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Abstract

We show various sharp Hardy-type inequalities for the linear and
quasi-linear Laplacian on non-compact harmonic manifolds with a par-
ticular focus on the case of Damek-Ricci spaces. Our methods make
use of the optimality theory developed by Devyver/Fraas/Pinchover and
Devyver/Pinchover and are motivated by corresponding results for hy-
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1 Introduction

The aim of this article is to derive Hardy-type inequalities for the Laplacian on
non-compact harmonic manifolds and, in particular, Damek-Ricci spaces, and to
discuss applications in the same spirit as in Devyver/Fraas/Pinchover [18], De-
vyver/Pinchover [19], Berchio/Ganguly/Grillo [8] and Berchio/Ganguly/Grillo/
Pinchover [9]. The two latter papers focus mainly on the real hyperbolic space
Hn = Hn(R) with n ≥ 3. The starting point is the classical Euclidean Hardy
inequality ∫

Rn

|∇ϕ(x)|2 dx ≥ (n− 2)2

4

∫
Rn

ϕ2(x)

|x|2
dx

for all smooth and compactly supported functions ϕ ∈ C∞
c (Rn) and n ≥ 3 (see,

e.g., [6, Cor. 1.2.6] for p = 2). This inequality was generalised by G. Carron
[13, Prop. 2.1] to arbitrary n-dimensional Cartan-Hadamard manifolds X (that
is, complete and simply connected Riemannian manifolds (X, g) of non-positive
curvature) with |x|2 replaced by d(o, x)2, where o ∈ X is an arbitrary point
(pole) and d is the Riemannian distance function on X.

One of the main results in [8] is the following Poincaré-Hardy inequality for
the n-dimensional real hyperbolic spaces Hn = Hn(R), which can be seen as a
variation of Carron’s Hardy inequality for Cartan-Hadamard manifolds with an
additional term in this special case (see [8, Theorem 2.1]): Given n ≥ 3 and any
point o ∈ Hn, we have∫

Hn

|∇ϕ(x)|2dx ≥ λ0(Hn)

∫
Hn

ϕ2(x)dx+
1

4

∫
Hn

ϕ2(x)

d(o, x)2
dx

+
(n− 1)(n− 3)

4

∫
Hn

ϕ2(x)

sinh2 d(o, x)
dx (1.1)

for all functions ϕ ∈ C∞
c (Hn). Here λ0(Hn) denotes the bottom of the spectrum

of the (positive) Laplacian −∆ = − div ◦∇ on Hn, which is known to be (n−1)2

4 .

If we disregard the extra term (n−1)(n−3)
4

∫
Hn

ϕ2(x)
sinh2 d(o,x)

dx, the variation can be

understood to include an additional L2-norm ∥ϕ∥2Hn with factor λ0(Hn) at the

expense of the constant in front of the “Hardy” term
∫
Hn

ϕ2(x)
d(o,x)2 dx. Moreover,

it is shown in [8] that the constants in Inequality (1.1) cannot be improved.
Real hyperbolic spaces Hn = Hn(R) have constant sectional curvature −1

and are examples of non-compact rank-one symmetric spaces. Besides them,
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there also exist the (real 2n-dimensional) complex hyperbolic spaces Hn(C), the
(real 4n-dimensional) quaternionic hyperbolic spaces Hn(H) and the (real 16-
dimensional) Cayley plane H2(O) based on the octonians O. These spaces com-
prise (besides the “simple” flat space R), the class of all non-compact rank-one
symmetric spaces, and they are all Cartan-Hadamard manifolds with sectional
curvatures within the interval [−4,−1].

All these spaces are also non-compact harmonic manifolds. A spectral geo-
metric characterization of harmonic manifolds is that they are complete Rieman-
nian manifolds on which all harmonic functions ϕ (that is ∆ϕ = 0) satisfy the
Mean Value Property (that is ϕ(x0) = 1

vol(Sr(x0))

∫
Sr(x0)

ϕ(x)dx for all x0 ∈ X

and spheres Sr(x0) of radius r > 0 around x0). It was generally assumed (and
referred to as the so-called ”Lichnerowicz Conjecture”) that all simply connected
harmonic manifolds should be either Euclidean spaces or rank-one symmetric
spaces. This was proved by Z. I. Szabó [45] in the compact case, and it came
as a surprise when E. Damek and F. Ricci discovered in 1992 (see [15, 16]) that
a whole family of non-compact, non-Euclidean and generally non-symmetric
homogeneous Riemannian manifolds were indeed also harmonic manifolds (thus
disproving this conjecture in the non-compact case). These spaces where studied
before (see [3, 4, 5, 12, 16, 22, 34, 36, 43, 44] for a selection of papers inves-
tigating various of their harmonic analytic properties) and they are nowadays
called Damek-Ricci spaces. They are solvable extensions NA of 2-step nilpotent
groups N of Heisenberg-type (by a one-dimensional abelian group A) with left-
invariant metrics. They are associated with a pair of parameters (p, q) which
are the dimensions of particular subspaces of the underlying nilpotent Lie al-
gebra of N . While the parameters (p, q) do not always uniquely determine the
Damek-Ricci space we will use for any Damek-Ricci space with these parameters
the notation Xp,q (by a slight abuse of notation due to this non-uniqueness).

Damek-Ricci spaces Xp,q are homogeneous Cartan-Hadamard manifolds of
dimension n = p + q + 1, with sectional curvatures in the interval [−1, 0]. The
rank-one symmetric spaces Hn(K) for the division algebras K = C,H,O are –
up to scaling of the metric by the constant factor 4 – Damek-Ricci spaces with
special choices of the parameters (p, q). In fact, we can write (up to the metric
scaling factor 4), Hn(C) = X2(n−1),1, Hn(H) = X4(n−1),3, and H2(O) = X8,7.
While the real hyperbolic spaces Hn can also be viewed as solvable Lie groups
NA with left-invariant metrics, they are not Damek-Ricci spaces since the group
N of Hn is abelian and not 2-step nilpotent as required for Damek-Ricci spaces.
The smallest dimension of a Damek-Ricci space is 4, and the only possible values
(p, q) for Damek-Ricci spaces Xp,q are given in the following table with a ≥ 0
and b ≥ 1 (see, e.g., [43, p. 64]). The derivation of these values goes back to
[23, p. 150] and is based on the representation theory of Clifford algebras.

q 8a+ 1 8a+ 2 8a+ 3 8a+ 4 8a+ 5 8a+ 6 8a+ 7 8a+ 8
p 24a+1b 24a+2b 24a+2b 24a+3b 24a+3b 24a+3b 24a+3b 24a+4b

The Damek-Ricci space of smallest dimension which is non-symmetric is
the 7-dimensional space X4,2. It was shown by J. Heber [21] that any non-
compact homogeneous harmonic manifold must either be Euclidean, a real hy-
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perbolic space or a (symmetric or non-symmetric) Damek-Ricci space, and it
is not known and a challenging open problem whether there exist any fur-
ther non-compact harmonic manifolds (which must then be necessarily non-
homogeneous).

Our main result is that the Poincaré-Hardy inequality (1.1) for Hn has the
following generalization to Damek-Ricci spaces with explicitely given constants:

Main Theorem A. Let Xp,q be a Damek-Ricci space with a pole o ∈ Xp,q

and r = d(o, ·). Then we have for all ϕ ∈ C∞
c (Xp,q),∫

Xp,q

|∇ϕ|2dx ≥ λ0(X
p,q)

∫
Xp,q

ϕ2dx+
1

4

∫
Xp,q

ϕ2

r2
dx

+
p(p+ 2q − 2)

16

∫
Xp,q

ϕ2

sinh2(r/2)
dx+

q(q − 2)

4

∫
Xp,q

ϕ2

sinh2(r)
dx. (1.2)

Moreover, the constants on the right hand side of this inequality are optimal
and can only be improved at the expense of the other constants.

In this paper, we will also discuss two applications of this inequality as well
as various variations concerning the constants appearing in this inequality.

Let us briefly discuss the arguments behind this result. They are based on
the fact that, in the case of a simply connected non-compact harmonic manifold
(X, g) with a pole o ∈ X, the Laplacian ∆ of a radial function h(r) = h(d(o, x))
is again radial and given by

∆h(r) = h′′(r) +
f ′(r)

f(r)
h′(r), (1.3)

where f(r) is the volume density of the harmonic manifold. For a general
Riemannian manifold (X, g), the volume density fo(x) =

√
det gij(p) in normal

coordinates centered around o ∈ X is not radial and not independent of the
center o ∈ X. In a harmonic manifold (X, g), the volume density is a radial
function f(r) and all spheres of the same radius have the same volume. We
have

vol(Sr(x)) = ωnf(r),

with ωn being the volume of the unit sphere in Rn. Note however, that this
does not mean that a harmonic manifold is a Riemannian model as described in
[8, Section 4]. In fact, a non-compact harmonic manifold is such a Riemannian
model only if it is the Euclidean space Rn or the hyperbolic space Hn.

Inequality (1.2) is a consequence of the following general Hardy-type inequal-
ity for arbitrary non-compact harmonic manifolds:

Main Theorem B. Let (X, g) be a non-compact harmonic manifold with vol-
ume density f . Let o ∈ X be a pole and r = d(o, ·). Then we have, for all
ϕ ∈ C∞

c (X),∫
X

|∇ϕ|2dx ≥ 1

4

∫
X

ϕ2

r2
dx+

1

4

∫
X

2f(r)f ′′(r)− (f ′(r))2

f2(r)
ϕ2dx. (1.4)
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Inequality (1.2) is then a consequence of (1.4) by the following explicit ex-
pression of the volume density for a Damek-Ricci space Xp,q (see, e.g., [43,
Théorème 10(ii)]):

f(r) = 2p+q(sinh(r/2))p+q(cosh(r/2))q = 2p(sinh(r/2))p(sinh r)q. (1.5)

This implies that

f ′(r)

f(r)
=
p

2
coth(r/2) + q coth r =

p+ 2q

2
coth(r/2)− q

sinh(r)
, (1.6)

and we have for radial functions h(r) in Xp,q,

∆h(r) = h′′(r) +
(p
2
coth(r/2) + q coth r

)
h′(r).

Since coth(x) ≥ 1/x and sinhx ≥ x, it follows from (1.6) for all r > 0 that

f ′(r)

f(r)
≥ p+ q

r
. (1.7)

Moreover, the L2-spectrum of the operator −∆ on Xp,q is given by σ(−∆) =
[ρ2,∞) with ρ = p+2q

4 (see, e.g., [36, Remark 2.2(iii)]). Therefore, we have

λ0(X
p,q) = (p+2q)2

16 . Since the Cheeger constant of Xp,q is given by h(Xp,q) =

2ρ = p+2q
2 (see [36, Remark 2.2(i)]), this means that Cheeger’s Inequality

λ0(X
p,q) = h(Xp,q)2

4 holds in this case with equality. In fact, this holds for
arbitrary non-compact harmonic manifolds (X, g) (see [37, Corollary 5.2]), and
the Cheeger constant agrees with other geometric quantities like the (constant)
mean curvature of the horospheres or the exponential volume growth (see [37,
Theorem 5.1]).

For readers interested in more details about harmonic manifolds and Damek-
Ricci spaces, we provide this information and a description of the real hyperbolic
space Hn as a solvable Lie group with left-invariant metric in the Appendix.

Moreover, since the seminal works of Hardy and Landau on Hardy-type
inequalities more than hundred years ago, these inequalities are studied for the
more general quasi-linear case P > 1 as well. The inequalities discussed before
correspond to the linear case P = 2. We show the related inequalities for P ≥ 2
in Subsection 3.3.

The structure of the paper is as follows: In the next section, we state and
prove the above Main Theorems. Thereafter, we briefly show two famous ap-
plications: a version of Heisenberg-Pauli-Weyl’s uncertainty principle and a
Rellich-type inequality. In Section 3, we vary parts of the proof of the main
result and get closely connected families of sharp Poincaré-Hardy-type inequali-
ties. The first variation shows the effect of being slightly away from the bottom
of the spectrum at the Poincaré-part of the inequality, the second focuses on
the weighted version and the third on the P -Laplacian version. In Section 4
we show another Poincaré-Hardy-type inequality for the P -Laplacian using the
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P -Green function. Here the focus is on the asymptotic behaviour of the cor-
responding Hardy weight. This closes the main part of this paper. In the
Appendix, we briefly introduce further information about harmonic manifolds
and Damek-Ricci spaces.

2 A Poincaré-Hardy-type inequality and appli-
cations

This section is concerned with an analogue of [8, Theorem 2.1] for all Damek-
Ricci spaces. Before we present this result, we first need to introduce some
background. The main reference here is [18]. While the concepts hold in
more general Lebesgue and Sobolev spaces, we restrict our considerations to
the smooth setting.

2.1 Some background from Optimality Theory

Henceforth we always assume that (X, g) is a non-compact Riemannian mani-
fold. We are also concerned with the associated Schrödinger operators −∆+ V
with potentials V ∈ C∞(X) and their corresponding energy functionals EV on
C∞

c (X), which are quadratic forms defined via

EV (ϕ) :=

∫
X

|∇ϕ|2 + V |ϕ|2dx.

We say that EV is non-negative in X and write EV ≥ 0 in X, if EV (ϕ) ≥ 0 for
all ϕ ∈ C∞

c (X).
Let Ω ⊂ X be a domain (that is a non-empty connected open subset). A

function u ∈ C∞(Ω) is called solution (with respect to the operator −∆+V ) if
(−∆+V )u = 0, subsolution if (−∆+V )u ≤ 0, and supersolution if (−∆+V )u ≥
0 in Ω. Moreover, a function u ∈ C∞(Ω) is called (super-)solution near infinity
if there exists a compact set K ⊂ X such that (−∆+ V )u = 0 in Ω \K, (resp.,
(−∆+V )u ≥ 0 in X \K). Furthermore, u ∈ Ω is a solution near o ∈ X, if there
is an open set O ⊆ X containing o such that (−∆+ V )u = 0 in (Ω ∩O) \ {o}.

Let W ≥ 0 in X. A Hardy-type inequality then reads as

EV (ϕ) ≥
∫
X

W |ϕ|2dx for all ϕ ∈ C∞
c (X).

One goal in Optimality Theory is – roughly speaking – to make W as large as
possible with large support (confer [1, page 6] where this problem was proposed
first). With this idea in mind, Devyver, Fraas and Pinchover came up with a
definition of an optimal Hardy weight, see [18, Definitions 2.1, 4.8 and 4.10].

Definition 2.1. Let (X, g) be a non-compact Riemannian manifold and o ∈ X.
Let EV ≥ 0 in X and W ≥ 0 be a non-trivial function such that the following
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Hardy-type inequality holds:

EV (ϕ) ≥
∫
X\{o}

W |ϕ|2dx for all ϕ ∈ C∞
c (X \ {o}).

Then W is called an optimal Hardy weight of the Schrödinger operator −∆+V
in X \ {o} if

1. −∆+(V −W ) is critical in X \{o}, that is, for any W̃ ≥W with W̃ ̸=W ,
the Hardy-type inequality

EV (ϕ) ≥
∫
X\{o}

W̃ |ϕ|2dx for all ϕ ∈ C∞
c (X \ {o})

does not hold. This is equivalent to the following (see e.g. [30, Lemma 2.11]):
there exists a unique (up to a multiplicative constant) positive supersolu-
tion to −∆u+(V −W )u = 0 on X \{o}. Such a function is also a solution
and is called the (Agmon) ground state uAgmon.

2. −∆ + (V −W ) is null-critical with respect to W , that is, we have that
uAgmon ̸∈ L2(X \ {o},Wdx).

The original definition of an optimal Hardy weight also requires a condition
called optimality at infinity (which is part (b) in Definition 2.1 of [18], or see [30,
Definition 2.14]). Recently, Kovař́ık and Pinchover showed in [30, Corollary 3.7]
that in our setting, null-criticality implies optimality at infinity. For that reason,
it is not necessary to give the definition of optimality at infinity, since it is
covered by Condition 2.

Now we are in a position to present the main result in this section for Damek-
Ricci spaces. It is an analogue of [8, Theorem 2.1] which covers the case of
real hyperbolic spaces. Recall that Damek-Ricci spaces do not include real
hyperbolic spaces and that their smallest dimension is 4. Our proof is inspired
by the proof given in Section 4 of [8].

Theorem 2.2 (Poincaré-Hardy-type inequality on Damek-Ricci spaces). Let
Xp,q be a Damek-Ricci space, o ∈ Xp,q be a pole, and r = d(o, ·). We have for
all ϕ ∈ C∞

c (Xp,q),∫
Xp,q

|∇ϕ|2dx− λ0(X
p,q)

∫
Xp,q

|ϕ|2dx

≥ 1

4

∫
Xp,q

|ϕ|2

r2
dx+

p(p+ 2q − 2)

16

∫
Xp,q

|ϕ|2

sinh2(r/2)
dx+

q(q − 2)

4

∫
Xp,q

|ϕ|2

sinh2(r)
dx.

Moreover, the operator −∆+ (V −W ) on Xp,q with

V (r) := −λ0(Xp,q) and W (r) :=
1

4r2
+
p(p+ 2q − 2)

16 sinh2(r/2)
+

q(q − 2)

4 sinh2(r)
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is critical in Xp,q \ {o}. In particular, there is no W̃ (r) ≥ 1
4r2 + p(p+2q−2)

16 sinh2(r/2)
+

q(q−2)
4 sinh2(r)

, W̃ ̸=W , such that∫
Xp,q

|∇ϕ|2dx− λ0(X
p,q)

∫
Xp,q

|ϕ|2dx ≥
∫
Xp,q

W̃ |ϕ|2dx

holds true for all ϕ ∈ C∞
c (Xp,q \ {o}).

Furthermore, if we choose as a weight W1(r) = 1
4r2 , then this weight is

optimal with respect to the operator

−∆− λ0(X
p,q)− p(p+ 2q − 2)

16 sinh2(r/2)
− q(q − 2)

4 sinh2(r)
.

The proof of Theorem 2.2 is given in the next subsection, and is based on
a result known as Khas’minskĭi-type criterion. During the proof, we formulate
a Hardy-type inequality for the more general case of non-compact harmonic
manifolds. Subsection 2.3 presents applications of this result: An uncertainty
principle and a Poincaré-Rellich-type inequality.

2.2 Proof of the Poincaré-Hardy-type inequality

To prove Theorem 2.2, we will use the following result – known as Khas’minskĭi-
type criterion. This is a variation of Proposition 6.1 in [18], confer also with
[24, Lemma 9.2.6]. It is in fact an equivalence (see [2, Theorem 1]) but we only
need one direction here.

We start with a non-compact Riemannian manifold X with a chosen point
o ∈ X. We refer to o as a pole of X.

We need some more definitions, confer with [18, Definition 4.4] and also
with [18, Definition 11.2]: Let K be a compact subset of X \ {o}, and let u
be a positive function on X \ ({o} ∪K) which is a solution of (−∆+ V )u = 0
in X \ ({o} ∪ K). The function u has minimal growth at infinity if for every
compact K ′ ⊆ X \ {o} with smooth boundary such that K ⊆ int(K ′) and for
every positive supersolution v ∈ C(X \ ({o}∪K ′ ∪∂K ′)) in X \ ({o}∪K ′) with
u ≤ v in ∂K ′, we have u ≤ v in X \ ({o} ∪K ′).

Let u be a positive function defined in a punctured neighbourhood Ω of the
pole o ∈ X which is a solution of (−∆ + V )u = 0 in Ω \ {o}. The function
u has minimal growth at o if for every positive supersolution v in a punctured
neighbourhood of o, there is a constant C > 0 such that u ≤ Cv in a punctured
neighbourhood Ω′ ⊆ Ω of o.

A global minimal solution is a positive function on X\{o} which is a solution
of (−∆+ V )u = 0 in X \ {o}, and has both, minimal growth at infinity and o.

Proposition 2.3 (Khas’minskĭi-type criterion). Let K be a compact subset of
X. If u and v∞ are two positive functions on X \ K which are solutions of
(−∆+ V )u = 0 in X \K, and if

lim
x→∞

u(x)

v∞(x)
= 0,
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then u has minimal growth at infinity.
If u and also v0 are two positive functions in a punctured neighbourhood Ω

of the pole o which are solutions of (−∆+ V )u = 0 in Ω \ {o}, and

lim
x→o

u(x)

v0(x)
= 0,

then u has minimal growth at o.

Proof. The first part is Proposition 6.1 in [18], which is essentially an application
of the maximum principle to an exhaustion of the space. The second part
follows by a mild adaption of the same argument as in the proof of the cited
proposition.

The proof of Theorem 2.2 uses some general explicit calculations for radial
functions. These are extracted in the next lemmata. We mainly work in har-
monic manifolds and use the explicit form of the volume density on Damek-Ricci
spaces as late as possible.

Lemma 2.4. Let (X, g) be a non-compact harmonic manifold with volume den-
sity f , o ∈ Xp,q a pole, r = d(o, ·), and α, β ∈ R. Then

Φ(r) = rαfβ(r)

satisfies on X \ {o}

∆Φ(r) =

(
α(α− 1)

r2
+ α(2β + 1)

f ′(r)

rf(r)
+ β

f ′′(r)

f(r)
+ β2 (f

′(r))2

f(r)2

)
Φ(r).

In particular, if (α, β) = (1/2,−1/2), we have on X \ {o},

∆Φ(r) =

(
(f ′(r))2 − 2f(r)f ′′(r)

4f(r)2
− 1

4r2

)
Φ(r).

Proof. For simplicity, we will drop the argument r in our computations. Differ-
entiation yields

Φ′ = αrα−1fβ + βrαfβ−1f ′

and

Φ′′ = α(α− 1)rα−2fβ + 2αβrα−1fβ−1f ′ + β(β − 1)rαfβ−2(f ′)2 + βrαfβ−1f ′′.

Using (1.3) and substituting Φ back into the Laplace equation leads to

∆Φ = Φ′′ +
f ′

f
Φ′ =

(
α(α− 1)

r2
+
α(2β + 1)f ′

rf
+
βf ′′

f
+
β2(f ′)2

f2

)
Φ.

In the proof of the main results, we want to apply the Khas’minskĭi-type
criterion, Proposition 2.3. Therefore, we need to find a second positive solution.
This is done next.
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Lemma 2.5. Let (X, g) be a non-compact harmonic manifold with volume den-
sity f , o ∈ X a pole, r = d(o, ·), and α, β ∈ R. Furthermore, set

Φ(r) = rαfβ(r).

Let h : X \ {o} → R be a smooth radial function, then on X \ {o} we have

∆(Φh)(r)

−
(
α(α− 1)

r2
+
α(2β + 1)f ′(r)

rf(r)
+
βf(r)f ′′(r) + β2(f ′(r))2

f2(r)

)
(Φ(r)h(r))

= Φ(r)

(
h′′(r) +

(
2α

r
+

(2β + 1)f ′(r)

f(r)

)
h′(r)

)
.

In particular, the right-hand side vanishes for (α, β, h(r)) = (1/2,−1/2, ln(r)).

Proof. In the following, we omit again the argument r. By the product rule, we
have

∆(Φh) = Φ∆h+ h∆Φ+ 2Φ′h′.

Using this rule and Lemma 2.4, we obtain

∆(Φh)−
(
α(α− 1)

r2
+
α(2β + 1)f ′

rf
+
βf ′′

f
+
β2(f ′)2

f2

)
(Φh) = Φ∆h+ 2Φ′h′.

Using once more that h is radial, i.e., ∆h = h′′ + f ′

f h
′, and that

Φ′ = αrα−1fβ + βrαfβ−1f ′ =

(
α

r
+
βf ′

f

)
Φ,

we obtain

Φ∆h+ 2Φ′h′ = Φ

(
h′′ +

(
2α

r
+

(2β + 1)f ′

f

)
h′
)
.

This shows the first part of the statement. The other assertion follows by a
simple computation.

Finally, we will need the following lemma, which is a special case of the
Agmon-Allegretto-Piepenbrink theorem, see [39, Theorem 2.3] and see also
Lemma 3.6. We remark that the implication in the lemma below is actually
an equivalence, i.e., the non-negativity of the energy functional implies also the
existence of a positive (super)solution.

Lemma 2.6 (see [17, Theorem 1.5.12]). Let Ω ⊂ X be a domain in a Rieman-
nian manifold (X, g), H := −∆+V −W , and Φ ∈ C∞(Ω) be a positive solution
of HΦ = 0 on Ω. Then we have, for all ϕ ∈ C∞

c (Ω),∫
Ω

|∇ϕ|2dx ≥
∫
Ω

(W − V )ϕ2dx.

10



Proof. Set ϕ = Φψ with ψ ∈ C∞
c (Ω). Then we have, by Green’s formula,∫

Ω

|∇ϕ|2dx ≥
∫
Ω

⟨∇(ψ2Φ),∇Φ⟩dx = −
∫
Ω

ψ2Φ(∆Φ)dx =

∫
Ω

(W − V )ϕ2dx.

We link the previous lemmata and the Khas’minskĭi-type criterion to obtain
the following Hardy-type inequality on general harmonic manifolds, which is
our Main Theorem B in the Introduction.

Theorem 2.7 (Hardy-type inequality on harmonic manifolds). Let (X, g) be a
non-compact harmonic manifold with volume density f = f(r), o ∈ X a pole,
and r = d(o, ·). Then, the Schrödinger operator −∆+ (V −W ) on X with

V (r) :=
(f ′(r))2 − 2f(r)f ′′(r)

4f2(r)
and W (r) :=

1

4r2

is critical in X \ {o} with ground state
√
r/f(r). Moreover, the weight W (r) =

1
4r2 is optimal in X \ {o} with respect to the operator −∆+ V .

Furthermore, for all ϕ ∈ C∞
c (X), we have∫

X

|∇ϕ|2dx ≥ 1

4

∫
X

ϕ2

r2
dx+

1

4

∫
X

2f(r)f ′′(r)− (f ′(r))2

f2(r)
· ϕ2dx. (2.1)

Proof. The first part of the proof uses the same ideas as the proof of [18, The-
orem 6.2] doing the necessary changes. The second part is motivated by [8].
Here are the details:

Let us denote H := −∆+ V −W . By Lemma 2.4 and Lemma 2.5 applied
with (α, β) = (1/2,−1/2), we see that Φ(r) = r1/2f−1/2(r) and Φ(r) · ln(r), are
solutions on X \ {o} with respect to H. Moreover, we obviously have

lim
r→∞

Φ(r)

Φ(r) ln(r)
= 0.

By the Khas’minskĭi-type criterion, Proposition 2.3, we get that Φ is a positive
solution of minimal growth near infinity in X.

By the same argument and using −Φ(r) ln(r) instead of Φ(r) ln(r), we see
that Φ has minimal growth near o in X \ {o}.

Since Φ is a solution in X \ {o} and of minimal growth near infinity and
o, it is a global minimal solution in X \ {o}. By [40, Theorems 4.2 and 5.8],
it has to be the (Agmon) ground state in X \ {o} which is the unique positive
supersolution of H in X \ {o}. Thus, H is critical in X \ {o}.

Let now W (r) = 1/(2r)2. Since

∥Φ∥2L2(X\{o},Wdx) = ωn

∫ ∞

0

(r1/2f(r)−1/2)2f(r)
dr

(2r)2
= ∞,

we conclude that −∆+ V is null-critical with respect to W , and thus W is an
optimal Hardy weight of −∆+ V in X \ {o}.

11



Inequality (2.1) can be seen as follows: Since Φ is a strictly positive solu-
tion of HΦ = 0 on X \ {o}, we obtain the desired inequality on C∞

c (X \ {o})
by Lemma 2.6. Next we briefly explain how to extend the inequality from
C∞

c (X \ {o}) to C∞
c (X) (this is a standard argument but we could not find a

good reference in the Schrödinger operator setting; for the p-Laplacian see [14,
Appendix A]): By [40, Theorem 4.5], the capacity of {o} vanishes, i.e., there is
a sequence (ϕj) in C∞

0 (X) such that 0 ≤ ϕj ≤ 1, ϕj = 1 in a neighbourhood

of {o} and ϕj → 0 in D0(X) = C∞
c (X)

|·|0
where | · |0 denotes the form norm.

The latter is defined via |ϕ|20 := EV (ϕ) + | · |2. In particular, EV (ϕj) → 0. We
set ψj := (1−ϕj)ψ, where ψ is an arbitrary function in C∞

c (X). Now it follows
ψj → ψ in D0(X\{o}) similarly as in [14, Appendix A]): One can use dominated
convergence for the potential part and then proceed with mild changes (note
that the last step there is just another application of [40, Theorem 4.5]).

We now turn to Damek-Ricci spaces and explicitly calculate the term 2ff ′′−(f ′)2

f2 .
Later we will need similar calculations, and therefore, we state it here more gen-
erally.

Lemma 2.8. Let Xp,q be a Damek-Ricci space, o ∈ Xp,q a pole and r = d(o, ·).
Let f(r) be the volume density of Xp,q. Then, for all a, b ∈ R and r > 0, we
have

a

(
f ′(r)

f(r)

)2

− b
f ′′(r)

f(r)

= 4(a− b)λ0(X
p,q) +

q(q(a− b) + b)

sinh2(r)
+
p((a− b)(p+ 2q) + b)

4 sinh2(r/2)
.

Proof. Recall that

f(r) = 2p+q(sinh(r/2))p+q(cosh(r/2))q.

Straightforward computations yield

f ′(r) =
f(r)

2

(
(p+ q) coth(r/2) + q tanh(r/2)

)
.

and

f ′′(r) =
f(r)

4

((
(p+ q) coth(r/2) + q tanh(r/2)

)2 − p+ q

sinh2(r/2)
+

q

cosh2(r/2)

)
.

Note, furthermore, that for all α, β ∈ R

α

sinh2(r/2)
− β

cosh2(r/2)
=

α− β

sinh2(r/2)
+

4β

sinh2(r)

and (
α coth(r/2) + β tanh(r/2)

)2
= (α+ β)2 +

4β2

sinh2(r)
+

α2 − β2

sinh2(r/2)
.

12



Hence,

a

(
f ′(r)

f(r)

)2

− b
f ′′(r)

f(r)

=
(a− b)(p+ 2q)2

4
+
q(q(a− b) + b)

sinh2(r)
+
p((a− b)(p+ 2q) + b)

4 sinh2(r/2)
.

Using the fact that λ0(X
p,q) = (p+ 2q)2/16, the statement follows.

Note that we obtain from this lemma for the special choice (a, b) = (1/4, 1/2):

2f(r)f ′′(r)− (f ′(r))2

4(f(r))2
= λ0(X

p,q) +
q(q − 2)

4 sinh2(r)
+
p(p+ 2q − 2)

16 sinh2(r/2)
. (2.2)

Lemma 2.9. Let Xp,q be a Damek-Ricci space, o ∈ Xp,q a pole and r = d(o, ·).
Let f(r) be the volume density of Xp,q and

Φ(r) = r1/2f−1/2(r).

Then we have on Xp,q \ {o}

−∆Φ(r)− λ0(X
p,q)Φ(r) =

(
p(p+ 2q − 2)

16 sinh2(r/2)
+

q(q − 2)

4 sinh2(r)
+

1

4r2

)
Φ(r).

Proof. The statement of the lemma is a direct application of Lemma 2.4 by
choosing (α, β) = (1/2,−1/2), and of (2.2).

Finally, we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2. The result follows by applying Lemma 2.9 and Theo-
rem 2.7.

2.3 Applications of the Poincaré-Hardy-type inequality

This subsection is devoted to two well-known applications of Hardy-type in-
equalities, which can be obtained easily in combination with the Cauchy-Schwarz
inequality: an uncertainty-type principle and a Rellich-type inequality.

2.3.1 A Heisenberg-Pauli-Weyl’s Uncertainty Principle

Here, we briefly show a shifted version of the famous Heisenberg-Pauli-Weyl
uncertainty principle. It asserts in its classical form, that the position and
momentum of a particle can not be determined simultaneously. For further
information confer e.g. [6, Subsection 1.6] for a detailed discussion in the Eu-
clidean space, [28, 29, 32] for Riemannian manifolds, or [9, Section 3] for a recent
version in the hyperbolic space.

Recall that the dimension of a Damek-Ricci space is at least 4, i.e., p+q ≥ 3.
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Corollary 2.10. Let Xp,q be a Damek-Ricci space with q ̸∈ {0, 2} and p ̸= 0,
o ∈ Xp,q a pole, and r = d(o, ·). Then, we have for all ϕ ∈ C∞

c (Xp,q),(∫
Xp,q

|∇ϕ|2dx− λ0(X
p,q)

∫
Xp,q

ϕ2
)(∫

Xp,q

g(r)r2ϕ2dx

)
≥ 1

4

(∫
Xp,q

ϕ2dx

)2

,

with a function 0 < g < 1.

In fact, the function g in the corollary is explicitely given by

g(r) =
1

4r2W (r)
(2.3)

with

W (r) :=
1

4r2
+
p(p+ 2q − 2)

16

1

sinh2(r/2)
+
q(q − 2)

4

1

sinh2(r)
.

Note that we have W (r) > 1/(2r)2, even for the smallest choice p ≥ 2 and
q = 1.

Proof. By the Cauchy-Schwarz inequality and the Poincaré-Hardy-type inequal-
ity (Theorem 2.2), we obtain

(∫
Xp,q

ϕ2dx

)2

≤
(∫

Xp,q

Wϕ2dx

)(∫
Xp,q

ϕ2

W
dx

)
≤
(∫

Xp,q

|∇ϕ|2dx− λ0(X
p,q)

∫
Xp,q

ϕ2dx

)(∫
Xp,q

ϕ2

W
dx

)
.

Since 1/W (r) = 4g(r)r2 we obtain the desired inequality.

2.3.2 A Poincaré-Rellich-type inequality

Next, we show a shifted Rellich-type inequality. For more details on the history
and generalisations of this inequality in different settings, we suggest the papers
[9, 25, 28, 29] and the monograph [6], and references therein.

Corollary 2.11. Let Xp,q be a Damek-Ricci space with q ̸∈ {0, 2} and p ̸= 0,
o ∈ Xp,q a pole, and r = d(o, ·). Then, we have for all ϕ ∈ C∞

c (Xp,q),∫
Xp,q

ϕ2

16g(r)r2
dx ≤

∫
Xp,q

g(r)r2(−∆ϕ− λ0(X
p,q)ϕ)2dx,

with the function 0 < g < 1 from (2.3).
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Proof. Let us denote as before,

W (r) :=
1

4r2
+
p(p+ 2q − 2)

16

1

sinh2(r/2)
+
q(q − 2)

4

1

sinh2(r)
.

Moreover, we set H := −∆ − λ0(X
p,q). Then, again by the Poincaré-Hardy-

type inequality (Theorem 2.2), the Green’s formula and the Cauchy-Schwarz
inequality, we obtain∫

Xp,q

W (r)ϕ2dx ≤
∫
Xp,q

ϕHϕdx

≤
(∫

Xp,q

W (r)ϕ2dx

)1/2(∫
Xp,q

W−1(r)(Hϕ)2dx

)1/2

.

Since 1/W (r) = 4g(r)r2 we obtain the desired inequality.

3 Variations of the main result

The aim of this section is to show the effect of perturbations of some parame-
ters. In the first subsection, we will investigate the consequence of changing the
function Φ from (r/f(r))1/2 to (r/f(r))1/2 · (r/f1/(n−1)(r))γ for some number
γ > 0. This will then result in a new family of critical Schrödinger operators,
where the effect of γ is only visible at the corresponding constants.

In the second subsection, we have a closer look at the weighted version of
the Hardy inequality, i.e., we consider the following family of quadratic forms∫

Xp,q

|∇ϕ|2

r2α
dx, α ≥ 0, ϕ ∈ C∞

c (Xp,q),

and show the effect of α > 0. In a different perspective, this new weighted
energy form is a specific ground state transform of the unweighted energy form.

Finally, in the third subsection, we vary the operator and consider quasi-
linear P -Laplacians, P ≥ 2. Here the classical linear case corresponds to P = 2.

3.1 A family of Hardy-type inequalities

In the previous section, we investigated a Hardy-type theorem for the operator
−∆− 1

4r2 on harmonic manifolds. Now, we will use this result to obtain similar
inequalities for the operators −∆ − a

4r2 for 0 ≤ a ≤ 1. The main result of this
section reads as follows and is inspired by the corresponding result on hyperbolic
spaces, see [9, Theorem 2.1]:

Theorem 3.1 (Family of Hardy-type inequalities on harmonic manifolds). Let
(X, g) be a non-compact harmonic manifold with volume density f , o ∈ X a
pole, r = d(o, ·), and dimension n ≥ 3. Let h : X \ {o} → (0,∞) be a smooth
radial function satisfying h(r) ≥ C1r for all r ≥ 0 and h(r) ∼ C2r as r → 0
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for some positive constants C1, C2 > 0. Then, for all ϕ ∈ C∞
c (X) and all

γ ∈ [0, 1/2],∫
X

|∇ϕ|2dx ≥ 1− (2γ)2

4

∫
X

ϕ2

r2
dx

+

∫
X

((
1

2

f ′′

f
− 1

4

(
f ′

f

)2
)

+ γ

(
h′′

h
+ (1 + 2γ)

h′

rh
− (1 + γ)

(
h′

h

)2
))

ϕ2dx.

(3.1)

Moreover, the Schrödinger operator −∆+ V −W with

V (r) := −

(
1

2

f ′′

f
− 1

4

(
f ′

f

)2
)

+ γ

(
h′′

h
− (1 + 2γ)

h′

rh
− (1 + γ)

(
h′

h

)2
)

and

W (r) :=
1− (2γ)2

4r2

is critical in X \ {o} with ground state r1/2+γf−1/2h−γ . Furthermore, if we

choose as weight W (r) = 1−(2γ)2

4r2 , 0 ≤ γ < 1/2, then W is optimal in X \ {o}
with respect to −∆+ V .

Note that Theorem 2.2 can be recovered from Theorem 3.1 if we set γ = 0.
We derive this result with the help of the Liouville comparison theorem. For

the readers’ convenience, we state it here (see also [9, Theorem 6.3]).

Proposition 3.2 (Liouville comparison principle, Theorem 1.7 in [38]). Let Ω
be a domain in a non-compact n-dimensional Riemannian manifold. Consider
two Schrödinger operators on Ω defined via

Hi = −∆+ Vi, i = 0, 1,

with smooth potentials. Furthermore, assume that

1. H0 is critical in Ω with ground state Φ;

2. H1 is non-negative in Ω and there is a function Ψ ∈ C∞(Ω) with H1Ψ ≤ 0
with Ψ+ ̸= 0, where Ψ+(x) = max{Ψ(x), 0}.

3. There exists a constant C > 0 such that (Ψ+)
2 ≤ C(Φ)2.

Then the operator H1 is critical with ground state Ψ.

Proof of Theorem 3.1. Let h : X \ {o} → (0,∞) be a smooth radial function
satisfying h(r) ≥ Cr for some positive constant C > 0. Applying Lemma 2.5
with Φ̃ = rαfβ and (α, β) = (1/2 + γ,−1/2) yields

−∆(Φ̃h−γ)(r) +

(
γ2 − 1/4

r2
+

1

4

(
f ′(r)

f(r)

)2

− 1

2

f ′′(r)

f(r)

)
Φ̃(r)h−γ(r)

= −

(
γ(γ + 1)

(
h′(r)

h(r)

)2

− γ
h′′(r)

h(r)
− γ(1 + 2γ)

h′(r)

rh(r)

)
Φ̃(r)h−γ(r).
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Now we apply the Liouville comparison principle with Ω = X \ {o},

V0 = − 1

4r2
+

1

4

(
f ′(r)

f(r)

)2

− 1

2

f ′′(r)

f(r)

and, for γ ∈ [0, 1/2],

V1 =
γ2 − 1/4

r2
+

1

4

(
f ′(r)

f(r)

)2

− 1

2

f ′′(r)

f(r)

+ γ(γ + 1)

(
h′(r)

h(r)

)2

− γ
h′′(r)

h(r)
− γ(1 + 2γ)

h′(r)

rh(r)
.

Let Hi = −∆+ Vi for i = 0, 1.
We have shown in Theorem 2.7 that H0 is critical with ground state Φ =

(r/f)1/2. Set Ψ = (r/f)1/2 · (r/h)γ > 0 on Ω, that is Ψ+ = Ψ. By construction,
we have H1Φ = 0, and non-negativity of H1 on Ω follows from Lemma 2.6.

Since Ψ/Φ = (r/h)γ ≤ 1/C1, the Liouville comparison principle implies that
H1 is critical with ground state Ψ. We can then use the same approximation
argument as in the proof of Theorem 2.2 to obtain inequality (3.1) for all ϕ ∈
C∞

c (Xp,q) and not only ϕ ∈ C∞
c (Ω).

Let now W (r) = (1− (2γ)2)/(2r)2 and 0 < γ < 1/2. Since h(r) ∼ C2r
n−1 as

r → 0, we have Ψ ̸∈ L2(Ω,Wdx), and H1 is therefore null-critical with respect
to W . This implies that W is an optimal Hardy weight of H1 in X \ {o}.

The special choice h(r) = f1/(n−1)(r) leads to the following result which, in
the case of Damek-Ricci spacesXp,q, can be viewed as Hardy-type improvements
of the operators −∆− λ for λ ≤ λ0(X

p,q).

Corollary 3.3. Let (X, g) be a non-compact harmonic manifold with volume
density f , o ∈ X a pole, r = d(o, ·), and dimension n ≥ 3. Then, for all
ϕ ∈ C∞

c (X) and all γ ∈ [0, 1/2],∫
X

|∇ϕ|2dx ≥ 1− (2γ)2

4

∫
X

ϕ2

r2
dx+

γ(1 + 2γ)

n− 1

∫
X

f ′

f
· ϕ

2

r
dx+(

1

2
+

γ

n− 1

)∫
X

(
f ′′

f
−
(
1

2
+

γ

n− 1

)(
f ′

f

)2
)
ϕ2dx. (3.2)

In the particular case of a Damek-Ricci space Xp,q, we have∫
Xp,q

|∇ϕ|2dx−
(
1− (2γ)2

(p+ q)2

)
λ0(X

p,q)

∫
Xp,q

ϕ2dx

≥ 1− (2γ)2

4

∫
Xp,q

ϕ2

r2
dx+

γ(1 + 2γ)

p+ q

∫
Xp,q

(
coth(r/2)− 1

sinh(r)

)
ϕ2

r
dx

+ q

(
1

2
+

γ

p+ q
+ q

(
γ2

(p+ q)2
− 1

4

))∫
Xp,q

ϕ2

sinh2(r)
dx

+ p

(
1

2
+

γ

p+ q
+ (p+ 2q)

(
γ2

(p+ q)2
− 1

4

))∫
Xp,q

ϕ2

4 sinh2(r/2)
dx. (3.3)
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Proof of Corollary 3.3. Let h = f1/(n−1). Let us first verify that h satisfies the
conditions required in Theorem 3.1. Let (X, g) be a non-compact harmonic
manifold of dimension n ≥ 3 and H ≥ 0 the (constant) mean curvature of its
horospheres. We know from a combination of [41] and [35] that non-compact
harmonic manifolds with H = 0 are flat (see also [27, Section 6]). In this
case we have f(r) = rn−1 and, therefore h(r) = r and the conditions of the
theorem are satisfied with C1 = C2 = 1. If H > 0, we have (see [26, Cor. 2.6])

limr→∞
f(r)
ehr ≥

(
n−1
2H

)n−1
> 0, and therefore

lim
r→∞

h(r)

r
> 0.

On the other hand, we have for any n-dimensional Riemannian manifold that

limr→0
f(r)
rn−1 = 1, that is, h(r) ∼ r as r → 0. Moreover, this implies that

C1 = inf
r>0

h(r)

r
> 0.

It is easy to see that

h′ =
h

n− 1
· f

′

f
and h′′ =

h

n− 1

((
2− n

n− 1

)
·
(
f ′

f

)2

+
f ′′

f

)
.

Plugging this into (3.1) yields (3.2).
Now we derive the inequality for a Damek-Ricci space with n − 1 = p + q.

Using Lemma 2.8 with a =
(

1
2 + γ

(p+q)

)2
and b = 1

2 + γ
p+q , we obtain

(
1

2
+

γ

(p+ q)

)2(
f ′(r)

f(r)

)2

−
(
1

2
+

γ

p+ q

)
f ′′(r)

f(r)

=

(
(2γ)2

(p+ q)2
− 1

)
λ0(X

p,q) +

(
q

(
γ2

(p+ q)2
− 1

4

)
+

1

2
+

γ

p+ q

)
q

sinh2(r)

+

(
(p+ 2q)

(
γ2

(p+ q)2
− 1

4

)
+

1

2
+

γ

p+ q

)
p

4 sinh2(r/2)
.

Plugging this into (3.2) yields (3.3), finishing the proof of the corollary.

We want to mention that also other choices of h lead to closely related
inequalities. In [9] the choice of h is h(r) = sinh(r) which is a natural choice for
hyperbolic spaces, and our aim was to generalize that result.

3.2 Weighted Hardy-type inequalities

Here, we use the method in [9, Theorem 5.1], which is concerned with the
hyperbolic space, to obtain a similar result for arbitrary harmonic manifolds
X. Note again that we obtain the main results in the Introduction by choosing
α = 0 in the following theorem.
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Theorem 3.4 (Weighted Hardy-type inequality). Let (X, g) be a non-compact
harmonic manifold with volume density f = f(r), o ∈ X a pole, r = d(o, ·), and
dimension n ≥ 3. Assume that n ≥ 2(1+α) for some α ≥ 0, then the following
weighted Hardy-type inequality holds true for all ϕ ∈ C∞

c (X),∫
X

|∇ϕ|2

r2α
dx ≥

∫
X

(
2f(r)f ′′(r)− (f ′(r))2

4f(r)2
− α

f ′(r)

rf(r)
+

4α+ 1

4r2

)
ϕ2

r2α
dx.

Especially, for such Damek-Ricci spaces Xp,q, we have for all ϕ ∈ C∞
c (X) and

p+ q − 1 ≥ 2α,∫
X

|∇ϕ|2 − λ0(X
p,q)ϕ2

r2α
dx ≥

∫
X

(
p(p+ 2q − 2)

16 sinh2(r/2)
+

q(q − 2)

4 sinh2(r)

)
ϕ2

r2α
dx

+

∫
X

(
α

r

(
q

sinh(r)
− p+ 2q

2
coth(r/2)

)
+

4α+ 1

4r2

)
ϕ2

r2α
dx.

Proof. Given ϕ ∈ C∞
c (X \ {o}) and Φ (which we will specify later), we choose

ψ ∈ C∞
c (X \ {o}) such that ϕ = rαΦψ. Then, we calculate

|∇ϕ|2

r2α
= |∇Φ|2ψ2 + |∇ψ|2Φ2 + 2ψΦ⟨∇Φ,∇ψ⟩+ 2α

Φψ

r
(ψΦr +Φψr).

Note that
Φψ

r
(ψΦr +Φψr) =

ϕrϕ

r2α+1
− α

ϕ2

r2α+2
.

Integrating, using that Φψ2 ∈ C∞
c (X \ {o}) and Green’s formula, we obtain∫

X

|∇ϕ|2

r2α
dx =

∫
X

(−∆Φ)Φψ2dx+

∫
X

|∇ψ|2Φ2dx

− 2α2

∫
X

ϕ2

r2α+2
dx+ 2α

∫
X

ϕrϕ

r2α+1
dx.

Changing to polar coordinates in the latter integral, using integration by parts,
f ∼ rn−1 as r → 0 and n− 1 ≥ 2α+ 1, and then resubstituting, we get

2

∫
X

ϕrϕ

r2α+1
dx =

∫ ∞

0

∫
Sn−1

(ϕ2)rf(r)

r2α+1
dωdr = −

∫ ∞

0

∫
Sn−1

(
f(r)

r2α+1

)
r

ϕ2dωdr

= (2α+ 1)

∫
X

ϕ2

r2α+2
dx−

∫
X

f ′(r)

f(r)r2α+1
ϕ2dx.

Thus, we obtain altogether

∫
X

|∇ϕ|2

r2α
dx ≥

∫
X

(−∆Φ)Φψ2dx+ α

∫
X

ϕ2

r2α+2
dx− α

∫
X

f ′(r)ϕ2

f(r)r2α+1
dx.
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Now, as usual, let Φ = (r/f(r))1/2, and recall from Lemma 2.4 that

−∆Φ(r) =

(
2f(r)f ′′(r)− (f ′(r))2

4f(r)2
+

1

4r2

)
Φ(r).

Thus, we get∫
X

|∇ϕ|2

r2α
dx ≥

∫
X

(
2f(r)f ′′(r)− (f ′(r))2

4f(r)2
− α

f ′(r)

rf(r)
+

4α+ 1

4r2

)
ϕ2

r2α
dx.

Moreover, we can use the same approximation argument as in the proof of
Theorem 2.2 to obtain ϕ ∈ C∞

c (Xp,q) and not only ϕ ∈ C∞
c (Xp,q \ {o}). This

finishes the proof on harmonic manifolds.
On Damek-Ricci spaces Xp,q, we know f explicitly, and by using (1.6) and

(2.2) the result follows.

3.3 A Poincaré-Hardy-type inequality for the P -Laplacian

In this subsection we want to generalize our Poincaré-Hardy-type inequality to
the quasi-linear P -Laplacian for P ∈ (1,∞).

Let us first introduce the P -Laplacian on a Riemannian manifold (X, g). It
is defined as

∆Pϕ := div(|∇ϕ|P−2∇ϕ).

This quasi-linear second order operator reduces to the classical linear Laplace
operator ∆ in the case P = 2. In the case of a non-compact harmonic manifold
(X, g) and a smooth radial function ϕ ∈ C∞(X) around a pole o ∈ X, the
P -Laplacian is again radial and given by

∆Pϕ(r) = |ϕ′(r)|P−2LPϕ(r), (3.4)

where

LPϕ(r) = (P − 1)ϕ′′(r) +
f ′(r)

f(r)
ϕ′(r). (3.5)

Moreover, we will need in Section 4 below that harmonicity of a radial function
ϕ ∈ C∞(X\{o}) with nowhere vanishing derivative is equivalent to the condition
that f |ϕ′|P−2ϕ′ is constant. This follows directly from the identity

(f |ϕ′|P−2ϕ′)′ = f |ϕ′|P−2LPϕ = f∆Pϕ.

Our aim in this subsection is to prove a quasi-linear version of the Poincaré-
Hardy inequality on Damek-Ricci spaces in the spirit of Theorem 2.2. This can
be seen as an generalisation of Theorem 2.5 in [7] on hyperbolic spaces to Damek-
Ricci spaces. The proof uses basically the quasi-linear version of the ideas from
the linear case. Clearly, the terminology of the Optimality Theory in Subsection
2.1 needs to be generalized to the quasi-linear context. However, most of the
generalizations are obvious and are not discussed here. We recommend [19] for
further details and references. Moreover, we want to mention that the same
restrictions on P and the dimension in the theorem below also appear in [7].
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Theorem 3.5. Let P ≥ 2, and let Xp,q be a Damek-Ricci space of dimension
n = p+q+1 ≥ 1+P (P −1). Let o ∈ Xp,q be a pole, r = d(o, ·), h := h(Xp,q) =
(p+ 2q)/2 be its Cheeger constant, and

ΛP (X
p,q) :=

(
h

P

)P

Furthermore, we set

g(r) := coth(r/2)− 2

p+ 2q

(
q

sinh(r)
+

1

r

)
.

Then, g(r) ≥ p+q−1
h·r and g(r) → 1 as r → ∞, and we have for all ϕ ∈ C∞

c (Xp,q),∫
Xp,q

|∇ϕ|P dx− ΛP (X
p,q)

∫
Xp,q

g(r)P−2|ϕ|P dx

≥ hP−2(P − 1)2

PP

∫
Xp,q

g(r)P−2

r2
|ϕ|P dx

+
hP−1(P − 2)

PP

∫
Xp,q

g(r)P−2(g(r) + 1
hr )

r
|ϕ|P dx

+
hP−2

PP

∫
Xp,q

g(r)P−2

(
q2 − qP (P − 1)

sinh2(r)
+
p(2h− P (P − 1))

4 sinh2(r/2)

)
|ϕ|P dx. (3.6)

Moreover, all integrands on the right hand side of this inequality are non-
negative functions.

Note again that the special choice P = 2 in the above theorem leads to our
Main Theorem A in the Introduction.

The theorem will be obtained with the help of the Agmon-Allegretto-Piepen-
brink Theorem. For convenience, we state it here in our smooth setting and for
a strong solution. Note that it is a generalization of Lemma 2.6. Moreover, the
statement is actually an equivalence but we only state the direction we need.

Lemma 3.6 (see [39, Theorem 2.3]). Let Ω ⊂ X be a domain in a Riemannian
manifold (X, g), P ∈ (1,∞). Let Φ ∈ C∞(Ω) be a positive supersolution of
−∆PΦ+ (V −W )|Φ|P−2Φ = 0 on Ω. Then we have for all ϕ ∈ C∞

c (Ω),∫
Ω

|∇ϕ|P dx ≥
∫
Ω

(W − V )|ϕ|P dx.

Proof of Theorem 3.5. Set Φ(r) = (r/f(r))1/P and let LP be the operator in-
troduced in (3.5). It is not difficult to see (omitting the argument r),

LPΦ =

(
−
(
P − 1

P

)2
1

r2
− P − 2

P 2

f ′

rf
+
P 2 − P − 1

P 2

(f ′)2

f2
− P − 1

P

f ′′

f

)
Φ

= − 1

P 2

(
(P − 1)2

r2
+

(P − 2)f ′

rf
+

(f ′)2

f2
+ P (P − 1)

(
f ′′

f
− (f ′)2

f2

))
Φ.
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The basic idea is to use Lemma 3.6, i.e., we need to show that Φ is a superso-
lution with respect to the corresponding P -Schrödinger operator, i.e., the value
inside the latter parenthesis should be non-negative. Since f ′/f > 0 (see [41,
Prop. 2.2]), it suffices to prove (f ′)2/f2+P (P −1)(f ′′/f − (f ′)2/f2) ≥ 0. Once
this is shown, the lemma provides us with a particular Hardy inequality. How-
ever, it seems that we need more knowledge about f to prove non-negativity
of this term. Since our Riemannian manifold is the Damek-Ricci space Xp,q

with the explicit expression (1.5) for the volume density f , we conclude from
Lemma 2.8 by setting a = 1 − P (P − 1) and b = −P (P − 1) and the relation
4λ0(X

p,q) = h2 that

(f ′)2

f2
+ P (P − 1)

(
f ′′

f
− (f ′)2

f2

)
=

h2 +
q(q − P (P − 1))

sinh2(r)
+
p(p+ 2q − P (P − 1))

4 sinh2(r/2)
. (3.7)

Using the assumption n− 1 = p+ q ≥ P (P − 1), we estimate

q(q − P (P − 1))

sinh2(r)
+
p(p+ 2q − P (P − 1))

4 sinh2(r/2)
≥ pq

(
1

4 sinh2(r/2)
− 1

sinh2(r)

)
≥ 0,

where we used sinh(r) = 2 sinh(r/2) cosh(r/2) and cosh(r/2) ≥ 1 for all r ∈ R
in the last inequality. This shows on the one hand that the last integrand on
the right hand side of (3.6) is non-negative, and also that

(f ′)2

f2
+ P (P − 1)

(
f ′′

f
− (f ′)2

f2

)
≥ h2 > 0.

Hence, for P (P − 1) ≤ n − 1 and P ≥ 2, Φ is a positive supersolution.
By Lemma 3.6, we conclude the non-negativity of the corresponding energy
functional.

To finish the proof of the theorem, we only need to analyse ∆PΦ(r) =
|Φ′(r)|P−2LPΦ(r). Note that

|Φ′(r)|P−2 =

(
Φ

P

)P−2 ∣∣∣∣1r − f ′

f

∣∣∣∣P−2

.

One could use (1.7) and estimate | 1r −
f ′

f | = f ′

f − 1
r ≥ p+q−1

r for a simplification.

But we want to take the precise term instead and write with the help of (1.6),

f ′

f
− 1

r
=
p+ 2q

2
coth(r/2)− q

sinh(r)
− 1

r
=
p+ 2q

2
g(r) = h · g(r),

with g and h = h(Xp,q) defined as in the theorem. This yields the estimate
g(r) ≥ p+q−1

h·r in the theorem as well as the asymptotics g(r) → 1 as r → ∞.
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Substituting (3.7) into

(−∆P )Φ =
hP−2

PP
gP−2·(

(P − 1)2

r2
+

(P − 2)f ′

rf
+

(f ′)2

f2
+ P (P − 1)

(
f ′′

f
− (f ′)2

f2

))
ΦP−1

and using f ′

f = h(g+ 1
hr ), the inequality of the theorem follows from Lemma 3.6

and the usual approximation argument to extend it to all functions ϕ ∈ C∞
c (Xp,q).

Remark. It follows from the proof that inequality (3.6) in the theorem can
be simplified by replacing g(r) by the easier lower bound p+q−1

hr > 0, but we
expect that the corresponding P -Schrödinger operator in the theorem is critical
on Xp,q \ {o}, which would be lost by this simplification.

4 Another Poincaré-Hardy-type inequality for
the P -Laplacian

In this section we derive the Green function for the P -Lapacian and follow the
general arguments given in [11, Section 5.1] (see also [7] for the case of the
real hyperbolic space) to obtain a Hardy weight for the P -Laplacian on non-
compact harmonic manifolds, which is optimal under a certain condition of the
dimension. Similarly as in [11], we also study asymptotics of this Hard weight
at the pole.

4.1 The Green function of the P-Laplacian on a non-compact
harmonic manifold

The P -Green function G = GP : X ×X \ {(x, x) | x ∈ X} → R is characterised
by the following conditions (see, e.g., [33]):

(a) ∆P,xG(x, y) = 0 for all x ̸= y,

(b) G(x, y) ≥ 0 for all x ̸= y,

(c) For all y ∈ X, we have limx→∞G(x, y) = 0,

(d) If 1 < P ≤ n: For all y ∈ X, we have limx→y G(x, y) = ∞,

(e) For all ϕ ∈ C∞
c (X) and all y ∈ X, we have∫
X

〈
|∇xG(x, y)|p−2∇xG(x, y),∇ϕ(x)

〉
dx = ϕ(y),

that is, −∆P,yG(x, ·) = δy in the sense of distributions.
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In the case of a harmonic manifold, we can fix a point o ∈ X and consider the
Green function as a function of the radius, that is, we can write G(d(x, o)) =
G(x, o). The Green function of the P -Laplacian of the Euclidean space Rn for
1 < P < n is given by

G(r) =
P − 1

(n− P )
ω−1/(P−1)
n r−

n−P
P−1 ,

where ωn is the volume of the unit sphere Sn−1 in Rn. Let us now calculate the
Green function of the P -Laplacian of a non-compact non-Euclidean harmonic
manifold X of dimension n with density function f . Recall from Subsection
3.3 that P -harmonicity of a radial function G ∈ C∞(X \ {o}) with nowhere
vanishing derivative is given when f |G′|P−2G′ is constant. Assuming G′ < 0
and limr→∞G(r) = 0, and setting

f |G′|P−2G′ = −f |G′|P−1 ∼= −βP−1,

for some constant β > 0, we find by integration

G(r) = β

∫ ∞

r

dt

(f(t))1/(P−1)
. (4.1)

Since X is non-flat, the mean curvature h of its horospheres must be strictly
positive (see, e.g., [27, Corollary 2.8]). This result is a consequence of the fact
that X cannot have polynomial volume growth by [41, Theorem 4.2] and that
the density function f of X is an exponential polynomial by [35]. Therefore, X
must have exponential volume growth and the integral on the right hand side of
(4.1) is finite for all r > 0. Let us study limr→0G(r) for G(r) defined in (4.1).
It follows from [46, p. 82] for arbitrary Riemannian manifolds that

f(t) = tn−1

(
1− s(o)

6n
t2 +O(t4)

)
for t→ 0, (4.2)

where s(o) is the scalar curvature of X at o ∈ X. Consequently, we can find
r′ > 0 and 0 < c1 < c2 such that, for 0 < r < r′,

c1

∫ r′

r

dt

t(n−1)/(P−1)
≤
∫ r′

r

dt

(f(t))1/(P−1)
≤ c2

∫ r′

r

dt

t(n−1)/(P−1)
, (4.3)

which implies limr→0G(r) = ∞ in the case 1 < P ≤ n. The Ansatz (4.1)
implies

G′(r) = − β

(f(r))1/(P−1)
,

which shows that the assumption G′ < 0 was justified. The arguments so far
and the explicit expression for G imply that G satisfies conditions (a), (b), (c)
and (d).

It remains to verify condition (e). It is known that non-compact harmonic
manifolds do not have conjugate points, since simply connected harmonic man-
ifolds with conjugate points are Blaschke manifolds by Allamigeon’s Theorem
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(see [10, Chapter 6F] or [31, Section 5.1]). We can therefore use global geodesic
polar coordinates (r, θ) ∈ (0,∞)×Sn−1 → X \ {y} around the pole y ∈ X. For
simplicity of notation, we switch between points of X and their representations
in polar coordinates. We have ∇xG(x, y) = G′(r)ξ(r, θ), where r = d(x, y) and
ξ defined on X \{y} is the outward unit normal vector field of concentric spheres
around y. Consequently, we have

〈
|∇xG(x, y)|P−2∇xG(x, y),∇ϕ(x)

〉
= |G′(r)|P−2G′(r)

∂

∂r
ϕ(r, θ)

= −β
P−1

f(r)

∂

∂r
ϕ(r, θ).

This implies∫
X

〈
|∇xG(x, y)|P−2∇xG(x, y),∇ϕ(x)

〉
dx

= −
∫
Sn−1

∫ ∞

0

βP−1

f(r)

∂

∂r
ϕ(r, θ)f(r)drdθ = βP−1vol(Sn−1)ϕ(y).

This shows that (e) is satisfied if we choose β = 1/ω
1/(P−1)
n . Therefore the

Green function of the P -Laplacian of an n-dimensional non-compact harmonic
manifold is given by

G(d(x, y)) =

∫ ∞

d(x,y)

dt

(ωnf(t))1/(P−1)
.

Moreover, we see from estimate (4.3) that, in the case n < P < ∞, the limit
γ := limr→0G(r) is a finite positive real number. Note that this expression
agrees with the boxed formula in [27, p. 51] for the standard Laplace operator,
that is, the case P = 2.

4.2 A Poincaré-Hardy-type inequality for the P -Laplacian
based on the P -Green function

The following theorem is an extension of [7, Proposition 1.1] from real hyperbolic
spaces to arbitrary non-flat harmonic manifolds. The proof follows closely the
one given in [7] which, in turn, is based on the arguments given in [11, Section
5.1].

Theorem 4.1. Let X be a non-compact non-Euclidean harmonic manifold of
dimension n, o ∈ X a pole, and r = d(o, ·). Let 1 < P < ∞ and G(r) be the
corresponding P -Green function. Then we have

W :=

(
P − 1

P

)P ∣∣∣∣∇GG
∣∣∣∣P ≥ ΛP :=

(
h

P

)P

.

In the case 1 < P ≤ n, W is an optimal Hardy weight of −∆P in X \ {o}.
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For all 1 < P <∞ and all ϕ ∈ C∞
c (X), we have∫

X

|∇ϕ|P dx− ΛP

∫
X

|ϕ|P dx ≥
∫
X

W̃ |ϕ|P dx (4.4)

with W̃ =W − ΛP ≥ 0. Moreover, we have the following asymptotics,

W̃ (r) ∼


(
n−P
P

)P
r−P for 1 < P < n(

P−1
P

)P |r log(r)|−P for P = n

CP,f r
−P (n−1)

P−1 for n < P <∞
as r → 0, (4.5)

where CP,f =
(
P−1
P

)P (∫∞
0

dt
(f(t))1/(P−1)

)−P

. We also have limr→∞ W̃ (r) = 0.

Proof. Let us first prove the inequality W (r) ≥ ΛP . Let f be the density
function of X. We know from [42, Section 2] that the quotient f ′(r)/f(r) is
monotone descreasing with h = limr→∞ f ′(r)/f(r). Since X is non-flat, we
have h > 0. Using f ′/f ≥ h, we obtain∫ ∞

r

dt

(f(t))1/(P−1)
≤ 1

h

∫ ∞

r

f ′(t)dt

(f(t))1+1/(P−1)
=
P − 1

h
(f(r))

−1/(P−1)
.

This implies that∣∣∣∣G′(r)

G(r)

∣∣∣∣ = ((f(r))1/(P−1)

∫ ∞

r

dt

(f(t))1/(P−1)

)−1

≥ h

P − 1
,

and therefore

W (r) =

(
P − 1

P

)P ∣∣∣∣G′(r)

G(r)

∣∣∣∣P ≥
(
P − 1

P

)P (
h

P − 1

)P

= ΛP .

Applying [19, Theorem 1.5(1)], we conclude that W is an optimal Hardy weight
of −∆P in X\{o} in the case 1 < P ≤ n.

Choosing ρ = G in [14, Theorem 2.1], we conclude for all ϕ ∈ C∞
c (X0) that∫

X0

|∇ϕ|P dx ≥
∫
X0

W |ϕ|P dx

for X0 = X \ {o} if 1 < P ≤ n and X0 = X if P > n. Since {o} ⊂ X is
a compact set of zero p-capacity, we can apply [14, Corollary 2.3] to extend
the inequality to the whole manifold X in the case 1 < P ≤ n. This shows
inequality (4.4).

It remains to prove the asymptotics. Let us begin with the asymptotics
as r → 0. Note that W̃ (r) ∼ a(r) is equivalent to W (r) ∼ a(r) in the case
limr→0 a(r) = ∞, and it suffices to prove the asymptotics in (4.5) for W instead

of W̃ .
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Let us first consider the case P > n. Using the estimate (4.3), we conclude
that ∫ r

0

dt

(f(t))1/(P−1)
= O(r

P−n
P−1 ) as r → 0,

and therefore, employing (4.2),∣∣∣∣G′(r)

G(r)

∣∣∣∣ =

[(∫ ∞

0

dt

(f(t))1/(P−1)

)−1

+O(r(P−n)/(P−1))

]
(f(r))−1/(P−1)

∼
(∫ ∞

0

dt

(f(t))1/(P−1)

)−1

r−(n−1)/(P−1) as r → 0.

This shows, in the case P > n, that

W (r) =

(
P − 1

P

)P ∣∣∣∣G′(r)

G(r)

∣∣∣∣P ∼ CP,fr
−P (n−1)/(P−1) as r → 0.

Now, we turn to the case 1 < P < n. We have limr→0G(r) = ∞ by property
(d) of the P -Green function and, by using (4.2),

lim
r→0

rG′(r) = − 1

ω1/(P−1)
lim
r→0

r

r(n−1)/(P−1)
= −∞.

We can apply L’Hôpital and obtain

lim
r→0

rG′(r)

G(r)
= 1 + lim

r→0

rG′′(r)

G′(r)
= 1− 1

P − 1
lim
r→0

rf ′(r)

f(r)
.

Note that f ′(r)/f(r) is the mean curvature of metric spheres of radius r, and it
is well-known for arbitrary Riemannian manifolds that f ′(r)/f(r) ∼ (n − 1)/r
as r → 0 (in the case of a harmonic manifold, we have rf ′(r)/f(r) = trace(C)
with C in [10, 6.33] and the statement follows from [10, 6.36]). Consequently,
we have

G′(r)

G(r)
∼ P − n

P − 1
· 1
r

as r → 0.

From this we conclude that, in the case 1 < P < n,

W (r) =

(
P − 1

P

)P ∣∣∣∣G′(r)

G(r)

∣∣∣∣P ∼
(
n− P

P

)P

r−P as r → 0.

Let us now consider the remaining case P = n. Similarly as before we have
limr→0 r log rG

′(r) = −∞ and L’Hôpital yields

lim
r→0

r log rG′(r)

G(r)
= 1 + lim

r→0
log r

G′(r) + rG′′(r)

G′(r)

= 1 + lim
r→0

log r

(
1− 1

P − 1

rf ′(r)

f(r)

)
= 1 + lim

r→0
log r

(
P − n

P − 1
+O(r2)

)
.
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Here we used the slightly stronger fact that rf ′(r)/f(r) = (n − 1) + O(r2)
as r → 0 (this follows, e.g., from [20, Lemma 12.2], where an explicit Taylor
expansion is given up to the sixth term). Since we assume P = n, we conclude
that

G′(r)

G(r)
∼ 1

r log r
as r → 0,

and therefore, in the case P = n,

W (r) =

(
P − 1

P

)P ∣∣∣∣G′(r)

G(r)

∣∣∣∣P ∼
(
P − 1

P

)P

|r log r|−P as r → 0.

Finally, the proof of limr→∞ W̃ (r) = 0 is a straightforward application of
L’Hôpital. We have

lim
r→∞

G′(r)

G(r)
= − lim

r→∞

1/(f(r))1/(P−1)∫∞
r

dt
(f(t))1/(P−1)

= − 1

P − 1
lim
r→∞

f ′(r)

f(r)
= − h

P − 1
,

and therefore

lim
r→∞

W (r) =

(
P − 1

P

)P

lim
r→∞

∣∣∣∣G′(r)

G(r)

∣∣∣∣P =

(
P − 1

P

)P (
h

P − 1

)P

= ΛP .

Remark. It follows from [19, Theorem 1.5(2)] that, in the case n < P < ∞,
an optimal Hardy weight of −∆P in X \ {o} is given by

W :=

(
P − 1

P

)P ∣∣∣∣∇GG
∣∣∣∣P · |γ − 2G|P−2

|γ −G|P
(
γ2 + 2(P − 2)G(γ −G)

)
with γ := G(0) =

∫∞
0

dt
(ωnf(t))1/(P−1) .

Remark. In the special case of a Damek-Ricci spaceX = Xp,q, the asymptotics
of W for r → ∞ can be evaluated more precisely by adapting the computations
in [7, p.153]: The density function of Xp,q is given by

f(r) = 2p+q(sinh(r/2))p+q(cosh(r/2))q,

the mean curvature of horospheres is given by h = p+2q
2 , and we obtain with

s = sinh(t/2) and α = q
2(P−1) +

1
2 ,

(2p+qωn)
1

P−1G(r) =

∫ ∞

r

(sinh(t/2))−
p+q

(P−1) (cosh(t/2))−
q

2(P−1) dt

= 2

∫ ∞

sinh r
2

s−
p+q
P−1

(
1 + s2

)−α
ds = 2

∫ ∞

sinh r
2

s−
p+q
P−1−2α

(
1− α

s2
+ o

(
1

s3

))
ds

=
P − 1

h

(
sinh

r

2

)− 2h
P−1−2α

(
2h

P − 1
+ 2

)−1 (
sinh

r

2

)− 2h
P−1−2

+o

((
sinh

r

2

)− 2h
P−1−3

)
,
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for r → ∞. This implies that∣∣∣∣G′(r)

G(r)

∣∣∣∣P
=
(
coth

r

2

)− P
P−1 ·q

∣∣∣∣∣P − 1

h
− 2α

(
2h

P − 1
+ 2

)−1 (
sinh

r

2

)−2

+ o

((
sinh

r

2

)−3
)∣∣∣∣∣

−P

,

and therefore the following asymptotics of W at infinity:

W (r)

=

(
h

P

)P (
coth

r

2

)− P
P−1 ·q

(
1 + 2αP

h

2h+ 2P − 2

(
sinh

r

2

)−2

+ o
(
sinh

r

2

)−3
)
.

The corresponding P -Rellich inequality can be found in [19, Theorem 7.3],
and a quasi-linear version of the uncertainty principle follows by using the Hölder
inequality properly (confer with Subsection 2.3).

A Non-compact harmonic manifolds and Damek-
Ricci spaces

Let us start with the original definition of a harmonic manifold: A complete
Riemannian manifold (X, g) is harmonic if, for all o ∈ X, there exists a local
non-constant radial harmonic function, that is, a function g(x) = g(d(o, x)),
depending only on the distance to o ∈ X and satisfying ∆g = 0 on a small
punctured neighbourhood of o. There are various other equivalent definitions
of harmonicity which can be found, e.g., in [46, p. 224], [10, Prop. 6.21] or [43,
Théorème 4]. A very natural way to characterize harmonic manifolds (going
back to Willmore) is to require that all harmonic functions satisfy the Mean
Value Property. This characterization was given in the introduction.

It is known for any non-compact harmonic manifold that its volume density
f(r), r = d(o, ·), is a strictly positive exponential polynomial, that is, a finite

sum
∑k

i=1(pi(r) sin(βir) + qi(r) cos(βir))e
αir (see [35, Theorem 2]). Moreover,

if a non-compact harmonic manifold of dimension n has sub-exponential volume
growth, then it must be isometric to the flat Euclidean space Rn (this follows
from [41]).

Let us now focus on an explicit family of non-compact harmonic mani-
folds, namely the Damek-Ricci spaces. They are particular Lie groups with
left-invariant metrics. Their definition requires some preparation.

A 2-step nilpotent Lie algebra n with center z and an inner product ⟨·, ·⟩ :
n × n → R is called a Lie algebra of Heisenberg-type if it has a orthogonal
decomposition n = v ⊕ z and if the linear maps JZ : v → v for each Z ∈ z,
defined by

⟨JZV, V ′⟩ = ⟨Z, [V, V ′]⟩
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satisfy
J2
Z(V ) = −∥Z∥2 V. (A.1)

A Heisenberg-type Lie algebra n comes with the two parameters p, q ≥ 1 which
are the dimensions p = dim(v) and q = dim(z). The above conditions restrict
the possible pairs (p, q), for example, it follows from (A.1) that p needs to be an
even number. Let a be a 1-dimensional Lie algebra generated by H ∈ a, that is,
a = RH. We extend a Lie algebra n of Heisenberg-type to a solvable Lie algebra

s = n⊕ a, (A.2)

of dimension n = p+ q + 1 by setting

[H,V ] =
1

2
V and [H,Z] = Z

for all V ∈ v and Z ∈ z. We also extend the inner product on n to an inner
product ⟨·, ·⟩ : s × s → R, by setting ∥H∥ = 1 and requiring that the decom-
position (A.2) is orthogonal. We can now give the definition of a Damek-Ricci
space.

Definition A.1. A Damek-Ricci space Xp,q is the unique connected and sim-
ply connected Lie group S = NA associated to the solvable extension s of a
Heisenberg-type Lie algebra n with parameters p, q by a = RH, as described
above, and equipped with a left invariant metric such that the Riemannian met-
ric of TeS agrees with the inner product on s under the canonical identification
TeS ∼= s, where e ∈ S denotes the neutral element of S. The space Xp,q has
therefore the dimension n = p+ q + 1.

Finally, let us briefly explain how the real hyperbolic space Hn can be de-
scribed as a solvabe Lie group with left-invariant metric, even though this space
is associated to a Lie algebra s = n ⊕ a where n is not 2-step nilpotent but
abelian. For that reason, real hyperbolic spaces are not contained in the class
of Damek-Ricci spaces.

Example A.2. The upper half space model of the real hyperbolic space Hn is
given by Hn = {(x, y) : x ∈ Rn−1, y > 0} with Riemannian metric

gHn(v, w) =
⟨v, w⟩0
y2

for v, w ∈ T(x,y) ∼= Rn,

where ⟨·, ·⟩0 denotes the Euclidean inner product of Rn. For this space we have

λ0(Hn) = (n−1)2

4 .
For the description of Hn as a solvable Lie group S = NA, we start with the

Lie algebras

n =
{
n(x) : x ∈ Rn−1

}
and a = {diag(0, 0, . . . , 0, t,−t) : t ∈ R} ,

where

n(x) =

0n−1 0 −x⊤

x 0 0
0 0 0

 .
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Let H = diag(0, 0, . . . , 0, 1,−1). It is easy to see that [H,X] = HX −XH = X
and [X,Y ] = XY − Y X = 0 for all X,Y ∈ n. An inner product on the solvable
Lie algebra s = n ⊕ a with Lie bracket [Z1, Z2] = Z1Z2 − Z2Z1 is given by the
requirements that n and a are perpendicular, ∥H∥ = 1, and

⟨n(x), n(y)⟩ = ⟨x,y⟩0,

where ⟨·, ·⟩0 denotes the Euclidean inner product on Rn−1. The map

s = n⊕ a → S = NA,

(n(x), tH) 7→ exp(n(x)) exp(tH) =

Idn−1 0 −e−tx⊤

x et − 1
2e

−t∥x∥20
0 0 e−t


is a bijection. If we identify S = NA with Rn−1 × R+ via

exp(n(x)) exp(tH) 7→ (x, et),

the Lie group multiplication in S takes the form

(y, es) · (x, et) = (y + esx, es+t).

In other words, S = NA can be identified with a semidirect product Rn−1⋊R+,
where the group operation in Rn−1 is addition and the group operation in R+

is multiplication.
We transfer the inner product of s to an inner product on TeS via the

identification Z 7→ d
dt |t=0 exp(tZ) and extend it left-invariantly to a Riemannian

metric gS on S. Then the map

exp(n(x)) exp(sH) 7→ (x, es) ∈ Hn

is an isometry between (S, gS) and (Hn, gHn), which implies that (S, gS) is a
model of the n-dimensional real hyperbolic space.
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31(3):449–475, 2014.

[15] E. Damek and F. Ricci. A class of nonsymmetric harmonic Riemannian
spaces. Bull. Amer. Math. Soc. (N.S.) 27(1):139–142, 1992.

[16] E. Damek and F. Ricci. Harmonic analysis on solvable extensions of H-type
groups. J. Geom. Anal. 2(3):213–248, 1992.

32



[17] E. B. Davies. Heat kernels and spectral theory. Volume 92, Cambridge
University Press, 1989.

[18] B. Devyver, M. Fraas, and Y. Pinchover. Optimal Hardy weight for second-
order elliptic operator: an answer to a problem of Agmon. J. Funct. Anal.
266(7):4422–4489, 2014.

[19] B. Devyver and Y. Pinchover. Optimal Lp Hardy-type inequalities. Ann.
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