these approaches provide reliable solutions for ag-
ile flight in quadrotor drones, the high computational resources
required by NMPC remain unresolved. Moreover, the issue of
numerical stability in NMPC still persists.

C. Distributed Trajectory Planning

Distributed swarm trajectory planning is a key research
area in multi-UAV systems, involving obstacle avoidance [33],
collaboration [34], and formation [35] of multiple UAVs in
complex environments. In [36], a velocity obstacle strategy
was introduced for avoiding dynamic obstacles. The core of
this strategy is to construct a velocity obstacle space based on
the velocity and position of obstacles, with the UAV planning
velocity outside this space. Van den Berg et al. applied and
extended the velocity obstacle strategy to multi-UAV systems,
allowing UAVs to plan collision-free trajectories [37]. How-
ever, as the number of obstacles increases, the computational
load of the velocity obstacle method significantly increases.
Additionally, the velocity obstacle strategy focuses on velocity
planning, which may lead to non-smooth trajectories.

To address this issue, optimisation-based multi-UAV trajec-
tory planning has been extensively explored [38]. Zhou et al.
embedded the buffered Voronoi cell method into quadratic pro-
gramming to achieve mutual collision avoidance in multi-robot
systems [39]. The predicted collision constraint was added in
[40] to distributed MPC to generate collision-free trajectories.
A gradient-based distributed trajectory planning framework
was proposed to generate safe trajectories in real-time [12].
To ensure trajectory smoothness, Bernstein polynomials are
applied to generate multi-UAV trajectories [41]. However,
these methods typically do not consider time optimisation,
leading to paths that may not be time-efficient. Additionally,
they do not fully utilise the agility and high manoeuvrability
of quadrotor drones, limiting performance in dynamic and
complex environments.

To overcome these shortcomings, this paper aims to restruc-
ture the trajectory planner and design a novel cost function to
balance the stability and agility of the drone swarm. Addition-
ally, we aim to adopt a distributed optimisation approach to
ensure effective collision avoidance among multiple UAVs.

III. PRELIMINARIES

A. Quadrotor Model

The state space of a quadrotor is defined with respect
to two reference frames, the world frame W and the
body frame B, as shown in Fig. 1. The state variables is
x =

[
pW vW

WRB ωBW

]
∈ R3×6, where pW =

[xW yW zW]
T ∈ R3 is the position, vW ∈ R3 is the linear

3

�W

�W

�W

�C

�C�C

�B

�B

�B

�C

�C

�C

Ψ

Ψ

Fig. 1. A schematic of the reference frames. Includes world frame W,
intermediate frame C, and body frame B.

velocity vector, WRB = [xB yB zB] ∈ SO3 is rotation
matrix from body frame to world frame, and ωBW ∈ R3 is
the angular velocity vector in body frame. And control variable
is uc = [f τT] ∈ R4, where f ∈ R+ is thrust and τ ∈ R3 is
quadrotor torque. Consider the dynamic model of a quadrotor
with linear rotor drag effects [22]. To improve readability,
the subscripts and superscripts of each element in the state
variables x have been omitted, for example R = WRB, the
dynamic model can be written as

ṗ = v (1)

v̇ = −gez +
1

m
RfB −RDRTv (2)

Ṙ = Rω̂ (3)

ω̇ = I−1
(
τ − ω × Iω − FdR

Tv −Tuω
)
, (4)

where fB = [0 0 f]T ∈ R3 is the total rotor thrust, ez =
[0 0 1]

T from the orthonormal world frame {ex, ey, ez}, D =
diag (dx, dy, dz) ∈ R3×3 represents a constant diagonal matrix
with rotor drag coefficients, ω̂ is a skew symmetric matrix
from ω, I ∈ R3×3 is inertia matrix in body frame, and Fd ∈
R3×3 and Tu ∈ R3×3 are constant matrices.

B. Differential Flatness

Quadrotor dynamic model with rotor drag is proven to have
differential flatness properties [22]. Therefore, the following
shows that the model of the quadrotor with linear rotor drag
can be uniquely determined by the flat output z = [pT ψ]T.

To derive the rotation matrix R, reformulate (2) as follow

v̇ + gez −
1

m
fzB + dxx

T
BvxB

+ dyy
T
BvyB + dzz

T
BvzB = 0. (5)

Because R is a unitary matrix and its elements are orthonor-
mal, left-multiplying (5) by xT

B and yT
B respectively

xT
B (v̇ + gez + dxv) = 0 (6)

yT
B (v̇ + gez + dyv) = 0. (7)

The quadrotor rotation order is ZYX, and the intermediate
frame C is obtained by rotating the world frame by yaw

angle ψ, as illustrated in Fig. 1, with the intermediate rotation
WRC = [xC yC zC]. Given the yaw angle ψ, we get

xC =
[
cos(ψ) sin(ψ) 0

]T
(8)

yC =
[
− sin(ψ) cos(ψ) 0

]T
. (9)

The rotation order shows that yC is orthogonal to xB. so
xB can be determined by (6) and (9)

xB =
yC × (v̇ + gez + dxv)

∥yC × (v̇ + gez + dxv)∥
. (10)

Since xB,yB, and zB are mutually orthogonal, consider the
equation (7), the yB and zB can be formulated as follows

yB =
xB × (v̇ + gez + dyv)

∥xB × (v̇ + gez + dyv)∥
(11)

zB = xB × yB. (12)

Thus, R = [xB yB zB] is obtained. And from (2), fB =
fez, rotor thrust f is,

f =
∥∥(Rez)

T(mv̇ +mgez +mRDRTv)
∥∥

To demonstrate the intrinsic connection between body rate
ω and flat output z, take the derivative of (2) and reformulate

v̈ − 1

m
Rω̂fez −

1

m
Rḟez +Rω̂DRTv +RDω̂TRTv

+RDRTv̇ = 0. (13)

Construct a system of equations via left-multiplying (13) by
xT
B and yT

B ,

xT
Bv̈ − ωy

1

m
f + ωy (dz − dx) zTBv + ωz (dx − dy)yT

Bv

+ dxx
T
Bv̇ = 0

yT
Bv̈ + ωx

1

m
f + ωx (dy − dz) zTBv + ωz (dx − dy)xT

Bv

+ dyy
T
Bv̇ = 0

(14)

Given that ωz is the projection of ẋB onto yB,

ωz = ωTzB = ωT(xB × yB) = yT
B(ω × xB) = yT

BẋB.
(15)

Since xB is orthogonal to yC and zB, xB = yC×zB

∥yC×zB∥ , then
we get the derivative of vector xB,

ẋB =
˙̃xB

∥x̃B∥
− x̃B

x̃T
B
˙̃xB

∥x̃B∥3
, with x̃B = yC × zB. (16)

Based on the x̃B perpendicular to yB, yT
Bx̃B = 0, rewrite (15),

ωz = yT
B

˙̃xB

∥x̃B∥
= yT

B

ẏC × zB + yC × żB
∥x̃B∥

= yT
B

(−ψ̇xC)× zB + yC × (ωyxB − ωxyB)

∥x̃B∥

=
ψ̇xT

CxB + ωyy
T
CzB

∥yC × zB∥
. (17)

4

The body rate ω can be obtained by solving (14) and (17).
To calculate the torque τ using the derivative of ω,

τ = Iω̇ + ω × Iω + FdR
Tv +Tuω. (18)

This section proves that the state space x and control input
can be represented as an algebraic combination of the flat
output z and its finite number of derivatives.

C. Multi-stage Polynomial Trajectory

Multi-stage polynomial trajectories are widely utilised in
quadrotor trajectory planning to ensure the smoothness of
trajectories [42]. Considering the K-stage polynomial trajec-
tories,

z(t) =

Kp∑
kp=0

β1
kp
(t− t1)kp t ∈ [t0, t1]

...
Kp∑
kp=0

βk+1
kp

(t− tk)kp t ∈ [tk, tk+1]

...
Kp∑
kp=0

βKkp(t− tK−1)
kp t ∈ [tK−1, tK],

(19)

where kp is degree, βkkp is kpth coefficient, tk and tk+1

represents the time boundaries of kth trajectory respectively.

D. Problem Statement

Based on the above conclusions, this paper concentrates on
the time-optimal trajectory planning problem for distributed
UAV swarm in flat systems with high obstacle density un-
known environments. The optimal control problem can be
formulated within the T-STAR framework as follows,

min
z(t)

K∑
k=1

{
Jopt(z(tk)) + λse

2
s,k

}
(20a)

s.t. F(z(tk), . . . ,z(n)(tk)) ⪯ 0 ∀k = 1, . . . ,K (20b)

∥L(z(tk))∥2F ≤ es,k ∀k = 1, . . . ,K (20c)
z(tk) ∈ Hk ∀k = 1, . . . ,K (20d)

z[n−1](t0) = z̄init, z[n−1](tK) = z̄final, (20e)

where Jopt is cost function for optimising speed. Augmented
flat output z[n](tk) = (z(tk)

T, ż(tk)
T, . . . ,z(n)(tk)

T)T, n is
a constant, and z(n)(tk) represents the n-th order derivative of
the flat output z(tk). Laplacian matrix L(z(tk)) of each drone,
defined based on flat output z(tk), formalises the distributed
UAV swarm. Slack variable es,k indicates the error between
the UAV swarm and the desired formation. λs is a weight.
F represents the constraints on the smoothness and continuity
of the trajectory. z̄init and z̄final is boundary conditions. The
solution space Hk = Hpk×Hψ consists of the feasible region
Hψ = [0, 2π] and the the collision-free space Hpk , which can
be described by an m-faced convex polyhedron,

Hpk =
{
p(tk) | ĀT

k p(tk)− B̄k < 0
}

k = 1, . . . ,K,

where Āk ∈ Rm×3 and B̄k ∈ Rm are coefficients matrices
that vary with tk.

To eliminate additional optimisation variables es,k, the
optimisation model (20a) is reformulated as follows,

min
z(t)

K∑
k=1

{Jopt(z(tk)) + λsJs(Lk)} (21a)

s.t. F(z(tk), . . . ,z(n)(tk)) ⪯ 0 ∀k = 1, . . . ,K (21b)
z(tk) ∈ Hk ∀k = 1, . . . ,K (21c)

z[n−1](t0) = z̄init, z[n−1](tK) = z̄final, (21d)

where Js(Lk) = ∥L(z(tk))∥2F is cost function for flocking
control.

Therefore, a trajectory planner designed for this paper aims
to solve the following three problems: 1. Finding collision-free
space in unknown environments with abundant obstacles and
dynamic UAVs; 2. Generating time-optimal trajectories for a
single UAV planned on the flat output; and 3. Considering
flocking control algorithms for cooperative UAVs.

Remark 1: In this paper, the concept of time optimality
builds upon the advanced work on MPCC [14]. We effectively
extend this concept by introducing swarm flocking systems,
which aim to increase the flight speed of the UAV swarm
to reduce mission completion time, thereby achieving swarm
time optimality. However, simultaneously optimising both the
swarm’s speed and formation error by enforcing constraint
(20c) as a hard constraint and fixing es to zero can render the
optimisation model (20a) easily infeasible. Therefore, unlike
most works that focus on formation control of UAV swarms,
the slack variable es essentially relaxes the formation error and
adjusts es through the cost function to mediate the trade-off
between speed and formation error, with speed being guar-
anteed. The weight parameter λs represents the importance
of the formation error and is user-defined. A smaller λs can
increase the swarm’s speed; conversely, a larger λs reduces es
by sacrificing speed.

Remark 2: The terminal time tK in the optimal control
framework does not necessarily coincide with the actual task
execution time. This distinction arises because the UAV could
reach the terminal state before tK . Consequently, the time at
which a UAV arrives at the target point, referred to as the task
completion time, can be shorter than the given terminal time.

Remark 3: Coefficients matrices Āk and B̄k are updated
based on the environment perceived by the UAV. Furthermore,
before each optimisation of the control problem (21a), the
values of Āk and B̄k are obtained using the method described
in Subsection IV-D.

E. System Structure

In this paper, we propose a method called T-STAR, which
consists of five distinct functional modules, as shown in
Fig. 2. First, quadrotor UAVs exchange adjacent trajectory
information through a distributed communication network and
establish a safe flight corridor (SFC) based on Support Vector
Machine (SVM) Hsvm−sfc. Then, the Global Planner uses the
unfeasible shortest path obtained by Jump Point Search and
the collision-free space Hsvm−sfc to generate the reference

5

UAV N

UAV 1

Reference Trajectory
Planner

JPS

Global Planner
(Algorithm 1)

SVM-SFC

Distributed Network

UAV 0

Local Planner
 (Algorithm 2)

Time Optimal
Trajectory Planner

Adjacent
Trajectory Flock Control

Laplacian
Matrix L

Repulsive &
Attractive Force

...

Target

P adj

HSVM-SFC

Differential
Flatness

P ref

L

Trajectory Deconflict
(Algorithm 3)

ETD

Fig. 2. The structure diagram demonstrates five modules of the global
planner, distributed communication network, flocking control, local planner,
and trajectory deconflict.

trajectory. Next, the UAVs establish a Laplacian matrix for
flocking control based on the adjacent trajectories. After
calculating the reference trajectory pref , collision-free space
Hsvm−sfc, and matrix L(z(t)), the Local Planner generates
the time-optimal trajectory. If there are trajectory conflicts,
replanning is conducted in the ETD to get the conflict-free
trajectories.

IV. LOW-LEVEL OPTIMAL TRAJECTORY PLANNING

A. Trajectory Optimal Control

A general form of the continuous-time cost functional is,

J(z(n)(t)) =

∫ tK

t0

[
(z(n)(t))2 + λ

]
dt, (22)

where λ is a weight factor for time optimal. Time interval
∆T := tK − t0 is a constant defined by the user. From this,∫ tK
t0

λ dt = λ∆T also is a constant, the discrete cost function
J simplifies to

J(z(n)(t)) =

K∑
k=1

(z(n)(tk))
2. (23)

This cost function is applied in Subsection IV-E to generate
the reference trajectory. According to Pontryagin’s Maximum
Principle, under the constraints (21b) and (21d), the optimal
control (23) is bang-bang control. Therefore, a closed-form
solution for the optimal trajectory can be obtained without
obstacles. And, in environments with a high density of obsta-
cles, the trajectory is obtained using numerical methods.

However, the trajectory generated by (23) is not time-
optimal. In the next subsection, a novel cost function is
designed for the time-optimal trajectory.

B. Unconstrained Time-Optimal Control

In contrast to optimal control (23), T-STAR is designed
to generate faster trajectories to exploit the high-speed ca-
pability of the quadrotor. Based on differential flatness,
the flat output z is planned instead of the full state vec-
tor. Our method considers tracking the reference trajectory
zref while maximising the speed. As illustrated in Fig.
3. The pose of the quadrotor is zk = z(tk) and θ∗k =

Fig. 3. Model Predictive Contouring Control. Minimising contour error eck
and lag error elk for reference trajectory tracking.

[
prefx (θ∗k) prefy (θ∗k) prefz (θ∗k) prefψ (θ∗k)

]T
represents the

vertical projection point of zk on reference path zref (θ),
defining contour error eck is

eck = min
θ

∥∥zk − zref (θ)
∥∥ , (24)

where zref (θ) is an arc length θ = [θx θy θz θψ]
T

parameterised trajectory. Arc-length parameterisation allows
our method to maximise the speed of the projection point θ
along the reference path, thereby increasing the flight speed of
the quadrotor. Moreover, as the reference trajectory does not
explicitly depend on the time parameter t, T-STAR can track
dynamically infeasible trajectories. The cost function is,

J(z, θ) =

K∑
k=1

∥eck (zk, θk)∥
2
qc
− ηvθ,k, (25)

where qc ∈ R+ is the contour weight and η ∈ R+ is the speed
weight. vθ,k = ∆θk

∆t is the velocity of the quadrotor projected
onto the reference trajectory. Notably, the arc length θ and the
velocity vθ,k are virtual control state and corresponding virtual
control input, guiding the planner toward faster trajectories.

However, coupling optimisation model (24) within (25) can
significantly decrease computational efficiency. To ensure the
real-time performance of the control system, an approximation
point θ̂k of the optimal point θ∗k is considered. As shown in
Fig 3, the lag error elk =

∥∥∥θ∗k − θ̂k∥∥∥ represents the link of

θ∗k and θ̂k. For computational simplicity, êlk and êck are used
to approximate elk and eck. To get êlk and êck, firstly defining
tangent line t(θ̂k) of zref (θ̂k) at point θ̂k,

t(θ̂k) =
dzref (θ̂k)

dθ̂k
= [tx ty tz tψ] (26)

=
[

˙
prefx (θ̂k)

˙
prefy (θ̂k)

˙
prefz (θ̂k)

˙
prefψ (θ̂k)

]
,

then, êlk can be calculated as the projection of ek(θ̂k) onto
normalised tangent line t̂(θ̂k) = t(θ̂k)

∥t(θ̂k)∥ , and êck is the

orthogonal vector to êlk,

ek(θ̂k) = zk − zref (θ̂k),

êlk(θ̂k) = (ek(θ̂k) · t̂(θ̂k))t̂(θ̂k),
êck(θ̂k) = ek(θ̂k)− êlk(θ̂k),

(27)

6

thus cost function (25) can be rewritten as

J(ek, θ̂k) =

K∑
k=1

∥∥∥êck(θ̂k)∥∥∥2
qc

+
∥∥∥êlk(θ̂k)∥∥∥2

ql
− ηvθ̂,k (28)

=

K∑
k=1

ek(θ̂k)
TTc(θ̂k)

TQcTc(θ̂k)ek(θ̂k) +

ek(θ̂k)
Tt̂(θ̂k)

TQlt̂(θ̂k)ek(θ̂k)− ηvθ̂,k,

with Tc(θ̂k) = I− t̂(θ̂k)
Tt̂(θ̂k)

=

1− t2x −txty −txtz −txtψ
−tytx 1− t2y −tytz −tytψ
−tztx −tzty 1− t2z −tztψ
−tψtx −tψty −tψtz 1− t2ψ

 , (29)

where Qc = qc · I4, qc ∈ R+ is the contour weight. Ql =
ql · I4, ql ∈ R+ is the lag weight.

Remark 4: Incorporating the yaw angle error into the con-
tour error is a natural choice with differential flatness. Standard
MPCC is inherently nonlinear [14] and requires significant
computational resources for its solution [43]. Different from
standard MPCC, the elements of the flat output z = [pT ψ]T

are decoupled. Consequently, planning the z reduces the
complexity of constraints associated with the coupled full
state of the quadrotor dynamic model, thereby decreasing the
computational time.

C. Properties of the Cost Function

The cost function (28) can be extended to m-dimensional
space. Consider the m-dimensional Euclidean space Rm
formed by zk, which is equipped with an inner product
structure. Therefore, equation (27) holds in this space. Then,
calculate the optimal solution z∗

k of (28) without constraints,
yielding

dek(θ̂k)
TWc(θ̂k)ek(θ̂k) + ek(θ̂k)

TWl(θ̂k)ek(θ̂k)− ηvθ̂,k
dzk

= 2(Wc(θ̂k) +Wl(θ̂k))(zk − zref (θ̂k)) = 0, (30)

where symmetric matrix Wc(θ̂k) = Tc(θ̂k)
TQcTc(θ̂k) and

Wl(θ̂k)) = t̂(θ̂k)
TQlt̂(θ̂k).

The cost function (28) is optimal if and only if z∗
k =

zref (θ̂k). Therefore, the extension of zk with mutually in-
dependent components will not affect the optimality of the
result.

Next, the optimality of (28) and the form of the optimal
solution z∗

k is discussed. Based on the differential flatness of
a quadrotor, establish a continuous time-invariant system,

żk = Azk +Buk, (31)

where state variable zk = z
[n−1]
k , control vector uk = z

(n)
k ,

state matrix A ∈ Rn×n, input matrix B ∈ Rn.

A =

[
0 I(n−1)

0 0

]
B =

[
0
1

]
(32)

0 2 4 6 8 10

t (s)

1

2

3

P
o
si
ti
o
n

(m
)

Wk = 1

Wk = 10

Wk = 100

0 2 4 6 8 10

t (s)

0

1

2

V
el
o
ci
ty

(m
=
s)

0 2 4 6 8 10

t (s)

-2

0

2

4

A
cc

el
er

a
ti
o
n

(m
=
s2

)

Fig. 4. Optimal control validation with terminal constraints. Given the same
initial state zk = [p,v,a] = [1, 0, 0], as Wk increases, the velocity and
acceleration increase significantly, allowing the state variables to reach the
target values [3, 0, 0] in a shorter time.

In the k-th time interval [tk, tk+1], equation (28) is rewritten
as follow,

J = (zk(tk+1)− z̃ref (θ̂k))
TWk(zk(tk+1)− z̃ref (θ̂k)) + J1,

(33)

with J1 =
1

2

∫ tk+1

tk

uk(t)
Thk(t)uk(t)dt, zk(tk) = zinitk

where z̃ref (θ̂k) = [zref (θ̂k),0]
T ∈ Rn is augmented refer-

ence vector, Wk = diag(Wc(θ̂k) + Wl(θ̂k),0) ∈ Rn×n is
terminal weighting matrix, J1 is a penalty term for control
inputs, used to limit the infinite increase of the control input,
positive control weight hk(t).

Considering the costate variable ρ(t) = [ρ1(t), · · · , ρs(t)]T,
the Hamiltonian function [44] is

H =
1

2
uk(t)

Thk(t)uk(t) + ρT(t)Azk(t) + ρT(t)Buk(t).

(34)

Based on Pontryagin’s maximum theorem, the optimal
control input satisfies

∂H
∂uk

= hk(t)uk(t) +BTρ(t) = 0, (35)

therefore, the optimal control input u∗k(t) is

u∗k(t) = −
BTρ(t)

hk(t)
= −h−1

k (t)ρs(t). (36)

The costate variable ρ(t) satisfies

˙ρ(t) = − ∂H
∂zk

= −ATρ(t), (37)

expand (37), get

˙ρi(t) =

{
0, if i = 1

−ρi−1(t), if 1 < i ≤ n
(38)

thus, ρ(t) consists of polynomials. It follows that u∗k(t) and zk
are also polynomials of degree n− 1 and 2n− 1 respectively.

7

Finally, the effect of the final state on the optimal control
is analysed. Considering the boundary condition,

∂J

∂zk(tk+1)
− ρ(tk+1)

= 2Wk(zk(tk+1)− z̃ref (θ̂k))− ρ(tk+1)

= 0.

(39)

From (38) and (39), obtain

ρ1(t) = 2Wk(zk(tk+1)− z̃ref (θ̂k)). (40)

It is obvious that ρ ∝ Wk through (40), thus u∗k ∝ Wk

through (36). An example in Fig. 4 shows that u∗k increases
with Wk, causing the high velocity v, which allows the state to
reach the reference value in a shorter time. Hence, increasing
terminal weight Wk can generate trajectories with higher
velocity and tracking accuracy.

D. SVM-Based Safe Flight Corridor

Compared to trajectory planning for a single quadrotor,
which primarily concentrates on obstacle avoidance, the con-
trol of quadrotor swarms also requires collision avoidance
among quadrotors. T-STAR constructs the safe flight space,
referred to as the SVM-based safe flight corridor, as shown in
Fig. 5.

It is assumed that the environmental information has been
collected by sensors in advance. The optimal path is found
from a given start point pstart to a goal point pend by using a
graph search algorithm. Jump Point Search (JPS) is considered
as the path planner for this work because JPS guarantees path
optimality and reduces computational overhead by pruning
unnecessary nodes [45].

Specifically, JPS enhances the efficiency of the pathfinding
process by selectively skipping certain nodes in the search grid
that do not need to be individually checked. This ‘jumping’
mechanism allows JPS to move rapidly through open areas
of the grid, directly advancing to important points. As a
result, JPS significantly reduces the number of nodes processed
compared to traditional A* search while still ensuring that the
shortest path is found.

Then, based on the path generated by the JPS, the space
is decomposed into multiple sequentially linked convex poly-
hedra. This can be achieved by dilating an ellipsoid which
contains the optimal paths until it intersects an obstacle with
the point pe, calculating the tangent plane of the ellipsoid
over pe to get the half-space Hobstacle =

{
p | aTo p− bo < 0

}
containing the paths, deleting the obstacles outside the half-
space, and repeating the process until there are no obstacles.
More details can be found in [46].

According to subsection V-C, a quadrotor can receive trajec-
tory padj of adjacent quadrotors. To avoid collisions between
quadrotors, hyperplanes Htraj = WT

t p − bt, where Wt

is the weight matrix defining the orientation of the normal
to the hyperplane and bt is the offset of hyperplane, are
found to separate the reference trajectory pref and adjacent

`

UAV 2

Adjacent
Trajectory 1

Adjacent
Trajectory 3

Fig. 5. A schematic of SVM-based Safe Flight Corridors. After receiving
the adjacent trajectories, UAV2 calculates the hyperplanes Htraj using the
reference trajectory and SVM algorithm to get the final safe space Hsvm−sfc.
(blue polyhedra)

trajectory padj . Consider the boundaries of space occupation
of a quadrotor B,

p̂ =

[
p̂ref

p̂adj

]
=

[
pref ⊕ B
padj ⊕ B

]
(41)

where the ⊕ is the Minkowski sum. Using the hard margin
support vector machine (SVM), the following Quadratic Pro-
gramming problem is constructed

min
Wt,bt

1

2
∥Wt∥2 (42)

s.t. 1− γi
(
WT

t p̂i − bt
)
≤ 0 ∀i ∈ {1, 2, . . . , Np} ,

where γi ∈ [+1 − 1] is classification matrix, Np is the size
of p̂. Utilising the Lagrangian duality, (42) is equivalent to:

max
α

min
Wt,bt

L (Wt, bt, α)

= max
α

min
Wt,bt

1

2
∥Wt∥2 −

N∑
i=1

αi
[
γi

(
WT

t p̂i − bt
)
− 1

]
,

(43)

where α is Lagrange multiplier, L (Wt, bt, α) is Lagrangian
function. The optimal values W∗

t and b∗t can be obtained by
setting the partial derivatives to zero ∂L

∂Wt
= 0 and ∂L

∂bt
= 0.

By reformulating, we arrive at the following quadratic pro-
gramming problem concerning the variable α:

min
α

1

2

N∑
i=1

N∑
j=1

αiαjγiγjp̂
T
i p̂j −

N∑
i=1

αi

s.t.

N∑
i=1

αiγi = 0

αi ≥ 0 ∀i ∈ {1, 2, . . . , Np} . (44)

By solving equation (44) to obtain the optimal values α∗, we
can subsequently calculate W∗

t and b∗t . With these parameters,
the hyperplane Htraj is fully defined, allowing us to construct
the safe flight corridor Hsvm−sfc =

{
p | ĀTp− B̄ < 0

}
,

with Ā = [ao Wt]
T and B̄ = [bo bt]

T.

8

Fig. 6. Visualisation of Reference Trajectory. Given the initial and target
points, the shortest path (black) is found by JPS algorithm. The safe corridor
(light blue polyhedra) is used as a constraint to calculate the optimal solution
of (46a), resulting in the reference path (red).

E. Reference Trajectory Planner

Unlike standard Model Predictive Control, the reference
trajectories in our approach are not required to strictly follow
the dynamic constraints of the quadrotor. These trajectories
only need to be differentiable and contained within the safe
flight corridor Hsvm−sfc. This allows for significant flexibility
in creating reference trajectories. We utilise the trajectory
optimisation model (46a) to generate smooth and safe refer-
ence trajectories. It’s worth noting that although this method
is adopted in our framework, any trajectory generated by
alternative planning methods that satisfy the above conditions
is acceptable.

Consider the reference trajectory prefi (t) as piecewise Kp-
degree polynomial [47]:

prefi (t) =

Kp∑
kp=0

βikp(t− ti−1)
kp , t ∈ [ti−1, ti] , (45)

where ti−1 and ti denote the initial and final time of ith piece
respectively,

min
pref

Np∑
i=1

∥∥∥∥∥dnprefi (ti)

dtn

∥∥∥∥∥
2

(46a)

s.t.
dsprefi (ti)

dst
=
dsprefi+1(ti)

dst
∀s ∈ {1, . . . , n} (46b)

ĀT
i p

ref
i (ti)− B̄i < 0, (46c)

pref1 (t0) = prefinit, prefNp
(tNp) = preffinal (46d)

where s represents sth derivative, constraint (46b) guarantees
the smoothness of the trajectory, constraint (46c) ensures the
trajectory stays within the safe flight corridor Hsvm−sfc,
boundary conditions (46d). Then, arc-length θ parameterise
pref (t) as pref (θ). It should be noted that arc-length param-
eterisation of the reference trajectory is a nontrivial problem.
Thus, to improve computational efficiency, we consider the
cubic spline with the given parameter Kp = 3 for the
reference trajectory (45). This configuration enables the ef-
ficient generation of approximately arc-length parameterised
reference trajectories by utilising the methodology described

Algorithm 1 Reference Trajectory Planner.

Notation: Global map Mglobal, Local map Mlocal, Ref-
erence trajectory pref (t), Adjacent trajectory padj , Initial
start point pstart, Initial goal point pend, Trajectory by JPS
pJPS , Quadrotor model B

1: Initialise: z∗ ← ∅ , Mglobal, padj ← Adjacent
Quadrotors

2: Mlocal ← Mglobal

3: pJPS ← JPS(pstart, pend,Mlocal)
4: Hobstacle ← ConvexDecompse(pJPS)
5: Hsvm−sfc ← SVM-SFC(Hobstacle, padj , B)
6: pref (t) ← (46a)← (pJPS , Hsvm−sfc)
7: pref (θ) ← ArcLengthParameter(pref (t))
8: Return pref (θ)

in [48]. Fig. 6 shows an example of a reference trajectory
obtained by running Algorithm 1. However, Algorithm 1 does
not explicitly consider the scenario of multi-UAV trajectory
conflicts. In such cases, the equation (46a) may yield no
feasible solution. Therefore, the ETD mechanism described
in subsection V-C is proposed to handle these conflicts.

V. HIGH-LEVEL SWARM COORDINATION

A. Flocking Control

Flocking control focuses on modelling the interaction of
quadrotors. Inspired by the method of artificial potential fields
(APF), quadrotors are subjected to repulsive forces Ur and
attractive forces Ua. Uniquely, both Ur and Ua are generated
from adjacent quadrotors instead of obstacles or target points.
This leads to the formation of flocks in completely distributed
systems by allowing the quadrotor to track reference distances
dref of adjacent quadrotors. Thus, the formation cost wij
between quadrotor i and adjacent quadrotor j

wij = Ua

(
dij , d

ref
ij

)
+ Ur

(
dij , d

ref
ij

)
, (47)

where dij = ∥pi − pj∥ and drefij are the real distance and
reference distance between quadrotor i and quadrotor j.

Consider an undirected graph G = (V, E), with V is the set
of M = N+1 vertices and E ∈ RM×M is the set of edges, N
represents the number of adjacent quadrotors. Then, quadrotor
i calculates local weighted adjacency matrix Âi ∈ RM×M and
degree matrix D̂i ∈ RM×M

Âi =

0 wil1 wil2 . . . wilN
wl1i 0 0 0
wl2i 0 0 0

...
. . .

wlN i 0 0 0

 ,

D̂i =

∑N
j=1 wilj 0 0 . . . 0

0 wl1i 0 0
0 0 wl2i 0
...

. . .
0 0 0 wlN i

 ,

9

Fig. 7. An example of flocking control. The colour intensity indicates the
gradient value of the virtual force. The quadrotor swarm will converge from
high gradients (red) to low gradients (blue).

where lj represents the jth quadrotor in the set of adjacent
quadrotors l. Thus, the Laplacian matrix is

Li = D̂i − Âi

=

∑N
j=1 wilj −wil1 −wil2 . . . −wilN
−wl1i wl1i 0 0
−wl2i 0 wl2i 0

...
. . .

−wlN i 0 0 wlN i

 .

Obviously, the Laplacian matrix L indicates the cost asso-
ciated with the quadrotor formation. Therefore, the formation
cost function is written as

min
L

Js(L) (48)

with Js(L) = ∥L∥2F = tr{(L)TL}

=

 N∑
j=1

wilj

2

+ 3

N∑
j=1

(wilj)
2,

the optimality condition for (48) is

∂Js(L)

∂dilj
=
∂Js(L)

∂wilj

∂wilj
∂dilj

=

2

 N∑
j=1

wilj

+ 6wilj

 ∂wilj
∂dilj

= 0, (49)

given that virtual forces Ua and Ur are strictly positive (Ua >
0, Ur > 0), it means w > 0. To ensure that the UAV swarm
converges to the reference formation, we expect the optimal
value d∗ilj = drefilj , (49) can be reformulated as

∂wilj
∂dilj

=
∂Ua

(
dilj , d

ref
ilj

)
∂dilj

+
∂Ur

(
dilj , d

ref
ilj

)
∂dilj

=
(
dilj − d

ref
ilj

)
f
(
dilj

)
= 0, (50)

where f
(
dilj

)
is a conventional function of dilj . Any formu-

lations of Ua and Ur satisfying the above condition can be
applied to this work. Thus, we utilise the following general
form

Ua(dilj , d
ref
ilj

) =

0 if 0 < dilj < drefilj
1
2κa

(
dilj − d

ref
ilj

)2

if dilj ≥ d
ref
ilj

Ur(dilj , d
ref
ilj

) =

1
2κr

(
1
dilj
− 1

drefilj

)2

if 0 < dilj < drefilj

0 if dilj ≥ d
ref
ilj

where κa, κr are coefficients.
Fig. 7 shows an example of the above form of the virtual

force, demonstrating that the UAV swarm can converge to the
reference value.

B. T-STAR with Constrained Control Effort

To ensure the trajectory satisfies the quadrotor dynamics,
consider the optimal trajectory as the clamped piecewise cubic
polynomial [3], expressed in the form:

zk = ak + bkt+ ckt
2 + dkt

3, (51)

where ak, bk, ck and dk are the polynomial coefficient.
Considering higher-order continuity constraints on piece-

wise trajectories at the boundaries to ensure smoothness, the
coefficients of (51) give

ak = zk bk =
zk+1 − zk

ξ
− ξ

6
(4z̈k − z̈k+1)

ck =
z̈k
2

dk =
z̈k+1 − z̈k

6ξ

(52)

Under the Not-A-Knot condition, i.e., given the initial and
terminal states, rewriting (51) and (52) yields

ξ2Mz̈ − 6bc = 0 (53)

where ξ is sampling time, define z̈ := [z̈T0 , . . . , z̈
T
K]T , M ∈

R(K+1)×(K+1) and b ∈ RK+1 are

M =

2 1 0 0 . . . 0
1 4 1 0 . . . 0
0 1 4 1 . . . 0
...

...
.

...
0 0 . . . 1 4 1
0 0 . . . 0 1 2

, (54)

bc =

z1 − z0 − ξż0
z2 + z0 − 2z1
z3 + z1 − 2z2

...
zK + zK−2 − 2zK−1

ξ ˙zK − zK + zK−1

, (55)

10

Algorithm 2 Constrained Time-Optimal Control.

Notation: Reference trajectory zref (θ), Adjacent trajectory
padj , Adjacent Quadrotors l, Approximation point θ̂k, Nor-
malised Tangent line t̂(θ̂k), Contour error êck, Lag error êlk,
Optimal trajectory z∗

1: Initialise: z∗ ← ∅, padj ← Adjacent Quadrotors
2: if ETD(z∗) is false then
3: zref (θ) ← Algorithm 1
4: for each time step k do
5: t̂(θ̂k) ← (26)← (zref (θ̂k))
6: êck, ê

l
k ← (27)← t̂(θ̂k)

7: for each adjacent quadrotors j do
8: dilj ,k ←

∥∥pi,k − plj ,k

∥∥
9: J(L, k) ← Ua(dilj ,k), Ur(dilj ,k)

10: end for
11: M, bc ← (54), (55)
12: z∗

k ← êck, ê
l
k, J(L, k), Hsvm−sfc,M, bc

13: end for
14: z∗ ← z∗

k

15: end if
16: Return z∗

According to (28), (42), (48), and (53), the constrained time-
optimal control can be defined as,

min
uk

K∑
k=1

∥∥∥êck(θ̂k)∥∥∥2
qc

+
∥∥∥êlk(θ̂k)∥∥∥2

ql
− ηvθ̂,k +

∥∥∥∆vθ̂,k∥∥∥2
Ru

+ λs

 N∑
j=1

wilj ,k

2

+ 3λs

N∑
j=1

(wilj ,k)
2 (56)

s.t. ξ2Mz̈ − 6bc = 0

vθ̂k+1
= vθ̂k + ξ∆vθ̂,k ∀k = 0, . . . ,K − 1

θ̂k+1 = θ̂k + ξvθ̂,k + 0.5ξ2∆vθ̂,k ∀k = 0, . . . ,K − 1

ĀT
k zk − B̄k < 0 ∀k = 1, . . . ,K

z
[2]
k,min ≤ z

[2]
k ≤ z

[2]
k,max ∀k = 1, . . . ,K

0 ≤ vθ̂k ≤ vθ̂,max ∀k = 1, . . . ,K

z
[2]
0 = z̄init, z

[2]
K = z̄final

θ̂0 = θ̂init, vθ̂,0 = vθ̂,init, ∆vθ̂,0 = ∆vθ̂,init,

where control input uk =
[
z
[2]T
k vθ̂,k

]T
, and virtual control

input increment ∆vθ̂,k which prevent non-smooth virtual con-
trol input vθ̂,k and weight Ru. Algorithm 2 generates feasible,
collision-free time-optimal trajectories for any quadrotor i.

C. Deconfliction

For collaborative multi-quadrotor systems, this section ex-
plores an asynchronous information interaction mechanism.
This method allows the quadrotor UAV to receive trajec-
tory information from adjacent UAVs in the communication
range dc at non-predetermined frequencies. To ensure that all
quadrotors can generate feasible trajectories, we propose an
Event-triggered Trajectory Deconflict strategy, as shown in
Fig. 8, which is divided into the following three key steps:

Time step

UAV 1

K = 1 2 3 4 5 …

Pr
ep

ar
at

io
n

ETD

SVM-SFC

Re
-p

la
nn

in
g

Optimisation

Fig. 8. Illustration of ETD. During the preparation stage (blue), the UAV
receives adjacent trajectories and calculates the optimal trajectory (orange)
using the SVM-based flight safe corridor (green). If the calculation fails,
representing a trajectory conflict, the system will re-plan, establishing a new
safe area to obtain a conflict-free trajectory.

Algorithm 3 Event-triggered Trajectory Deconflict Algorithm.

Notation: Reference trajectory pref (t), Adjacent trajectory
padj , Local start point pstart, Goal point pend, Local map
Mlocal

1: Initialise: padj ← Adjacent Quadrotors, z∗ ← ∅
2: while ETD(z∗)
3: pJPS ← JPS(pstart, pend,Mlocal)
4: Hobstacle ← ConvexDecompse(pJPS)
5: Hsvm−sfc ← SVM-SFC(Hobstacle, padj , B)
6: zref (θ) ← Algorithm 1
7: z∗ ← Algorithm 2
8: if z∗ is false
9: Mlocal ← (Mlocal,p

adj ⊕ B)
9: ETD(z∗) ← true

10: else
11: ETD(z∗) ← false
12: end if
13: end
14: Return ETD(z∗)

• Trajectory planning preparation: in the distributed com-
munication network, the quadrotor UAV continuously
receives adjacent trajectories Padj within communication
range dc during periods when it is not planning trajectory.

• Trajectory feasibility check: concerning (44) and (56),
the feasibility of the SVM-SFC and the constrained
optimisation model is checked. If the optimal solution
is obtained, meaning the trajectory is conflict-free, the
quadrotor will follow this trajectory. Otherwise, go to the
next step.

• Trajectory replanning: the airspace (Padj⊕B) associated
with the received trajectories extended by the quadrotor
model is labelled as obstacle areas, which are updated
on the local map of the quadrotor. Then, the quadrotor
generates a new S-SFC and corresponding optimal tra-
jectory and repeats the feasibility check in step 2 until a
conflict-free trajectory is found.

By using Algorithm 3, each quadrotor can dynamically plan
and adjust its trajectory to ensure reliable cooperative control.

11

VI. SIMULATION AND REAL-WORLD EXPERIMENTS

In this section, we presented several simulations and real-
world experiments to evaluate the performance of our method
with both single and multiple quadrotors against the following
three approaches: AMSwarm [49], DMPC [40] and DMPCC
[50]. The CPU used for the simulation is i9-14900KF. The
parameter configurations used for our method and the baseline
approaches were set up with sampling time ξ = 0.1s, predic-
tion Horizon K = 10, velocity vmin = −9.0m · s−1,vmax =
9.0m · s−1, and acceleration amin = −21.0m · s−2,amax =
21.0m · s−2. In addition to the parameters listed above,
AMSwarm and DMPC were run using the default settings
from their respective open-source libraries. For our method
and DMPCC, we configured the same important parameters,
as follows: contour weight qc = 0.1, lag weight ql = 1000,
speed weight η = 1.0, formation weight λs = 1.0, control
input increment weight Ru = 0.05, and polynomial degree
Kp = 3. Furthermore, we set the flocking control parameters
to κa = 1.0, κr = 1.0 for T-STAR and a = 1.0, b = 1.0 for
DMPCC, respectively.

A. Performance with a Single UAV

To demonstrate the advantages of the T-STAR algorithm
compared to AMSwarm, DMPC, and DMPCC, we tested our
proposed algorithm in a 36 m × 20 m × 3 m environment with
0.1 m resolution, containing [0, 50, 100, 200] randomly placed
static obstacles of various sizes. Fig. 9 illustrates the results
of T-STAR running in this simulation, showing the trajectory
planning of a single UAV in an unknown environment. In a
single UAV scenario, DMPCC provided basic validation for
T-STAR.

We compared our proposed method with AMSwarm and
DMPC in terms of flight time, velocity, and flight distance. As
shown in Table I, through 10 different simulations, we found
that our method reduced flight time by 55.09% and 49.12%
compared to AMSwarm and DMPC respectively. In terms of
velocity, the performance of AMSwarm and DMPC was only
55.71% and 33.27% of our method, respectively. For flight
distance, our method decreased the distance by 25.48% and
3% with respect to AMSwarm and DMPC respectively. Fig. 10
shows that under the same maximum velocity and acceleration
conditions, our method is able to generate faster and shorter
trajectories. This advantage stems from our local planner’s
ability to achieve time-optimal trajectories within the feasible
domain by finding faster velocity. In contrast, AMSwarm
and DMPC use the distance between the quadrotor’s current
position and the target point as the cost function, resulting in
more conservative trajectory planning.

B. Performance with a Multi-UAV System

To show the agility of our method in multi-UAV systems,
we conducted a series of simulation experiments in 36 m
× 20 m × 3 m environments with 100 static obstacles and
different sizes of UAV swarms, comparing our results with
AMSwarm, DMPC, and DMPCC. Additionally, we introduced
a new metric, safety ratio, to further validate the reliability of

Fig. 9. Single UAV simulation in an environment with 200 static obstacles.
Coloured areas represent obstacles detected by the quadrotors, while grey
areas indicate unknown regions. The trajectory planner generates a reference
trajectory (black), a time-optimal trajectory (orange), and the flown trajectory
(purple).

0 50 100 200 0 50 100 200 0 50 100 200 0 50 100 200

0

1

2

3

4

5

6

7

8

9

V
el

oc
ity

 (
m

/s
)

AMSwarm DMPC DMPCC T-STAR

Fig. 10. A boxplot of single UAV velocity distribution with varying obstacle
densities. Comparing our method with the baseline methods. Each box’s
central mark shows the median, the bottom and top edges represent the first
and third quartile, and the solid lines extend to the non-outlier minimum and
maximum value.

our method. The safety ratio measures the proximity between
any two quadrotors during flight, with a higher value indicating
safer flight.

The results, as shown in Table II, indicate that compared to
AMSwarm and DMPC, our method reduced the average flight

TABLE I
PERFORMANCE COMPARISON IN SINGLE QUADROTOR

Obs Method Avg. Time. (s) Avg. Vel. (m/s) Distance (m)

0

AMSwarm 9.52 4.05 41.69
DMPC 12.40 2.17 33.52

DMPCC 6.45 5.40 33.71
T-STAR 6.10 5.45 33.69

50

AMSwarm 14.25 2.99 45.17
DMPC 12.90 2.44 33.59

DMPCC 6.74 4.98 34.46
T-STAR 6.19 5.38 33.77

100

AMSwarm 15.41 2.73 44.67
DMPC 13.60 1.63 33.29

DMPCC 7.13 4.89 34.82
T-STAR 6.92 4.90 34.29

200

AMSwarm 19.68 2.71 55.17
DMPC 16.88 1.99 33.82

DMPCC 7.90 4.42 35.23
T-STAR 6.91 4.93 34.51

12

Fig. 11. Trajectories visualisation of ten UAVs in RViz with different colour
identification

0 1 2 3 4 5 6 7 8

0

5

10

V
x
 (

m
/s

)

0 1 2 3 4 5 6 7 8
-2

0

2

V
y
 (

m
/s

)

0 1 2 3 4 5 6 7 8

time (s)

0

0.5

1

V
z (

m
/s

) UAVs
UAV9

Fig. 12. Velocity of ten UAVs with one of them highlighted for clarity.

3 5 10 3 5 10 3 5 10 3 5 10

0

2

4

6

8

V
el

oc
ity

 (
m

/s
)

AMSwarm DMPC DMPCC T-STAR

Fig. 13. Boxplot of multi-UAV velocity distribution with different numbers
of UAVs, comparing our method with AMSwarm, DMPC and DMPCC.

0 5 10 15
time (s)

0

5

10

15

20

25

30

35

D
is

ta
nc

e
to

 G
oa

l (
m

)

AMSwarm
DMPC
DMPCC
T-STAR

Fig. 14. Responses of distance to target point over time with 3 UAVs. Our
method reaches the target point in 5.9 s, faster than AMSwarm (7.3 s), DMPC
(13.4 s), and DMPCC (6.7 s).

time by 41.69% and 50.61%, and increased the average flight
velocity by 52.15% and 47.81%, respectively. This is con-

TABLE II
PERFORMANCE COMPARISON IN MULTI-QUADROTORS

Num of UAVs Method Avg. Time. (s) Avg. Vel. (m/s) Distance (m) Safety Ratio (m)

3

AMSwarm 7.70 3.29 36.07 0.35
DMPC 14.20 3.20 33.29 1.00

DMPCC 8.49 3.79 35.62 1.98
T-STAR 7.02 4.82 34.75 2.33

5

AMSwarm 23.73 3.31 55.35 0.31
DMPC 15.40 2.17 33.77 0.75

DMPCC 9.23 3.68 35.44 2.11
T-STAR 6.89 4.92 34.82 2.98

10

AMSwarm 13.37 2.92 35.79 0.99
DMPC 16.80 2.17 33.58 1.50

DMPCC 10.02 3.50 35.34 1.62
T-STAR 7.22 4.71 34.88 1.43

sistent with the results of the single quadrotor, demonstrating
that our method retains its agility in multi-quadrotor trajectory
planning. Furthermore, T-STAR achieved a 23.54% reduction
in average flight time and a 31.81% increase in average speed
over DMPCC by relaxing formation constraints, which allows
for higher-speed trajectory generation. Fig. 13 shows box plots
of velocity for our method versus baseline methods, indicating
that our method can produce velocity distributions closer to
the maximum value vmax. Fig. 14 demonstrates that our
method is able to reach the target point in a shorter time than
AMSwarm and DMPC. This effect is also qualitatively visible
in Fig. 11 which presents the trajectories when the UAV swarm
reached the target point, and Fig. 12 which demonstrates the
corresponding velocity curve. For visualisation, we randomly
selected and highlighted the velocity curve of UAV 9. It can be
observed that the velocity generated by our method is smooth.
Additionally, since the UAV primarily flies along the x-axis,
Vx consistently keeps at a high value. In safety ratio, our
method is 4.91 and 1.42 times higher than AMSwarm and
DMPC, respectively. This is because our method considers the
trajectories of adjacent quadrotors when constructing obstacle-
free spaces and includes significant virtual repulsive forces
among UAVs in flocking control, which not only maintains
formation but also enhances flight safety. In contrast, although
AMSwarm and DMPC designed collision-free constraints,
they did not fully address the safety risks posed by excessively
close quadrotors.

C. Effect with Dynamic and Annular Obstacles

In a 36 m × 20 m × 3 m environment, we placed 20
cylindrical dynamic obstacles with 0.2 m radius. A centre
point of motion was randomly chosen for each obstacle, and
the obstacle’s centre moved along a circular path with 0.2
m radius around that centre point at a linear speed of 1
m/s. Additionally, we placed 30 annular static obstacles, with
radii randomly distributed between 0.5 m and 0.7 m. This
simulation is used to test the performance of our method in a
complex environment.

In Table III, we compared the performance metrics of T-
STAR, AMSwarm, DMPC, and DMPCC in terms of average
execution time, velocity, flight distance, and success rate. The
results showed that the average execution time of T-STAR
was reduced by 13.86%, 7.75%, and 27.48% compared to
AMSwarm, DMPC, and DMPCC, respectively. Although the
average speed of AMSwarm was 21.15% faster than T-STAR,

13

AMSwarm DMPC DMPCC T-STAR

0

2

4

6

8

V
el

oc
ity

 (
m

/s
)

Fig. 15. A boxplot of velocity distribution with dynamic and annular
obstacles.

its total flight distance was 34.99% longer, and AMSwarm has
a lower success rate. The reason behind this is that our method
predicts the trajectory of dynamic obstacles for the next 10
time steps based on their velocity direction when detected,
establishing obstacle regions and then calculating a safe flight
corridor using the method in Subsection IV-D. This approach
compresses the feasible space but significantly increases the
success rate. As shown in Fig. 15, the velocity fluctuations
of our method are very small, indicating that the trajectory,
although relatively conservative, has a higher success rate. In
contrast, AMSwarm adds obstacle avoidance constraints only
when the quadrotor is close enough to the obstacles, making
it difficult to efficiently avoid dynamic obstacles, resulting in
longer flight distances or failure.

Our method has a higher success rate than DMPC be-
cause DMPC considers collision constraints as soft constraints,
which cannot guarantee collision-free optimisation results. In
contrast, our method uses the flight safety corridor as a hard
constraint, ensuring a collision-free trajectory.

TABLE III
PERFORMANCE COMPARISON IN COMPLICATED ENVIRONMENT

Method Avg. Time. (s) Avg. Vel. (m/s) Distance (m) Success Rate (%)

AMSwarm 16.02 3.12 52.44 50
DMPC 14.96 2.24 34.12 60

DMPCC 19.03 2.13 42.59 100
T-STAR 13.80 2.46 34.09 100

D. Flocking Analysis

In an environment of 36 m × 20 m × 3 m, we randomly
placed 50 static cylindrical obstacles, with radii ranging from
0.3 m to 0.5 m and heights from 0.1 m to 3 m. This experiment
is used to present the improvements of our method over the
benchmark methods in flocking control. We define a new
metric, ”Error of Formation”, which quantifies the error of
the quadrotor swarm from the given formation in the form

Error =

N∑
i=1

N∑
j=1,j ̸=i

∥pi − pj∥ −Dref
ij ,

where the position of ith quadrotor pi, nominal distance Dref
ij

between ith and jth quadrotor. In Table IV, Root Mean Square
Error (RMSE) is used to describe the distribution of the error.

0 1 2 3 4 5 6 7
time (s)

-1

0

1

2

3

4

5

6

7

E
rr

or
 o

f F
or

m
at

io
n

(m
)

AMSwarm
DMPC
DMPCC
T-STAR

Fig. 16. Error of Formation. The red, green, blue, and purple zones display
the 10 times simulation results of AMSwarm, DMPC, DMPCC, and T-STAR,
respectively. The solid lines represent the average values.

TABLE IV
PERFORMANCE COMPARISON IN FLOCKING CONTROL

Method Avg. Error (m) Max. Error (m) RMSE (m)

AMSwarm 2.67 8.66 3.16
DMPC 2.10 4.82 2.40

DMPCC 0.19 4.16 1.01
T-STAR 1.43 3.86 1.62

The experimental results are shown in Fig. 16 and Table IV.
Our method reduced the average error, maximum error, and
RMSE by 46.44%, 55.43%, and 47.11%, respectively, com-
pared to AMSwarm. Additionally, in comparison to DMPC,
our method reduces the average error by 31.90%, the max-
imum error by 19.92%, and the RMSE by 26.73%. Fig. 16
shows that our method maintained a lower error for most of the
flight time. This is because our method considers the relative
distances between quadrotors in flocking control, proving that
it can effectively form a tighter quadrotor swarm while keeping
high speed. Moreover, the average error and RMSE of T-STAR
are higher than that of DMPCC. This is because DMPCC
primarily focuses on achieving formation consensus at the
expense of flight speed, which has been demonstrated in
previous experimental results. This is detrimental to the agility
of UAVs in time-limited scenarios.

E. Experimental Validation

To assess the practicality and effectiveness of the pro-
posed approach under real-world conditions, an experimental
flight test was carried out with three Crazyflie 2.1 drones.
The test environment was carefully designed to replicate
the conditions of the simulation as closely as possible. For
positioning purposes, the Lighthouse V2 system functioned as
the transmitter, while the Lighthouse deck acted as both the
receiver and the estimator of the drones’ positions. Consid-
ering the performance of the Crazyflie, we set the velocity
vmin = −2.0m · s−1,vmax = 2.0m · s−1, and acceleration
amin = −3.0m · s−2,amax = 3.0m · s−2. All initial scenario
parameters are detailed in TABLE V. The UAVs are expected
to form an equilateral triangle with 0.5 m sides. We configured
the initial positions in a line with a spacing of 0.4 m or 0.8
m between each UAV. Furthermore, landing positions were

14

TABLE V
REAL-WORLD SCENARIO PARAMETERS

Parameters Value

Positions (p) Initial (m) Landing (m)

UAV1 [0.1, 0.1, 0.0] [2.3, 1.1, 0.0]
UAV2 [0.1, 0.5, 0.0] [2.3, 1.9, 0.0]
UAV3 [0.1, 0.9, 0.0] [2.3, 1.5, 0.0]

Positions (p) Centre (m) Size (W ∗D ∗H m)

Obstacle1 [0.7, 0.6, 0.5]
[0.4, 1.2, 1.0]Obstacle2 [1.9, 1.4, 0.5]

Nominal Distance (Dref) 0.5m

Fig. 17. Real-flight trajectories of a UAV swarm using T-STAR.

Fig. 18. Real-flight trajectories of the micro-UAV swarm generated by T-
STAR.

assigned in an order (UAV1, UAV2, UAV3) that differs from
the initial configuration (UAV1, UAV3, UAV2) to increase
the complexity of the experiment and thereby validate the
effectiveness and robustness of our method.

As illustrated in Fig. 17 and 18, all three Crazyflie drones
took off from their designated initial points and avoided ob-
stacles while following the optimal trajectory, thereby demon-
strating the effectiveness of the proposed algorithm. The video
for the experimental results can be found at https://youtu.be/
uNTLgc3Iv4o?si=Eh3LtdlP1ttKX1qh

In addition, Fig. 19 illustrates the velocities of the drones
during the experiment. The data reveals that the drones
maintained a consistently smooth and high-speed flight, while
effectively avoiding obstacles. Furthermore, Fig. 20 presents
the actual formation errors of the three Crazyflie drones. The
formation errors fluctuate normally due to the limited safe
space, with an average value of 0.14 m, which demonstrates
the robustness of our method under challenging conditions.

0 1 2 3 4 5 6 7

0

0.5

1

V
x
 (

m
/s

)

UAV 1
UAV 2
UAV 3

0 1 2 3 4 5 6 7
-1

0

1

V
y
 (

m
/s

)

UAV 1
UAV 2
UAV 3

0 1 2 3 4 5 6 7
time (s)

-1

0

1

V
z (

m
/s

)

UAV 1
UAV 2
UAV 3

Fig. 19. Velocity time history of a real-flight swarm.

0 1 2 3 4 5 6 7 8

time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
rr

or
 o

f F
or

m
at

io
n

(m
)

UAV 1
UAV 2
UAV 3

Fig. 20. Actual Error of Formation. Due to the limited safe space between the
two obstacles, the UAVs deviated from formation to avoid collisions, causing
the formation error to fluctuate at approximately 2.2 s and 5.1 s.

VII. CONCLUSION

This work proposed a distributed time-optimal swarm trajec-
tory planner for environments with unknown and high-density
obstacles. Leveraging differential flatness, we restructured the
state update equations of model predictive contour control into
a polynomial format, thereby reducing the complexity of the
standard MPCC. Additionally, we applied virtual attractive and
repulsive forces among multiple UAVs to achieve flocking con-
trol. Furthermore, to improve the speed of the UAV swarms,
we relax the formation error by incorporating slack variables.
Compared with AMSwarm and DMPC, our planner generates
higher speeds, shorter task completion times, and safer trajec-
tories in both single-UAV and multi-UAV experiments. Using
DMPCC as a benchmark confirms the basic performance of
our approach in single-UAV experiments and demonstrates its
ability to generate high-speed trajectories in swarm systems.
Although this requires a trade-off in formation quality, real-
world experiments show that the formation error remains
within acceptable bounds. Consequently, the real-world im-
plementations validate the effectiveness and robustness of our
method. In future work, we plan to investigate methods to
further improve the robustness of the flocking control, such
as considering UAV swarm faults and recovery. Additionally,
communication delays among UAVs are a critical issue that
can affect trajectory updates and overall performance. There-
fore, we are interested in exploring how to adjust trajectory
deconflict strategies to accommodate certain time delays due to
unreliable communication networks in extreme environments.

https://youtu.be/uNTLgc3Iv4o?si=Eh3LtdlP1ttKX1qh
https://youtu.be/uNTLgc3Iv4o?si=Eh3LtdlP1ttKX1qh

15

REFERENCES

[1] B. Lopez, J. Munoz, F. Quevedo, C. A. Monje, S. Garrido, and
L. Moreno, “4D Trajectory Planning Based on Fast Marching Square for
UAV Teams,” IEEE Transactions on Intelligent Transportation Systems,
vol. 25, no. 6, pp. 5703–5717, 6 2024.

[2] M. R. Rezaee, N. A. W. A. Hamid, M. Hussin, and Z. A. Zukarnain,
“Comprehensive Review of Drones Collision Avoidance Schemes: Chal-
lenges and Open Issues,” IEEE Transactions on Intelligent Transporta-
tion Systems, 2024.

[3] J. Tordesillas, B. T. Lopez, and J. P. How, “FASTER: Fast and Safe
Trajectory Planner for Flights in Unknown Environments,” IEEE Inter-
national Conference on Intelligent Robots and Systems, pp. 1934–1940,
11 2019.

[4] A. Romero, R. Penicka, and D. Scaramuzza, “Time-Optimal Online
Replanning for Agile Quadrotor Flight,” IEEE Robotics and Automation
Letters, vol. 7, no. 3, pp. 7730–7737, 7 2022.

[5] K. Wu, J. Hu, Z. Li, Z. Ding, and F. Arvin, “Distributed collision-
free bearing coordination of multi-uav systems with actuator faults and
time delays,” IEEE Transactions on Intelligent Transportation Systems,
vol. 25, no. 9, pp. 11 768–11 781, 2024.

[6] N. Bashir, S. Boudjit, and G. Dauphin, “A Connectivity Aware Path
Planning for a Fleet of UAVs in an Urban Environment,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 24, no. 10, pp. 10 537–
10 552, 10 2023.

[7] Y. Liu, J. M. Montenbruck, D. Zelazo, M. Odelga, S. Rajappa, H. H.
Bulthoff, F. Allgower, and A. Zell, “A Distributed Control Approach to
Formation Balancing and Maneuvering of Multiple Multirotor UAVs,”
IEEE Transactions on Robotics, vol. 34, no. 4, pp. 870–882, 8 2018.

[8] L. Quan, L. Yin, T. Zhang, M. Wang, R. Wang, S. Zhong, X. Zhou,
Y. Cao, C. Xu, and F. Gao, “Robust and Efficient Trajectory Planning
for Formation Flight in Dense Environments,” IEEE Transactions on
Robotics, vol. 39, no. 6, pp. 4785–4804, 12 2023.

[9] L. Bartolomei, L. Teixeira, and M. Chli, “Fast Multi-UAV Decentralized
Exploration of Forests,” IEEE Robotics and Automation Letters, vol. 8,
no. 9, pp. 5576–5583, 9 2023.

[10] W. Honig, J. A. Preiss, T. K. Kumar, G. S. Sukhatme, and N. Ayanian,
“Trajectory Planning for Quadrotor Swarms,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 856–869, 8 2018.

[11] J. Park, D. Kim, G. C. Kim, D. Oh, and H. J. Kim, “Online Distributed
Trajectory Planning for Quadrotor Swarm with Feasibility Guarantee
Using Linear Safe Corridor,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4869–4876, 4 2022.

[12] X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “EGO-swarm: A
Fully Autonomous and Decentralized Quadrotor Swarm System in
Cluttered Environments,” Proceedings - IEEE International Conference
on Robotics and Automation, vol. 2021-May, pp. 4101–4107, 2021.

[13] B. Convens, K. Merckaert, M. M. Nicotra, and B. Vanderborght, “Safe,
fast, and efficient distributed receding horizon constrained control of
aerial robot swarms,” IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 4173–4180, 2022.

[14] A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model Predictive
Contouring Control for Time-Optimal Quadrotor Flight,” IEEE Trans-
actions on Robotics, vol. 38, no. 6, pp. 3340–3356, 12 2022.

[15] M. Fliess, J. Levine, P. Martin, and P. Rouchon, “Flatness and defect
of non-linear systems: introductory theory and examples,” International
Journal of Control, vol. 61, no. 6, pp. 1327–1361, 1995.

[16] S. H. Arul and D. Manocha, “DCAD: Decentralized Collision Avoid-
ance with Dynamics Constraints for Agile Quadrotor Swarms,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1191–1198, 4 2020.

[17] E. Tal and S. Karaman, “Accurate Tracking of Aggressive Quadrotor
Trajectories Using Incremental Nonlinear Dynamic Inversion and Dif-
ferential Flatness,” IEEE Transactions on Control Systems Technology,
vol. 29, no. 3, pp. 1203–1218, 5 2021.

[18] Z. Han, Z. Wang, N. Pan, Y. Lin, C. Xu, and F. Gao, “Fast-Racing:
An Open-Source Strong Baseline for SE(3) Planning in Autonomous
Drone Racing,” IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 8631–8638, 10 2021.

[19] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” Proceedings - IEEE International Conference
on Robotics and Automation, pp. 2520–2525, 2011.

[20] A. Chamseddine, Y. Zhang, C. A. Rabbath, C. Join, and D. Theil-
liol, “Flatness-based trajectory planning/replanning for a quadrotor un-
manned aerial vehicle,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 48, no. 4, pp. 2832–2847, 2012.

[21] M. Greeff and A. P. Schoellig, “Flatness-Based Model Predictive Control
for Quadrotor Trajectory Tracking,” IEEE International Conference on
Intelligent Robots and Systems, pp. 6740–6745, 12 2018.

[22] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential Flatness of
Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of
High-Speed Trajectories,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 620–626, 4 2018.

[23] M. Bangura and R. Mahony, “Thrust Control for Multirotor Aerial
Vehicles,” IEEE Transactions on Robotics, vol. 33, no. 2, pp. 390–405,
4 2017.

[24] B. Lindqvist, S. S. Mansouri, A. A. Agha-Mohammadi, and G. Niko-
lakopoulos, “Nonlinear MPC for Collision Avoidance and Control of
UAVs with Dynamic Obstacles,” IEEE Robotics and Automation Letters,
vol. 5, no. 4, pp. 6001–6008, 10 2020.

[25] J. Ulrich, M. Stefanec, F. Rekabi-Bana, L. A. Fedotoff, T. Rouček,
B. Y. Gündeğer, M. Saadat, J. Blaha, J. Janota, D. N. Hofstadler et al.,
“Autonomous tracking of honey bee behaviors over long-term periods
with cooperating robots,” Science Robotics, vol. 9, no. 95, p. eadn6848,
2024.

[26] Y. Song and D. Scaramuzza, “Policy Search for Model Predictive
Control With Application to Agile Drone Flight,” IEEE Transactions
on Robotics, vol. 38, no. 4, pp. 2114–2130, 8 2022.

[27] F. Nan, S. Sun, P. Foehn, and D. Scaramuzza, “Nonlinear MPC for
Quadrotor Fault-Tolerant Control,” IEEE Robotics and Automation Let-
ters, vol. 7, no. 2, pp. 5047–5054, 4 2022.

[28] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for
quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, p. 1221, 7
2021.

[29] G. Torrente, E. Kaufmann, P. Fohn, and D. Scaramuzza, “Data-Driven
MPC for Quadrotors,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3769–3776, 4 2021.

[30] D. Lam, C. Manzie, and M. Good, “Application of Model Predictive
Contouring Control to an X-Y Table,” IFAC Proceedings Volumes,
vol. 44, no. 1, pp. 10 325–10 330, 1 2011.

[31] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale RC cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 9 2015.

[32] W. Schwarting, J. Alonso-Mora, L. Paull, S. Karaman, and D. Rus, “Safe
Nonlinear Trajectory Generation for Parallel Autonomy with a Dynamic
Vehicle Model,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 19, no. 9, pp. 2994–3008, 9 2018.

[33] B. Lindqvist, P. Sopasakis, and G. Nikolakopoulos, “A Scalable Dis-
tributed Collision Avoidance Scheme for Multi-agent UAV systems,”
IEEE International Conference on Intelligent Robots and Systems, pp.
9212–9218, 2021.

[34] B. Zhou, H. Xu, and S. Shen, “RACER: Rapid Collaborative Explo-
ration With a Decentralized Multi-UAV System,” IEEE Transactions on
Robotics, vol. 39, no. 3, pp. 1816–1835, 6 2023.

[35] C. J. Stamouli, C. P. Bechlioulis, and K. J. Kyriakopoulos, “Multi-Agent
Formation Control Based on Distributed Estimation with Prescribed
Performance,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 2929–2934, 4 2020.

[36] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The international journal of robotics research,
vol. 17, no. 7, pp. 760–772, 1998.

[37] J. Van Den Berg, J. Snape, S. J. Guy, and D. Manocha, “Reciprocal
collision avoidance with acceleration-velocity obstacles,” Proceedings -
IEEE International Conference on Robotics and Automation, pp. 3475–
3482, 2011.

[38] F. Rekabi-Bana, J. Hu, T. Krajnik, and F. Arvin, “Unified Robust
Path Planning and Optimal Trajectory Generation for Efficient 3D
Area Coverage of Quadrotor UAVs,” IEEE Transactions on Intelligent
Transportation Systems, vol. 25, no. 3, pp. 2492–2507, 3 2024.

[39] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, On-
line Collision Avoidance for Dynamic Vehicles Using Buffered Voronoi
Cells,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1047–
1054, 4 2017.

[40] C. E. Luis and A. P. Schoellig, “Trajectory Generation for Multiagent
Point-To-Point Transitions via Distributed Model Predictive Control,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 375–382, 1
2019.

[41] J. Park, J. Kim, I. Jang, and H. J. Kim, “Efficient Multi-Agent Tra-
jectory Planning with Feasibility Guarantee using Relative Bernstein
Polynomial,” Proceedings - IEEE International Conference on Robotics
and Automation, pp. 434–440, 5 2020.

16

[42] J. Tordesillas and J. P. How, “MADER: Trajectory Planner in Multiagent
and Dynamic Environments,” IEEE Transactions on Robotics, vol. 38,
no. 1, pp. 463–476, 2 2022.

[43] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza, “A
Comparative Study of Nonlinear MPC and Differential-Flatness-Based
Control for Quadrotor Agile Flight,” IEEE Transactions on Robotics,
vol. 38, no. 6, pp. 3357–3373, 12 2022.

[44] D. E. Kirk, Optimal control theory: an introduction. Courier Corpora-
tion, 2004.

[45] D. Harabor and A. Grastien, “Online Graph Pruning for Pathfinding
On Grid Maps,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 25, no. 1, pp. 1114–1119, 8 2011.

[46] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor,
and V. Kumar, “Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3-D complex environments,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1688–1695, 7 2017.

[47] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically Constrained Tra-
jectory Optimization for Multicopters,” IEEE Transactions on Robotics,
vol. 38, no. 5, pp. 3259–3278, 10 2022.

[48] H. Wang, J. Kearney, and K. Atkinson, “Arc-length parameterized spline
curves for real-time simulation,” in Proc. 5th International Conference
on Curves and Surfaces, vol. 387396, 2002.

[49] V. K. Adajania, S. Zhou, A. K. Singh, and A. P. Schoellig, “AMSwarm:
An Alternating Minimization Approach for Safe Motion Planning of
Quadrotor Swarms in Cluttered Environments,” Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2023-May,
pp. 1421–1427, 2023.

[50] M. Zhao and H. Li, “Distributed formation control of quadrotors using
model predictive contouring control,” in IECON 2023- 49th Annual
Conference of the IEEE Industrial Electronics Society, 2023, pp. 1–6.

Honghao Pan received his BSc degree in Electrical
Engineering and Automation from Shanghai Normal
University in 2020, and the MSc degree in Aerial
Robotics from University of Bristol in 2022. He is
currently working toward the PhD degree in Com-
puter Science from Durham University. His research
interests include swarm intelligence, optimal control,
distributed optimisation, and motion planning.

Mohsen Zahmatkesh is a Research Associate in
Mechatronics, specialising in Control Systems. With
expertise spanning Swarm Robotics, Intelligent Con-
trol, Reinforcement Learning, and Visual Servo Con-
trol, his academic foundation includes a BSc from
Civil Aviation Technology College and an MSc from
the prestigious Sharif University of Technology.

He is affiliated with the Swarm Robotics Lab, op-
erating as a division of the Department of Computer
Science at Durham University. His research con-
tributions are featured in high-impact international

scientific journals, reflecting his engagement in cutting-edge advancements in
control and robotics.

Fatemeh Rekabi-Bana received her BSc (2010)
and MSc (2012) in Aerospace Engineering from
Amirkabir University of Technology (Tehran Poly-
technic). She received her PhD (2020) in Mechan-
ical Engineering Dynamics, Control and Vibration
from the University of Tehran. She joined the EU-
H2020 project (RoboRoyale) as a postdoc research
associate at the University of Manchester and now
she is working as a postdoctoral research associate
at Durham University.

Farshad Arvin received the BSc degree in Com-
puter Engineering, the MSc degree in Computer
Systems Engineering, and the PhD degree in Com-
puter Science, in 2004, 2010, and 2015, respectively.
Farshad is a Professor of Robotics in the Department
of Computer Science at Durham University in the
UK. Prior to that, he was a Senior Lecturer in
Robotics at The University of Manchester, UK. He
visited several leading institutes including Artificial
Life Laboratory at the University of Graz, Institute
of Microelectronics, Tsinghua University, Beijing,

and Italian Institute of Technology (iit) in Genoa as a Senior Visiting
Research Scholar. His research interests include swarm robotics, multi-agent
systems, and biohybrid robotics. He is the Founding Director of the Swarm &
Computation Intelligence Laboratory formed in 2018, www.SwaCIL.com.

Junyan Hu received BSc degree in Automation
from Hefei University of Technology in 2015 and
PhD degree in Electrical and Electronic Engineering
from the University of Manchester in 2020.

Junyan is an Assistant Professor with the Depart-
ment of Computer Science at Durham University
and a Fellow of Durham Energy Institute. Prior to
that, he worked as a Lecturer at University College
London and a Postdoctoral Research Associate at
the University of Manchester. His research interests
include swarm intelligence, multi-agent systems, co-

operative planning and control, with applications to autonomous vehicles
and robotics. He is a member of IEEE Technical Committee on Networks
and Communication Systems and IEEE Technical Committee on Multi-Robot
Systems. He served as an Associate Editor for IEEE Robotics and Automation
Letters, and a Conference Editorial Board member for ICRA and CASE.

www.SwaCIL.com

Citation on deposit: Pan, H., Zahmatkesh, M.,
Rekabi-Bana, F., Arvin, F., & Hu, J. (in press). T-
STAR: Time-Optimal Swarm Trajectory Planning
for Quadrotor Unmanned Aerial Vehicles. IEEE
Transactions on Intelligent Transportation
Systems

For final citation and metadata, visit Durham Research Online URL:
https://durham-repository.worktribe.com/output/3772764
Copyright statement: This accepted manuscript is licensed under the Creative
Commons Attribution 4.0 licence.
https://creativecommons.org/licenses/by/4.0/

https://durham-repository.worktribe.com/output/3772764
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Differentially Flat Control of Quadrotor Drones
	Model Predictive Control for Trajectory Planning
	Distributed Trajectory Planning

	Preliminaries
	Quadrotor Model
	Differential Flatness
	Multi-stage Polynomial Trajectory
	Problem Statement
	System Structure

	Low-Level Optimal Trajectory Planning
	Trajectory Optimal Control
	Unconstrained Time-Optimal Control
	Properties of the Cost Function
	SVM-Based Safe Flight Corridor
	Reference Trajectory Planner

	High-Level Swarm Coordination
	Flocking Control
	T-STAR with Constrained Control Effort
	Deconfliction

	Simulation And Real-world Experiments
	Performance with a Single UAV
	Performance with a Multi-UAV System
	Effect with Dynamic and Annular Obstacles
	Flocking Analysis
	Experimental Validation

	Conclusion
	References
	Biographies
	Honghao Pan
	Mohsen Zahmatkesh
	Fatemeh Rekabi-Bana
	Farshad Arvin
	Junyan Hu

