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ABSTRACT

Producing ultra-deep high-angular-resolution images with current and next-generation radio interferometers introduces significant
computational challenges. In particular, the imaging is so demanding that processing large datasets, accumulated over hundreds of
hours on the same pointing, is likely infeasible in the current data reduction schemes. In this paper, we revisit a solution to this
problem that was considered in the past but is not being used in modern software: sidereal visibility averaging (SVA). This technique
combines individual observations taken at different sidereal days into one much smaller dataset by averaging visibilities at similar
baseline coordinates. We present our method and validated it using four separate 8-hour observations of the ELAIS-N1 deep field,
taken with the International LOw Frequency ARray (LOFAR) Telescope (ILT) at 140 MHz. Additionally, we assessed the accuracy
constraints imposed by Earth’s orbital motion relative to the observed pointing when combining multiple datasets. We find, with four
observations, data volume reductions of a factor of 1.8 and computational time improvements of a factor of 1.6 compared to standard
imaging. These factors will increase when more observations are combined with SVA. For instance, with 3000 hours of LOFAR data
aimed at achieving sensitivities of the order of µJy beam−1 at sub-arcsecond resolutions, we estimate data volume reductions of up
to a factor of 169 and a 14-fold decrease in computing time using our current algorithm. This advancement for imaging large deep
interferometric datasets will benefit current generation instruments, such as LOFAR, and upcoming instruments such as the Square
Kilometre Array (SKA), provided the calibrated visibility data of the individual observations are retained.

Key words. methods: observational – techniques: high angular resolution – techniques: image processing –
techniques: interferometric

1. Introduction

Modern and upcoming radio interferometers such as the Inter-
national LOw Frequency ARray (LOFAR) Telescope (ILT van
Haarlem et al. 2013) and the Square Kilometre Array (SKA
Dewdney et al. 2009) and its pathfinders (Schinckel et al. 2012;
Tingay et al. 2013; Jonas & MeerKAT Team 2016) advance our
ability to study the universe in unprecedented detail. However,
the substantial volumes of data generated by these instruments
present significant challenges for data processing and storage
(costs). This issue is especially pronounced when combining
multiple observations of the same sky area for deep high-
resolution imaging, as this involves processing much larger
volumes of data compared to imaging with a single observation
or at lower resolutions. To ensure that the high costs associated
with data processing do not outweigh the scientific benefits, it
is crucial to employ more efficient data processing and handling
techniques.

Recent deep surveys dedicated to specific areas on the sky,
each spanning hundreds of hours with LOFAR, have produced
wide-field images with sensitivities reaching 20 µJy beam−1 at
144MHz and 6′′ resolution (Kondapally et al. 2021; Duncan et al.
2021; Tasse et al. 2021; Sabater et al. 2021; Best et al. 2023;

⋆ Corresponding author; jurjendejong@strw.leidenuniv.nl

Bondi et al. 2024). The calibration and imaging were con-
ducted using only the Dutch core and remote stations, exclud-
ing all international stations. Including also the international
LOFAR stations allows for the creation of ultra-deep, degree-
scale images with sub-arcsecond resolutions, due to the addi-
tional baselines extending up to 2000 km. These images con-
tain, at sub-arcsecond resolutions, up to 10 billion pixels over
2.5×2.5 degrees and are generated from data amounting to tens
to hundreds of terabytes when combining all available obser-
vations of the same field. The feasibility of generating these
degree-scale images after calibrating all LOFAR’s international
stations has been proven by producing the first 0.3′′ wide-field
image with a sensitivity of 32 µJy beam−1 (Sweijen et al. 2022).
Recent advancements have led to the production of the deep-
est wide-field image currently available at 0.3′′ resolution and
140 MHz, with a sensitivity of 14 µJy beam−1, by combining
four observations (de Jong et al. 2024). While these pioneering
studies have progressively developed strategies that can be scaled
up to process hundreds of observing hours of the same pointing,
they have also highlighted that the final imaging of the calibrated
data is a computational bottleneck. This step consumes about
80% of the total computational time of the entire data reduc-
tion pipeline, due to the large data volume left after calibration.
To address this, a reduction of the data volumes before imaging
without significantly compromising image quality is necessary.
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An effective way to compress the data volume of interfero-
metric data is by decreasing the number of visibilities that are
needed to create an image. These visibilities are measurements
of the correlated signals between pairs of antennas (baselines),
capturing the Fourier components of the sky brightness distri-
bution essential for image reconstruction. One commonly used
method to do this is by using baseline-dependent averaging
(BDA; e.g. Cotton 1986, 2009; Skipper 2014; Wijnholds et al.
2018; Atemkeng et al. 2022). This leverages the fact that dif-
ferent baseline lengths may have different time and frequency
resolutions to recover the information for imaging without intro-
ducing time and bandwidth smearing. For short baselines, which
measure large-scale structures in the sky, the visibility func-
tion changes slowly with time and frequency. In contrast, long
baselines are sensitive to small spatial resolutions, where the vis-
ibility function may vary more rapidly with time and frequency.
Therefore, visibilities for short baselines can be averaged over
longer time periods and broader frequency channels compared
to longer baselines. BDA can, for example, reduce data volumes
for the SKA-Low and SKA-Mid up to about ~85% (Wijnholds
et al. 2018; Deng et al. 2022). Alternatively, it is also possible
to perform data volume compression by using Dysco compres-
sion (Offringa 2016). This method does not reduce the number
of visibilities but uses lossy compression to reduce the storage
space and, thus, the reading speed of visibility data. Dysco com-
pression works well on lower signal-to-noise ratio (S/N) data
by taking advantage of the fact that variations in the data are
primarily due to Gaussian noise rather than the actual signal.
This allows for efficient data compression without losing impor-
tant visibility information to reconstruct images. On average, this
technique reduces the data volume for a typical LOFAR observa-
tion by a factor of 4–6, partly also due to more efficient storage
of weights.

Despite the successes in terms of compressing datasets of
individual observations, data volume and computational time
still scale linearly when performing deep imaging with multi-
ple observations, due to the increased number of visibilities that
in imaging software all need to be processed. One way to reduce
computational wall time is to create separate images from indi-
vidual observations and then average them in image space. While
this approach enables parallel processing for each observation,
it still necessitates gridding all visibilities from the different
observations during imaging, resulting in about the same total
computational time as imaging all visibilities together (which we
refer to as ‘standard imaging’ throughout this paper). Addition-
ally, image quality is worse when averaging images compared
to standard imaging because deconvolution of faint sources can
only be done when performed with all observations together. An
alternative approach to combine observations and reduce data
volume and computational time is to utilize the repeating base-
line tracks from deep observations taken over multiple sidereal
days. In this way, it is possible to reduce the number of visibil-
ities that need to be imaged. This was, for instance, conducted
by Owen & Morrison (2008), who averaged visibilities at the
same hour angles using data from the Very Large Array (VLA) at
1.4 GHz with a total integration time of 140 h. They implemented
this method in the Astronomical Image Processing System (AIPS
van Diepen & Farris 1994; Glendenning 1996; Greisen 2003) as
the task STUFFR1, which combines several AIPS tasks to per-
form visibility averaging over different sidereal days. This was
later also used for deep imaging of the GOODS-N field with the
VLA (Owen 2018).

1 http://www.aips.nrao.edu/cgi-bin/ZXHLP2.PL?STUFFR

AIPSwas originally designed to handle smaller data volumes
compared to the large datasets produced by modern interferom-
eters, such as LOFAR and the SKA. While some processing
improvements have been developed for AIPS (e.g. Kettenis et al.
2006; Cotton 2008; Bourke et al. 2014), it is not optimized
to deal with direction-dependent effects (DDEs). These pose
an added challenge to achieving wide-field images with high
dynamic range and S/N below a few hundred MHz. DDEs are
primarily introduced by the ionosphere and beam model errors,
distorting the ‘real’ visibilities differently across the field of
view. For LOFAR and SKA data processing have been devel-
oped, capable of efficiently processing datasets of the order of
tera-to petabytes on large powerful multi-CPU machines, while
DDEs may be corrected with software packages such as DP32

(van Diepen et al. 2018; Dijkema et al. 2023), SPAM (Intema et al.
2009), Sagecal3 (Kazemi et al. 2011), KillMS4 (Tasse 2014a,b;
Smirnov & Tasse 2015), and facetselfcal5 (van Weeren et al.
2021). These are typically integrated in a facet-based approach,
where the field is divided into multiple facets (van Weeren et al.
2016; Williams et al. 2016), with each facet receiving its own
calibration solutions. Since calibration for systematic and iono-
spheric effects is best performed on a per-observation basis, it is
essential to average visibilities from different observations corre-
sponding to different sidereal days only after calibrating for the
DDEs in each facet. This requires, before averaging visibilities
from different observations, to split off datasets for each facet
from the full dataset and treating each facet separately, as was
demonstrated by Sweijen et al. (2022) and de Jong et al. (2024)
without averaging visibilities for similar hour angles or baseline
coordinates.

In this paper, we are exploring a revised method to average
visibilities over sidereal days on already calibrated facet data. We
term this ‘sidereal visibility averaging’ (SVA). To demonstrate
our method, we average visibilities from datasets from four dif-
ferent LOFAR observations calibrated by de Jong et al. (2024).
By testing various averaging settings, we compare and optimize
the balance between image quality and computing costs. We also
consider effects on the binning of similar baseline coordinates
and frequency offsets due to Earth’s celestial motion. Given
that imaging accounts for approximately 75–80% in the cur-
rent LOFAR sub-arcsecond wide-field data reduction pipeline
(Sweijen et al. 2022; de Jong et al. 2024), we address a sig-
nificant part of current computational challenges for ultra-deep
imaging of a single pointing on the sky. While we focus on data
from LOFAR in this paper, we advocate this method as a viable
solution to address computing and storage challenges for deep
multi-epoch imaging with other instruments as well.

In Section 2, we first discuss the SVA algorithm. This is fol-
lowed by an overview of the data used in this paper in Section 3.
We then present our results in Section 4, followed by a discus-
sion in Section 5. Finally, we conclude with a summary and
conclusions in Section 6.

2. Sidereal visibility averaging

Interferometric datasets consist of several components, includ-
ing a time axis, a frequency axis, baseline coordinates (uvw),
visibilities, and their corresponding weights. The initial time
and frequency resolution of these axes are determined by the

2 https://dp3.readthedocs.io
3 https://github.com/nlesc-dirac/sagecal
4 https://github.com/saopicc/killMS
5 https://github.com/rvweeren/lofar_facet_selfcal
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settings of the interferometer or correlator. Visibilities are the
measurements of the correlated signals for baselines at specific
moments in time and for different frequencies. As the Earth
rotates, these baseline tracks move over time, with each times-
tamp corresponding to a point in the uvw plane (e.g. Brouw
1975). This plane is a coordinate system used to describe the
relative positions of antennas. When observations with the same
pointing centre are conducted over more than one sidereal day,
parts of the baseline tracks are repeated. This repetition allows us
to average the visibilities in similar baseline coordinate bins. We
discuss in this section how the SVA algorithm makes efficiently
use of the possibility to average observations over multiple side-
real days. In this paper, we use LOFAR as an example because
we have recently reduced high-resolution LOFAR data at hand
(de Jong et al. 2024).

2.1. Frequency and time axis

The detected radio signals are split into specific frequency bands
using a polyphase filterbank, which processes and organizes
these signals into channels. For LOFAR, the central frequency of
these channels is pre-defined which ensures that LOFAR data is
stored using the same channel centres in the LOFAR Long Term
Archive (LTA)6 (van Haarlem et al. 2013). As frequencies may
be averaged during processing, it is essential that these channels
are averaged by common denominators, such that when apply-
ing SVA, we only have to match the corresponding frequency
channels of the visibilities. Matching visibilities with frequency
offsets can otherwise result in image distortions. This may
include inaccurate source positioning when channels with differ-
ent centres are combined or bandwidth smearing if observations
with different or too large frequency channel widths are com-
bined. However, in the context of SVA – where adjustments to
the uvw-plane are only influenced by the time axis – frequency-
related effects on image accuracies do not arise, as long as
SVA is applied to data with frequency channels that share the
same centres and widths. It is important to note that frequency-
related issues can still be introduced by Doppler shifts, as we
subsequently discuss in Section 5.3.

The time axis from observations taken at different moments
must be converted to a common time axis, which can be done
using the local sidereal time (LST). The LST relates to the hour
angle relative to the vernal equinox, allowing us to align the
time axes from different observations to a single sidereal day.
We evaluate the LST at the canonical centre of LOFAR. The
time tracks of different observations in LST do not need to over-
lap exactly, as observations at the same pointing are not taken
simultaneously on a sidereal day. For instance, if the integration
time for an observation is 2 seconds, another observation of the
same pointing could be offset by 1 second in sidereal time. Since
the uvw-plane and the binning in this plane between different
input datasets depends on the time resolution, careful consid-
eration of the time axis is essential in reconstructing the correct
image. A critical factor is time smearing. To achieve high-quality
images while minimizing data volume, it is crucial to balance
time resolution with data volume and image quality. This bal-
ance is further discussed in Sections 4.1, 4.2, and 5.1. Note that
mapping different observations to a common LST axis leads to
the loss of intrinsic time information for certain astronomical
objects. This is most notable for the varying flux of transient
sources.

6 lta.lofar.eu

While one day in LST consists of about 23.93 hours, we use
the fact that the Fourier transform of a real-valued function (the
sky brightness distribution) is Hermitian, meaning that the trans-
form exhibits complex conjugate symmetry. Hence, a visibility at
coordinates (u, v, w) has a corresponding complex conjugate at
(−u,−v,−w). Therefore, our output dataset does not cover more
than 11.97 hours.

2.2. Algorithm

The SVA algorithm involves the following steps:
1. First, using the LST, we construct a time axis for the out-

put dataset that encompasses all LST points from the input
datasets. Though the measurement set allows specifying a
time axis in LST, we convert the times to a ‘representa-
tive’ UTC time around the median time of all observations.
The time resolution (∆t) can be specified as input or can
be calculated using the angular resolution (θres) and maxi-
mum distance from the phase centre (θ) with the following
formula:

∆t = 2.9 × 104
θres
√

1 − τ
θ

 , (1)

where τ is the time smearing, which is equivalent to the peak
intensity loss of a source. This formula is based on the time-
smearing equations from Bridle & Schwab (1999) for the
average smearing effect on an image. We set τ by default
equal to 0.95, but it can be changed to a more conserva-
tive value closer to 1. We also create a frequency axis that
includes all frequency channels from the input datasets.

2. Next, we add all unique LOFAR stations from the input
datasets to the output dataset and make mappings that map
the LOFAR station IDs from the output to those in the input
datasets. This allows us to quickly identify which data entries
correspond to which baseline across all the input and output
datasets, as not all LOFAR observations are observed using
the same set of stations.

3. Using the baseline coordinates from the input datasets and
the LST from each observation, we obtain a preliminary
estimate of the baseline coordinates for the output dataset
by applying nearest neighbour interpolation for each base-
line, using scipy’s interpolate library (Virtanen et al.
2020). Nearest neighbour interpolation yields similar results
to other interpolation methods, as we further refine the accu-
racy of the output baseline coordinates by averaging all
nearest uvw values from the input datasets. Note that each
baseline coordinate from an input dataset can only corre-
spond to one baseline coordinate in the output dataset. In
Figure 1 we demonstrate this procedure by showing the
baseline coordinates from the input dataset compared to the
output dataset for one baseline and different time resolutions.

4. We create index mappings between the baseline coordinates
of the input and the nearest baseline coordinates from the
output datasets. These mappings allow us to quickly deter-
mine for each baseline coordinate in the input datasets to
which baseline coordinate from the output dataset these cor-
respond during averaging of the visibilities and summing the
weights as explained below.

5. Visibility weights are factors that account for the reliability
of visibilities, improving overall accuracy and the S/N dur-
ing imaging. To obtain the visibility weights of the output
dataset (W), we sum the visibility weights from the input
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Fig. 1. Different uv samplings for one baseline with length 594 km between a Dutch core station (CS001HBA) and the Swedish LOFAR station at
Onsala Space Observatory (SE607HBA). The input datasets are represented by red, green, yellow, and black stars and labelled by their observing
dates. The output dataset is represented by blue dots. The input data has a time resolution of 8 seconds. Left panel: output time sampling at ∆t =
1 second. Centre panel: output time sampling according to Equation (1) at ∆t = 3.6 seconds. Right panel: output time sampling at ∆t = 8 seconds.

datasets (Wi):

W̄(u, v, w) =
∑

i

Wi(u, v, w),

This ensures that the most reliable visibilities in the out-
put dataset have the largest weights. Also, uvw for which
a subset of the input observations contribute points, has
correspondingly lower weights.

6. We utilize the visibility weights to compute a weighted aver-
age of the visibility data, yielding the output visibility values
as follows:

V̄(u, v, w) =
∑

i Vi(u, v, w)Wi(u, v, w)
W̄(u, v, w)

,

7. Finally, we add a flagging column, flagging all values with
output visibility weights equal to 0, as these correspond
to uvw coordinates in the output dataset that did not have
neighbouring visibilities from the input data or were already
flagged in the input data.

Since the SVA algorithm considers mappings between the same
baselines of the input and output data, our method is compati-
ble with datasets where BDA has been applied. We also ensured
that the data could be compressed using Dysco compression by
testing with the default settings of 10 bits per float for visibilities
and 12 bits per float for visibility weights in DP3. We measured
the image RMS noise with and without Dysco compression and
found a difference of less than 0.1%. However, it is important to
note that we only tested this with four datasets (see Section 3).
Using more datasets or the presence of very bright sources could
increase the S/N, potentially leading to image quality losses
with Dysco compression. In such scenarios, it may be neces-
sary to consider more conservative bit-rates or forgoing Dysco
compression entirely.

The SVA code is currently written with Python and may
be implemented as a separate step in data reduction pipelines.7
The code builds mainly on the functionalities from casacore8

(Casacore Team 2019; CASA Team 2022) to work with mea-
surement sets, which are the standard data format used for

7 The code is currently available at https://github.com/
jurjen93/sidereal_visibility_avg
8 https://casacore.github.io/python-casacore/

radio interferometric data9. We also use astropy10 (Astropy
Collaboration 2013, 2018, 2022) for unit conversions and the uvw
coordinate system and scipy11 (Virtanen et al. 2020) for nearest
neighbouring interpolation and retrieving the binary-tree quick
nearest neighbour lookup from Maneewongvatana & Mount
(2002). To increase the processing speed we also utilize joblib
(Joblib Development Team 2020)12 for parallel processing. To
increase efficiency of the algorithm, it may be investigated in
the future to port the code to a more efficient programming
language or implement it in an already existing efficient radio
astronomical software package.

3. Data

To demonstrate the SVA algorithm, we utilize calibrated datasets
corresponding to four observations taken by LOFAR of the
ELAIS-N1 deep field. These datasets were processed and imaged
at sub-arcsecond resolution by de Jong et al. (2024). The cor-
responding observations are part of two different observing
projects (LT10_012 and LT14_003, PI: P.N. Best) and were
downloaded from the LTA13. A brief summary of the metadata
for these observations is provided in Table 1. The maximum
extent between the observation times is 2.5 years.

SVA should be applied after all calibration have been per-
formed per observation. Otherwise, various systematic or iono-
spheric effects cannot be properly corrected, as the original time
axis information for each observation is lost and only a side-
real time axis remains. The complete calibration process for the
datasets used in this work is detailed in de Jong et al. (2024).
The most essential step in the data reduction process that we
need to highlight in this work, is the use of the facet-based
approach to correct for DDEs (e.g. van Weeren et al. 2016).
Initially, direction-independent effects for the longest baselines
are calibrated using one bright calibrator. Then, several other
bright calibrators with sufficient S/N at the longest baselines are
selected and calibrated. These calibrators define a Voronoi tes-
sellation, where within each facet the calibration solutions are
assumed to be constant (Schwab 1984; van Weeren et al. 2016).

9 https://casacore.github.io/casacore-notes/229.pdf
10 https://www.astropy.org
11 https://scipy.org
12 https://joblib.readthedocs.io
13 lta.lofar.eu
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Table 1. Metadata from the four used ELAIS-N1 observations.

Observation ID L686962 L769393 L798074 L816272

Observation date 26-11-2018 24-05-2020 14-11-2020 13-05-2021
Start time 07:13:43 19:20:26 08:11:00 19:41:00
Pointing centres 16:11:00, +54.57.00 16:11:00, +54.57.00 16:11:00 +55.00.00 16:11:00 +55.00.00
Integration time 8 hours 8 hours 8 hours 8 hours
Frequency range 120–166 MHz 120–166 MHz 115–164 MHz 115–164 MHz
Stations (International) 51 (13) 51 (13) 50 (12) 52 (14)

Notes. The pointing centres were aligned during the data reduction process.

The visibilities from the datasets corresponding to these facets
are individually imaged by subtracting sources outside these
facets and then phase shifting to their centre. This process allows
for additional averaging of the calibrated visibilities for each
facet without introducing smearing effects, thereby speeding up
the imaging process.

In the following sections, we use datasets with calibrated vis-
ibilities from two facets to test the SVA algorithm: facet 12 and
facet 25 from Figure 14 in de Jong et al. (2024). These datasets
are stored using Dysco compression (Offringa 2016), which
reduces data volume but is incompatible with BDA. However,
as the SVA algorithm operates on a per-baseline basis, the analy-
sis presented in the following sections is applicable to data with
BDA applied as well. Both facets were, during pre-processing,
averaged to a time resolution of 8 seconds and frequency resolu-
tion of 97.66 kHz, which reduces the data volume while avoiding
time and/or bandwidth smearing. Further averaging would cause
smearing and lead to an irreversible loss of information that can-
not be restored during SVA. The sky areas covered are 0.20 deg2

for facet 12 and 0.22 deg2 for facet 25. These correspond to the
time and frequency resolution required for creating images at a
resolution of 0.6′′. We conduct the analysis in this paper at a res-
olution of 0.6′′, as this offers four times better imaging speed,
thereby reducing the computational resources needed to gener-
ate images. All discussions in this paper are directly applicable
to a resolution of 0.3′′ with the same calibrated data.

All images made in this paper are produced with wgridder
(Arras et al. 2021; Ye et al. 2022) from WSClean (Offringa
et al. 2014), using the same settings as de Jong et al. (2024).
This includes a Briggs weighting of −1.5 (Briggs 1995), a min-
imum uv-value of 80λ (corresponding to a largest angular scale
of ~43′), and a pixel size of 0.2′′. For efficient deep cleaning
and to better recover extended diffuse emission, we apply ‘auto’
masking, multi-scale deconvolution, and an RMS box equal to
50 times the synthesized beam size (Cornwell 2008; Offringa &
Smirnov 2017). Afterwards, we restore all images to a common
resolution of 0.6′′ to allow for direct comparisons.

4. Results

A key functionality of the SVA algorithm is to accurately
average visibilities and weights from various observations for
similar baseline coordinates. The binning is directly controlled
by the given time resolution in the output dataset, as demon-
strated in Figure 1. Frequency offsets between observations are
not a concern, as the datasets have aligned frequency chan-
nels (see Section 3), which is standard for LOFAR data (see
Section 2.1). The time resolution of the output dataset after
applying SVA affects both the image quality, in terms of RMS
noise and smearing, and the data volume. It is essential to find an
optimized balance between both image quality and data volume

for reducing computational time and data volume, while obtain-
ing high-quality science-ready images after imaging. In this
section, we evaluate the output of the SVA algorithm using data
from the two selected facets, considering both image quality and
data volume.

4.1. Image quality

The datasets from the facets used in this work have both an ini-
tial time resolution of ∆t0 = 8 seconds, which was identified as
a balance between data volume and time smearing by de Jong
et al. (2024), when performing standard imaging without SVA.
To compare the image qualities for different time resolutions of
the output datasets after applying SVA, we plot in Figure 2 the
comparison between different image properties of the original
non-averaged image and the images after SVA for different time
resolutions.

We find in the left panel of Figure 2 that the background
RMS noise improves for smaller ∆t. Facet 25 exhibits marginally
lower relative RMS noise offsets because, following its DD cali-
bration, the global amplitudes are for this facet slightly elevated
compared to those in facet 12, as shown in Figure 25 of de Jong
et al. (2024). In the centre panel of Figure 2, we find no trend for
the different time resolutions and offsets between the original
integrated flux density (S 0) and the integrated flux density after
SVA of less than 1%. The right panel displays the peak intensity
ratios for the calibrator sources of each facet, where we find the
peak intensity to reduce up to about 5% towards lower time reso-
lutions. This indicates an increase in time smearing, as smearing
impacts only the peak intensity while conserving the flux den-
sities to the first order. This effect is more pronounced for the
calibrator source of facet 25, as this source is located closer to
the edge of its facet, where smearing effects are strongest.

In Figure 3, we compare cutouts of three extended sources
located in the facets when performing standard imaging, with
imaging after SVA at a ∆t = 3.6 seconds (which follows from
Equation (1) at τ = 0.95), and the subtraction between both
images. We observe a slight increase in the RMS background
noise (as shown in the left panel of Figure 2), and we find as
expected the sources to disappear in the subtracted images.

4.2. Computing resources

The main goal of applying SVA is to reduce the required data
volume and computational cost for imaging. We will therefore
consider the benefits in terms of data storage and computational
time.

The data volume after applying SVA (V) depends on the
sampling rate of the new time axis. If the time resolution of the
new dataset matches that of the N input datasets, the resulting
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Fig. 2. Comparing different image properties for different time resolutions (∆t) with and without applying SVA on datasets corresponding to facets
12 and 25 from de Jong et al. (2024). We only consider using narrower time resolutions than 8 seconds, as this was the already determined optimal
time resolution to minimize data volume and prevent time smearing in the datasets prior to SVA. Any additional time averaging would lead to time
smearing effects, irrespective of applying SVA. Left panel: the measured RMS noise background ratios for each facet without (σ0) and with (σ)
SVA. Centre panel: the measured integrated flux density ratios between the calibrator sources for each facet without (S 0) and with (S ) SVA. Right
panel: the measured peak intensity ratios between the calibrator sources for each facet without (P0) and with (P) SVA.

Fig. 3. Comparison between the 0.6′′ resolution images produced with and without SVA for three extended radio galaxies (rows). First column:
original image from de Jong et al. (2024) produced after standard imaging without SVA. Second column: result when imaging after applying SVA
at 4 second resolution. Third column: the image after subtracting the second from the first image. Details about the data and imaging settings are
provided in Section 3.

data volume isV =
∑N

i=1 Vi

N , where Vi are the data volumes of the
input datasets. In the more general case, where the new time res-
olution (∆t) differs from the input time resolution (∆t0), the input
and output data volumes are related by

V ∼
∆t0

N · ∆t

N∑
i=1

Vi. (2)

This implies that to achieve any data volume reduction, it is
essential that ∆t > ∆t0

N , which gives with Equation (1)

N > 3.4 × 10−5
(
∆t0 · θ

θres
√

1 − τ

)
, (3)

an expression for the lower bound for the number of observa-
tions that are necessary to obtain a data volume reduction, given
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the characteristics of the desired image size, smearing allowance,
and output time resolution. In our test case with N = 4 observa-
tions and an input time resolution of ∆t0 = 8 seconds, we find
the data volume

V ∼
2
∆t

4∑
i=1

Vi.

This shows that to obtain a data volume reduction (less than∑
Vi), ∆t > 2 seconds is required. This is satisfied for τ =

0.95, as this corresponds to ∆t = 3.6 seconds (following from
Equation (1)).

In terms of the computational costs, we know that the com-
putational time required for imaging large datasets scales almost
linearly with the number of visibilities (e.g. de Jong et al. 2024).
This is because the amount spent on deconvolution is almost neg-
ligible with respect to the time spent on repeatedly gridding and
degridding visibilities, and reading/writing them to disk. Since
performing the SVA algorithm also requires additional compu-
tational time for applying the algorithm for each dataset (Tsva),
we need to include this in the total computational time. This
results in the following total computational time for imaging and
applying the SVA algorithm:

T ∼ T0
∆t0

N · ∆t
+ N · Tsva,

where T is the total computational time with SVA and T0 is
the total computational time when performing standard imag-
ing without SVA. For the SVA algorithm to be efficient, it must
satisfy the condition

Tsva <
T0

N

(
1 −

∆t0
N · ∆t

)
,

which again strictly requires ∆t > ∆t0
N . Both our facets were orig-

inally imaged within about 42 hours without SVA. So, in this
case, using 4 datasets, we find

Tsva < 10.5
(
∆t − 2
∆t

)
hours.

The SVA algorithm currently takes Tsva = 0.7 hour for an output
time resolution of ∆t = 3.6 seconds with our 4 datasets on an
Intel® Xeon® Gold 5220R Processor with 96 cores. This clearly
satisfies the above condition and reduces the computational time
by a factor of 1.6. However, it is important to emphasize that for
different datasets, more optimized code, or a different processor
node, the computing cost in terms of CPU hours could be more
favourable.

5. Discussion

We have introduced the SVA method and applied it on deep-
calibrated LOFAR data at 0.6′′ resolution. Having examined
image qualities at various time resolutions, we delve in this
section deeper into the image quality and computing resource
balance. This enables us to estimate the advantages of scaling
up to combine a larger number of observations. We also investi-
gate the effects of Earth’s celestial motion, introducing uvw and
frequency offsets.

5.1. Image quality vs. computational resources

In Section 4.1 and Figure 2, we found that image quality reduced
due to increased RMS noise and increased smearing of the
order of a few per cent after interpolating the input baseline
coordinates to a new uvw-plane. The trend in the left panel of
Figure 2 also clearly shows that the RMS noise goes up for
larger time resolutions. Although Briggs weighting may in our
tests have an effect on the noise difference, since the uvw coordi-
nates are different between the imaging with and without SVA,
we still observed an increase in the RMS noise in images pro-
duced with data from a few international baselines and with
uniform weighting when SVA was applied. This suggests that
the primary factor behind the noise increase is related to the
interpolation process, followed by the imaging where the uvw
coordinates are interpolated again onto a regular grid to facilitate
efficient fast Fourier transforms (FFTs). Consequently, the grid-
ded visibilities represent interpolations of already interpolated
uvw coordinates, compounding inaccuracies introduced during
gridding. The small loss in peak intensity when comparing data
imaged with and without SVA, is attributed to additional time
smearing effects. This is likely caused by the shifts in baseline
coordinates introduced during SVA. This adds to smearing that
may already be present in the data.

We found that setting the time resolution to ∆t = 3.6 seconds,
allowing a smearing factor of τ = 0.95, results in a comput-
ing time improvement of 1.6 times and a data volume reduction
of 1.8 times when combining 4 observations of ELAIS-N1
with the current SVA code. While this is a significant gain,
these resource savings increase further when combining more
datasets with SVA. For example, imaging the 64 available obser-
vations of the ELAIS-N1 deep field in the LTA without SVA
would be rather costly, as this would currently take about
~1 800 000 CPU hours for the final imaging of the data. How-
ever, using SVA this wall-time reduces by about a factor of 10,
saving almost 1 600 000 CPU hours. Looking even further ahead,
with plans to observe a single LOFAR pointing for 3000 hours,
we anticipate reductions up to a factor of ~169 in data volume
and a 14-fold decrease in computing time, while achieving point
source sensitivities in the µJy beam−1 range.

The image quality reduction in terms of time smearing and
RMS noise of around a few per cent compared to standard imag-
ing, becomes in general certainly acceptable given the improved
depth of the output image by

√
N with approximately ∆t0

∆t N lower
data volumes and faster imaging times. For very large numbers
of observations, one could also consider to optimize image qual-
ity by selecting a finer time resolution and more conservative
smearing factors (τ). In the case of 500 or 3000 hours obser-
vational time, one would for instance with τ = 0.99 and our
current code still achieve substantial reductions in computational
time by factors of approximately 7 and 12, respectively, while
reducing data volumes by about 13-fold and 75-fold, respec-
tively. Alternatively, if it is known in advance that SVA will be
used to combine observations for deep imaging, these observa-
tions could be strategically scheduled to align the start and end
time in LST and record the observations with the same time
resolutions in LST. This ensures minimal baseline coordinate
offsets between observations, disregarding, for now, the effects
of Earth’s celestial motion discussed in Section 5.2.

5.2. Precession, nutation, and aberration

One of the main challenges of combining observations taken
over different sidereal days, is the fact that the coordinates of
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baselines are not fixed and alter over time due to Earth’s celestial
motion. Precession is the conical motion of the Earth’s rotation
axis, while nutation refers to the smaller oscillations superim-
posed on the longer-term precession motion (e.g. Rekier et al.
2022). Both are for the most part due to the gravitational forces
exerted by the Sun and the Moon. Precession has the most dom-
inant effect on the baseline tracks with a rate of about 50.2′′ per
year, whereas nutation has a smaller effect with an amplitude of
9.2′′ over a period of 18.6 years (Mathews et al. 2002; Dehant
et al. 2017). In addition, annual aberration, which results from
the Earth’s orbital motion around the Sun, causes another appar-
ent shift in the observed positions of astronomical objects. This
effect introduces a maximum shift in baseline coordinates of
approximately 20.5′′ over the course of a year (e.g. Gubanov
1973; Kovalevsky 2003).

In Figure 1, we observe the above mentioned effects on the
baseline coordinates using different time resolutions. The dis-
tances between baseline coordinates within the same dataset rep-
resent the maximum allowable separation between uvw points,
which, as determined by de Jong et al. (2024), stay within accept-
able smearing limits. The different uvw samplings, represented
by the blue dots in Figure 1, demonstrate that we remain within
these limits, indicating that both precession and aberration have
minimal influence on the resulting dataset after SVA. However,
when combining observations taken with many years in between
or when for instance observing objects at higher declinations,
precession becomes increasingly significant and requires adjust-
ments to the uvw sampling to avoid substantial time-smearing
effects.

The SVA algorithm addresses the challenges introduced by
celestial motions in part by using nearest-neighbour interpola-
tion of the baseline coordinates. This can be further refined by
employing a finer time resolution, as shown in the three pan-
els of Figure 1. In some cases, it may also be more accurate
to generate the output uvw-plane through interpolation across
the entire uvw space, rather than on a per-baseline basis, since
uvw points from different baselines may overlap due to preces-
sion. When combining a large number of observations with large
time intervals between them, an alternative approach is to group
datasets within specified observing time ranges and apply SVA
only on these subsets. This approach still reduces data volume
without combining all datasets into a single set, thereby mini-
mizing the loss of image quality caused by combining too distant
uvw coordinates from different observations. The new set of
sidereal averaged datasets can then be imaged together. Addition-
ally, to minimize aberration effects, it is advisable to schedule
observations for SVA close to each other.

5.3. Doppler shifts

When we combine observations taken at different moments in
time, it is also important to consider Doppler shifts which occur
due to the relative motion between our instrument on earth and
the sky direction, causing observed frequency changes. Doppler
shift differences between observations result in frequency off-
sets that may spectrally distort our images. This is in particular
relevant to spectral line science.

The radial velocity is given by

vr = ve · r̂,

where ve is the velocity vector of the Earth and r̂ is the unit vector
pointing from the observer to the sky direction, using the point-
ing centre of the observation and the antenna locations relative

to the centre of the Earth. The Doppler shift for an observation
is

∆ν = νobs

(
vr
c

)
,

where νobs is the observing frequency at 140 MHz. We find
Doppler shifts ranging from 2.6 kHz for the ELAIS-N1 obser-
vation with ID L686962 to –2.3 kHz for the observation with
ID L769393 (see Table 1). Given the frequency resolutions of
97.66 kHz, these Doppler shifts are too small to significantly
contribute to frequency offsets during visibility averaging. This
is because ELAIS-N1 is relatively favourably positioned on the
sky. When observing at lower ecliptic latitudes, Doppler shifts
could reach values of up to about ±15 kHz for LOFAR observa-
tions. This might have severe effects when the observations are
taken half a year apart, introducing ~30 kHz frequency offsets.

To avoid the need to apply Doppler shift corrections when
applying SVA, it may be beneficial to create for instance smaller
facets. These smaller facets can be averaged more in frequency
before SVA, making the Doppler shifts relatively smaller com-
pared to the frequency channel width. Alternatively, if it is
known in advance that SVA is used for imaging deep surveys, it is
best to schedule the observations strategically. This way, obser-
vations can be scheduled to minimize the introduction of large
Doppler shifts between the individual observations. A poten-
tially better solution is to apply default Doppler corrections
during the measurement pre-processing phase, before any visi-
bility data is calibrated. This approach would eliminate the need
to account for Doppler corrections during data processing. How-
ever, this may also need to involve additional corrections for uvw
coordinates.

6. Summary and conclusion

We have in this paper revisited a method called ‘sidereal visi-
bility averaging’ (SVA) to enable ultra-deep imaging when com-
bining multiple observations of a single pointing on the sky. This
method takes advantage of the repetitive nature of baselines each
sidereal day, allowing us to average calibrated visibilities from
different observations at similar baseline coordinates. While this
approach eliminates information about the time-varying flux of
transient sources, it significantly reduces the number of visibil-
ities to process during imaging, alleviating the computational
bottleneck for deep imaging with multiple observations and
lowering the long-term data archiving costs of calibrated visi-
bilities. It can be used in addition to other data volume reduction
methods, such as BDA and Dysco compression.

By testing the SVA algorithm with four previously calibrated
datasets from de Jong et al. (2024), corresponding to images of
two facets at a 0.6′′ resolution, we found that we could reduce
the data volume by a factor of 1.8 and speed up imaging by a
factor of 1.6 compared to standard imaging when we allow a
5% additional smearing increase towards the edge of the imaged
facet. The improvements in data volume and computational time
become larger when more observations are combined. For exam-
ple, applying this method to the approximately 500 hours of
LOFAR data available for the ELAIS-N1 deep field, we estimate
reductions in data volume of up to a factor of 28, while comput-
ing times may be decreased by a factor of around 10. For even
larger projects, with over 3000 hours of combined integration
time, the improvements may reach up to a factor of 169 in data
volume and a factor of 14 in computing time, while achieving
imaging sensitivity of the order of a µJy beam−1 at 150 MHz.
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The computational time reductions are likely to further improve
as the software becomes more optimized and more advanced
hardware becomes available.

We also examined the effects of Earth’s celestial motion on
the baseline coordinates of the combined dataset. Although the
baseline coordinates between the four observations are offset due
to precession and aberration, these have a small effect on SVA.
However, we anticipate that these effects could become prob-
lematic when combining observations taken many more years
apart. Depending on the resolution, this could potentially intro-
duce additional smearing effects. This issue can be addressed by
adding more uvw points to the output dataset using finer time
resolutions, which reduces the final computational speedup fac-
tors but maintain image quality. We also assessed the effects of
Doppler shifts and found that for the utilized ELAIS-N1 data,
they are too small to have a significant impact on the dataset
after applying SVA. However, observations at different positions
on the sky may necessitate additional frequency corrections,
depending on the times of the year during which the observa-
tions were conducted. Ideally, to optimize baseline coordinate
binning accuracy and minimize Doppler shift effects, observa-
tions should be scheduled during the same period of the year
and start at the same sidereal time.

We have demonstrated that SVA is an effective method for
reducing data volumes and processing time for imaging cali-
brated visibilities. We believe this approach serves as an impor-
tant building block for producing the deepest single-pointing
images using current and upcoming interferometric radio instru-
ments, as long the calibrated visibility data of the observations
being combined are retained before applying SVA. This enables
us to explore the universe at unprecedented depths and spatial
resolution.
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